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Abstract

We extend the state-of-the-art IP formulations for clas-
sical planning to include resources and optimization
objectives. We present our initial findings and show
some preliminary results.

Introduction

One of the most compelling reason for using integer pro-
gramming (IP) and mixed integer programming (MIP)
techniques in planning is when the planning problem
contains numerical state variables. Numerical state
variables appear in many practical planning domains
and are often accompanied by linear numerical con-
straints and optimization criteria, which are naturally
supported by the IP framework. Traditionally, IP has
been used to tackle hard combinatorial optimization
problems that arise in the field of operation research.
However, recent work has shown that IP techniques also
show great potential in their ability to solve classical AI
planning problems and can compete with the most ef-
ficient SAT-based encodings (van den Briel, Vossen, &
Kambhampati 2005).

Currently, we are investigating the use of IP tech-
niques in numerical planning by extending the state-
of-the-art IP formulations for classical planning and by
adding on the work of Kautz and Walser (1999). We
will exploit the strength of IP techniques to solve op-
timization problems with numerical constraints, to ex-
tend to AI planning problems that involve numerical
state variables and numerical constraints. Even though
we are still in the early stages of our research, our first
observations and preliminary results suggest that we
can improve previous IP approaches to solve these type
of planning problems more effetively. Below we will give
a brief summary of our IP formulations and show some
initial results.

Numerical State Variables

We often refer to numerical state variables as resources.
Heuristics for planning with resources have been studied
by several different works (Do & Kambhampati 2001;
Halsum & Geffner 2001; Hoffmann 2002; Refandis &
Vlahavas 2000). Studies on IP formulations for resource

planning, however, are not as plentiful. Wolfman and
Weld (1999) use LP formulations in combination with
a satisfiability-based planner to solve resource planning
problems, and Kautz and Walser (1999) use IP formu-
lations for resource planning problems that incorporate
action costs and complex objectives.

In order to reason about resources, actions are ex-
tended to include resource preconditions and effects.
Koehler (1998) provides a general framework in which
a resource precondition is a simple linear inequality that
must hold in each state where the action is applicable,
and the action effects are to produce (increase), con-
sume (decrease), or provide (assign) the value of a re-
source. A resource is called reusable if it can only be
borrowed, that is, it cannot be consumed or produced
by any action. In all other cases a resource is called
consumable. A reusable resource is sharable if it can be
borrowed by more than one action at the same time,
otherwise it is non-sharable.

The AIPS-2002 planning competition introduced sev-
eral planning domains with resources. The language
that was used in this competition, PDDL2.1 (Fox &
Long 2003), incorporates the possibility to define nu-
merical constraints and effects on numerical state vari-
ables. Table 1 gives all the numeric domains of this
competition and lists all the resource variables. If there
exists an action in the domain that has an effect on a
resource variable, then that resource variable is listed
in the corresponding action effect column. In addition,
a type and bounds (where C is some constant) on the
resource are given.

We say a resource is monotonic if it can only be
produced (monotonic+), or if it can only be consumed
(monotonic−). We say a resource is nonmonotonic if it
can both be produced and consumed (nonmonotonic),
and if it can be provided (nonmonotonic=). These re-
source types are used to categorize the resource con-
straints in our IP formulations.

Integer Programming Formulations

Numerical constraints such as
∑

j∈B ajxj +∑
j∈C gjyj ≤ b, where aj and gj are real num-

bers, B the set of binary variables, and C the set
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Domain Increase Decrease Assign Type Bounds

Depots (current-load ?z) (current-load ?z) nonmonotonic [0, C]
(fuel-cost) monotonic+ [0,∞)

Driverlog (driven) monotonic+ [0,∞)
(walked) monotonic+ [0,∞)

Rovers (energy ?x) (energy ?x) nonmonotonic [0,∞)
(recharges) monotonic+ [0,∞)

Satellite (fuel-used) monotonic+ [0,∞)
(data-stored) monotonic+ [0,∞)

(fuel ?s) monotonic− [0, C]
(data-capacity ?s) monotonic− [0, C]

Settlers (available ?r ?v) (available ?r ?v) (available ?r ?v) nonmonotonic= [0,∞)
(available ?r ?p) (available ?r ?p) nonmonotonic [0,∞)
(space-in ?v) (space-in ?v) nonmonotonic [0,∞)
(labor) monotonic+ [0,∞)
(pollution) monotonic+ [0,∞)

UMT (weight-load-v ?v) (weight-load-v ?v) nonmonotonic [0,∞)
(volume-load-v ?v) (volume-load-v ?v) nonmonotonic [0,∞)
(volume-load-l ?l) (volume-load-l ?l) nonmonotonic [0,∞)

Zenotravel (onboard ?a) (onboard ?a) nonmonotonic [0,∞)
(total-fuel-used) monotonic+ [0,∞)

(fuel ?a) (fuel ?a) nonmonotonic= [0, C]

Table 1: The numeric domains of the AIPS-2002 planning competition

of continuous and integer variables, have received a
great deal of attention in the field of mixed integer
programming (Savelsbergh 1994). We integrate some
of the ideas presented in this field to deal with the
numerical constraints and variables that are present in
resource planning domains.

Our IP formulations for resource planning are an ex-
tension to the IP formulations given by (van den Briel,
Vossen, & Kambhampati 2005). In this presentation,
we will limit our focus on dealing with the numeri-
cal state variables, the propositional variables are dealt
with in the same way as in van den Briel, Vossen and
Kambhampati (2005). That is, propositional variables
are transformed into multi-valued state variables, and
changes in the state variables are modeled as flows in
an appropriately defined network. As a consequence,
the resulting IP formulations can be interpreted as a
network flow problem with additional side constraints.

We will use the following notation:

• A: the set of ground actions

• R: the set of resources

• T : the maximum number of plan steps

• prod(a), cons(a), prov(a): the set of resources that
appear respectively as produce, consume, provide ef-
fects for action a ∈ A

• producea,r, consumea,r, providea,r: the amount of
resource r ∈ R that is respectively produced, con-
sumed, provided by action a ∈ A

In our formulations we use actions and numerical state
variables, which we define as follows:

• xa,t ∈ {0, 1}, for a ∈ A, 1 ≤ t ≤ T ; xa,t is equal to 1 if
action a is executed at plan step t, and 0 otherwise.

• zr,t ≥ 0, for r ∈ R, 1 ≤ t ≤ T ; zr,t represents
the value of resource r at plan step t. zr,t can be
real or integer-valued and may be bounded from
above. For now, we will assume that that each re-
source has a lower bound that can be normalized to 0.

Numerical state variables add constraints to the plan-
ning problem and they may appear in the optimization
criteria of the planning problem. Next, we will discuss
what constraints need to be added to the IP formulation
in order to model the different resources.

Monotonic resources

Resources that behave monotonically can be modeled
without introducing numerical state variables to the IP
formulation. We can simply deal with these resources
by adding them implicitly to the model. Let Rmon+ and
Rmon− be the set of resources of type monotonic+ and
monotonic− respectively. If the optimization criteria
requires a monotonic resource to be minimized then we
can simply setup the following objective function:

MIN
∑

a∈A,1≤t≤T,r∈Rmon+:r∈prod(a)

producea,rxa,t +

∑

a∈A,1≤t≤T,r∈Rmon−:r∈cons(a)

consumea,rxa,t

Instead of representing monotonic resources by nu-
merical state variables, we can simply deal with them
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by directly working on the action effects. In case a
monotonic resource is bounded then we add an extra
constraint to satisfy this bound. For every monotonic+

resource r with an upper bound Ur we must add the
following constraint:

∑

a∈A,1≤t≤T,r∈Rmon+

producea,rxa,t ≤ Ur

Similarly, for every monotonic− resource r with a
lower bound Lr and an initial value Ir we must add
the following constraint:

∑

a∈A,1≤t≤T,r∈Rmon−

consumea,rxa,t ≤ Ir − Lr

Note that in numeric planning domains where all re-
sources are unbounded and monotonic, like the AIPS-
2002 numeric driverlog domain, resource planning re-
duces to classical planning with cost sensitive actions.

Nonmonotonic resources

Resources that are nonmonotonic require the use of nu-
merical state variables in the IP formulation. Since ac-
tions may increase or decrease the value of the resource,
we need to keep track of their value over time. Let Rnon

be the set of nonmonotonic resources only affected by
produce and consume effects of actions, and let Rnon=

be the set of nonmonotonic resources that are affected
by provide effects of actions. If nonmonotonic resources
are to be minimized then we can add them to the ob-
jective function as follows:

MIN
∑

a∈A,1≤t≤T,r∈Rnon∪Rnon=:r∈prod(a)

producea,rxa,t +

∑

a∈A,1≤t≤T,r∈Rnon∪Rnon=:r∈cons(a)

consumea,rxa,t

Also for each nonmonotonic resource r ∈ Rnon we
must keep track of its value, hence we have the con-
straint:

zr,t−1 +
∑

a∈A,r∈Rnon:r∈prod(a)

producea,rxa,t =

∑

a∈A,r∈Rnon:r∈cons(a)

consumea,rxa,t + zr,t

When an action has a provide effect on a resource
r ∈ Rnon= then the constraints for keeping track of the
resource is more involved. In this case we currently use
the linear inequalities as described by Kautz and Walser
(1999).

Preliminary Results

For our preliminary studies of the effectiveness of our
approaches we compare to the work of Kautz and

1SC KW
Problem Obj Nodes Time Nodes Time
(1, 2, 3) 3600 0 0.01 0 0.02
(1, 3, 3) 6780 0 0.02 0 0.04
(1, 6, 3) 9762 15 0.38 56 0.40
(2, 4, 3) 4500 0 0.05
(2, 5, 3) 5644 42 0.10
(2, 4, 4) 3939 4 0.14
(2, 5, 4) 5014 2 0.19
(2, 6, 4) 9273 606 0.28
(3, 6, 5) 8914 292 0.49
(3, 7, 5) 14919 2195 0.71
(3, 8, 5) 21164 717 0.96

Table 2: Results for the airplane domain, where the
problem number is given by (#airplanes, #passengers,
#cities).

Walser (KW). We use the airplane domain, which is
a modified version of the airplane example from Pen-
berthy and Weld (1994) and Koehler (1998). One or
more airplanes can fly between a number of different
airports. A fly action consumes fuel and a refuel ac-
tion provides fuel, hence fuel is a nonmonotonic= re-
source. The goal is to take each passenger to his or her
destination while minimizing the total fuel consump-
tion. We setup an IP formulation, which we call 1SC,
where the propositional variables are modeled as in van
den Briel, Vossen, and Kambhampati (2005) and the
resource is modeled as in Kautz and Walser (1999).
Hence, the main difference in these two approaches is
how the propositional variables are modeled. Also, the
KW formulation is specifically modeled for this domain
with one airplane, whereas our 1SC formulation is do-
main independent.

Some results for the airplane domain are given in Ta-
ble 2. All problems were solved to optimality, that is,
the objective value represents the minimum amount of
fuel needed to transport the passengers. Comparative
analysis was made difficult by the fact that the KW for-
mulation only works for single airplane scenarios, while
our 1SC formulation can handle multiple airplanes and
can be applied to a wide variety of other numerical
planning domains. Nevertheless, on the problems that
both approaches were able to solve our formulation out-
performed the KW formulation in terms of number of
branch-and-bound nodes and solution time.

Future Work

Integer programming provides a strong framework for
dealing with numerical constraints and optimization
criteria. So far, only a few researchers have looked into
the application of IP techniques in planning with re-
sources, and we believe that there is significant room
for improvement. Even though we are still in the early
stages of our research, there are some potential cutting
planes that we may be able to detect and add to our IP
formulations. For example, the bound constraints on
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the monotonic resource variables can be interpreted as
0-1 knapsack constraints, and so, we could find knap-
sack cover inequalities. The constraints on the non-
monotonic resources look very similar to constraints we
see in lot-sizing problems (Pochet & Wolsey 1995), and
so, we could find flow cover inequalities.

Besides adding cutting planes to our IP formulations,
we are also looking at different ways to generalize the
notion of action parallelism in planning domains that
involve resources.
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Abstract

While POMDPs provide a general platform for conditional
planning under a wide range of quality metrics they have lim-
ited scalability. On the other hand, uniform probability con-
ditional planners scale very well, but many lack the ability to
optimize plan quality metrics. We present an innovation to
planning graph based heuristics that helps uniform probabil-
ity conditional planners both scale and generate high quality
plans when using actions with non uniform costs. We make
empirical comparisons with two state of the art planners to
show the bene t of our techniques.

Introduction
When agents have uncertainty about their state, they need to
formulate conditional plans, which attempt to resolve state-
uncertainty with sensing actions. This problem has received
attention in both the uncertainty in AI (UAI) and automated
planning communities. From the UAI perspective,  nding
such conditional plans is a special case of  nding policies for
FOMDPs in the fully observable case, and POMDPs in the
partially observable case. The latter is of more practical use,
although much harder computationally [Madani et al., 1999;
Littman et al., 1998]. The emphasis in the UAI commu-
nity has been on  nding optimal policies under fairly gen-
eral conditions. However the scalability of the approaches
has been very limited. In the planning community, condi-
tional planning has been modelled as search in the space
of belief states (which can be seen as a way of character-
izing state uncertainty in terms of uniform probability over
a set of states). Several planners have been developed–eg.
MBP [Bertoli et al., 2001], and PKSPlan [Petrick and Bac-
chus, 2002] – which model conditional plan construction as
an and/or search. These approaches are more scalable than
the MDP-based approaches1, but are often insensitive to the
cost/quality information. Indeed, in the presence of actions
with differing costs, planners such as MBP (aside from us-
ing in-admissible heuristics) can generate plans of arbitrar-
ily low quality, attempting to insert sensing actions without
taking their cost into consideration.

In this paper, we describe a way of extending state of
the art conditional planners to make them more sensitive to

1Their scalability is partly because the complexity is only 2-
EXP-complete [Rintanen, 2004]!

cost/quality information. Our idea is to adapt the type of
cost-sensitive reachability heuristics that have proven to be
useful in classical and temporal planning [Do and Kamb-
hampati, 2003]. Straightforward adaptation unfortunately
proves to be infeasible. This is because in the presence
of state uncertainty, we will be forced to generate multi-
ple planning graphs (one for each possible state) and rea-
son about reachability across all those graphs [Bryce and
Kambhampati, 2004]. This can get prohibitively expensive–
especially for forward searching planners which need to do
this analysis once at each search node.

The main contribution of this paper is a way to solve this
dilemma. In particular, we propose a novel way of gener-
ating reachability information with respect to belief states
without computing multiple graphs. Our approach, called
the labelled uncertainty graph (LUG) [Bryce et al., 2004],
symbolically represents multiple planning graphs, one for
each state in our belief, within a single planning graph.
Loosely speaking, this single graph unions the support infor-
mation in explicit multiple graphs and pushes the disjunc-
tion, describing sets of possible worlds (states in a belief),
into “labels” (�). The graph is built using labels, for sets of
worlds, to annotate the planning graph vertices. A label on a
vertex signi es the states of our belief that reach the vertex.

To take cost information into account, we describe a
method for propagating cost information over the LUG, giv-
ing us a cost-propagated LUG (CLUG). The (previously
mentioned) labels tell us when graph vertices are reachable,
but they do not indicate the associated reachability cost. We
could track a single cost for the entire set of worlds rep-
resented by a label, but this would lose information about
differing costs for subsets of the worlds. Tracking a cost
for each subset of worlds is also problematic because there
are an exponential number of subsets. Instead we track cost
over  x ed partitions of world sets. This CLUG is used as
the basis for doing reachability analysis. In particular, we
extract relaxed plans from it (as described in [Bryce et al.,
2004]), and use the cost information to help select low cost
relaxed plans. Our results show that cost-sensitive heuristics
improve plan quality.

We proceed by describing our representation and our
planner POND, then introduce our planning graph gen-
eralization called the CLUG, and relaxed plan extraction
procedure. We then do an empirical study of the techniques
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within our planner and compare with two state of the art con-
ditional planners MBP [Bertoli et al., 2001] and GPT [Bonet
and Geffner, 2000]. We end with a conclusion and directions
for future work, with emphasis on non-uniform uncertainty.

Representation & Search

POND uses progression search to  nd strong plans, under
the assumption of partial observability. A strong plan guar-
antees that after a  nite number actions executed from any
of the many possible initial states, all resulting states will
satisfy the goals. The plans are directed acyclic graphs. We
de ne a plan’s quality as the expected execution cost (i.e.
average path cost), under uniform probability.

POND searches in the space of uniform probability be-
lief states, a technique  rst described by Bonet and Geffner
[2000]. The planning problem P is a tuple 〈D,BSI , BSG〉,
where D is a domain, BSI is the initial belief state, and
BSG is the goal belief state. Belief states are essentially
propositional formulas whose models are states. We rep-
resent belief states with BDDs. The domain D is a tuple
〈F,A〉, where F is a set of all  uents and A is a set of
actions. Actions have cost and are either causative or ob-
servational, with a set of conditional effects or observation
formulae as outcomes, respectively.

We use top down AO* search [Nilsson, 1980], in the
POND planner to generate conditional plans. In the search
graph, the nodes are belief states and the hyper-edges are
actions. We need AO* because the application of a sensing
action to a belief state in essence partitions the belief state.
We use hyper-edges for actions because sensory actions have
several outcomes, all if any of which must be included in a
solution. The cost model for our plans is the expected ex-
ecution cost so we use an expectation over the children of a
hyper-edge to choose a node’s best action.

Cost Labelled Uncertainty Graph (CLUG)

To guide search, we use a relaxation of conditional planning
to estimate the conditional plan’s suf x for each search node.
The relaxation measures the cost needed to support the goal
by ignoring mutexes between actions, and ignoring sensory
actions. While our relaxation does not include sensory ac-
tions, the search reasons about the cost of sensing at the cur-
rent search node. Our heuristic reasons about the transition
cost between two sets of states, giving a belief state cost
measure[Bryce and Kambhampati, 2004]. The belief state
cost measure is a generalization of state cost measures used
in classical planning that estimate path costs in the search
graph. Following [Bryce and Kambhampati, 2004], we com-
pute the belief state cost measure to estimate the cost of co-
transitioning all states in our current belief state to a state
in the goal belief state. While we estimate the same met-
ric, we compute it within a single planning graph called the
LUG [Bryce et al., 2004] opposed to using a planning graph
for every state in our belief state. The LUG was originally
developed for unit cost actions, and here we de ne a gener-
alization of cost propagation techniques for the LUG.

CLUG Construction
We present the CLUG, a single planning graph that uses
annotations on vertices (actions and literals) to re ect vari-
ous assumptions about how a vertex (v) is reached. Speci -
cally we use two annotations, a label (�k(v)), which denotes
the models of our current (source) belief BSs that reach
the vertex at level k and a cost vector re ecting an estimate
of the cost of reaching the vertex from different models of
the source belief. The annotations help us implicitly repre-
sent the vertices common to several of the multiple planning
graphs in a single planning graph. The labels for the initial
layer literals are used to label the actions and effects they
support, which in turn label the literals they support. The
use of labels is based on the intuition that (i) actions and
effects are applicable in the possible worlds for which their
conditions are reachable and (ii) a literal is reachable in all
possible worlds where it is given as an effect.

CLUG: A levelled graph, where a levelk contains three
layers, the literalLk, actionAk, and effectEk layers. The
construction of theLUG is with respect to the actions inA
and a source belief stateBSs. EachLUG vertex is a triple
〈v, �k(v), ck(v)〉, where thev is an actiona, effectϕj , or
literal l, �k(v) is its label, andck(v) is a cost vector.

Labels: A label �k(v) of a vertexv is a propositional for-
mula where each model of it is a stateSs ∈ M(BSs). For
any suchSs, a classical planning graph built fromSs con-
tainsv in levelk.

Without considering cost, as in the LUG, we can use la-
bels to get an idea of the number of worlds in which an ac-
tion supports a subgoal. A technique we experiment with
during relaxed plan extraction is preferring actions that sup-
port subgoals in more worlds (coverage) – as we may need to
include less actions to support subgoals from all the worlds
in BSs. We do not have to compute cost vectors to use the
coverage technique, but it is admittedly myopic because it
does not consider the cost of using an action for support.
Hence we also experiment with cost vectors for vertices.

Cost Vectors: A cost vectorck(v) is a set of pairs〈fi, ci〉,
wherefi is a propositional formula overF andci is a ratio-
nal number. Everyci is an estimate of the cost of reachingv
from all state modelsSs ∈ M(fi).

Cost propagation on planning graphs, similar to that used
in the Sapa planner [Do and Kambhampati, 2003], computes
the estimated cost of reaching literals at time points. The
cached costs give relaxed plans an estimate of the cost asso-
ciated with including an action (in terms of the cost incurred
to support the preconditions of the chosen action). In using
the costs, we face a more general scenario where there may
be different costs for every subset of models of BSs. Instead
of tracking costs for an exponential number of subsets, we
partition the models of BSs into  x ed sets to track cost over
(i.e. the elements of the cost vectors ck(v)). The  x ed sets
are different for every literal, action, and effect, because they
are de ned with respect to labels. The partitions are with re-
spect to the new worlds that support a vertex at a level. We
brie y discuss the procedure for cost and label propagation
through graph layers by describing how to  nd each layer of
the graph.
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Initial Layer: The LUG has an initial layer, L0, consisting
of every literal that is in a model of BSs. In the initial layer,
the label �0(l) of each literal l represents the states of BSs in
which l holds. In the cost vector, we store a cost of zero for
the entire group of worlds in which each literal is initially
reachable (i.e. 〈�0(l), 0〉).
Action Layer: Based on the previous literal layer Lk, the
action layer Ak contains all non-⊥ labelled causative actions
with from the action set A, plus all literal persistence. The
label of the action at level k, is equivalent to the conjunction
of the labels of its execution preconditions. If there are new
worlds supporting a at level k, we add a formula-cost pair to
the cost vector with the formula equal to �k(a)∧¬�k−1(a).2

We then update the cost for each element of the cost vec-
tor, where each fi is a formula describing the new worlds
of BSs that came to support a at a distinct level. We  nd
ci by summing the costs of the execution precondition liter-
als, in the worlds described by fi. The cost of each literal is
determined by covering fi with the cost vector of the literal.

For example, we wish to compute the cost of an action
a in a set of worlds described by f , where a has a single
execution precondition l with a cost vector {〈f ′, 3〉, 〈f ′′, 5〉}
Say f represents two states s1, s2, f ′ represents s1, s3, and
f ′′ represents s2, s4. We need both f ′ and f ′′ to cover f
because both cover one state of f . The cost of f is then 8
because the cost of the cover is 8.
Effect Layer: An effect ϕj is included in Ek, when it is
reachable in some world of BSs, i.e. �k(ϕj) 
=⊥, which
only happens when both the associated action and the an-
tecedent are reachable in at least one world. The cost ci of
world set fi of an effect at level k is found by adding the
execution cost of the associated action, the support cost of
the action in the worlds of fi, and the sum of the cost of the
antecedent literals in fi.
Literal Layer: The literal layer, Lk, contains all literals
with non-⊥ labels. The label of a literal, �k(l), depends on
Ek−1 and is the disjunction of the labels of each effect that
gives the literal. The cost ci in a set of worlds fi for a literal
at level k is found by covering the worlds fi with the union
of all formula-cost pairs of effects that support the literal.
Termination: The CLUG construction stops when two
consecutive literal layers are identical.

Relaxed Plans
The LUG and CLUG relaxed plan heuristics account for
positive world interaction and independence across source
states in achieving the goals. In the relaxed plan we support
the goal with every state in BSs, but in doing so we track
which states in BSs use which paths in the graph. There
may be several paths used to support a subgoal in the worlds
of BSs, because not one supports all worlds. One challenge
in extracting the relaxed plan is in doing the proper label al-
gebra to track what worlds use which paths to support sub-
goals. Another challenge is in extracting cost-sensitive re-
laxed plans from the CLUG. In the next section, we demon-
strate both effectiveness of using cost vectors (cost) as in the

2When k = 0 we can say �−1(a) =⊥.

CLUG and the size of action’s label (coverage) as in the
LUG to decide which actions to use to support subgoals.

The LUG and CLUG relaxed plans are inadmissible,
i.e. will not guarantee optimal plans with AO* search. Ad-
missible heuristics are lower bounds that enable search to
 nd optimal solutions, but most in practice are very inef-
fective for improving search ef cienc y. In the next section
we demonstrate that although our heuristics are inadmissi-
ble they guide our planner toward solutions of comparable
quality to a planner that uses admissible heuristics and do so
much faster.

Empirical Comparisons
Our main intent is to evaluate the effectiveness of the LUG
and CLUG relaxed plans in improving the quality of plans
generated by POND. Additionally, we also compare with
two state of the art planners, GPT [Bonet and Geffner,
2000], and MBP [Bertoli et al., 2001]. Even though MBP
does not plan with costs, we show the expected cost of
MBP’s plans for each problem’s cost model. GPT uses ad-
missible heuristics based on relaxing the problem to full-
observability (whereas our relaxation is to no observabil-
ity while ignoring action mutexes), and MBP uses a belief
state’s size as its heuristic merit. For lack of space, our test
set up involves a single domain, Medical-Specialist. Each
problem had a time out of 20 minutes and a memory limit of
1GB on a 2.8GHz P4 Linux machine.

Medical-Specialist: We developed an extension of the med-
ical domain [Weld et al., 1998], where in addition to stain-
ing, counting of white blood cells, and medicating, one can
go to a specialist for medication and there is no chance of
dying – effectively allowing conformant (non-sensing) plans
where the specialist medication is used for every disease. We
assigned costs as follows: c(stain) = 5, c(count white cells)
= 10, c(inspect stain) = X, c(analyze white cell count) = X,
c(medicate) = 5, and c(specialist medicate) = 10. We gener-
ated ten problems, each with the respective number of dis-
eases (1-10), in two sets where X = {15, 25}.

Our results in the  rst two columns in Figures 1, 2, and 3
show the expected cost, plan breadth, and total time for two
cost models. Relaxed plans based on propagated cost instead
of coverage enable POND to be more cost-sensitive. Us-
ing the cost propagation method, plans tend to branch less
than coverage as the cost of sensing increases in order to re-
duce expected cost. Since MBP is insensitive to cost, the
its plans are proportionately costlier as the sensor cost in-
creases. GPT returns better plans, but tends to take signif-
icantly more time as the cost of sensing increases; this can
be attributed to how the heuristic is computed by relaxing
the problem to full-observability. Our heuristics measure the
cost of co-achieving the goal from a set of states, whereas
GPT takes the max cost of the states.

In summary, the experiments show that the LUG heuris-
tics help with scalability and using propagated cost to extract
relaxed plans helps  nd better solutions. We also found that
planners not reasoning about action cost can return arbitrar-
ily poor solutions, and planners that use weaker assumptions
about uncertainty and cost do not scale as well.
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Figure 1: Expected cost results forPOND (coverage and cost),MBP , andGPT for Medical-Specialist.
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Figure 2: Breadth (# of plan paths) results forPOND (coverage and cost),MBP , andGPT for Medical-Specialist.
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Figure 3: Total Time(ms) results forPOND (coverage and cost),MBP , andGPT for Medical-Specialist.

Conclusion
With our motivation toward conditional planning ap-
proaches that can scale like classical planners, but still rea-
son with quality metrics, we have presented a planning graph
innovation called the CLUG. With this we extract cost-
sensitive relaxed plans that are effective in guiding our plan-
ner POND toward high-quality conditional plans. We have
shown with an empirical comparison that our approach im-
proves the quality of conditional plans over conditional plan-
ners that do not take cost information into account, and we
can out scale previous approaches that consider cost infor-
mation in a weaker fashion. Given our ability to propagate
numeric information on the LUG, we are currently adapting
these heuristics to handle non uniform probabilities. The
extension involves using expected cost in the cost vectors so
relaxed plans can select actions such that subgoals are sup-
ported with high probability, but low expected cost.
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Abstract

Replanning involves generating a new plan to fix execution
failures. Past work has often characterized replanning proce-
durally as a special case of Plan Reuse: reuse the current plan
to solve a new problem with altered initial and goal states.
Just as in normal reuse, these replanning systems focus on
minimally perturbing the plan while accounting for the alter-
ations in the problem. There are two important limitations to
this view of replanning. First, many failures cannot be rep-
resented as alterations to initial and goal states. Second, plan
reuse is motivated by efficiency considerations during plan
generation, while replanning attempts to minimize the resid-
ual execution costs of the partial execution.
In this paper, we argue that replanning should rightly be seen
as solving a new planning problem that not only captures gen-
eral execution failures, but also the commitments incurred
during the partial execution. Failures are modeled as fine-
grained modifications to operator descriptions, and commit-
ments are modeled as soft constraints. From this general per-
spective, minimal perturbation planning can be understood as
a crude heuristic for respecting commitments: if we keep the
plan the same, then we are likely to respect the commitments
as well.

Introduction
Replanning techniques resolve execution failures of prior
plans. The literature has conflated replanning and plan reuse
by viewing replanning as a special case of plan reuse: reuse
the current plan on altered initial and goal states. This line
of research presents Minimal Perturbation Planning as the
panacea for both plan reuse and replanning(Kambhampati
1990; Hammond 1986; Simmons 1988). To start with, it is
overly optimistic to assume that an execution failure can be
represented by a new planning problem with altered initial
and goal states. This boils down to assuming that execu-
tion failures are independent of the agent’s behavior. When
this is not the case, making the assumption can lead to in-
definitely repeating the failure. To avoid this, we say that a
correct replanning solution avoids repeating execution fail-
ures.

Furthermore, preserving plan structure has little connec-
tion to resolving failures. To the contrary, execution fail-
ures imply that at least some part of the plan needs to be
altered. Trying to preserve structure is, therefore, a handi-
cap. Yet, there is a connection: minimal perturbation plan-

ning can be seen as a heuristic approach to keeping overall
execution costs low when replanning in the presence of col-
laborators. In the presence of collaborators, altering one’s
intentions can degrade overall execution performance: ex-
ternal agents could have based their own plans off of one’s
stated intentions. We refer to such a dependency as a com-
mitment, and say that the quality of a replanning solution is
in terms of respecting commitments.

A Motivating Scenario: In this paper, we take the per-
spective that replanning is the projection of a multi-agent
planning and execution problem onto a single-agent. Our
motivating example is �������	�
���
��� , a hypothetical personal
digital assistant equipped with an automated planner. Its
equally hypothetical user, Romeo, uses �	�
���������
��� to au-
tomatically produce efficient travel plans. We will consider
equipping �������	�
���
��� with a replanning capability in order
to support the dynamic execution of these travel plans by
Romeo.

The full problem Romeo faces is very complex, as his
travels take him to distant and unfamiliar places. This in-
volves interacting with many other agents, directly and in-
directly. Formalizing this situation as a full multi-agent
problem would allow �	�
���������
��� to produce globally op-
timal plans. Of course, Romeo’s colleagues may not be
very impressed with the endless negotiations carried out on
Romeo’s behalf. We presume that even though there are
other agents, it is unnecessary to take them into consider-
ation in order to synthesize efficient travel plans. However,
once a plan has been published, it is no longer possible to
completely ignore the external agents: the commitments in-
duced by the published plan must be considered. Therefore,
we project the multi-agent problem onto a single-agent prob-
lem by ignoring everything except the static impact of the
external agents: the projection abstracts every aspect of the
external agents except the current set of commitments.

Contribution: In this paper, we consider how to update
the original planning problem so that solutions resolve fail-
ures while respecting commitments. Doing so involves two
distinct modeling issues: a language for failure representa-
tion, and a language for commitment representation. We
present a particular language for representing failures, and
define the correctness of a replanning solution with respect
to it. From there, we consider the somewhat orthogonal is-
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sue of representing commitments. We model a commitment
as a soft constraint, and thereby reduce replanning solu-
tion quality to partial-satisfaction planning solution quality.
Starting from this high level discussion, we present a for-
mal model of replanning with failures and commitments in
terms of metric-temporal partial-satisfaction planning. Be-
fore concluding, we discuss some of the connections to re-
lated work in plan reuse and real-world systems.

Correctness: Execution Failure
The ultimate goal in replanning is to produce a new exe-
cutable, relevant, failure-resolving plan. Unfortunately, tra-
ditional planning theories only verify two of these proper-
ties: executability from an initial state, and relevancy to
a goal description. To ensure that solutions further re-
solve failures, some extension of planning theory is re-
quired. Here, we are motivated by the concept of replan-
ning as “planning again”. That is, while some researchers
(Hammond 1986; Simmons 1988) consider augmenting tra-
ditional planning theories with techniques for directly re-
solving failures, we instead consider reducing the replanning
problem to a modified planning problem.

These modifications to the planning problem are to ensure
that executability and relevancy with respect to the modi-
fied instance, together, implies executability, relevancy, and
failure-resolution with respect to the executor’s updated the-
ory. This is trivial when the executor has no ability to learn
from its mistakes; unexpected dynamics are simply repre-
sented as changes to the initial state and to the goal descrip-
tion. Given that we have assumed an environment where
failures occasionally occur, executors incapable of learning
are doomed for all but the most restricted case: those en-
vironments where failures are entirely independent of the
behaivor of the agent.

For example, let’s suppose that Romeo has used
�	�
������� �
��� to synthesize a travel plan to Los Angeles,
specifically, one which involves driving. Suppose Romeo
attempts to start the car, and that the attempt fails. If we
restrict ourselves to representing failures as changes in the
initial state and the goal description, then Romeo has a
dilemma: the initial state is unchanged, as is the goal. The
old plan would still be valid! It is nonetheless clear that the
old plan is inappropriate; specifically, Romeo would possess
the knowledge that future attempts to start the car will con-
tinue to fail.

For these reasons, we describe a failure as a fine-grained
modification to the planning instance. The semantics of
traditional planning theories are typically given in terms
equivalent to Markov Decision Processes, where the planner
chooses among several transition matrices at each state. In
the case of deterministic planning, for example, such matri-
ces consist of only 0’s and 1’s, whereas in probabilistic plan-
ning, rows encode the posterior distribution of states given
the execution of an action. For our purposes, we say a failure
can be described as a set of modifications to such matrices.
As an example, the transition matrix for driving, in the re-
planning scenario described above, would be altered by the
failure to the identity matrix: every attempt at driving will

fail to achieve a change in state. After applying such a set of
modifications, the definition of executability further entails
failure-resolution: so we have reduced replanning correct-
ness to planning correctness.

Quality: Commitments
In many, if not all, potential applications of automated plan-
ning, plan quality is just as important as plan correctness.
We can assume that an appropriate quality metric has been
provided for the original planning domain, but after an exe-
cution failure, it is not clear if that metric is still appropriate.
For example, many authors claim that a more appropriate
quality metric is preservation of prior plan structure. Some
high-level justifications for ignoring the old quality met-
ric in favor of prior plan syntax include rescheduling cost,
commitment preservation, and user acceptance in mixed-
initiative planning. In fact, these three explanations are re-
ally but different facets of the presence of external, collabo-
rative, unmodeled agents.

This raises some important questions:
1. Why did the original model omit the external agents?
2. How does plan failure invalidate that reason?
3. What is the right model of this expanded quality metric?

Full multi-agent planning and execution is very complex.
It is difficult to formalize, acquire models, and find solu-
tions. Moreover, in many settings, the presence of other
agents ends up being irrelevant, as an efficient plan exists
to achieve the goal independently of the external agents.
For these reasons, it is common to project away all exter-
nal agents, including friends, in order to simplify a complex
multi-agent problem into a single-agent planning problem.
In our running example, it is clearly the case that Romeo, or
his assistant, can find efficient travel plans without consult-
ing potential collaborators.

Before any decisions have been reached, there are no de-
pendencies between agents at all. A friend can hardly be
justified in complaining if one fails to rendezvous, when no
rendezvous was arranged. Sometime after the a plan has
been constructed, however, it is possible that communica-
tion of the plan took place. If so, then the agent might now
be committed to some of those decisions. For example, sup-
pose we consider a scenario where Romeo is traveling to
Los Angeles to attend a conference. Sometime during the
execution, he learns that the conference has been canceled,
as the hotel has burned down. If, after making the travel
plan, Romeo ended up making arrangements to meet with
his friend Bob, who dwells in Los Angeles, then even after
the hotel has burned down Romeo does still have a commit-
ment to meet Bob at the prearranged place in Los Angeles.

Suppose we try to capture this altered notion of plan qual-
ity with minimal perturbation planning; the new quality met-
ric rewards plans which preserve old structure. In the sce-
nario where the hotel burns down, preserving old plan struc-
ture keeps all the traveling actions, thus allowing Romeo to
meet with Bob in Los Angeles: preserving the commitment.
Of course, even if there had been no commitment, the trav-
eling would still have been performed – without any benefit
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to Romeo at all. Moreover, the cost of driving and arrang-
ing new lodging may far outweigh the cost of canceling the
meeting with Bob. Clearly, arbitrarily preserving syntax is
not adequately capturing a measure of plan quality.

Instead, we say that a commitment introduces a new goal
in the altered problem instance. Typically, this would be a
soft constraint, as failing to meet a commitment is not of-
ten grounds for completely giving up on any course of ac-
tion. So, in fact, we are considering representing replanning
as alterations to an underlying partial-satisfaction planning
problem: where the soft constraints are commitments.

These commitments arise after �	�
������� �
��� automatically
synthesizes a plan for Romeo. At that point, Romeo might
communicate some aspects of this plan to the many external
agents he interacts with. These agents can then request that
Romeo commit to some or all of those communicated as-
pects. Given that Romeo agrees to do so, then he would be
able to model this commitment as a new goal for �	�
������� �
���
to achieve. Of course, the current plan already achieves any
such commitment, so there isn’t any need to alter the plan in
response to the new goal until after a failure occurs. How-
ever, after a failure occurs, the goals introduced by external
commitments serve as an adequate measure of plan quality;
failing to achieve such a goal fails to maintain the associated
commitment (and so fails to accrue the associated reward).

Formal Treatment
To fully ground our presentation of failures and commit-
ments we demonstrate altering instances of metric-temporal
partial-satisfaction (van den Briel et al. 2004) planning
problems to account for execution failures and commitments
to external agents. We use metric time to properly motivate
the interactions between collaborating agents; weaker forms
of planning do not admit a description of some method to
synchronize the activities of agents. We presume that an
appropriate interface exists (such as a parser, or a GUI) be-
tween the top-level user and the automated replanner, specif-
ically, we will assume that the input to the replanner repre-
senting failures and commitments has already been formal-
ized in the following manner:
Definition 1 (Failure) A failure, � , is a 4-tuple,���������
	�����


, of strings in PDDL syntax.
�

and
	

are
goal descriptions,

�
is an operator name followed by a

(parenthesized) list of variables and constants, and
�

is
an effect. A failure is activated when the agent attempts to
execute some binding of

�
in some state satisfying

�
; the

activation alters the preconditions and effects of that action
application. Specifically, the action is only executable if it
further satisfies

	
, and the resultant state is obtained by

additionally applying the effect
�

. Conflicts between
�

and
the normal effects of the action are resolved in favor of

�
:�

is applied after the normal effects of the action. However,
antecedents of conditional effects in

�
are still evaluated

with respect to the original state, despite the fact that
�

is
applied to an intermediate state.

For example, suppose Romeo notices that
drive(carA,PHX,LA) has failed, and further surmises
that the fault is due to carA being broken. This failure could

be represented as: (true,drive(carA,?x,?y),true,no-op). That
is, in every state of the domain, attempting to drive using
carA will activate the failure. The failure manifests itself
by causing the drive action to be ineffectual; no-op is an
abbreviation for the set of conditional effects of the form
(when p p) for every literal p. That is, the resultant state
must be identical to the original state, so that attempting to
drive with carA becomes a no-op.
Definition 2 (Commitment) A commitment to an external
agent, ��� ��������


, is a 2-tuple consisting of a goal descrip-
tion and an associated reward (which can be a special sym-
bol infinity for a hard goal).

In the context of metric-temporal planning, we assume
goals are given as achievement formula within a single win-
dow of opportunity, where the right side, the deadline, is
typically the more challenging constraint to satisfy. Goal-
achievement of a plan is then defined as achieving each for-
mula at some point within each associated window. The re-
ward accrued by achieving soft goals is simply the sum of
the associated rewards, and the utility of a plan is its ag-
gregate reward minus its aggregate cost; aggregate cost is
simply the sum of the costs of each action.

From here, we can modify the ground instance of a
partial-satisfaction metric-temporal planning problem by
adding the commitments to the list of goals and altering the
ground operators according to the failure descriptions. The
last step sometimes involves splitting ground operators, as
a ground operator actually corresponds to many transitions
in the graph; a failure can theoretically modify just a single
transition.

Example: Suppose Romeo’s summer plans not only in-
cluded the conference in Los Angeles, but also a short edu-
cational visit to Boston a month later. Further suppose that
Romeo has stipulated a large number of additional places to
visit in both Los Angeles and Boston, so that his assistant,
�	�
���	�
� �
��� , has generated a custom walking tour of both
cities, in addition to the rest of the travel plan. Romeo has
told Bob of his plans, and they mutually agreed to meet at
the California Science Center at noon. Fate is kinder than in
the preceding sections: the only failure encountered is that
Romeo discovers that he has forgotten to pack his sneak-
ers. As he is hardly willing to engage in the walking tour
of Los Angeles in dress shoes, he decides to use �������	�
� �
���
to replan. So, in this case, the tour should be regenerated,
favoring public transportation over walking, and preferring
to keep the noon appointment with Bob. In uncomfortable
shoes, suppose Romeo is willing to walk half as far (500 m.)
to a specific destination, and only up to a quarter (5 km.)
of the normal maximum distance in any given day. Since
Romeo expects to remember to pack comfortable shoes for
the trip to Boston, he limits this failure to his current stay in
Los Angeles.

The formal representation of the failure is given by:
(at(Los Angeles), walk(?s,?d), (and ( � distance(?s,?d) 500)
( � walked today (- 2500 distance(?s, ?d)))), nil). Likewise,
the commitment to meet Bob is just ( � at(California Science
Center), noon - 5 min, noon + 5 min � , r), where

�
is pre-

sumably large, since canceling the day of an appointment
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with the weak excuse of not having comfortable shoes would
probably offend Bob, let alone inconvenience him.

The ground planning instance would consist of all the old
goals, along with the commitment to Bob, as well as a split
version of the walk operator. The original walk operator
��� � �����	��

��� , would have an additional precondition of be-
ing applicable only outside of Los Angeles. The walking in
uncomfortable shoes operator, ��� � ��� ��� � , would be applica-
ble in Los Angeles, but would additionally require that the
destination be half as far, and that the total distance traveled
would be less than a quarter of its usual maximum.

Synthesizing an entirely new plan with respect to this
planning problem resolves the failure; the Los-Angeles spe-
cific goals would be accomplished by alternative means,
where necessary, including the explicit commitment to Bob.
After leaving Los Angeles the planning instance behaves the
same as when �������	�
���
��� generated the original plan for
Romeo. Therefore, the Boston portion of the plan would re-
main unaffected, just as in minimal perturbation planning.
However, minimal perturbation planning would often miss
the commitment to Bob. Suppose Romeo is not visiting any
attractions within 500 meters of the California Science Cen-
ter. Keeping the commitment requires perturbing the prior
plan: walking to, from, or past the science center cannot be
reused.

Related Work
Proponents of replanning as plan reuse, as exemplified by
(van der Krogt & de Weerdt 2005), have doubly confused
the issue of replanning quality. The first approximation,
considered at length in this paper, is in assuming that re-
ducing perturbation caused to other agents can be modeled
by minimally altering the structure of plans across iterations:
minimal perturbation planning. The second approximation
is applying their plan reuse algorithm instead of truly min-
imal perturbation planning. That is, minimal perturbation
planning is just as inadequate in application to plan reuse as
it is in application to replanning – though for different rea-
sons (Nebel & Koehler 1995). Specifically, minimal pertur-
bation planning has greater complexity than plan synthesis,
which is in direct conflict with the speedup motivation of
plan reuse. As noted by Nebel & Koehler, plan reuse sys-
tems actually return highly, but not maximally, similar plans.

The robot path planning community (Stentz 1995;
Koenig, Likhachev, & Furcy 2004) has long looked at re-
planning slightly differently from the planning community.
In particular they try to ensure that the plan produced by the
”re-planner” is as optimal as the one that would have been
produced by the from-scratch planner. Due to the nature of
robot path planning, this work does not consider the com-
mitments made by the partial execution of the prior plan.
One point of similarity is that the robot path planning com-
munity does model failures that involve more than initial
and goal state changes–action deletion (e.g. certain navi-
gation actions made infeasible by the apperance of new ob-
stacles). This is a kind of systematic failure, which we gen-
eralize further based on accounts of real-world replanning
systems(Pell et al. 1997; Myers 1999).

Within the planning community, the work by Pell et al.
comes closest to recognizing the importance of respecting
the commitments generated by a partially executed plan.
They however do not give any formal details about how the
replanning is realized in their system.

Conclusion
The observation underlying our work is that replanning lacks
a formal definition. At a high level, researchers bring up
the concepts of commitments, reservations, approximate
domain models, mixed-initiative and distributed planning,
tightly bounded computational resources, and execution fail-
ures. Then a syntactic measure is introduced without any
formal connection to these motivations. While approximat-
ing replanning using minimal perturbation planning could
work well empirically, demonstrating this first requires an
idea of non-approximate replanning.

We tackle this problem by considering the intuitively op-
timal behavior for a set of interesting replanning scenarios.
We find that it is easy to construct scenarios where optimal
behavior can be explained in terms of systematic execution
failures and commitments to external agents. We develop
a formal model of replanning that directly captures system-
atic failures and commitments, and admits as formal solu-
tions only those that properly respond to the additional con-
straints. Given that those are transcribed correctly, then the
formal solution of the model corresponds to the intuitively
optimal behavior first described. Our model thus serves as
a formal definition of the kind of replanning concerned with
resolving execution failures while respecting commitments.
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Abstract

Hashing is essential for state-space search to avoid redundant
work and to address abstract states in pattern databases. But
in some domains hashing becomes a bottleneck of the ex-
ploration. This applies in particular to planning with pattern
databases where both the actual and the abstract state need to
be hashed, each requiring time linear in the number of atomic
propositions. In this paper, we devise an incremental hashing
scheme for planning with pattern databases, which reduces
the time complexities for hashing to a constant. We exemplify
our considerations in two established planning domains.

Introduction
The effectiveness ofIterative Deepening A*(IDA*) (Korf
1985) for solving problems with heuristic search, also ap-
plies to action planning. As backtracking keeps the changes
in the state representation vector during the exploration
small, the algorithm is often tuned to maximize the num-
ber of nodes per second. Since action planning belongs
to the class of problems, whose exploration yields a lot of
duplicate states, hashing is essential. Many pruning tech-
niques for IDA* typically rely on the regular structure of
the state space graph (Taylor & Korf 1993). On the other
hand, IDA* with static transposition tables (Reinefeld &
Marsland 1994) frequently first exhausts memory, then time.
One compromise of memory-sensitive A* and time-sensi-
tive IDA* search is known asPartial IDA* (Hüffner et al.
2001), which leads to much larger hash table sizes and to
a better state space coverage. Even though completeness is
sacrificed, the expected error probability is small.

The time to compute the hash address can result in a bot-
tleneck for the exploration. Even if all other operations to
generate a successor for a given state are of constant time, a
non-incremental computation of a hash function for a state
vector of sizek accumulates toΩ(k) time. The larger the
state vector, the better the savings that can be obtained by in-
cremental state space hashing. For partial search, incremen-
tal hashing leads toO(1) time per state lookup. The paper is
structured as follows. We first review the algorithm of Rabin
and Karp that was designed to accelerate pattern matching.
We then discuss, how this method can be extended to state

Copyright c© 2005, American Association for Artificial Intelli-
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space search and exemplify this consideration on STRIPS
planning. Next, we address incremental and perfect hashing
for pattern database construction and usage. The proposed
algorithm will apply incremental hashing for the original
and abstract state spaces. We implement this technique to
domain-independent STRIPS action planning and perform
experiments in two established planning domains.

Rabin and Karp’s Algorithm
The idea of incremental hashing originates in matching text
T [1..n] to a patternM [1..m]. In the algorithm of (Karp &
Rabin 1987), a patternM is mapped to a numberh(M),
which fits into a single memory cell and can be processed
in constant time. For1 ≤ j ≤ n − m + 1, it will check
if h(M) is equal toh(T [j..j + m − 1]). Due to possible
collisions, this is not a sufficient but a necessary criterion
for the match ofM andT [j..j + m − 1]. A character-by-
character comparison (check) is needed only ifh(M) equals
h(T [j..j + m− 1]).

In order to computeh(T [j + 1..j + m]) incrementally in
constant time, we take valueh(T [j..j+m−1]) into account,
according to Horner’s rule for evaluating polynomials. Let
q > m be a sufficiently large prime. We assume that num-
bers of sizeq·|Σ| fit into a memory cell, so that all operations
can be performed with single precision arithmetic. To ease
notation, we identify characters inΣ with their order. The
algorithm of Rabin and Karp performs the matching pro-
cess. The input is a stringT and a patternM . The output
is the first occurrence ofM in T , if any. The stages of the
algorithm are:
1. Initializep← t← 0 andu← |Σ|m−1 modq

2. Precompute hash value of the pattern, i.e., for all1 ≤ i ≤
m setp← (|Σ| · p + M [i]) modq

3. Precompute hash value of the text prefix, i.e., for all1 ≤
i ≤ m sett← (|Σ| · p + T [i]) modq

4. Iterate for all1 ≤ j ≤ n−m + 1:
(a) if hash function values match, e.g. if (p = t), then call

procedure check(M,T [j..j + m− 1])
(b) if pattern is found then returnj
(c) if j ≤ n−m, use Horner’s rule to computet← ((t−

T [j] · u) · |Σ|+ T [j + m]) modq
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As an example take the alphabetΣ = {0, . . . , 9} and
q = 13. Furthermore, letM = 31, 415 and T =
2, 359, 023, 141, 526, 739, 921. The mapping induced by
function h yields the following sequence of hash values:
8, 9, 3, 11, 0, 1, 7, 8, 4, 5, 10, 11, 7, 9, and11. We seeh pro-
duces collisions. The incremental computation atj = 8
works as follows:14, 152 ≡ (31, 415 − 3 · 10, 000) · 10 +
2 (mod13) ≡ (7− 3 · 3) · 10 + 2 (mod13) ≡ 8 (mod13).
The computation of all hash addresses has a running time of
O(n + m); the best case for the matching process.

Incremental Hashing
For state space search, we often have the case that a state
transition changes only a small part of the state vector repre-
sentation. In this case, the computation of the hash function
can be designed incrementally. The difference to the algo-
rithm above is that changes can now occur at intermediate
index positions within the state vector.

A propositional planning problem(in STRIPS notation)
is a finite state space problemP =< S,O, I,G >, where
S ⊆ 2AP is the set of states,I ∈ S is the initial state,G ⊆ S
is the set of goal states, andO is the set of operators that
transform states into states. Operatorso = (P,A, D) ∈ O
have propositional preconditionsP , and propositional ef-
fects (A,D), where P ⊆ AP is the precondition list,
A ⊆ AP is the add list and D ⊆ AP is the delete list.
Given a stateS with P ⊆ S then its successorS′ = o(S) is
defined asS′ = (S \D) ∪A.

It is not difficult to devise an incremental hashing scheme
for STRIPS planning that bases on the idea of the algorithm
of Rabin and Karp. ForS ⊆ AP we may start withh(S) =
(
∑

pi∈S 2i) modq. The hash value ofS′ = (S \D) ∪A is

h(S′) =

 ∑
pi∈(S\D)∪A

2i

 modq

=

h(S)−
∑

pi∈D

2i +
∑
pi∈A

2i

 modq.

Since2i modq can be pre-computed for allpi ∈ AP , we
have a running time that is of orderO(|A| + |D|), which
is constant for most STRIPS planning problems. It is also
possible to achieve constant time complexity if we store the
valuesinc(o) = (

∑
pi∈A 2i) modq− (

∑
pi∈D 2i) modq to-

gether with each operator. Either complexity is small, when
compared to ordinary hashing of the planning state.

Pattern Database Search

Abstraction functionsφ map statesS = (S1, . . . , Sk) to pat-
ternsφ(S) = (φ(S1), . . . , φ(Sk)). Pattern databases (Cul-
berson & Schaeffer 1998) are hash tables for fully explored
abstract state spaces, storing with each abstract state the
shortest path distance in the abstract space to the abstract
goal. They are constructed in a complete traversal of the
inverse abstract search space graph. Each distance value
stored in the hash table is a lower bound on the solution cost

in original space and serves as a heuristic estimate. Differ-
ent pattern databases can be combined either by adding or
maximizing the individual entries for a state.

Pattern databases work, if the abstraction function is a ho-
momorphism, so that each path in the original state space has
a corresponding one in the abstract state space. In difference
to the search in original space, the entire abstract space has
to be looked at. As pattern databases are themselves hash
tables we apply incremental hashing, too.

If we restrict the exploration in STRIPS planning to some
certain subset of propositionsR ⊆ AP , we generate a plan-
ning state space homomorphismφ and an abstract plan-
ning state space (Edelkamp 2001) with statesSA ⊆ R.
Abstractions of operatorso = (P,A, D) are defined as
φ(o) = (P ∩R,A ∩R,D ∩R). Multiple pattern databases
are composed based on a partitionAP = R1 ∪ . . .∪Rl and
induce abstractionsφ1, . . . , φl as well as lookup hash tables
PDB1,. . . ,PDBl. Two pattern databases are additive, if the
sum of the retrieved values is admissible. One sufficient cri-
terion is the following. For every pair of non-trivial opera-
torso1 ando2 in the abstract spaces according toφ1 andφ2,
we have that preimageφ−1

1 (o1) differs from φ−1
2 (o2). For

pattern database addressing we use a multivariate variable
encoding, namely, SAS+ (Helmert 2004).

The Algorithm
When including both incremental hashing and incremen-
tal pattern addressing into a IDA* search routine we ob-
tain the recursive procedure IDA*-DFS as shown in Fig-
ure 1. Here,o = (P,A, D) ∈ applicable(S) meansP ⊆
S, doMove(o, S) denotes(S\D) ∪ A andundoMove(o, S)
equals to(S\A) ∪ D. For the ease of presentation, we as-
sume disjoint pattern databasesPDB1, . . . , PDBl according
to the state abstractions functionsφ1, . . . , φl. Disjoint pat-
tern databases refer to different index sets. In some cases,
disjoint pattern databases are additive, i.e., their lookup val-
ues can be added preserving admissibility. This depth-first
traversal is invoked for each IDA* iteration with the initial
state. The hash addresses for the original state space and
the ones for the pattern databases are computed incremen-
tally. The current thresholdΘ, the next thresholdΘ′, the
pattern addresshi for S in PDBi, and the hash addressh for
S, are kept as global variables. To restore the state and its
hash values after the subroutine call, we restore the global
information in backtracking fashion. If a goal state is estab-
lished, the plan is found on the recursion stack. Termination
is omitted for notational convenience.

The above algorithm is optimal and complete and gener-
alizes to many state-space search problems like the(n2−1)-
puzzle or Rubik’s cube.

Consider a state space problem in vector representation,
so that each stateS in the spaceS can be expressed as a
vector(S1, . . . , Sk) with Sj ∈ Dj , j ∈ {1, . . . , k}. Let o =
(S, S′) ∈ O be the applied operator,I(o) the set of indices
which change when applyingo; Imax = maxo∈O |I(o)| and
Dmax = max1≤i≤k |Di|. We obtain the following result.

Theorem 1 Combined incremental state and pattern ad-
dressing is available in time
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Procedure IDA*-DFS
for eacho ∈ applicable(S)

h← (h + inc(o)) modq
if not (lookup(h, S))

insert(h, S); H ← 0
for each i ∈ {1, . . . , l}

hi ← hi + inc(φi(o)) modq
H ← H + PDBi(hi)

S ← doMove(o, S); g ← g + 1
if (g + H ≥ Θ) Θ′ ← min{Θ′, g + H}
elseIDA*-DFS(S)
for each i ∈ {1, . . . , l}

hi ← hi − inc(φi(o)) modq
S ← undoMove(o, S); g ← g − 1

h← (h− inc(o)) modq

Figure 1: IDA* with incremental state and pattern address-
ing.

1. O(|I(o)|+
∑l

i=1 |I(φi(o))|) using anO(kl)-sized table.
In case ofdisjoint pattern databaseswith different index
sets, sizeO(k) is sufficient.

2. O(l); using anO(l · (k ·Dmax)Imax)-sized table.

Proof: Let h(S) =
∑k

i=1 SiMi modq be the hash func-
tion in S, with M1 = 1 andMi = |D1| · . . . · |Di−1| for
1 < i ≤ k. Let hi(φi(S)) =

∑k
j=1 φi(Sj)φi(Mj) modq

be the hash function for addressing pattern databasePDBi,
1 ≤ i ≤ l, with φi mappingS = (S1, . . . , Sk) to φi(S) =
(φi(S1), . . . , φi(Sk)) ∈ φi(D1)× . . .× φi(Dk), φi(M1) =
1 andφi(Mj) = |φi(D1)| · . . . · |φi(Dj−1)| for 1 < j ≤ k.
In the first case we storeφi(Mj) mod q, for 1 ≤ i ≤ l,
1 ≤ j ≤ k. In the second case we precompute the val-
uesinc(o) andinc(φi(o)) =

∑
j∈I(φi(o))−φi(Sj)φi(Mj)+

φi(S′j)φi(Mj) mod q for all possibleo = (S, S′), i ∈
{1, . . . , l}with φ(o) = (φ(S), φ(S′)). Once more, the num-
ber of possible operators is bounded byO((k ·Dmax)Imax).

Partial Search
The idea of erroneous dictionaries was exploited inBloom
filters (Bloom 1970). It is also referred to asbit-state hash-
ing. A Bloom filter is a bit vectorHT of lengthm, together
with r independent hash functionsh1(x), . . . , hr(x). Ini-
tially, HT is set to 0. Toinsert a keyx, computehi(x),
for all i = 1 . . . r, and set eachHT [hi(x)] to 1. To
searcha key, check the status ofHT [h1(x)]; if it is 0,
x is not present in the dictionary, otherwise continue with
HT [h2(x)],HT [h3(x)], etc. If all these bits are set, report
thatx is in the filter.

Like single and double bit-state hashing(Holzmann
1998),hash compaction(Stern & Dill 1996) aims at reduc-
ing the memory requirements for the state table. It stores
a compressed state descriptor in a conventional hash table
instead of setting bits corresponding to hash values of the
state descriptor in a table of bits. If the hash address and the
compression are calculated independently from the state, the
same compacted state can occur at different table locations.

By implementing the table of already visited nodes in
IDA* with bit-state hashing or hash compaction, we estab-
lish Partial IDA* (Hüffner et al. 2001). Since neither the
predecessor nor thef -value are present in the state repre-
sentation, in order to distinguish the current iteration from
the previous ones, the bit-state table has to be re-initialized
in each iteration of IDA*. Refreshing large bit-vectors is fast
in practice, but for shallow searches with a small number of
expanded nodes this scheme can be improved by invoking
ordinary IDA* with a transposition table for smaller thresh-
olds and by applying bit-vector exploration in large depths
only. As collisions are statistically unlikely, optimality is
often preserved in practice.

If the updates of the state vector indoMoveand undo-
MoveareO(1), so is the time for generating one successor
in the search tree of Partial IDA*. The time offset in running
ordinary IDA* with transposition tables are based to the ad-
ditional efforts needed for storing and retrieving states in the
hash table and the conflict resolution strategy that is applied.

Experiments
For the case study, we have implemented incremental hash-
ing for Partial IDA* in MIPS (Edelkamp 2003), since this
was the only available system that supports pattern database
search. A stateS ⊆ AP = {p1, . . . , pn} in MIPS is rep-
resented as a bitvectorb1, . . . , bn, whereb1 = true if and
only if pi ∈ S. In memory, this vector is encoded as an
array of subvectorsc1, . . . , cm, wherem = dn/we andw
denotes the bit size of a memory cell. In difference to the
above setting, the global hash function value is not calcu-
lated bit-wise, but word-wise. A bottleneck is the applica-
tion of operator’s effects. One approach is to apply a logical
bit operation to the corresponding subvector for each fact.
This leads to a runtime ofO(|A|+ |D|) to apply the effects
on the state.

We can improve this runtime withcombined effects. Let
setaff+ = {di/we | pi ∈ A} and setaff− = {di/we | pi ∈
D} denote the lists of subvector indices affected by the pos-
itive and negative effects of an operator. Based on these def-
initions, we pre-calculate the sets

m+ = {(i,
∑

j

2j mod w) | i ∈ aff+, dj/we = i, pj ∈ A}

m− = {(i,
∑

j

2j mod w) | i ∈ aff+, dj/we = i, pj ∈ D}

Applying the operator’s effects is then reduced to setting
bi ← bi&m for each (i,m) ∈ m− and bi ← bi|m
for each (i,m) ∈ m+, where ′&′ and ′|′ denote bit-
wise AND-/OR-operators. As an example considerw =
16, A = {8, 14, 20} and D = {18, 24, 34}. For this
case, we haveaff+ = {1, 2}, aff− = {2, 3}, m+ =
{(1, 0010000010000000), (2, 0000000000001000)}, and
m− = {(2, 111111101111101),(3, 1111111111111101)}.

Using combined effects, the runtime reduces to
O(|aff+|+|aff−|), a value that is often smaller than the num-
ber of pattern databases. By precalculatingm+ andm−, we
also save the|A|+ |D| divisions and bit-shifts to determine
the subvector and bitmask for setting or deleting a fact.
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Figure 2: Results for the Pipesworld domain.

Experiments were performed on a Linux-based PC with
a 1.8GHz CPU and 1 GB of main memory. The time limit
was set to 120 minutes. Figures 2 and 3 show the results
for all solved instances of thePipesworldandBlocksworld
domains, which were also used in the 2000 and 2004 inter-
national planning competition. The x-axes denote the prob-
lem number from the respective domain, which usually rises
along with the problem size. We measure the number of ex-
panded nodes per second, using the original hash function
(OLD), the non-incremental bit-wise hashing (FULL) and
the incremental hash function without (INC) and with com-
bined effects (INC+).

As a first observation, we see that in most cases we get
the best result, when incremental hashing is used. Even if
no combined effects are used, there is a significant improve-
ment over OLD and FULL. Moreover, the use of combined
effects leads to even better results in most cases. In some
cases, the use of incremental hashing more than doubles the
the exploration speed and combined effects give further im-
provements. The overall poor results in column FULL em-
phasize the effectiveness of incremental hashing. In particu-
lar, the curve testifies that the gains in INC and INC+ can be
attributed to the incremental hashing scheme rather than to
the simplicity of the underlying hash function. Also, incre-
mental hashing allows us to solve more instances within the
given time limit compared to the old implementation. This
is the case for the instances 16, 28 and 40 of the pipesworld
domain. To summarize, incremental hashing outperforms
the old hashing approach in every aspect.

Conclusion
Incremental hashing reduces the time complexity to com-
pute the hash value of a given state from an expression lin-
ear in the state description length to a mere constant. In
action planning, incremental hashing for address computa-
tions in the original and abstract state spaces significantly
speeds up plan generation and can help to solve problems
that cannot be solved without. Incremental hashing is avail-
able for most search problems in vector representation, in-
cluding constraint-satisfaction. Incremental state hashing is
particularly important for software model checking, where

Figure 3: Results for the Blocksworld domain.

huge state vectors with only very little changes are to be
stored. Here, patterns are devised by data or predicate ab-
straction.
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Introduction
Markov Decision Processes (MDPs) provide a good, robust
formal framework for modeling a large variety of stochas-
tic planning and decision problems, but they are unsuit-
able to realistic problems, in particular, to solve problems in
rapidly changing environments. The existing approaches use
Markov decision processes to produce a policy of execution
for a static set of tasks; in a changing environment (i.e. with
an evolving set of tasks), a complete computation of the op-
timal policy is necessary. We consider a queue of tasks that
can change on-line. Potential application of this approach
would be an adaptive retrieval information engine (Arntet
al. 2004).Our main claim is that it is possible to dynamically
compute good decisions without completely calculating the
optimal policy. Similar approaches have been developed to
deal with MDPs with large state spaces using different de-
composition techniques (Boutilier, Brafman, & Geib 1997;
Parr 2000). A similar dynamic resource allocation problem
has been developed in (Meuleauet al. 1998). A non dy-
namic approach has been developed for robots in (Schwarz-
fischer 2003).

It has been shown in (Mouaddib & Zilberstein 1998) that
it is possible to find an optimal policy for this kind of prob-
lem. This optimal solution suffers from a lack of flexibilty
to cope with changes in a dynamic environment. We de-
velop an approach which provides more flexibility for MDPs
to deal with dynamic environments. This approach con-
sists of two steps. The first step consists of an off-line pre-
processing of tasks and the compilation of policies for all
possible available resources. The second step is a quick on-
line approximation of the policy of executing the current task
given the current state of the queue.

Problem Statement
Description
We consider an autonomous agent which has the capa-
bility of performing different kinds of stochastic tasks
T1, T2, . . . , Tt progressively. Aprogressive taskT is ex-
ecuted stage by stage, and it can be stopped after any stage.
A quality is associated with each stage of taskT . The dura-
tion∆r of execution of each stage is uncertain. The utility of

Copyright c© 2005, American Association for Artificial Intelli-
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a task is the sum of the quality of the executed stages. This
formalism is described (Mouaddib & Zilberstein 1998) in
details. For each type of taskTn we compute atask perfor-
mance profilefn(r) that corresponds to its local expected
value(see Figure 4). It represents what the agent should ex-
pect to gain if a certain task is being accomplished with a
quantityr of resources.

Given an ordered list composed by several in-
stances of these progressive tasks (for example
L={T3, T1, T3, T1, T1, T2, T1, T3, T2, T3, T2}), the agent
must perform some of them before a fixed deadlineD to
maximize the global utility.The queue of tasks evolves
dynamically, during on-line phase. Tasks can appear or
disappear everywhere (see Figure 1). Our goal then is to

T3 T1 T3 T1 T1 T2 T1 T3

T3

T2

T

current task

Im
pr

ov
e 3

Tasks can appear

?
Move

or disappear

?

Figure1: Dynamic changes in the task list

find an effective way to decide quickly if it is desirable
to continue with the current task or to change to another
one. This local decision depends on the prediction of the
expected valueof the remaining tasks in the list.

The decision problem We are facing to a resource allo-
cation problem: we consider time as a resource r, which is
limited by D. The duration of execution of each task isun-
cer tain, resource consumption is uncer tain. The agent has
to allocatesomeresourcesfor thecurrent task, and somefor
the remaining tasks. Differently speaking it must decide if
it ispreferableto continueitswork on thecurrent task, or to
give it up and switch to another task, by taking into account
the state of current task, the list of remaining tasks, and the
avalaible resources. Then, our resourcesallocation problem
becomesadecision problem.

We present the formalism we use to solve our problem
in anon-dynamic environment in thenext paragraph, and in
the next section we will explain how to cope with changes
in the task list.

An MDP controller
At each step, the agent has to make a decision about con-
tinuing the improvement (Improve) of the current task or
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abandoning it in favor of the next task (Move). This deci-
sion depends on the current state of the decision process. In
other words, it depends on the current state and the available
resources. Consequently, the decision process respects the
Markov property. We could deploy anMDP for the whole
list of tasks, but we do not. The basic idea is to compute
the policy of executing the current task. This policyΠT,L

depends onL, the list of remaining tasks, andT the current
task. As long asL remains unchanged, the agent follows
ΠT,L. If L changes, it updates the current policy of the cur-
rent task toΠT,Lnew

. When the agent moves to a new task
Tnew, it assesses the current list of remaining tasksLnew

and then it derives a new policyΠTnew,Lnew
.

Formal Framework An MDP is a tuple{S,A, T , Rew}
whereS is a set of states representing the amount of remain-
ing resourcesr, Initially, s0 = [D] whereD is the dead-
line. Terminal states represent all the situations wherer
has been fully elapseds = [r < 0]. A is a set of actions
{Move, Improve} (see Figure 3). TheMove action is de-
terministic: the agent moves from the current task and ex-
amines the next one in the dynamic list. The second action
is stochastic,Improve consists in spending a certain quantity
of resources∆r in the next stage.T is a set of transitions,
Rew is a reward function. In the following, we define what
{S,A, T , Rew} means in our context. The states represent
resources remaining, the actions areImprove andMove, and
the reward is the accumulated quality for all improvements
previously achieved in the task. The transitions are given in
the description of each progressive task type.

Pr(s′ = [r −∆r]|s = [r], I ) = PStage(∆r) (1)

Pr(s′ = [r < 0]|s = [r], I ) =
∑

∆r>r

PStage(∆r) (2)

Policy When the agent starts to execute a taskT , it com-
putes a local policyΠT,L whereL represents the list of re-
maining tasks. Since the listL remains unchanged, it fol-
lows its policyΠT,L (see Figure 2). As soon asL changes
to Lnew, the agent has to change the local policyΠT,L to
Π′

T,Lnew
. To do so, the computation ofΠT,Lnew

is based

T3 T1 T3 T1 T1 T2 T1 T3 T2 T3 T2

L

local policy

states

states

states

actions

actions

I I

I

I

C

C

T, L

EVL

Figure 2: A local policy
on a quick computation of the new expected values of ac-
tions M andI . We describe below how those functions are
computed.

Value function In order to compute the policy, we use a
value functionV (s) based on the Bellman equation:






V (s = [r ≥ 0]) = Rew(s) + max
A

∑

s′

Pr(s′|s, A).V (s′)

V (s = [r < 0]) = 0.
(3)

Policy ΠT,L is local, therefore we estimate the value of the
states after aMove action with a second value function that

we denote asEV . EVL is the value the agent can expect to
gain if it accomplishes tasks inL with r resources.VT,L is
the expected value of achieving taskT taking into account
tasks inL. In our context, the Bellman equation becomes:
VT,L(s = [r]) = Rew(s)+

max
A







EVL(s = [r]) if A = M
∑

s′=[r≥0]

Pr(s′|s, I).(VT,L(s′)) if A = I (4)

wheres′ = [r − ∆r] represents a possible state after the
improvement. Equation 4 needs to be solved as soon as the
queueL changes toLnew. This leads to a computation of
EVLnew

and VT,Lnew
. We compute firstEVLnew

. Then,
we obtain the new local policyΠ′

T,Lnew
by computing the

VT,Lnew
function using a backward-chaining algorithm on

all the states inT . Figure 3 represents the mechanism of
action selection. In the current state the agent has176 re-
sources left. The dotted rectangles represent the remaining
tasks in the queueL. Now, the problem is to compute the

176

170 171 172

176

Improvement

171 172170

0.25
0.5

0.25

1.0

Transition

State

Action ?

EV(170) = ? EV(171) = ? EV(172) = ?

EV(176) = ?

Moveressources

Figure 3: Action selection
Expected ValueEVL. It is possible to compute the exact
EVL of an optimal policyΠ∗

T,L. We just have to use the
Bellman equation on all the possible future states inL with
a backward chaining algorithm. But with this method, the
generatedMDP is very large. But if we add a task in the
middle of this linear graph, we must re-deploy the Bellman
equation. This solution is not convenient if tasks are often
inserted in the list i.e. if the environment changes. We can
still keep theMDP model for the local task, but we must
find another way to computeEVL. We must evaluate the
Expected Value for the rest of the plan quickly. Therefore
we have to sacrifice optimality.

Rather than computingEVL using a globalMDP , we di-
vide this process into two phases. An off-line phase, where
we compile performances profiles for each type of task (see
Figure 4), and an on-line phase, where we recompose dy-
namically theEVL function (see Figure 5) when it is neces-
sary.

In fact, we are faced with anMDP decomposition prob-
lem. We create a localMDP for each type of tasks, and we
compute policies for localMDPs ΠT,∅ (policy of executing
T assumingL = ∅). The local policies are represented by
performance profiles. We recombine them on-line to obtain
an approximateEVL ' recompositionT ′∈L(VΠT ′,L

) .

Task performance profile construction The first phase
consists of the computation and the storage of the perfor-
mance profile function for each task type. The performance
profile function fn(r) corresponds to the exact expected
value if we haver resources to spent in the task of type
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Tn.We consider that this task is independent from the oth-
ers, and we compute a policy for a localMDP , without the
Move action. This means that we assumeL = ∅. Differently
speaking,fn(r) = VΠT ′,∅

([r]). This computation is quick.
The localMDP has few states, and each state is evaluated
once. It only depends on the number of stages in the task,
and also on the maximum amount of resources that the agent
can spent in the tasks. Now, we have to combine all these
functionsfn to find anEVL function for a list composed
of tasks of type{T1, T2, . . . , Tn}. This function must be a
good approximation of the exactEVL.

Dynamic operation
Principle
This section is divided into two phases: the off-line
phase, where we compute the performance profilefn(r) =
VΠT ′,L

([r]) for each task, and the on-line phase, where the
agent recomposes the expected value functionEVL.

Off-line: The task pre-processing The performance pro-
file functionsfn(r) of each task are increasing functions in
r. Note that the more time the agent spends on a task, the
higher the expected reward will be. These curves are also
bounded by a maximum, which corresponds to the reward
if the task is completely achieved. The curves give us sev-
eral information. On the one hand we know the expected
value for this task, while on the other, we know the quality
cost ratio, i.e.fn(r)/r. The first phase of the pre-processing
consists of finding the best quality cost ratio among all tasks.

maxn,rfn(r)/r (5)
Then we isolate the part of the curve which precedes this

point, as figure 4 shows. We start again to seek the second
best quality cost ratio, until all the curves are processed.We
finally store the points and slices of curvesci,j in a tableRT

(cf algorithm 1).ci,j is thejth slice of curvefi.

r

f (r)

r

f (r)

r

f (r)

r

f (r)

r

f (r)

r
1

r
1

1 2 3

2 3

r

...

...

1 1 1
f  (r  − r) − f  (r )

1

c
1,1

Figure 4: Finding the best ratio quality/cost

On-line: Expected Value function reconstitution It is
the second phase. All the next computations are done
at run time. We recompose theEVL function with all
the information that we stored during the off-line phase
{f1, . . . , ft}, RT , and with the list. The method is
simple (see Algorithm 2). We have a list of tasks =
{T3, T1, T3, T1, T1, T2, T1, T3, T2, T3, T2}, and we recom-
pute the expected value for all possible values ofr, which
represents the remaining time at a given moment. Algo-
rithm 2 is illustrated in figure 5. Basically, we want that

Algorithm 1 Task pre-processing
Require: {f1; . . . ; ft}, RT = ∅
1: while ∀i ≤ t, ∃r, fTi

(r) > 0 do
2: r′t′ , ft′ = maxi,rfi(r)/r
3: RT ← RT ∪ {[r′t′ , ft′(r ≤ r′t′ ]}
4: ft′(r) = ft′(r − r′t′)− ft′(r

′
t′ )

5: end while
Ensure: RT

the agent maximizes its future rewards, i.e. itsEVL. Thus,
theEVL curve is recomposed incrementally by adding each
slice of curve inRT until all available resources has been
fully elapsed. This problem is similar to the knapsack prob-
lem. We start to add the slice of curve that maximize the
ratio quality/cost. We add as many slices as the number of
tasks of that type inL allowed by the remaining resources.
Then, we add the slice of curve that corresponds to the sec-
ond ratio quality/cost inRT . This processing continues un-
til all slices of curveci,j in RT have been added or the re-
sources have been fully elapsed. In the exampleL con-

Algorithm 2 Reconstitution of the Expected Value function
(approximation)EVL

Require: RT , L
1: threshhold = 0
2: r = 0
3: while RT 6= ∅ do
4: (r′, ft′)← first(RT )
5: removefirst(RT ) from RT

6: n = number of taskTt ∈ L
7: for i = r, i ≤ n× r′, i++ do
8: m = i mod r′

9: q = i div r′

10: EVL(i) = m× ft′(r
′) + ft′(q) + threshhold

11: end for
12: r = r + n× r′

13: threshhold = EVL(r)
14: end while
Ensure: EVL

tains four instances of the taskT1. In the previous section,
i.e during the off-line phase, we found that the first part of
the task of typeT1 gives a maximum quality cost ratio for
r1 resource. Consequently, if we have onlyr1 resources
left, it will be better to spent them on a taskT1. Thus, we
start by adding one time the corresponding slice of the curve
f1(0 ≤ r ≤ r1). We are not sure that the exactEVL corre-
sponds to the slice of curve we add, it is just an approxima-
tion. But we are sure that we can not expect1 less than this
slice of curve, i.e. the approximation we make is a lower
bound for the exact expected value function. If it hasr re-
sourcesr1 ≤ r ≤ 2× r1, it can do the first part of a taskT1,
and starts the second taskT1. Therefore, we add the same
slice of curve on the top of the first one (see Figure 5). In our
example, we have four tasks of typeT1 in the list, so if we

1Note that it is an expectation. During the execution of this task
we can have less reward than what we expected.
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have more thanr > 4×r1 resources, the agent can expect to
start four timesT1. With the rest (r− 4 ∗ r1) it can expect to
start another task. InRT , T2 is the best task to start afterT1.
We add the corresponding slice of curve toEVL between
4× r1 and4× r1 + r2. We continue adding slices of curve
while RT is not empty. If the agent has more thanRmax

resources then it is certain to achieve all the tasks, with all
their improvements. The approximation ofEVL is finished.

r
1

...

...r r r2

Rmax

L = {T , T , T , T , ..., T }
3 1 3 1 2

rr 2.r 3.r 4.r 4.r + r1 1 1 1 1 2

EV (r)
RT

x 4

x 3

Figure 5: Reconstition ofEVL(r)

How do we use this function in practice

The dynamic on-line approximation In the preceding
section, we explained how to reconstitute the expected
value. However in practice we do not need to know all the
values ofEVL(r). Let D -rnow be the resources remaining
to complete the mission. Moreover, we can use only a maxi-
mum amount of resourcesrmax for the current task. In fact,
we just computeEVL for all r in [D -rnow -rmax, D -rnow].
We made this reconstitution in order to compareEVL(r)
obtained by our approach with that obtained while solving
the wholeMDP for all the remaining tasks in the list. The
complexity of computation is proportional to the number of
elements inRT . Thus, the computation ofEVL(r) is quick
and is more suitable to the dynamicity.

Analysis
In this section, we make a comparison betweenEVexact,
EVdyna, andEVpw−linear . This comparison concerns the
time needed to compute each of them and the error made by
our approach.
Complexity Comparison To computeEVexact we de-
velop a set of statesS = {s = [r, imp, T ]}, r are the
remaining resources,imp the quality of the last improve-
ment made, andT is the task in the queue. r is consid-
ered discreet. We use a backward chaining algorithm using
the Bellman equation, therefore each state is evaluated only
once. The complexity ofEVexact is linear in the number
of states#S. But the state space is huge.m(EVexact) =

#S = Rmax×
∏

Ti∈L

#impTi
. m is a mesure of complexity.

m(EVdyna) =
∑

RT

#ci,j ×#Ti whereci,j is a slice of the

Ti performance profile curve, and#Ti the number of times
whereTi appears inL. m(EVdyna) is linear in the size of
RT andL. There are much fewer slices inRT than there are
states inS. Thus,m(EVdyna) ≤ m(EVexact). For a queue
of 100 tasks,EVexact takes several minutes, andEVdyna

takes less than one second. More results can be found on
http://users.info.unicaen.fr/˜slegloan/thesis/.

Value Comparison Our approximationEVdyna is just a
lower bound of theEVexact function. If all the tasks exe-
cutions where deterministic,EVdyna andEVexact would be
equal on some specific points, at the ”end” of each slice (fig
6).

∀r, EVdyna(r) ≤ EVexact(r). (6)
Unfortunatelly, our approximation is just a lower bound

r

Dyna

Exact

EV (r)

EV

EV

Figure 6: Deterministic Tasks

r

Dyna

Exact

EV (r)

EV

EV

Figure 7: With Uncertainty

of what the agent should expect to gain in the worst case.
We intend to mesure the difference betweenEVdyna and
EVexact in the future, in order to fill the gap betwenn the
two curves.

Conclusion and future works
We have presented a robust solution that copes with uncer-
tainty due to dynamicity of environment in stochastic plan-
ning problems. The Markovian approach allows us to cope
with uncertainty. The progressive approach allows us to
adapt the decision in a dynamic environment. Our work
combines two approaches: Progressive tasks and decom-
position of large MDPs. For the future, we intend to add
multiple limited resources, like energy. We would also like
to extend this approach to include more specific spatial and
temporal constraints. This model can be adapted to a large
set of problems in a dynamic and uncertain environment like
robotic applications, and information retrieval agent.
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Abstract

We investigate planning approaches to the problem of
composing distributed data stream processing applica-
tions. Workflow composition problems have drawn at-
tention of researchers in several areas of computer sci-
ence. AI planning approaches have been recently ap-
plied for solving workflow composition problems in
web services, semantic grid, business process modeling
and automated installation. The requirements of stream
processing planning applications include the ability to
express the functional dependence between attributes of
incoming and outgoing streams and the ability to share
a data stream between multiple subscribers. We ex-
tend the well-known PDDL formalism and propose a
new planning model that is specifically targeted for de-
scribing stream processing planning requirements. We
present our initial analysis of decidability and complex-
ity of the problem, and discuss planning methods.

Overview
Today powerful computers and high-bandwidth communi-
cation are becoming increasingly available, stimulating the
growth in the use of high-performance distributed comput-
ing. At the same time new software development tools en-
able large- scale distributed component-based software ar-
chitectures. In this environment making the choice between
the available components and services and establishing the
interconnections between the components is a complex and
tedious task. The difficulty of this task is preventing many
categories of users from taking advantage of otherwise eas-
ily available computational power. The end users would pre-
fer to specify the desired outcome, and let the system make
the choices and establish necessary connections automati-
cally. Automatic composition problems arising in this con-
text are naturally related to planning, since a sequence of
decisions must be made in order to choose and interconnect
components that form the processing system.

In recent work planning methods originating in AI liter-
ature have been successfully applied to web service com-
position, automated software installation, and deployment
of component-based software (for example see (Doshiet

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

al. 2004), (Kichkaylo, Ivan, & Karamcheti 2003) ). How-
ever, these models use very simple rules for connecting the
components. Typically in these models the exact matching
between the symbolic descriptions of input and output data
types is the sufficient condition for linking the output of one
component to the input of another.

The problem we describe in this paper arises in stream
processing applications, where the volume of the data be-
ing processed is too large to be stored, and therefore the in-
formation must be processed on the fly. Examples of such
applications include video processing, streaming databases
and sensor networks. We consider a compositional pro-
gramming model that allows building stream processing ap-
plications from a set of reusable components. Each com-
ponent exposes one or more input port, and one or more
output port. Once each input port of a component is con-
nected to a stream, the component will produce one output
stream for each of the output ports, by filtering, annotating,
or otherwise processing and transforming the information it
receives. Once the output stream is created any number of
components can read from it, provided that the input require-
ments are compatible with the stream characteristics. In this
model at most one stream can be connected to one input port
and therefore each stream can have only one writer and any
number readers. A formal definition of stream processing
semantics can be found in (Klein, Rumpe, & Broy 1996).

We will say that the streams that arrive from the outside
are theprimal streams. The set of available primal streams
defines the initial state for planning. The components can
transform both primal and derived streams to produce new
derived streams. Each primal or derived stream can be de-
scribed by a set of properties – streamtags. We assume
that the tags corresponding to the primal streams are fixed
and given. Each component is associated with a formula for
computing output stream tags based on input stream tags.
The goal of stream processing can be formulated as a logi-
cal expression that specifies the desired characteristics of the
final output stream. The solution of the planning problem is
a DAG of components linked by streams (see Figure 1).

Although stream planning problem is very similar to
the traditional planning problems solved by domain-
independent solvers, we encountered the following difficul-
ties during during our attempts to formulate this problem in
PDDL:
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Figure 1: Example of a stream processing application graph.

• Stream planning problems are inherently symmetric,
which is not easily detectable if only the PDDL formu-
lation is available. As the result, many currently avail-
able planners waste time evaluating different equivalent
assignments of stream objects to stream variables.

• In stream processing planning each action corresponds
to placing a new component in the workflow. The ac-
tion creates new streams, but does not modify the exist-
ing streams. Since multiple instances of the same compo-
nent may be used in the plan, the action should be writ-
ten in a way that always assigns outputs to new streams
and avoids rewriting of the already initialized ones. While
with some effort this can be done in PDDL, the planners
lose performance because of the inefficient encoding.

In this paper we introduce a general formalism for de-
scribing the stream processing planning problem. This for-
malism can also be used to model the composition of web
services or other software components that adhere to the
producer-consumer paradigm. Finally, we present prelimi-
nary performance comparisons and discuss future research
directions.

Stream Planning Domain
We start with a strict description of generic Stream Pro-
cessing Planning. We show that it is more expressive than
the STRIPS model (see (Nebel 2000)). Then we show that
complexity of the planning for our model changes between
PSPACE and EXPSPACE. For the state variable formalism
see (Jonsson & B̈ackstr̈om 1998).
Types and Constants Types represent a finite tree based
on the inheritance relation. Only single (not multiple) inher-
itance is allowed. Typeobject is a root type for all types.

(:types person city address - object,
s - stream)

Constants may be of certain types. There are only finitely
many constants of a specific type.

(:constants ernie scott dan - person)

Streams, Variables and Functions A Stream is special
type of object. It corresponds to a set of typed constants. To
reflect that streams contains constanto we use predicate

has_object ( s, o) or (s and (o))

In the state variables representation of the world, streams
correspond to an additional grouping of the state variables.

(:action AA
:parameters (?in1 ?in2 ?in3 ?out1 ?out2)
:precondition (in1 and (P1)(P2))
:precondition (in2 and (P3)(P2))
:precondition (in3 and (P5)(P6)(P7))
:effect (out1 and (P4)(P6))
:effect (out2 and (P3)(not (P2)))
(increase (cost) 1.0)
(increase (obj) 24.0) )

(:action CA
:parameters (?in1 ?in2 ?in3 ?out1 ?out2)
:precondition (in1 and (P1)(P2))
:precondition (in2 and (P3)(P2))
:precondition (in3 and (P5)(P6)(P7))
:effect (out1 when in1.P4 then (P6))
:effect (out2 when in3.P2

then ( and (P3) (P5) )
(increase (cost) 1.0)
(increase (obj) 24.0) )

Figure 2: Sample assignment action (AA); sample action
with conditional effects (CA).

We assume that all the variables are streams. For con-
venience we think of streams as partially grounded com-
plete lists with enumeration corresponding to types (or we
can add a new constantε that would mean that a value is
not specified or not important, see for example (Jonsson &
Bäckstr̈om 1998). Lets1 be a stream consisting of constants
o1, o2, ..., ol. Streams2 extends streams1 if the streams2

contains at leastl constantso1, o2, ..., ol on proper type po-
sitions. Streamsg is a grounded extension ofs1 if all pos-
sible types-placeholders insg are set to certain values and
sg extendss1. We use the notion of functions and elemental
arithmetic operations in the same way it is used in PDDL2.2.

Relations and Actions Relations are the fixed relations on
the streams that are independent of changes in the streams.
Actions have preconditions and effects (for actionA we de-
note them by precond(A) and effects(A)). Both the precon-
ditions and the effects are expressed in terms of streams.
Each precondition is a set of expressions on the correspond-
ing stream and relations. All preconditions are independent,
and correspond to different streams. Each effect is a set of
assignments of values to the stream depending on precon-
ditions. Assignments may depend in principal on certain
boolean expression. We separate the following cases: sim-
ple assignment, conditional assignment (when E then S),
and boolean expression assignment containing more com-
plex boolean expressions. All effects are independent from
other effects and act on different streams.

Note that the difference with state-variable presentation is
that streams contain a complete set of types, and that ac-
tions have multiple independent ( different streams ) pre-
conditions and multiple independent effects (see (Jonsson &
Bäckstr̈om 1998)). Since effects are independent from each
other, actions may be decomposed into a set of actions with
one stream output. However, since effect depend on precon-
ditions, action could not be decomposed further.
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Planning language L in the stream representation is a set
of the stream variablesS, a finite set of fixed relationsR and
sets of constants that define their streams. Define setX of all
partially grounded streams such that there exists a grounded
extensionxg of x ∈ X satisfying fixed relationsR.
Planning domain in languageL is a state transition sys-
temΣ(S,A,F , γ) satisfying

• S ⊂ Πx∈XDx, whereDx is a range of the partially
grounded stream variablex. In this case states defined
ass = {(x = c) | x ∈ X} for c ∈ Dx.

• A = { all partially grounded instances of actions that
meet relations inR}. We say that actionA is applicable to
the stream set{s1, ..., sk} if actionA hask preconditions
{in1, ..., ink} and streamsi extends preconditionini for
i = 1, ..., k.

• γ(s,A) = {(x = c) | x ∈ X} wherec is specified by
assignmentc 7→ x in effects (A).

• S is closed underγ, meaning fors ∈ S and every action
A applicable tos one hasγ(s,A) ∈ S.

• F is a set of all functions defined by finite compositions
of elemental operations onS.

Planning goal is a tripleP = (s0,F′g) wheres0 is a set
of grounded streams representing initial state inS, F′ is a
set of initial values of the functions, and the goalg is a set
of expressions on the stream variables.
Planning problem is a 6-tupleP = (A,R,F , s0,F0, g)
whereA is a set of actions,R is a set of fixed relations,
F is a set of all functions defined by finite compositions of
elemental operations onS, s0 is the initial state,F0 is a set
of initial values of the functions, andg is a goal.
Decidability of the planning problem (see (Erol, Nau, &
Subramanian 1995)). It is easy to show that planning lan-
guage that contains notion of function is undecidable. Let
P be a stream processing planning problem. Suppose that
solution for the planning problem exists and has lengthl.
First, we ground all possible actions in such a way that they
still satisfy relationsR. Next, we can enumerate all admissi-
ble paths of lengthl: first enumerate all admissible paths of
length 1, then, given enumeration of lengthm − 1, we can
enumerate all admissible paths of lengthm, by adding to
each path every admissible grounded action. Suggestion of
existing of the planning solution implies that solution maybe
found. This means that stream planning problem is at most
semidecidable. It also implies that finding length of the plan
is decidable problem. Semidecidability follows from the
fact that this model covers classical planning, and the fact
that classical planing is semidecidable (see Corollary 3.1 and
Theorem 3.3 in the reference above).
Complexity of the planning problem. Since our model
covers classical planning, this fact and Theorem 5.7 of (Erol,
Nau, & Subramanian 1995) implies that stream processing
planning problem is EXPSPACE hard.

The advantage of using stream planning formulation di-
rectly, instead of constructing a PDDL formulation first,

solving it, and later converting the solution back to streams
and stream processing components, lies in the added effi-
ciency that the search algorithm can gain from the additional
structure present and explicitly specified in the stream plan-
ning formulation. The approach of using variables to denote
input and output streams in PDDL actions may cause op-
timizing domain-independent planners to enumerateO(N !)
solutions for each unique solution of lengthN , due to the
symmetry in assigning stream objects to variables. Detect-
ing these symmetries in metric problems can be difficult.

Preliminary Experiment Results
We have implemented a general branch-and-bound frame-
work for solving the problem, that allows us to experi-
ment with different search algorithms, as well as bounds and
heuristics. Branch and bound is a standard approach to solv-
ing combinatorial problems, and it have been shown to be a
successful solution method for planning problems.

Planning Algorithm
Currently, the backward search (from the goal) is imple-
mented: at each branching node a goal is chosen from the
set of available nodes, and is connected to an existing primal
or derived stream or to a newly placed action. If an action
is placed, the input ports of the action are registered as new
goals to be satisfied at the next step. The preconditions of
the action in combination with the constraints on the out-
put of the action are used to specify the new goal constraint
for each of the inputs. The search tree is pruned if the best
achieved total cost is exceeded. Similarly to PDDL, our im-
plementation allows predicates and actions to have parame-
ters. The parameters are substituted before the search.

The algorithm gains additional efficiency from precom-
puting pairs of commuting actions and considering only one
of the two possible orderings in the pair, therefore achieving
the same effect as GraphPlan (Blum & Furst 1995) does in
allowing the commuting actions to be executing in parallel,
extending this approach to the more general stream planning
scenario. Potential conflicts (mutexes) are precomputed at
the same time, and for each input port of each action a list
of output ports that can be connected to it are constructed.
These lists are reduced during branching according to the
revised goals.

Experiment
We have conducted a number of experiments to study the
performance gain due to incorporating additional knowledge
in planning language. In these experiments we compare the
performance of our planner to the performance of Metric-
FF (Hoffmann 2003) and LPG-td (Gerevini, Saetti, & Se-
rina 2004). We have chosen these planners because they
have demonstrated top performance among metric solvers
in the International Planning Competition (in 2002 and 2004
resp.), and were available for evaluation.

In our experiments we generated a simple instance of the
stream processing planning problem, and formulated it in
both PDDL and the extended planning language. We then
varied the size of the example and measured the time it
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takes each of the planners to find the solution. We have
constructed the examples that represent elementary plan-
ning problems that are likely to occur (in combinations) in
practical stream processing planning scenarios. Therefore,
the performance demonstrated by Metric-FF and LPG-td on
these examples is indicative of the performance on signifi-
cantly more complex problems that arise in practice.

All planners were run in sequence on the same 3.0 Ghz
Pentium 4 computer with 500 megabytes of memory. For
the same problem size, performance of the same planner
can vary due to the randomness in problem instance gen-
eration and the random decisions taken by the planner (for
example, LPG-td employs random restarts). Therefore we
measured the average planning time on 15 randomly gener-
ated instances for each problem size. The experiments were
terminated if the running time exceeded 10 minutes.

The problem instances are constructed by first generat-
ing a flow graph: a random binary in-tree rooted at the goal
stream, in which nodes have 2 incoming links with probabil-
ity 0.3. For each arc in this tree we assign a unique predicate.
This predicate is then created as an effect on the correspond-
ing output port of the action at the tail of the arc. The same
predicate is then required at the input port of the action at
the head of the arc. The predicate produced by the root is
listed in the goal requirements. This assignment of predi-
cates mimics the stream data type compatibility constraints.
It ensures that the generated flow graph can be reconstructed
during planning.

The leaf nodes in this tree are actions corresponding to
the data sources. The data sources are the generators of the
primal streams. They do not require any specific inputs and
can be inserted in the plan at any time. However, while reg-
ular actions can appear in the plan multiple times, at most
one instance of each data source can be included in the plan.
This condition may be enforced directly by the planner, as
in our implementation, or via a global predicate.

Plan Stream Metric-FF LPG-td
size min avg max min avg max min avg max

5 0.07 0.08 0.11 0.03 0.08 0.26 0.33 0.42 0.66
11 0.08 0.09 0.10 0.16 10.67 56.63 0.45 1.01 2.28
13 0.08 0.09 0.12 37.95 * * 0.78 # #
15 0.08 0.09 0.10 46.03 * * 0.93 12.70 19.77
19 0.08 0.09 0.12 * * * 1.49 19.76 25.70
25 0.09 0.11 0.30 * # # 4.12 12.08 23.94
30 0.10 0.12 0.21 * * * 12.8 29.8 57.5
35 0.10 0.11 0.14 * * * 329.0 * *
50 0.12 0.13 0.14 * # # # # #

100 0.16 0.17 0.21 # # # # # #
500 0.52 0.55 0.63 # # # # # #

The table above the results of our experiments. The first
column contains the number of actions in the plan and the
other columns contain the minimum, maximum and aver-
age running time in seconds for all planners that we tested.
Column titledStreamcorresponds to our stream process-
ing planner implementation. In the table, “*” indicates that
the solution was not found after 10 minutes, and “#” indi-
cates that the solver terminated abnormally due to insuffi-
cient memory or other reasons. In this experiment the time-
outs were often caused by thrashing that occurs when plan-
ners allocate and use more memory than is physically avail-
able.

The problems constructed for this experiment are very

simple, and require no search when formulated in the ex-
tended planning language. The experiment shows that
general-purpose planners cannot find the solution when
problem size reaches 50. We cannot expect better perfor-
mance of the planners on more realistic stream planning
problems to be better, since the simple tree structures will
likely appear as subgraphs in complex workflows. There-
fore, the stream planning formalism can significantly im-
prove performance on these problems.

Conclusion
In this paper we presented a new formalism for stream pro-
cessing planning problems. We defined the model for de-
scribing the problem and provided initial analysis of the de-
cidability and complexity of the model. Finally, we have
performed experimental analysis and showed that significant
performance gains can be obtained due to improved repre-
sentation of the problem.

While the knowledge of problem structure provides per-
formance improvements, there is also a need for more de-
tailed investigation of planning algorithms. Stream planning
problems are very similar to classical planning problems,
and we think that many of the search techniques developed
for traditional planning can be applied in this context.
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Abstract

We present a general framework for probabilistic temporal
planning in which effects, the time at which they occur, and
action durations are all probabilistic. This framework in-
cludes a search space that is designed for solving probabilis-
tic temporal planning problems via heuristic search, an algo-
rithm that has been tailored to work with it, and an effective
heuristic that is based on an extension of the planning graph
data structure. Prottle is a planner that implements this
framework, and can solve problems expressed in an exten-
sion of PDDL.

Introduction
Probabilistic temporal planning is the combination of con-
current durative actions and probabilistic effects. This uni-
fication of the disparate fields of probabilistic and temporal
planning is relatively immature, and presents new challenges
in efficiently managing an increased level of expressiveness.

The most general probabilistic temporal planning frame-
work considered in the literature is that of Younes and Sim-
mons (2004). It is expressive enough to model generalised
semi-Markov decision processes (GSMDPs), which allow
for exogenous events, concurrency, continuous-time, and
general delay distributions. This expressiveness comes at
a cost: the solution methods proposed in (Younes & Sim-
mons 2004) lack convergence guarantees and significantly
depart from the traditional algorithms for both probabilistic
and temporal planning. Concurrent Markov decision pro-
cesses (CoMDPs) are a much less general model that simply
allows instantaneous probabilistic actions to execute concur-
rently (Mausam & Weld 2004). Aberdeen et al. (2004) and
Mausam and Weld (2005) have extended this model by as-
signing actions a fixed numeric duration. They solved the
resulting probabilistic temporal planning problem by adapt-
ing existing MDP algorithms, and have devised heuristics to
help manage the exponential blowup of the search space.

We present a general framework for probabilistic tem-
poral planning, in which not only do the (concurrent) du-
rative actions have probabilistic effects, but the action du-
rations and discrete effect times can vary probabilistically
as well. According to Mausam and Weld (2005), proba-
bilistic planning under these relaxed assumptions goes sig-
nificantly beyond their own work. We demonstrate that
it is possible to achieve this level of expressiveness and
yet still maintain a close alignment with existing work in

probabilistic and temporal planning (Smith & Weld 1999;
Blum & Langford 1999; Bacchus & Ady 2001; Bonet &
Geffner 2003). The framework is implemented in a plan-
ner called Prottle. We demonstrate Prottle’s perfor-
mance on a customised benchmark. This paper is based on
the thesis (Little 2004), which we refer to for further details.

Probabilistic Durative Actions
(:durative-action jump

:parameters (?p - person ?c - parachute)
:condition (and (at start (and (alive ?p)

(on ?p plane)
(flying plane)
(wearing ?p ?c)))

(over all (wearing ?p ?c)))
:effect (and (at start (not (on ?p plane)))

(at end (on ?p ground))
(at 5
(probabilistic
(parachute-opened 0.9 (at 42 (standing ?p)))
(parachute-failed 0.1
(at 13 (probabilistic

(soft-landing 0.1
(at 14 (bruised ?p)))

(hard-landing 0.9
(at 14 (not (alive ?p)))))))))))

Figure 1: An example of an action to jump out of a plane.

Prottle’s input language is the temporal STRIPS frag-
ment of PDDL2.1 (Fox & Long 2003), but extended so
that effects can be probabilistic, as in PPDDL (Younes &
Littman 2004). We also allow effects to occur at any time
within an action’s duration. The probabilistic and temporal
language constructs interact to allow effect times and action
durations to vary probabilistically. For clarity, each proba-
bilistic alternative is given a descriptive label.

Figure 1 shows an example action representing a per-
son jumping out of a plane with a parachute. Af-
ter 5 units of time, the person attempts to open the
parachute. The case where this is successful has the label
parachute-opened, and will occur 90% of the time; the
person will gently glide to safety, eventually landing at time
42. However, if the parachute fails to open, then the person’s
survival becomes dependent on where they land. The land-
ing site is apparent at time 13, with a 10% chance of it being
soft enough for the person to survive. Alive or dead, the
person then lands at time 14, 28 units of time sooner than if
the parachute had opened. But regardless of the outcome, or
how long it took to achieve, the action ends with the person’s
body on the ground.
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We treat the structure of an action’s possible outcomes
as a decision tree, where each non-leaf node corresponds
to a probabilistic event, and each leaf node to a possible out-
come. As each event is associated with a delay, this structure
allows for partial knowledge of an action instance’s actual
outcome by gradually traversing the decision tree as time
progresses.

The duration of an action is normally inferred from the ef-
fects that have a numeric time, and depends on the path taken
through the decision tree. The decision tree representation
assumes that probabilistic alternatives occur to the exclusion
of the others. Nevertheless, independent probabilistic
events are allowed by the input language; any independence
is compiled away by enumerating the possibilities.

Search Space and Algorithm
There is a well-established tradition of using the Markov de-
cision process framework to formalise the search space for
probabilistic planning algorithms. We take a slightly differ-
ent approach, by formalising the search space in terms of an
AND/OR graph that more closely aligns with the structure
of the problem.

In the interpretation that we use, an AND node represents
a chance, and an OR node a choice. We associate choice
nodes with the selection of actions, and chance nodes with
the probabilistic event alternatives. Each node is used in one
of two different ways: for selection or advancement, in a
manner similar to some temporal planners (Bacchus & Ady
2001). The rules for node succession can be summarised as:
every successor of a node must either be a selection node of
the same type, or an advancement node of the opposite type.

Rather than deal with an action’s probabilistic branching
immediately after it is selected, this search space structure
is intended to be used with a ‘phased’ search where action
selection and outcome determination are kept separate. This
allows the time at which the action outcomes are known to
be accurately represented, by deferring the branching until
the appropriate time.

As an example, we now describe a path through such an
AND/OR graph, starting from an advancement choice node.
First, we choose to start an instance of the jump action from
Figure 1, which progresses us to a selection choice node.
We can now choose either to start another action, or to ‘ad-
vance’ to the next phase; we choose to advance, and progress
to an advancement chance node. There is a current proba-
bilistic event with alternatives parachute-opened and
parachute-failed. Let us say that the parachute fails
to open for our chosen path, which leaves us at a selec-
tion chance node. There are no more events for the cur-
rent time, so we progress to another advancement choice
node. Rather than start another action, we then choose to
advance again. The next probabilistic event has alternatives
soft-landing and hard-landing. Let us be nice and
say that the person lands on something soft.

Using the graph structure that we have established, we
define a state of the search space as a node in an AND/OR
graph that is identified by a time, model and event queue.
The time of a state is generally the same as its predecessors,
but may increase when advancing from choice to chance.

The model is the set of truth values for each of the proposi-
tions, and the event queue is a time-ordered list of pending
events. An event can be an effect e.g. (on ?p ground),
a probabilistic event, or an action execution condition that
needs to be checked. When the time is increased, it is to the
next time for which an event has been queued. We define the
initial state as an advancement choice state with time 0, the
initial model, and an empty event queue. We define a goal
state as any state in which the model satisfies the problem’s
goal.

We associate states with both lower and upper cost
bounds. As the search space is explored, the lower bounds
will monotonically increase, the upper bounds monotoni-
cally decrease, and the actual cost is sandwiched within an
ever-decreasing interval. We say that a state’s cost has con-
verged when, for a given ε ≥ 0: U(s)−L(s) ≤ ε where U is
the upper bound and L the lower bound of state s. For con-
venience, we restrict costs to the interval [0, 1]. The cost of
a state is just the probability of the goal being unreachable
from it if only optimal choices are made. New states are ei-
ther given a lower bound of 0 and an upper bound of 1, or
values that are computed using appropriate heuristic func-
tions. Although we only consider probability costs in this
paper, the cost scheme that we describe can easily be gener-
alised to include other metrics, such as makespan. The main
restriction is that the cost function needs to be bounded.

A state’s cost bounds are updated by comparing its current
values with those of its successors. We use the following
formulae for updating probability costs, where (1)–(2) are
for choice states, and (3)–(4) are for chance states:

Lchoice(s) := max(L(s), min
s′∈S(s)

L(s′)), (1)

Uchoice(s) := min(U(s), min
s′∈S(s)

U(s′)), (2)

Lchance(s) := max(L(s),
X

s′∈S(s)

P (s′) L(s′)), (3)

Uchance(s) := min(U(s),
X

s′∈S(s)

P (s′) U(s′)), (4)

where S is the set of successors of state s, and P is the prob-
ability of s. We define the probability of a selection chance
state as the probability of its probabilistic event alternative.
The probability of all other states is 1.

In addition to a cost, we also associate each state with
a label of either solved or unsolved. A state is labelled as
solved once the benefit of further exploration is considered
negligible; for instance, once its cost has converged for a suf-
ficiently small ε. The search algorithm is expected to ignore
a state once it has been labelled as solved, and to confine its
exploration to the remaining unsolved states.

For an action to be selected, we require that its precondi-
tions are satisfied by the model, and that its start effects are
consistent with the other actions that are to be started at the
same time. We consider an inconsistency to arise if: (1) a
start effect of one action deletes a precondition of another,
or (2) both positive and negative truth values are asserted for
the same proposition by different start effects. As it is possi-
ble for a probabilistic event to occur at the start of an action,
we restrict these rules to apply only to start effects that occur
irrespective of the outcome.
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The selection rules ensure that preconditions are honoured
and that a degree of resource exclusion is maintained, but
they do not consider other types of conditions or non-start
effects. We contend that this is actually preferable, as with
probabilistic outcomes we may not even know whether or
not an inconsistency will actually arise. We believe that it is
up to the planner to determine whether or not the risk of cre-
ating an inconsistency is worth it. For this purpose, there is
an inconsistency when: (1) an asserted condition is not sat-
isfied, or (2) both positive and negative truth values are as-
serted for the same proposition in the same time step. When
such an inconsistency is detected, we consider the current
state to be a failure state; a solved state with a cost of 1.

To explore this search space, we use a search algo-
rithm that combines a deterministic search with the conver-
gence and labelling optimisations used by LRTDP (Bonet &
Geffner 2003). As with recent probabilistic temporal plan-
ners (Aberdeen, Thiébaux, & Zhang 2004; Mausam & Weld
2005), this algorithm is set in a trial-based framework, and
explores the search space by performing repeated depth-first
probes starting from the initial state. Unsolved states are se-
lected to minimise P (s) U(s), where P (s) L(s) is used to
break ties. The probability weights focus the search on the
most likely states first. The lower bound guides the selection
of choice states until at least one way of reaching the goal is
proved to exist; the precedence of cost upper bounds causes
known solutions to be robustified. The search is constrained
by a finite horizon: any state with a time greater than a spec-
ified limit is a failure state. This is necessary to ensure ter-
mination. If all heuristics are admissible and ε = 0 is used
for convergence, then only optimal solutions are produced.

The search space that we have described is acyclic. Our
search algorithm is general enough to work with a cyclic
search space, which might arise when states are disasso-
ciated from the absolute timeline, as in (Mausam & Weld
2005).

Heuristics
Due to the added complexity from combining probabilis-
tic effects and durative actions, effective heuristics are even
more critical for probabilistic temporal planning than for
simpler planning problems. A popular technique for gen-
erating cost heuristics is to use a derivative of the plan-
ning graph data structure (Blum & Furst 1997). This has
been previously used for both probabilistic (Blum & Lang-
ford 1999) and temporal planning (Smith & Weld 1999;
Do & Kambhampati 2002), but not for the combination of
the two. We extend the planning graph for probabilistic tem-
poral planning and use it to compute an initial lower bound
estimate for the cost of each newly created state.

The traditional planning graph consists of alternate levels
of proposition and action nodes, with edges linking nodes
in adjacent levels. We also include levels of outcome nodes,
where each node directly corresponds to a node in an ac-
tion’s decision tree. With this addition, edges link the nodes:
proposition to action, action to outcome, outcome to out-
come, and outcome to proposition. To cope with the tem-
poral properties, we associate each level with the time step
that it represents. Excepting only persistence actions, we

also break the assumption that edges can at most link nodes
in adjacent levels; all edges involving outcome nodes link
levels of the appropriate times.

Generating a planning graph requires a state in order to
determine which proposition nodes to include in the ini-
tial level. We only generate a graph for the initial state of
the problem, although generating additional graphs for other
states can improve the cost estimates. The graph expansion
continues until the search horizon is reached. This is essen-
tial for this heuristic to be admissible, as we need to account
for all possible contingencies.

Once the graph is generated, we then assign a vector of
costs to each of the graph’s nodes. Each component of these
vectors is associated with a goal proposition; the value of a
particular component reflects the node’s ability to contribute
to the achievement of the respective goal proposition within
the search horizon.1 In accordance with our cost usage, a
value of 0 means that the node (possibly in combination with
others) is able to make the goal proposition inevitable, while
a value of 1 means that the node is definitely irrelevant. Cost
vectors are first assigned to the nodes in the graph’s final
level; goal propositions have a value of 0 for their own cost
component, and 1 for the others. All other propositions have
a value of 1 for all cost components.

Component values are then propagated backwards
through the graph in such a way that each value is a lower
bound on the actual cost. The specific formulae for cost
propagation are:2

Co(n, i) :=
Y

n′∈S(n)

Cp,o(n
′, i), (5)

Ca(n, i) :=
X

n′∈S(n)

P (n′) Co(n
′, i), (6)

Cp(n, i) :=
Y

n′∈S(n)

Ca(n′, i), (7)

where C is the i’th cost component of node n, S are the
successors of n, and P is the probability of n. Subscripts
are given to C according to node type: o for outcome, a for
action and p for proposition. Both Co and Cp are admissible,
and Ca is an exact computation of cost. The products in (5)
and (7) are required because it might be possible to concur-
rently achieve the same result through different means. For
example, there is a greater chance of winning a lottery with
multiple tickets, rather than just the one. When a planning
domain does not allow this form of concurrency, then we can
strengthen the propagation formulae without sacrificing ad-
missibility by replacing each product with a min. This effec-
tively leaves us with what has been called max-propagation
(Do & Kambhampati 2002), which is admissible for tempo-
ral planning. Admissibility in the general case is lost when
probabilistic effects are combined with concurrency.

We now explain how the cost vectors are used when com-
puting the lower bound cost estimate for a state generated by

1The cost vectors can be extended to include other components,
such as for resource usage or makespan.

2These formulae assume that every action has at least one pre-
condition; a fake proposition should be used as a dummy precon-
dition if this is not the case.
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the search. This computation involves determining the nodes
in the graph that are relevant to the state, and then combining
their cost vectors to produce the actual cost estimate. When
identifying relevant nodes, we need to account for both the
state’s model and event queue. Accounting for the model is
not as simple as taking the corresponding proposition nodes
for the current time step. Although this would be admissi-
ble, the resulting cost estimates would not help to guide the
search; the same estimate would be generated for successive
selection states, with nothing to distinguish between them.
The way that we actually account for the model is to treat
as relevant: (1) the nodes from the next time step that corre-
spond to current propositions,3 (2) the nodes for the startable
actions that the search algorithm has not already considered
for the current time step, if the state is a choice state, and (3)
the outcome nodes for the current unprocessed probabilistic
events if the state is a chance state. Those proposition or out-
come nodes that are associated with an event from the event
queue are also relevant.

The first step in combining the cost vectors of the relevant
nodes is to aggregate each component individually. That is,
to multiply — or minimise, if ‘max’-propagation is being
used — the values for each of the goal propositions to pro-
duce a single vector of component values. The actual cost
estimate is the maximum value in this vector; the value as-
sociated with the ‘hardest’ goal proposition to achieve.

Planning graphs usually include mutexes, to represent bi-
nary mutual exclusion relationships between the different
nodes. For our modified planning graph, we compute mu-
texes for all of proposition, action and outcome nodes. Of
note, all of the usual mutex conditions are accounted for in
some way, and there is a special rule for mutexes between
action nodes in different levels to account for the temporal
dimension. The complete set of mutex rules is described in
(Little 2004).

Experimental Results
Prottle is implemented in Common Lisp, and is com-
piled using CMUCL version 19a. These experiments were
run on a machine with a 3 GHz Intel processor and 900 MB
of RAM. We show experimental results for a problem in a
customised domain that we call maze. For this problem
we vary ε and the use of the planning graph heuristic, while
recording execution time, solution cost, and the number of
states expanded; time1, cost1 and states1 are for the case
where the heuristic is not used, and time2, cost2 and states2
are for when it is. All times are given in seconds. Recall that
the costs are probabilities of failure.

The maze domain is based on the idea of moving between
connected rooms, and finding the keys needed to unlock
closed doors. Each of the domain’s actions has a duration of
1 or 2, and many of their effects include nested probabilistic
events. We used a problem with 165 action instances, al-
though with a high degree of mutual exclusion. The tests all
have a horizon of 10. The results are shown in Table 1.

We have shown that the planning graph heuristic is effec-
tive, and can dramatically reduce the number of states that

3Or the current time step if it is also the last.

horizon ε time1 time2 cost1 cost2 states1 states2
10 0.0 223 11 0.178 0.178 1,374,541 13,037
10 0.1 218 3 0.193 0.178 1,246,159 2,419
10 0.2 73 1 0.197 0.193 436,876 669
10 0.3 71 2 0.202 0.193 414,414 1,812

Table 1: The maze results.

are explored. As usual, the degree of effectiveness depends
on the actual problem being solved.

Future Work
Our work on probabilistic temporal planning is in some
ways orthogonal to that described in (Mausam & Weld
2004; 2005); we believe that some of the techniques
and heuristics that Mausam and Weld describe, such as
combo-elimination, eager effects, and hybridization could
be adapted for Prottle’s framework.

At the moment, the Prottle’s main bottleneck is mem-
ory usage. One way this could be improved is to compress
the state space as it gets expanded, by combining states of
like type and time.

There are many ways in which this framework could be
made more expressive. The most important practical exten-
sions would be to add support for metric resources, and to
generalise costs to support makespan and other metrics. We
understand how to do this, but have not yet implemented it.
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Modeling Local Search: A First Step Toward Understanding Hill-climbing Search
in Oversubscribed Scheduling∗

Mark Roberts and Adele Howe and L. Darrell Whitley
Computer Science Dept., Colorado State University

Fort Collins, Colorado 80523
mroberts,howe,whitley@cs.colostate.edu
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Abstract

Previous results for a real-world domain, scheduling
communications requests for the Air Force Satellite
Control Network (AFSCN), suggested that the best
search methods perform a greedy random walk. We ex-
amine the degree to which this observation is accurate
for AFSCN by modeling a next-descent hill-climbing
search as a Markov process. We find that the model is
somewhat accurate for AFSCN. To generalize, we apply
this model to another oversubscribed scheduling prob-
lem: scheduling image requests for a set of Earth Ob-
serving Satellites (EOS). We find that the hill-climber
follows a trajectory that can be modeled as a Markov
process.

Hill-Climbing Search as a Markovian Process
A Genetic Algorithm (GA), Squeaky Wheel Optimization
(SWO), and a simple Hill-Climber (HC) have been shown to
perform well for AFSCN scheduling (Barbulescu, Whitley,
& Howe 2004). Simulated Annealing (SA) and HC perform
best for EOS scheduling (Globus et al. 2004). All these
methods use a permutation representation with some com-
bination of stochastic motion and simultaneous moves. The
GA selects approximately half the tasks for movement and
is at the far end of multi-move, disruptive motion. The HC
is at the other end of single-move, step-wise motion. SA fol-
lows a similar path as the HC, but relaxes the greedy bias by
allowing uphill moves; its behavior approaches that of the
HC as search progresses. SWO selects a subset of ’trouble-
some’ tasks to move and is between the extreme moves of
the GA and the small steps of the HC.

Researchers for AFSCN and EOS identify the under-
performance of heuristic search in these domains, but it isn’t
clear exactly why this is the case. A simple hypothesis is
that these methods lack a suitable ordering heuristic. Un-
derlying this hypothesis is an implicit belief that the better

∗This research was sponsored by the Air Force Office of Scien-
tific Research, Air Force Materiel Command, USAF, under grant
number F49620-03-1-0233. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

performing algorithms are finding and exploiting rich, com-
plex problem structure. Previous studies have shown that
simple patterns do not account for good AFSCN schedules
(Barbulescu, Whitley, & Howe 2004).

Recently for AFSCN, we have also found that an unin-
formed, completely random neighborhood performs better
than systematic or problem specific neighborhoods (Roberts
et al. 2005). AFSCN problems are dominated by neigh-
borhoods with equivalent moves (plateaus and regions with
many equal and only a few non-equal moves) (Barbulescu,
Whitley, & Howe 2004). Based on the neighborhood result
and evidence of plateaus, it seems reasonable to consider
the possibility that the best algorithms may be performing a
greedy random walk. Recent work in understanding the be-
havior of Tabu search for the Job-Shop Scheduling problem
links search space features with the cost of locating an opti-
mal solution; search can be modeled with 95% accuracy as
a random walk (Watson, Whitley, & Howe 2004).

Our main focus in this work is to construct a Markov
model for the simple, but reasonably successful, stochastic
HC in two domains and to assess its accuracy. This is a first
step toward bringing together a unifying model explaining
the behavior of all of these search techniques, and possibly
yielding more clues linking problem structure and run-time
behavior.

Oversubscribed Scheduling
In oversubscribed scheduling, more requests need to be
scheduled than can be feasibly accommodated given the
available resources. This necessitates discarding some re-
quests. We examine two oversubscribed scheduling applica-
tions: AFSCN and EOS.

For AFSCN, communication requests for earth orbiting
satellites are scheduled on a set of 16 antennas at nine
ground-based tracking stations. Satellites are grouped ac-
cording to two orbits. Low-altitude orbits have a short vis-
ibility window and few scheduling alternatives. Typically,
only one contact request can be scheduled during one 15
minute visibility window. In contrast, requests for high-
altitude orbits have longer durations (20 minutes or more)
and have much larger visibility windows. The scheduling al-
ternatives can include multiple ground tracking stations. The
requests to be scheduled include information about which
ground stations and times are possible alternatives.
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Customers submit requests that are scheduled by humans
in a complex arbitration process. Although AFSCN starts
as an oversubscribed scheduling problem, all jobs are even-
tually scheduled through negotiating relaxed task require-
ments. Our automated scheduler reduces human effort by
minimizing the total number of tasks in conflict. When min-
imizing the number of conflicts, if the request cannot be
scheduled on any of the alternative resources, it is dropped
from the schedule (i.e., bumped).

Our AFSCN dataset consists of 12 days of real data iden-
tified by their dates1. Table 1 (left) shows characteristics
for these problem instances. The seven older days of data
are smaller problems that are easily solved by most of the
approaches we have tried. The five newer days are substan-
tially larger problems that are more difficult.

For EOS, as in (Globus et al. 2004), image capture re-
quests are scheduled on a set of 1 to 3 identical satellites
that are spaced ten minutes apart in a sun-synchronous, earth
orbit at 800 km. The imaging sensor is mounted with a to-
tal possible cross-track slew of 24 degrees off nadir (straight
down). A Solid State Recorder (SSR) stores on-board data
and is dumped as the satellite passes over a remote track-
ing station located in Anchorage, Alaska. For each satellite,
2100 land-based image targets are randomly selected from
the Geographic Nameserver Database (NGIA 2004). Image
exposure duration ranges from 24 to 48 seconds depending
on the problem. We use the free version of STK (AGI 2004)
to model one week of orbits and target visibilities2. Not all
tasks are visible from the satellites in every problem, but the
number of requests ensure an oversubscribed problem.

The multi-objective evaluation function is:
F = wpΣu∈UPu + wsµslew + waµangle

where wp, ws, wa are the weights assigned in the problem
definition and where µangle, µslew , and Σu∈UPu are the av-
erage image angle, the average slew per task, and the sum of
the unscheduled image request priorities, respectively. For
this paper, we round the value of F to the nearest integer.

Our EOS dataset consists of ten problem instances using
problem parameters outlined in (Globus et al. 2004). These
problems are specifically designed to mimic realistic satel-
lite scheduling problems. Table 1 (right) shows character-
istics for these problem instances. The last three columns
show the weights for the evaluation function.

A Simple Hill-climbing Algorithm
We encode potential solutions using a permutation π of the
n task IDs, [1..n]. A schedule builder is used to generate
solutions from the permutation. In effect, the permutation π
acts as a priority queue, and the schedule builder places task
requests in the schedule based on the order that they appear
in π. Each task request is assigned to the first available re-
source from its list of alternatives and at the earliest possible

1We thank Dr. James T. Moore, Associate Professor, Dept. of
Operational Sciences, Air Force Institute of Technology and Brian
Bayless and William Szary from Schriever Air Force Base for pro-
viding the AFSCN data.

2We thank Al Globus of CSC at NASA Ames for walking us
through retrieving target visibilities from STK.

starting time. This assignment treats the list of alternatives
as a rank order, although the actual ordering is arbitrary.

We implemented a next-descent HC that employs the shift
operator; we accept new solutions that are better or equally
good. From a current solution π, a neighborhood is de-
fined by considering all (n − 1)2 pairs (x, y) of positions
in π, subject to the restriction that y 6= x − 1. The neigh-
bor π

′

corresponding to the position pair (x, y) is produced
by shifting the job at position x into position y, while leav-
ing all other relative job orders unchanged. If x < y, then
π′ = (π(1), ..., π(x − 1), π(x + 1), ..., π(y), π(x), π(y +
1), ..., π(n)). If x > y, then π′ = (π(1), ..., π(y −
1), π(x), π(y), ..., π(x − 1), π(x + 1), ..., π(n)).

Building a Model
Our goal is to model the expected cost of moving from a
random solution to a solution with the best known value. By
expected cost, we mean the average number of shifts made
in the shift neighborhood. To estimate the search cost, we
construct a Markov model of search progress from a set of
independent runs and calculate the waiting time from each
state. In using a Markov model we make two assumptions:
1) that movement to the next state is entirely dependent on
the current state and 2) that we can make a suitable estimate
of the transition probabilities between states.

We adapt the methodology from (Frank, Cheeseman, &
Stutz 1997) to name states and ’probabilistically paint’ the
schedule space. For a given problem instance I with n
tasks, let G be an undirected graph of the n! permutations.
Two vertices of the graph, g1, g2 are adjacent, that is, have
an edge between them, if they correspond to two permuta-
tions differing by a single shift. G is the search space in-
duced by the shift operator. We associate G with the evalua-
tion (schedule) space by assigning each vertex the objective
function value from the schedule builder B for I.

Definition 1 (Level) Let f : G → Z+ be a function map-
ping permutations to integers such that f(B(g)) = z if and
only if the permutation corresponding to g results in an eval-
uation of z using schedule builder B.

Definition 2 (Plateau) Let P be a connected subgraph of G
and let z ∈ Z+ be a constant. Then P is a plateau if P is
a maximal connected subgraph of G such that f(B(p)) = z
for all p ∈ P . Further, z is defined to be the level of the
plateau.

Definition 3 (Aggregate Plateau) Let A be the set of all
plateaus in G at level z ∈ Z+. Then A is an aggregate
plateau if every plateau a ∈ A is a plateau at level z and
every plateau p ∈ G at level z is in the set A. Further, z is
defined to be the level of the aggregate plateau.

Definition 4 (Model State) Let s be a single state in the
Markov model with a set of states S and a transition proba-
bility matrix T . Then s is an aggregate plateau in G at level
z ∈ Z+. Further, sz is defined to be the level of the state.
A transition probability, tij , signifies the probability of mov-
ing from state si to sj . Let smin to denote the lowest sz in
the model and smax to denote the highest sz in the model;
0 < smin < smax < O(n).
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ID Date Size # Low # High
Day1 10/12/92 322 153 169
Day2 10/13/92 302 137 165
Day3 10/14/92 311 146 165
Day4 10/15/92 318 142 176
Day5 10/16/92 305 142 163
Day6 10/17/92 299 144 155
Day7 10/18/92 297 142 155

Mar07 03/07/02 483 225 258
Mar20 03/20/02 457 194 263
Mar26 03/26/03 426 183 243
Apr02 04/02/03 431 185 246

May02 05/02/03 419 178 241

ID Size SSR Slew SSRUse Priority wp ws wa

1 1 (2100) 75 2 1 1-6(50) 1 0.01 0.02
2 3 (6300) 50 2 1,3,5 1-6(50) 1 0.01 0.50
3 3 (6300) 50 2 1,3,5 1-6(50) 1 0.01 0.00137
4 3 (6300) 75 2 1,3,5 1-6(50) 1 0.01 0.02
5 3 (6300) 50 10 1,3,5 1-51(5) 1 0.50 0.20
6 3 (6300) 75 2 1,5,8 1-16(50) 1 0.10 0.20
7 3 (6300) 75 2 1,5,8 1-16(50) 1 0.10 0.20
8 3 (6300) 75 2 1,3,5 1-6(50) 1 0.01 0.02
9 2 (4200) 75 2 1,3 1-6(50) 1 0.01 0.02

10 3 (6300) 100 1 1,10,25 1-6(50) 1 0.10 0.70

Table 1: The left table shows AFSCN problem characteristics for the 12 days of data used in our experiments. ID is used to
identify the instance throughout the paper. Size is the number of requests in the problem. # Low and # High are the number of
low and high-altitude requests in each problem. The right table shows the problem characteristics for the EOS problem. ID is
used to identify the instance throughout the paper. Size is the number of satellites (image requests) in the problem. SSR is the
size of the on-board storage. Slew is the speed of the slew motor in degrees/second. SSRUse is the amount of SSR usage and
is uniformly divided among the tasks in the problem. Priority is the value range (number of levels) for priority assignments to
tasks. The last three columns signify the weights for the evaluation function.

To summarize, we aggregate states into sets partitioned by
level. An aggregate plateau combines all states of the same
level regardless of whether they are actually on the same
plateau. It is intractable to explicitly model every solution
(Θ(2n) for the schedule space or O(n!) for the permutation
space). Using the level as a surrogate state makes many as-
sumptions about the independence between schedules and
movement between states. These assumptions could lead to
model inaccuracy.

The size of the AFSCN model is straightforward: smin

denotes the best value seen and smax denotes the highest
value seen during the search. We are reasonably sure that
smin is in fact the optimal value for each problem.

Memory and time limitations prohibit us from construct-
ing a full EOS model. We are also less confident that we’ve
located the best values for EOS. To capture the runtime dy-
namics for the ’settled’ behavior of the HC, we model the
lowest and largest portion of search that we can. EOS runs
incur a high computational cost. To include as many runs
as possible, we set smin to max(finalEval(r)), r ∈ R,
where R is the set of runs used to construct the model. We
limit the model size such that smax = smin + 1000. These
model choices assume that all runs are equal, which could
lead to a negative result if some runs are stuck on subopti-
mal plateaus.

We run each problem for as many evaluations as we can
given our computing resources. For AFSCN, we stop the
search at 50,000 evaluations per run (2 to 10 minutes of CPU
time). For EOS, we stop search at 100,000 evaluations per
run (almost one day of CPU time).

We estimate the transition matrix by collecting transi-
tion counts from a set of independent runs. For AFSCN,
we use 25 runs per state; each run is guaranteed to reach
smin. For EOS, we use approximately 50 runs for the entire
model. From these transition counts, we calculate the tran-
sition probabilities for the states. We then use the transition
matrix to calculate the expected waiting time from each s to

VALIDATE-ENTRY

1 numShifts ← 0
2 while v in Svalidate has less than m runs
3 do repeat x← random solution
4 until LEVEL(x) > vz

5 while LEVEL(x) > vz

6 do HC proceeds one shift
7 while LEVEL(x) > smin

8 do HC proceeds one shift
9 numShifts ← numShifts +1

10 return numShifts

Figure 1: Pseudo-code for VALIDATE-ENTRY. LEVEL(x) re-
turns the integer level of the solution x using the appropriate
schedule builder. All runs reach smin.

smin. In our analysis of the model, we make two simplify-
ing assumptions: smin is absorbing, and smax is a reflecting
barrier.

Validating The Model
We are interested in measuring how well the model predicts
the search cost from each model state given as large as possi-
ble a set of independent runs. For each state in the model, we
correlate the predicted cost of the model with the actual cost
of arriving at smin. We obtain m validating runs for each
state in the set of states we wish to validate, Svalidate. Figure
1 shows the algorithm for obtaining the actual search cost of
each state v ∈ Svalidate. We observed that the run length
distributions for most states Svalidate have heavy tails, so
we correlate the model cost with the median actual cost.

For AFSCN, we show results for all 12 days of data where
m = 25 and Svalidate = S − {smin}. For EOS, we present
a random sampling of the ten problems where m = 7 and
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AFSCN r
2 AFSCN r

2 EOS r
2

Day1 .040 Day7 .844 1 .805
Day2 .855 Mar07 .569 3 .851
Day3 .743 Mar20 .611 6 .805
Day4 .643 Mar26 .287 7 .839
Day5 .052 Apr02 .720 9 .831
Day6 .716 May02 .688 10 .606

Table 2: R-squared values for the hypothesis that the corre-
lation for a given problem is linear.

Svalidate = {smin+1, smin+333, smin+666, smax}, s ∈ S.
Table 2 shows the r-squared values for linear regression.
This preliminary analysis shows that there is a strong linear
relationship between the model for most of the problems.

Summary and Future Work

For two oversubscribed scheduling problems, we hypothe-
size that a random walk model may capture the dynamics of
search. We built a Markov model of the search using aggre-
gate plateaus as the states. We found that this model is well-
correlated for EOS, though it is less consistently correlated
for AFSCN. This is simply the first step toward explaining
search in such problems. We now identify some possible
sources of model failure that we are currently addressing.

First, we note that states far away from smin are much
less correlated with the actual search cost. This effect is
most noticeable for the larger problems in AFSCN. Figure
2 shows the correlation plot for Mar07, where this compres-
sion of states is seen on the right side. We conjecture that
this compression results from a lack of sufficient state for
the large plateaus seen during search. So we are currently
building a more complex model with additional states repre-
senting the length of a plateau walk. This model refinement
may also provide a more clear estimate of the plateau size
for these problems. Preliminary evidence suggests that the
larger model does resolve some of this compression.

Second, the model is clearly lacking in strength for some
problem instances. Specifically, Day1, Day5, Mar26, and
EOS10 show low correlation in comparison to the other
problem instances. There is strong evidence that the com-
pression mentioned above plays a role in the low correlation.
The random walk may not be the best model for these prob-
lems; in which case, we will seek to capture the differences
between EOS and AFSCN that might explain the differences
in performance.

Third, the issue of knowing the best-value for EOS is still
open, and search could be made more efficient. We will
continue our analysis of the model as other problems accu-
mulate more runs.

Finally, we have only taken one step toward modeling
the simplest algorithm for these domains. We hope to
generalize this model to other algorithms with the goal of
finding a unifying model.
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Figure 2: The correlation plot for Mar07, the largest AFSCN
instance. The dashed line indicates perfect correlation. This
plot reveals evidence of compression in the model for states
far away from the optimum.
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Planning on demand in BDI systems

Lavindra de Silva and Lin Padgham
{ldesilva,linpa}@cs.rmit.edu.au

School of Computer Science and Information Technology
RMIT University, Melbourne 3000, VIC, Australia

1 Introduction
The BDI (Belief, Desire, Intention) model of agency is a
popular architecture based on Bratman’s (Bratman 1987)
theory of practical reasoning. There are numerous im-
plementations based on the BDI architecture such as PRS
(Georgeff & Ingrand 1989) and JACK1, which are used for
both academic and industrial purposes. An important as-
pect of BDI style systems is that they execute as they rea-
son, and so avoid the possibility of the reasoning being out-
dated, due to environmental change, by the time execution
happens. This makes them useful for many complex and dy-
namic environments, such as Unmanned Autonomous Vehi-
cles (UAVs) and Air Traffic Management, due to their abil-
ity to cope well with changes, making adjustments as they
go in terms of the steps chosen. They are also very fast, and
therefore well suited to systems needing to operate in real
time, or close to real time environments. However, there are
no generic mechanisms in BDI systems to do any kind of
look-ahead, or planning. In some situations this would be
desirable.

The primary goals and contributions of our work are: 1)
incorporating planning at specific points in a BDI applica-
tion, on an as needed basis, under control of the program-
mer; 2) planning using only limited subsets of the applica-
tion, making the planning more efficient, and; 3) incorporat-
ing the plan generated back into the BDI system, for regular
BDI execution, identifying plan steps that could be pursued
in parallel.

Other features of our approach include: 1) minimising
the programming overhead, as the program to be run by the
planner is derived from the existing BDI program; 2) allow-
ing the use of regular functions in planning; 3) extracting
planning effects from existing code, and; 4) incorporating
aspects of both HTN (Hierarchical Task Networks) planning
and classical planning.

There is some previous work that deals with using plan-
ning capabilities to guide the execution of BDI-like systems.
Some of the research closely related to ours is Propel (Levin-
son 1995), Propice-Plan (Despouys & Ingrand 1999), and
RETSINA (Paolucci et al. 1999). Propice-Plan (and other
similar systems) use a reactive system for execution, and a

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1JACK Intelligent Agents : http://www.agent-software.com.au

separate planning component to produce plans. There are
three important differences between our system and Propice-
plan : 1) the planner provides an alternative means of oper-
ation; it is not smoothly integrated into the BDI architecture
and algorithms. In particular, the planner does not provide
guidance to the reactive-planner, on how to use its hierarchy
to achieve the goal, instead, the reactive planner only exe-
cutes the operators in the final plan produced; 2) Propice-
plan does not allow the programmer to specify points when
the planner should be called, and to provide extra operators
for each planning point; 3) Propice-plan does not support
the use of programmer provided functions in planning, i.e.
where the outcome cannot be specified as an effect. Propel
and RETSINA are different to Propice-plan in that planning
and execution are tightly integrated within a single frame-
work. However, in Propel, the planner is called every time a
runtime failure occurs, whereas our system allows the pro-
grammer to specify when to call the planner, and what part
of the hierarchy to use for planning. In RETSINA, planning
is done when all the information required for planning is
available, therefore not leaving the decision of when to plan
and when to execute to the programmer.

A simplified view of the BDI architecture is in terms of
goals and recipes, where a goal has one or more recipes that
can be used to achieve it. The recipes to achieve goals are
stored in a library provided by the programmer. When an
agent has a goal to achieve, it looks for a recipe that can
achieve the goal in the current state of the world. If a suitable
recipe is found, it is executed. If it fails during execution,
the agent looks for other suitable recipes to achieve the goal.
The goal fails if none of its recipes could be executed to
completion, or if none of them were suitable for the current
state of the world.

In achieving a goal, the agent typically executes a num-
ber of steps, or subgoals/subtasks. In some situations there
can be multiple options (recipes) at each step, but for a given
state, only certain combinations of choices will lead to suc-
cess of the overall goal. However, it may not be possible
to (easily) encode information enabling successful choices,
based only on knowledge of the current state. If steps are
cheap, reversible, and there is little or no cost to doing them,
then a BDI system can easily be used to find a solution in
these situations. However, in many cases of this sort in real
applications, actually doing the actions rather than only rea-
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Figure 1: The Design of the BDI Program. Additional plan-
ner recipes are highlighted in bold.

soning about them (planning), results in wasting time and
resources in ineffectual behaviour. At times this can even
lead to inability to achieve the goal. While it is always pos-
sible for planning to be explicitly programmed into a BDI
application (and in fact this is often done), it would be ad-
vantageous to have a simple mechanism that incorporates
planning in a generic way, at particular points where it is
needed.

2 Example
Let us present an example to illustrate the inclusion of a
planning facility within a BDI application. Consider an am-
bulance dispatch system: as ambulance requests arrive, a
dispatching agent ascertains the best ambulance to dispatch
and provides ongoing directions during the process of deal-
ing with the emergency.

The steps that are part of servicing the emergency are
FindAmbulance, DispatchAmbulance and SendToHospital,
in that order, as shown in Figure 1 (ignore recipes in bold
for now). Normally the FindAmbulance goal is achieved by
executing the FindSuitableIdle recipe. This is a recipe type
representing a set of recipe instances. These instances are
determined at runtime, one for each idle ambulance. Each
of these recipe instances will be tried in turn, attempting to
successfully complete the subtasks of CheckTravelTime and
CheckConstraints. If no recipe instance of this type com-
pletes successfully, instances of the alternative recipe type
FindSuitableAllocated will be tried. This recipe attempts to
schedule the new emergency to follow one of the jobs that is
already allocated.

However, if all instances of all applicable plan types fail,
i.e. are unable to be done in a way that meets the time con-
straints for the new emergency, the ServiceEmergency goal
will fail. Since at this point the BDI system cannot find a
solution, it could be useful to call a planner to see if there is
a way to successfully achieve this ServiceEmergency goal,
while also servicing all other such goals and maintaining all
timing constraints. The planner could attempt to develop a
plan that reallocates some of the currently allocated emer-
gencies, so that the new emergency can also be serviced.

For example, the situation may be that there are two am-
bulances and two hospitals, placed on the grid as shown in
Figure 2. Three emergencies occur at different times, at lo-
cations also shown on the grid. The table beside the grid

Time Emergency Urgency
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Figure 2: Ambulance servicing example

gives the number of time units after the start that each emer-
gency happens and the urgency of the emergency. Urgency
is in terms of maximum time units acceptable between the
emergency happening, and the ambulance having serviced
the emergency arriving at the hospital. We assume that the
ambulances can move right, left, up and down, and that each
move takes one time unit.

Using the BDI recipes in Figure 1, the first two emergen-
cies will be allocated to the two ambulances. Assume E1 is
allocated to ambulance A1, and to hospital H1, while E2 is
allocated to ambulance A2, and also to hospital H1. It will
take eight time units to service each of E1 and E2.

When emergency E3 occurs, the ambulances are busy, so
the recipe FindSuitableAllocated will be tried, to see if E3
can be scheduled with either A1 or A2, after their current
job, in a way that meets the urgency constraints. In this case
A1 and A2 arrive at H1 at time units 8 and 10 respectively
(from the start time). The trip from H1, to E3, and then
to H2 takes 10 units. As it is necessary to service E3 by
20 time units from the start (occurrence time plus urgency
allowance) it is possible to allocate E3 to be done by A1 after
it has reached H1. This will have E3 at the hospital at time
unit 18, 2 time units before the maximum for its urgency
level.

However, if E3 had had an urgency level of 10 units, then
this allocation would not have been successful. By calling
a planner, and exploring possible re-allocations, it would be
possible to allocate A1 to service E1 and E2, while A2 ser-
vices E3. To arrive at this set of allocations the planner must
find an appropriate set of bindings to meet all constraints for
the three ServiceEmergency goals. I.e. find a set of bind-
ings for the first goal, project it’s effects, then find a set of
bindings for the next goal based on the projected state, and
continue in this manner. If a set of bindings could not be
found for a goal, an alternative set of bindings would need
to be found for the previous goal.

3 Overview
What we propose in this work is a mechanism whereby a
BDI programmer can indicate that runtime planning should
be applied. This may be on failure of a more simple ap-
proach (as in our example), or in a situation where planning
may always be appropriate for a particular task or subtask.
Our approach is to use the information already available
within the BDI program as the knowledge which must be
provided to the planner, and to thereby relieve the program-
mer of the responsibility of specifying information specifi-
cally for planning. The planner can then make choices about
which recipe instances to use and how these are sequenced.

In order to provide the required information to the plan-
ner, the relevant BDI goals and/or recipes, as well as the
relevant information about the current state as captured by
agent beliefs, must be translated into a representation suit-
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able for some planning system. Due to the similarity of
problem representation between BDI systems and HTNs (de
Silva & Padgham 2004), we decided to use an HTN plan-
ner which allows representation of the information encoded
in the hierarchical BDI structure. We have decided to use
the Java version of the SHOP planner called JSHOP2 as it
can handle numeric computations and also allows user de-
fined Java functions to be used during planning. The BDI
platform we are using is JACK, BDI agent platform, with
research licensing available to universities.

The approach that we use is to have the programmer in-
clude in the BDI program a generic recipe that invokes the
HTN planner at the desired point. At compile time our
system then automatically converts the relevant goals and
recipes3 into a JSHOP program, which can be accessed at
runtime, if the recipe invoking the planner is instantiated.
After invoking the planner, the recipe executes the plan re-
turned. If desired, additional recipes can be provided within
the BDI program, for the express purpose of being available
for use in planning. A suitable context condition can ensure
that they are not instantiated at other times.

The process of converting information from the JACK
program, into a suitable JSHOP representation, is a straight-
forward one-one mapping of JACK’s goals and recipes
(including each recipe’s precondition and effect), into
JSHOP’s syntax (i.e. methods, and precondition and
tail pairs). Due to space constraints, the mapping pro-
cess will not be discussed here. The reader can refer
to http://www.cs.rmit.edu.au/l̃desilva/research/publications/
for a more detailed paper.

The bold recipes in Figure 1 show the recipe InvokePlan-
ner which calls the planner, and also recipe RedirectAllo-
cated provided specifically for use by the planner.

4 Invoking the Planner
As indicated in section 3, a recipe is placed at whatever point
the programmer wishes the planner to be invoked. This
recipe will be chosen according to normal BDI principles.
Therefore it can have a context condition which captures the
situation in which it should be used, or it can be a last prior-
ity, if other options have failed (as in our example situation),
or it can be prioritised with respect to alternative options in
the same way that other alternative plans are prioritised (in
JACK using either a precedence attribute or order of decla-
ration).

The recipe for invoking the planner has a generic form,
and therefore most of the details are added automatically,
based on a template. There are four subtasks which are in-
cluded within this recipe. These are to: 1) create the initial
set of beliefs, corresponding to the current state when the
planner is to be invoked; 2) create the desired goal state; 3)

2JSHOP is a state of the art planner being used by the Naval
Research Laboratory for Noncombatant Evacuation Operations
http://www.cs.umd.edu/projects/shop/download.html

3The relevant goals and recipes are the recipes which are sib-
lings of the planning recipe in the BDI hierarchy, and all their chil-
dren recipes and goals. Other goals and recipes in the program are
excluded because they are not responsible for achieving the task
for which runtime planning is desired.

instantiate and call the planner, and; 4) execute the plan.
The list of beliefs that are relevant, and whose values

should be accessed at runtime, and provided to JSHOP, must
be specified by the programmer (via a GUI). (These could
be extracted automatically, but this has not currently been
done.) In our ambulance example, relevant beliefs are Am-
bulanceState, EmergencyState and HospitalState and values
obtained at runtime include A1 is at 4,3 and A2 is at 2,3 from
AmbulanceState, E1 is at 5,3, E2 is at 2,4, and E3 is at 2,1 for
EmergencyState and so on. When the InvokePlanner recipe
is executed, the current values are obtained and the initial
state for JSHOP is built.

The desired goal state must be provided by the program-
mer in the form of a recipe which can produce the desired
goal state for the specific situation. For the ambulance ex-
ample, the desired goal state is: EmergencyState E1 == Ser-
viced, EmergencyState E2 == Serviced, and EmergencyS-
tate E3 == Serviced. This is produced using a recipe which
obtains all current emergencies, including the new one, and
creates a beliefset instance which has all of them as being
serviced. An interface is currently being developed to sup-
port creation of most of this recipe automatically.

The third subtask is to call the appropriate JSHOP pro-
gram with the initial state and goal state produced by the first
two subtasks. The final task is to execute the plan which is
returned. This is done using a recipe supplied by our system,
and is explained in section 6.

The planner is able to do both planning by reduction
within a particular goal, and also planning with multiple in-
stances of top level goals, in a manner similar to how first
principles planners plan with multiple “instances” of oper-
ators. The latter is possible because HTNs are more ex-
pressive than STRIPS style planners, as described in (Erol,
Hendler, & Nau 1996). The ability to combine these tech-
niques allows for considerable flexibility, allowing user de-
fined functions, and a lossless representation of the BDI hi-
erarchy.

5 Producing a Suitable Partial-Order Plan
Certain planners, including JSHOP, produce a totally or-
dered sequential plan. However BDI systems like JACK are
intended to be able to pursue multiple goals in parallel. In
order to take advantage of this aspect of BDI systems, it is
desirable to parallelise the resulting JSHOP plan before be-
ginning execution within JACK.

An alternative would be to directly use a partial-order
planner. However, none of the partial-order HTN planners
are Java based and would therefore not facilitate the direct
integration of functions that we require. Following the algo-
rithm described in (Veloso, Pérez, & Carbonell 1991), with
minor changes, we have modified JSHOP to have a final pro-
cessing step which creates a partial-order plan.

In its original form, JSHOP produces a sequence of prim-
itive actions as the outcome of planning. These are parts of
JACK recipes. We now need to execute the plan found, and
we do that by incorporating it back into JACK, as there may
be other aspects of the original recipes that require execu-
tion, as well as those parts that were provided to the plan-
ning process. As JACK executes recipes as a result of goals
being instantiated, we need our resulting plan to be in terms
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of goals. Consequently we have modified JSHOP to pro-
vide information on the reduction process itself; i.e. for each
operator/action in the plan, which recipe and goal instance
were selected to lead to that action4.

6 Executing the JSHOP Plan
The partial-order plan returned from the planner consists of
a partial order of nodes. Each node contains the top level
goal, and all information necessary for binding variables and
making choices of recipes as that goal is executed.

The recipe provided by our system posts the top level
goals in the appropriate order. It initially posts asyn-
chronously, all goals at the start of the plan which can be
run in parallel. As each top level goal completes, any imme-
diate successor, for which all predecesors have completed, is
posted. In our example, the goal instances SeviceEmergency
E1 and ServiceEmergency E3 are posted initially. When
ServiceEmergency E1 completes, ServiceEmergency E2 is
posted, as it is dependent only on ServiceEmergency E1 in
the partial order. If the ordering was such that ServiceEmer-
gency E2 was after both ServiceEmergency E1 and Ser-
viceEmergency E3, then it would not be posted until both
completed.

When each goal is posted (both the top level goal and the
subsequent subgoals), the BDI system must decide the ap-
propriate recipe to use. This is based on the plan that has
been returned by the planner. We require firstly that the
recipe instance chosen is of the same type as that indicated
by the plan. Secondly it must contain the same bindings in
the context condition as that indicated in the plan.

Recipe selection is handled transparently to the program-
mer, by extra code added to each recipe’s context() condi-
tion at the compilation stage. The code ensures that, when
appropriate, the BDI program selects recipes based on plans
returned by JSHOP, and at other times selects recipes using
normal BDI recipe selection.

If at any point in the execution it is not possible to match
a recipe from what JACK considers is available with what
the planner considers should be executed, then this indicates
that there is a problem, probably resulting from some envi-
ronmental change. If at this stage execution continues, using
the recipe chosen by the planner, this is likely to cause prob-
lems. JACK context conditions are written to ensure that
appropriate plans for the situation are the ones that are con-
sidered. If a recipe is used which is intended for a different
situation than the one existing, then it cannot be expected to
succeed. If on the other hand we allow JACK to choose a
recipe outside the plan which has been produced, we invali-
date the plan.

In such cases, a recipe will not be selected, causing the
goal it handles to fail, therefore causing the top level goal
called within InvokePlanner (used as a generic term here to
represent any plan that invokes JSHOP) to fail. When In-
vokePlanner realises the goal state has not been achieved,
instead of calling the planner to replan, the InvokePlanner
recipe will also fail. At this point the BDI system’s failure
handling will take over.

4Refer to http://www.cs.rmit.edu.au/l̃desilva/research/publications
for more information.

7 Conclusions
BDI systems are robust in dealing with complex and dy-
namic environments, and work with a recipe library pro-
vided by the programmer. In some situations it can be de-
sirable to do some planning, either as a result of other ap-
proaches failing, or in order to look ahead to guide choices
at a particular point. The planner would ideally be able to
use information about the existing BDI program to simu-
late the behaviour of the system, and provide advice on the
choices the system should take during execution. We have
implemented a system that does this, by using an efficient
HTN planner. Our focus is different to past work in inter-
leaving planning and execution, in that we cater for the in-
trinsic needs of the BDI architecture. In particular, we leave
the choice of when planning should be done, and with what
information, to the BDI programmer. Executing the plan
is done using regular BDI execution, using the advice from
the planner on what recipes to choose, and what bindings to
use in context conditions. Furthermore, our plan execution
model is unique, in that it is possible for the BDI system
to maintain control on plan failure, and resume normal BDI
execution.

We are currently working on creating formalisms to define
and evaluate our framework.
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Abstract

Computing systems have become so complex that the IT
industry recognizes the necessity of deliberative methods
to make these systems self-configuring, self-healing, self-
optimizing and self-protecting. Architectures for systemself-
management, also called Autonomic Computing (AC), have
been proposed where elements are managed by monitoring
and analyzing behaviors and using the response to plan and
execute new actions that take or keep the system in desir-
able states. In this paper, we highlight some of the challenges
and research problems raised in adapting automated planning
techniques to AC applications.

Introduction
The vision of Autonomic Computing (AC)(Kephart & Chess
2003) is to improve manageability of complex IT systems by
making them self-configuring, self-healing, self-optimizing
and self-protecting. This would require that the behavior of
system elements are monitored and analyzed, and the per-
formance is used to plan and execute suitable actions to take
or keep the system in desirable states.

Policy is a popular term in industry to refer to any declara-
tive specification of behavior that is desired from a software
system (e.g., agent) and the behavior is enforced by a pol-
icy engine. Two types of policies are easily distinguishable.
In the first case, the policy describes desired behavior and
exhaustively lists necessary actions to meet them under all
conditions. During runtime, a policy engine will verify the
conditions and take the stipulated action. This type of pol-
icy is procedural in nature because the actions to take under
a condition is fully known, and it is suited for reactive rea-
soning. In the second case, the policy only lists the system’s
expected behavior (e.g., goal state) and it is left to the pol-
icy engine to deliberate and determine what actions need to
be taken to ensure the satisfaction of goals. A generalization
of goal type policy can include utility information so that the
selection of actions depends on runtime situations.Planning
provides the policy engines for goal-type policies.Planning
is thus critical for meeting the AC vision.

Planning is a very wide discipline characterized by how
the environment, the agent’s goal and its model of the world

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

are represented. Planning algorithms are best understood as
a refinement search over sets of possible plans - an algorithm
starts from the set of all possible plans and performs refine-
ments on the plan set leading to sub-sets from which ex-
tracting a single solution is feasible(Kambhampati & Srivas-
tava 1995; Kambhampati et al 1995). Various types of plan-
ners can return sequential(Weld 1999), conditional plans or
a generalized state-action mapping (Blythe 1999) specify-
ing what action to take in any state during execution(hence
procedural policies), that are optimized with respect to a de-
fined metric. In terms of performance, planning has seen an
upsurge in the last 6-7 years with new planners that are or-
ders of magnitude faster than before and are able to scale this
performance to complex domains, e.g., metric and temporal
constraints.

Despite the obvious potential for connections between au-
tomated planning and autonomic computing, very little has
been done to exploit the synergy. In this paper, we high-
light some of the challenges and research problems raised in
adapting automated planning techniques to AC application
scenarios so that researchers in the planning community be-
come aware of the potential applications in autonomic com-
puting. Here is the outline of the paper: we start with a brief
overview of planning followed by description of AC scenar-
ios and how planning can be useful there. We then iden-
tify AC-specific planning challenges. They include working
with incomplete domain models and in managing life cycles
of plans. We conclude by relating planning to procedural
policies and its connections to Web and Grid services and
finally give closing comments.

Preliminaries
We review planning and their role in AC scenarios in this
section.

Planning
For the purposes of this paper, we introduce a planning prob-
lemPP as a 4-tuple〈P, I, G, A〉 whereP is the set of predi-
cates,I (⊆ P ) is the complete description of the initial state,
G (⊆ P ) is the partial description of the goal state, andA is
the set of executable (primitive) actions. A specification of
an action consists of preconditions (A

pre
i ⊆ P ) and postcon-

ditions (Apost
i ⊆ P ). A plan forPP is an action sequence
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S, such that ifS is executed inI, the resulting state of the
world would containG. A planner finds a plan by efficiently
searching in the space of possible states configurations or ac-
tion orderings (plans). It is desirable that a planner besound
andcomplete. A planner is sound if it will only generate
correct plans. A planner is complete if it will always find a
plan, provided one exists, given a domain and problem de-
scription. Automated planners are designed to be sound and
complete.

A plan can be obtained without a planning algorithm and
without explicit action specifications. An example of the for-
mer is when the user provides the plan directly and an exam-
ple of the latter is when a plan is generated by some domain-
dependent reasoning on initial and goal states. However, the
soundness and the completeness of plan generator cannot
be guaranteed. Domain-dependent planners usually produce
superior plans than domain-independent methods, but they
are harder to build and cannot be reused.

The user or system need not act on a plan immediately.
A plan may be one of the many plans that are produced by
users or planning algorithms before some plan is executed.
They could be stored, searched, inspected, evaluated, modi-
fied, and critiqued by human experts or automated reasoning
systems, and executed. Eventually, plans will outlast their
utility and be replaced.

Planning needs of Autonomic Computing Scenarios
In the AC vision(Kephart & Chess 2003), four aspects of
self-management have been identified. We discuss the role
of planning in these aspects.

Self-configuration: deals with installation, configuration
and integration of IT systems. The installation procedures
work by gathering information about the host environment,
figuring out the dependencies among needed tasks and also
optimizing performance measures, and finally executing the
tasks to realize the changes. Information about host system
is increasingly getting standardized along structured formats
but the executable tasks can be ad-hoc scripts. Humans want
to be closely involved in key decisions during execution.

Self-healing: deals with determination of problematic sit-
uations and recovering from them. It requires the system to
reason with how activities can be performed, how diagnos-
tic information is produced and how new changes can be
affected with minimal cost and maximum benefit. The spec-
ification of actions could be known at some level of granu-
larity.

Self-optimizing: deals with improving the performance
of running systems by leveraging alternative opportunities.
The system would monitor its performance and based on its
changing environment, could initiate new changes (e.g., re-
source re-provisioning).

Self-protecting: deals with monitoring the environment
for threats and responding to them. It is related to self-
optimizing aspect but with the difference that the situation
needs time-bound response and lead to cascading effect. Hu-
mans want to be closely involved based on the seriousness
of the situation.

Table 1 summarizes the level to which information about
the initial state (I), goals (G), action specification (A), ex-

Type I G A S Constraints
Self-configuring Yes Yes - - Yes
Self-healing Yes Yes Yes - Yes
Self-optimizing - - - Yes Yes
Self-protecting - Yes - Yes Yes

Table 1: The level to which planning problem information
is expected to be available in AC scenarios. (-) means not
assured.

isting plans (S) and domain constraints (Constraints) is ex-
pected to be available in the different AC scenarios. In self-
configuring situation, actions may be scripts whose pre- and
post-condition information may not be known and there may
be no plans availablea priori. In self-healing scenario,A is
expected so that alternative plans could be explored. In self-
optimizing and self-protecting scenarios, a plan would be
available for the running system but the goal specification
will be more clearly defined for the latter.

From the above discussion, planning needs for AC can be
summarized as follows:
1. The plan representation can be as general as workflows,

e.g. BPEL4WS(Curbera et al 2002), with sequence, con-
ditional, parallel, non-deterministic and loop constructs.

2. The plans are needed even if the initial state, goal state
and action specification are not available, individually or
collectively.

3. Automated plan generation is important but plans could
also be obtained by users or domain-dependent methods.
Even automatically generated plan may be analyzed by
users before execution.

4. Over time, there would be a repository of previously gen-
erated and executed plans. They have to be considered
while selecting existing or generating new plans.

5. The plans would typically be centrally executed but in
large applications, the execution can be distributed.
CHAMPS(Keller et al 2004) is an example of a

domain-dependent planner for AC self-configuration sce-
nario while ABLE(Bigus et al 2002), extended with domain-
independent Planner4J planners(Srivastava et al 2004), has
been employed in self-healing scenarios. They are initial at-
tempts to validate the potential of planning in AC.

AC Specific Challenges in using Planning
Based on our survey and experience of applying planning to
autonomic computing, we identify two important challenges
that AC applications pose to automated planning research –
the need to support planning in partially specified domains,
and the need to support plan life-cycle management. In this
section, we describe these briefly.

Handling Incomplete Domain Model
The fact that a domain model is incomplete means many
things. It could mean that domain is incompletely known
though whatever is known is correct. This is orthogo-
nal/different from expressiveness of domain model, e.g.,
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PDDL levels(Fox & Long 2002), where the domain model
at each level is complete though it may abstract some de-
tails of the world, which may get revealed in a more detailed
higher PDDL level. Expressiveness impacts the complexity
of planning and the representation of output plan. Incom-
plete domain model is also orthogonal/different from plan-
ning formulations varying in complexity like classical, con-
ditional with partial observability, etc., where a problemis
intrinsically of one type and hence cannot be expressed in
any more simpler form.

If a plan is generated with incomplete domain models,
it leads missing or under specified causal dependencies be-
tween actions in the plan. This affects the soundness guar-
antee of the planner because a generated plan may turn out
to be not executable.

A domain may be incompletely specified in many ways.
Formally, a planning domain is incomplete if at least one
of the following happens (* denotes the corresponding com-
plete specification):
• P ⊂ P ∗

• A
pre
i ⊂ A

pre∗
i for someAi

• A
post
i ⊂ A

post∗
i for someAi

• There are relationsαi : {Pi} × P which are not reflected
in causal dependencies for achievement of predicates in
A

• There are relationsβi : {Ai} × A which are not reflected
in causal dependencies among actions inA

In the first case, the list of predicates in the domain is in-
complete. In the second case, the list of preconditions for an
action is incomplete. The preconditions can also be disjunc-
tive but in contrast to traditional planning where disjunction
is due to inherent uncertainty that will disappear at runtime,
disjunction due to incomplete model will only get resolved
with more domain input. In the third case, the list of post-
conditions of an action is incomplete and it can only get re-
solved with more domain input.

In many real domains like AC, the dependency among
tasks or predicates is given but it is not explained in terms
of a causal explanation (i.e., what precondition/effect depen-
dencies are violated if the dependency is violated). For ex-
ample, it is known that a specific action must occur before
another action but this information is known as an ordering
relation (Ai ≺ Aj) but the actions do not have a causal de-
pendency in terms of the modeled pre- and post conditions
(Singh et al 1995). The fourth and fifth cases represent spec-
ification of dependencies among predicates and actions, re-
spectively, that do not have causal explanation. Axioms can
be used to specify these types of incompleteness.

The challenge for planning community is how to effec-
tively deal with such incompleteness. There has been some
initial work, e.g., in(Garland & Lesh 2002), the authors
look at the problem of evaluating plans when the under-
lying actions are incompletely modeled. They define four
types of risk based on the structure of the plan provided
that any action’s specification can be corrected in future.
Plans are compared based on their assessed risks, and a
ranking is derived. To plan with relations that do not have

causal dependencies, techniques from the intersection of
planning and distributed scheduling (c.f. (Beck & Fox 1999;
Singh et al 1995)) will need to be adopted and extended.

Managing Life Cycle of Plans
A plan is synthesized for meeting some goals. But synthe-
sis is just the beginning of a complex life-cycle manage-
ment process. Plans must be organized in large collections,
where they can be grouped along different purposes and are
amenable to search, inspection, evaluation, and modification
by human experts or automated reasoning systems. With
users in the loop, plans which have been used in the past and
have been successful, are more likely to be used again. New
plans would get requested only when there is a deficiency in
the existing plans. Eventually, plans will outlast their utility
and be replaced.

Planning community has focused primarily on synthesis.
To support AC applications, one needs to manage the life cy-
cle of plans within an application and based on the context
of their usage. For example, one needs techniques to auto-
matically generate metadata annotations of plans that could
be used for storage and retrieval. If humans provide meta-
data, each annotation could be different and metadata mis-
matches will become a critical issue unless the user is very
constrained.

The challenges in generating metadata for managing plans
are many. The plan can be as expressive as general work-
flows with both automated and manual sub-plans. The spec-
ification of the pre- and postconditions of each action may
not be available. Furthermore, the initial situation for which
the plan was generated and the goal it is supposed to achieve
are seldomly available. This lack of information, which
is taken for granted in AI planning, necessitates new tech-
niques to deduce a plan’s usage context. An initial approach
for plan life cycle is discussed in (Srivastava et al 2005)
where plan analysis techniques take BPEL4WS workflows
or PDDL plans as input, build action models using plan
structure and generate metadata based on the given plan and
as well as compared to other plans in a plan repository.

Relationship with other technologies
We now discuss relationship of planning with procedural
policies, and Web services and Grid.

Relationship between procedural policies and plans
As mentioned in the introduction, the term policy is used
to refer to any declarative specification of behavior that is
desired from a software system but they usually refer to pro-
cedural policies. There are many choices for a procedural
policy language for AC, e.g., WS-Policy1 being defined for
web services and REI2. Most languages support variations
of the Event-Condition-Action (ECA) specification. ECA
rules specify what actions to take in response to events pro-
vided stated conditions hold, i.e., (Bailey et al 2002):

1ftp://www6.software.ibm.com/software/developer/library/ws-
policy.pdf

2http://ebiquity.umbc.edu/v2.1/get/a/publication/57.pdf
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On : ≺ Event�
If : ≺ Condition� holds
Do : ≺ Actions�

Action refers to any activity that can be performed in the
domain and a policy may consist of one or more actions.
The policy language may additionally allow specification of
scoping and priority (business value) of rules that can be
used for rule selection while working with a set of rules.

Planning can be used for managing procedural policies -
while creating new policies, validating properties with ex-
isting policies, updating policies - based on whether a set
of policies could be composed. In (Srivastava 2004), it was
shown how decision support problems in managing software
components over their life cycle could be answered by pos-
ing them as planning problems. The same could be done for
procedural policies.

Reciprocally, procedural policies can be used while plan-
ning for the AC scenarios. Essentially, they allow users to
decide what decision to make in a situation, and this infor-
mation can be used to pick any information needed for plan-
ning. More specifically, procedural policies can be used to:
• Select information for goals (G)
• Select information for initial state (I)
• Select actions relevant for planning (A) and what gets

modeled in their specification.
• Select predicates in the planning problem (P ).

Relating AC with Web Services and Scientific
Flows
Planning is actively being applied for composition of web
services(Srivastava & Koehler 2003) and scientific work-
flows (grid)(Blythe et al 2003). There are interesting sim-
ilarities and contrasts between the planning requirementsof
autonomic computing and those of web services and scien-
tific workflows. All of them require an expressive plan rep-
resentation like BPEL4WS. All of these applications also
pose the challenge of incomplete domain theories. In the
case of web services, the incompleteness may come because
of faulty or incomplete service annotations, while for work-
flows, the incompleteness may come because of constraints
and dependencies without causal explanations. Plan man-
agement is also critical for these applications, while the need
for automated synthesis is less prominent. In grid and web
services, the plans will be distributedly executed while they
will be primarily centrally executed in AC. Hence, tech-
niques from distributed planning for generating concurrent
plans are more relevant to the former.

Conclusion
In this paper, we explored the planning needs of AC, its
match with existing planning technology, and its connec-
tions with policies and planning for web services and sci-
entific workflows (grids). We observe that AC requirements
call for plan synthesis and management techniques that work
with incomplete domain specifications (theories) and sup-
port a life cycle view of plans.
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