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Preface

The goals of mixed initiative planning and scheduling (MIPAS) systems are to com-
bine the strengths of humans and computers so as to produce joint systems that exhibit
better performance than either alone. A wide variety of domains, including manufactu-
ring, military logistics, space, and transportation are finding both manual and automa-
ted approaches to planning and scheduling inadequate. A manual approach, involving
large teams of highly trained experts, does not scale well to increasingly complex sce-
narios, and remains expensive, time consuming and error-prone. Automated planning
and scheduling systems, though long a focus of AI research, are difficult to integrate in-
to human-centric activities, for both technical and psychological reasons. Thus there is
increasing interest in mixed-initiative planning and scheduling systems, where humans
can apply their expertise, intuition, and exercise an appropriate level of control, while
computing resources can be leveraged to assist, learn, verify, generate options, and
control resources, using ever more sophisticated algorithms and more powerful hard-
ware. However, few successful MIPAS systems have been fielded to date. Challenges
include identifying the parts of a complex task where MIPAS systems might have the
greatest added value; developing planning and scheduling algorithms that can simul-
taneously meet humans’ requirements for speed, feasibility and quality; presenting and
communicating concepts effectively between human and computer, gaining user accep-
tance, and assessing impact on overall planning and scheduling performance.

This workshop will address the challenges of mixed-initiative planning and schedu-
ling, discussing past work, current needs and future directions.
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A Framework for Designing and Evaluating
Mixed-Initiative Optimization Systems

Arthur E. Kirkpatrick, Bistra Dilkina and William S. Havens
School of Computing Science

Simon Fraser University
Burnaby, British Columbia

Canada V5A 1S6
{ted, bnd, havens}@cs.sfu.ca

Abstract

Mixed-initiative approaches are being applied in com-
binatorial optimization systems such as planning and
scheduling systems. Mixed-initiative optimization sys-
tems are based upon collaboration between the sys-
tem and the user. Both agents possess unique and
complementary abilities which can be jointly applied
to intractable optimization problems. Yet current ap-
proaches to designing and evaluating these systems re-
main ad hoc. In this short paper, we give a pre-
cise definition of a mixed-initiative optimization sys-
tem. We identify the salient characteristics of combi-
natorial problems which make them suitable candidates
for mixed-initiative reasoning. We provide a frame-
work which informs both the design and evaluation of
these systems. Using this framework, we characterize
the functional requirements of any mixed-initiative op-
timization system. These requirements can help to es-
tablish suitable evaluation criteria for these systems. We
conclude by situating recent work in this area within our
framework.

Introduction
Mixed-initiative optimization (MIO) systems are systems in
which the user and system collaborate to solve combinato-
rial optimization problems, such as planning and scheduling
(Howe et al. 2000; Kramer & Smith 2002; Scott, Lesh, &
Klau 2002). The benefits of MIO systems have been broadly
claimed in the literature. The arguments are based upon sev-
eral subordinate claims. Two experts ought to be better than
one for solving complex combinatorial optimization prob-
lems. The system and the user possess unique expertise, and
each complements the other. The division of labour between
these experts should reflect their inherently different capa-
bilities. The automated solving methods deal with the com-
binatorics of optmization problems, while users have differ-
ent kinds of expertise. Often the user of a MIO system will
be a professional in the field of application and consequently
will know aspects of the problem not adequately modelled
by the system. For example, some important constraints may
not be part of the model, or some preferences on solutions
may not be coded in the objective function. Furthermore, the

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

user’s experience may suggest directions for finding good
solutions in the search space. Mixed-initiative designs allow
this expertise to be incorporated into the problem solving
process.

We share the general enthusiasm for mixed-initiative sys-
tems. Yet we are concerned that beneath this large tent is
hidden a broad range of systems with potentially quite differ-
ent properties. Blanket statements about “mixed-initiative
systems” may only apply to some fraction of these systems.
The methods for evaluating these systems remain ad hoc and
there is little advice available on such issues as the functional
components of an effective MIO system, or the performance
evaluation of these systems. A common ground is needed
for discussions of design and evaluation.

Such a common ground is particularly important for eval-
uation. There have been several recent evaluations of mixed-
initiative systems. Most of these studies have aimed to
demonstrate that mixed-initiative systems can be advanta-
geous. For example, Klau et al. (2002a) write,“our goal is to
show that some people can guide search, not that most peo-
ple can” (p. 46, emphasis in original). The specific mech-
anisms by which mixed-initiative systems enhance perfor-
mance remain poorly-understood, although Scott, Lesh, &
Klau (2002) have made a promising start. We locate seven
limitations in current ad hoc approaches to evaluation:

• We lack precise terminology to distinguish mixed-
initiative systems and applications. This makes it difficult
to generalize results from one study to a broader class of
situations.

• We have a multiplicity of goals, which may overlap or
contradict one another.

• We lack clear metrics of progress.

• We have limited means of systematically organizing re-
sults to date and those of the near future.

• The lack of precise terms and clear metrics makes it diffi-
cult to state clearly falsifiable hypotheses for our research.

• We have no conventional protocols that researchers can
use to evaluate a new system.

• Researchers have to account for too many variables when
constructing a study.

The systems are being built, and the need is acknowledged.
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However, we lack a bigger picture in which to locate specific
studies.

Our overall goal is to suggest more precise definitions
for the mixed-initiative optimization systems community.
Specifically, we make the following contributions in this pa-
per:

• We define the scope of mixed-initiative optimization
(MIO) systems.

• We present a general framework that can inform both the
design and evaluation of effective MIO systems and iden-
tify the main parameters of the problem space and use
them to categorize the functional requirements of a MIO
system.

• We situate other research results in MIO within our frame-
work. The framework suggests the range of applicabil-
ity of previous work and can be used to identify potential
confounds.

We end with a description of how this framework might be
used to structure future research in MIO systems.

Overview of the Framework
We call our proposal a framework rather than the more de-
manding terms “model” or “theory”. We have in mind an
analogy with the framework of a house, which provides a
structure to support both the work in progress and the fin-
ished product. Parts of a framework may be modified as
construction proceeds and parts may be thrown away when
they are no longer needed. We suggest the mixed-initiative
optimization community can benefit from undertaking de-
velopment and evaluation in this coordinated way—a com-
mon framework for developing tasks and protocols, and for
interpreting results.

Within such a framework, researchers can begin detailed
analysis, extending questions of evaluation beyond, “Is
mixed-initiative optimization possible?”, to “When and how
does it help, and by how much?”, and extending systems
design beyond “I think this will be useful”, to “Previous re-
search gives this a high likelihood of being useful for these
applications”.

Evaluation is key to this process, but it is hard to get
right and requires great effort. As a practical matter, we
must break the evaluation process down into smaller pieces.
Given the high dimensionality of the design space, experi-
mental manipulations requires separable research questions.
Generalization from evaluations of individual designs re-
quires the ability to locate each design within a larger space.
By suggesting the questions to ask about a specific design,
the framework provides that generalizability and the inter-
connection of these results with others. In particular, the
community will benefit from standardized evaluation proto-
cols. This allows us to build and extend research systems
without doing a full evaluation every time.

Definition of MIO Systems
We begin with a definition of a MIO system. A mixed-
initiative optimization system is an optimization system fea-
turing both:

• interleaved contributions by the user and the system, to-
gether converging on a solution to a single problem.

• asymmetric division of labour such that the contributions
made by the computer and the user are distinct.

This definition identifies the characteristics of systems for
which a common technology can be developed. It circum-
scribes our shared field of interest. In particular, it sepa-
rates the goals of this community from the goals of the user
modeling community, which emphasizes different aspects of
mixed-initiative systems. We are not arguing that user mod-
eling is incompatible with MIO systems, nor that it is irrel-
evant to some applications of those systems. We are simply
emphasizing that user modeling addresses issues that are in-
dependent of the issues common to all mixed-initiative op-
timization. A given application my need one, the other, or
both.

Framework Top Level
At the highest level, our framework describes the context in
which the system is used and the system itself. Optimization
systems ultimately serve human needs, and thus the context
describes the system operators and the social context of their
work. It includes such issues as who interacts with the sys-
tem, what others expect from them, and how they do their
job. The context introduces requirements that the resulting
system must satisfy. We break the context into two parts, the
problem domain and the operator expertise.

For our purposes, the mixed-initiative system can also be
considered to have two fundamental parts, the interactive vi-
sualization and the solver. We emphasize that this is not
intended to be a full description of the architectural options
available to designers. Rather, our purpose is to list the high-
level system components which will most directly be evalu-
ated. Designers devote most of their attention to the system,
and evaluations are likely to compare instantiations of var-
ious combinations of them, with little consideration of the
context. This is fine—in fact, there is no practical way to
cover all possible contexts in a single evaluation. We simply
recommend that evaluations explicitly specify the details of
their intended context. This will permit readers to determine
the range of contexts to which the evaluation results may be
generalized.

Properties of Context
The framework’s elaboration of social influences on a
mixed-initiative system emphasizes that the requirements
for that system are strongly shaped by the needs and nature
of the organization employing it. Each social component has
several properties, and the system requirements are derived
from the properties (see Table 1). We will describe each
property in turn.

Domains with synchronous collaboration feature teams of
individuals working in the same room to solve the problem.
The classical (and widespread) example would be several
individuals standing at a large whiteboard, discussing, writ-
ing, and annotating. Mixed-initiative optimizers for such do-
mains will benefit from having interactive displays that per-
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Area Property Derived Requirement
Domain Synchronous collaboration Simultaneous review and update

Asynchronous collaboration Traces left for handoff to others
Unmodellable aspects Adding specific constraints and revising solution
Level of constrainedness Choice of optimization algorithm
High dynamism Rapid solution revision
Answerability Explanation
High stakes High scrutiny, human approval, explanation
Task givens and goals Data model chosen
Task flow Activity design

Operator expertise
Domain-independent Visual grouping Display proximity, object similarity

Conceptual models of other programs Compatibility with other programs
Domain-specific Models of objects and relationships Data model

Heterogeneity of approaches Diversity of representations and interaction styles

Table 1: Contextual properties in the mixed-initiative optimization framework.

mit simultaneous review and update of the current solution
by multiple users, in the same way that a whiteboard can.

By contrast, asynchronous collaboration features team ef-
fort, but with individual team members working at different
times. For example, there may be only a single operator, but
the work is turned over from one shift to the next. In these
cases, the interactive display will not need simultaneous re-
view and update, but will instead benefit from providing a
mechanism for the first shift to leave traces of their choices
and pointers to ongoing problems.

Domains with unmodellable aspects have problems that
are difficult or impossible to completely represent in the
model. There are a wide variety of reasons why a prob-
lem feature may be missing from the model. Amongst other
reasons, the feature may be so specialized that the mod-
ellers forget to include it until they see a “solution” that vi-
olates it, the feature may not be representable in the mod-
eling formalism, or the feature may be so specific that it
would be impractical to represent its many permutations in
the model. Indeed, given the considerable mixed-initiative
folklore about incomplete models, it might be argued that
every domain has unmodellable aspects. In any event, do-
mains with unmodellable aspects will benefit from systems
that allow the operator to add specific constraints and call
for a revised solution.

The level of constrainedness of the domain imposes
requirements on the system. If the domain is highly-
constrained, the system should use a more sophisticated op-
timization algorithm. If the domain instead is only weakly
constrained, the choice of solver might be different or almost
irrelevant.

If the domain is dynamic, with requests frequently added
and withdrawn, the system will be required to generate re-
vised schedules rapidly.

If the operator is answerable to others for the choice of
plan, the system should provide features that facilitate expla-
nation. These could take the form of annotations and other
tools that highlight specific aspects of the plan.

High stakes domains have outcomes that are considered

critical by the participants. For such domains, the system
should support high levels of operator scrutiny and a final
human approval before the plan is carried out. These do-
mains will likely also have high answerability as well, and
so the system should also facilitate explanation.

The task statement imposes givens (initial conditions) and
goals (the form of the desired solution) upon a domain.
Different sets of givens and goals will often apply at dif-
ferent times for a single domain. For example, an airport
gate scheduling system may be used in two different modes.
First, the system could prepare a master schedule by allo-
cating planes to gates under the assumption that every flight
arrives exactly on time. In this case, the givens are the com-
plete plane list and the goal is a complete schedule. Then,
on a specific day, the plan would be revised as notices of
delays arrived. This second task has different givens (just
the planes whose schedules have changed, together with the
original master schedule) and a more specific goal (accom-
modate the delays with minimal disruption to the original
plan). Different tasks may require different data representa-
tions in the interactive display.

The final domain property is the task flow. Operators will
often perform a task in a sequence of steps. For example,
they may review all assignments of low-priority items be-
fore all high-priority ones (or vice versa). The operator task
flow imposes requirements on the system’s activity design,
the steps that the system requires the user to perform. For
example, a system that presented items to the operator in
random order would be extremely frustrating for an opera-
tor who wished to review them in priority order.

Operator Expertise
Arguments for the use of mixed-initiative optimization
systems often emphasize the unique expertise offered
by the user. We suggest that this expertise has both
domain-independent and domain-dependent properties. The
domain-independent expertise consists of the human percep-
tual skills. The primary interactive display of most MIOS
is visual, capitalizing on human skills of grouping visually-
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related objects. An effective MIOS should display the prob-
lem in a way that allows the operator to draw useful conclu-
sions from object proximity and similarity. Note that even
within a given domain, different tasks, with their different
givens and goals, might be best served by different displays.

A second form of domain-independent expertise is the
operator’s experience with the conceptual models of other
systems. If the MIOS has a conceptual model that matches
that of other software commonly used by the operator pop-
ulation, the operators will find the system congenial. Al-
though this form of expertise is unlikely to have a strong
positive impact on the effectiveness of a MIOS, it can have a
strongly negative impact. System effectiveness can be sub-
stantially reduced if the operators are practiced with a con-
ceptual model that is incompatible with the MIOS they are
using.

The domain-specific expertise of the operators will also
impose strong requirements on the system design. From
both training and experience, operators will think in models
of objects and relationships. The structure of these models
is highly domain-specific, making it difficult to give specific
details. We simply note that the data model presented by
the MIOS should be well-matched to the models used by the
operators.

The final property in our categorization of expertise is the
heterogeneity of solution approaches. An operator may have
several ways of solving a problem and different operators
within the same community may use different approaches.
This is often domain-specific. Some operations communi-
ties have strong conventions that all operators are trained
to observe, while other communities may be more diverse.
We caution designers not to rely too strongly on perceived
homogeneity in a community, as even within highly-trained
groups there is often subtle variation. In general, an effective
MIOS should provide a diversity of views, representations,
and interaction styles, to support a diversity of solution ap-
proaches.

We have described these contextual properties in detail to
emphasize the diversity of contexts in which MIOS might
be applied. The effectiveness of a mixed initiative system
depends upon how well it is matched to the specifics of the
domain and the expertise of the operators. Interpretation of
evaluation results must take these factors into account. An
otherwise perfectly effective system may have poor perfor-
mance if it is evaluated on a domain whose requirements are
ill-matched to the system’s. Results from an evaluation will
best generalize to applications whose domains and operator
expertise are similar to those of the evaluation.

Properties of Systems
Our model of system properties is deliberately simpler than
our model of context. For purposes of summarizing the
properties of a system that have the largest effect on eval-
uation, we break the system down into two parts, the inter-
active display and the solver (see Table 2).

It is not our intent to list all possible features and proper-
ties of mixed-initiative optimization systems. Defining these
features and properties is a significant part of the overall re-

search program in these systems. We offer this list as a start-
ing point.

The interactive display has three main properties. The vi-
sualization is the visual representation used to display the
problem statement and the current solution. An essential
outcome of this design is the data model presented to the
user.

The second property is the chosen interaction techniques.
These will have specific speeds and place certain attentional
loads on the operators. An ideal interaction technique will
be fast and require so little explicit attention that the oper-
ator’s reasoning about the problem will not be disrupted.
Actual interaction techniques require some compromise of
these ideals.

The third property of the interactive display is the de-
tailed visual display design. These choices will determine
where and how much the operators can apply their domain-
independent expertise to the problem. This includes choices
of which aspects of the problem will be represented in close
proximity and how data values will be encoded.

The second component of the system highlighted in our
framework is the solver. There are many ways of catego-
rizing solvers, and development of new variations is an ac-
tive area of research. Given that MIOS researchers typi-
cally have a strong understanding of the properties of var-
ious solvers, we only present here two example properties,
showing how they may be connected to the contextual issues
described earlier.

Solvers are often categorized as implementing either sys-
tematic or local search. Seen in terms of their relationship to
the contextual properties described above, the main outcome
of this distinction is their suitability for dynamic problem
domains. Systematic search, while offering the potential for
higher optimization, is less likely to be responsive to shifting
requirements. Local search is more likely to apply in these
domains.

A second property of a solver is how close its solutions lie
to the optimal. Optimality is likely to be of higher value in
domains that are capital-intensive , but may not be a possibil-
ity for highly dynamic domains, whose volatile constraints
make it difficult to even define optimality.

Previous Work
The framework provides a structure for organizing discus-
sion of the research results to date on mixed-initiative op-
timization. In this section, we review many of these re-
sults and locate common threads and unexplored areas in
the field.

We start by considering the user modeling community’s
work on mixed-initiative systems. This literature is con-
cerned with rather different issues than mixed-initiative op-
timization.

Horvitz (1999) proposed 12 principles for the effective
integration of automated reasoning and direct user control.
The goal of this integration was an agent that could act as
a “benevolent assistant” (p. 160) to the user. The parame-
ters of such an agent are rather different from those of the
mixed-initiative optimization systems described in this pa-
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Component Property Outcomes
Interactive display Visualization Data model

Interaction techniques Speed, attentional load
Visual display Proximity of views, coding of values

Solver Systematic vs. incremental Suitability for volatile domains
Optimality Quality of solution in highly subscribed domains

Table 2: System properties in the mixed-initiative optimization framework.

per. Assistive agents are expected to have transparent algo-
rithms that perform actions the user also has the resources
and representations to perform. The goal is to relieve the
user of tedious, repetitive actions. From this perspective, the
system has the initiative most of the time and needs to de-
cide when to engage the user based on a user model—a set
of beliefs about the abilities, goals and intentions of the user.

Fleming & Cohen (2001) develop guidelines for the de-
sign and evaluation of mixed-initiative systems. However,
they start with the assumption that the central problem is
how the system will take the initiative to request assistance
from the user. They propose an approach similar to Horvitz,
based on having an explicit model of the user’s intentions
and abilities.

The work on assistive agents is explicitly excluded by our
definition, because such systems do not have an asymmet-
ric division of labour between user and system. In con-
trast to assistive agents, mixed-initiative optimization sys-
tems are designed to produce degrees of optimization that
the operator simply could not achieve unaided. Their algo-
rithms are unlikely to be transparent, and their choices may
require considerable effort for the operator to understand.
The scheduling task is a primary focus of the operator’s job
and is likely to be her highest priority task. Indeed, the de-
scription of the human partner as an “operator” rather than a
“user” emphasizes this primacy of the task.

Rich, Sidner, & Lesh (2001) cast human-computer inter-
action in terms of a collaborative dialogue process between
the user and an intelligent interface agent. The authors base
their approach to mixed initiative on human collaboration.
They argue for an interface agent that engages in a discourse
with the user in a similar way that the user would engage
with another human. In particular, they argue that an intelli-
gent user interface has to support the following questions:

• Who should/can/will do ?

• What should I/we do next ?

• Where am/was I ?

• When did I/you/we do ?

• Why did you/we (not) do ?

• How do/did I/we/you do ?

Rich et al. propose an intermediate level of software explic-
itly concerned with managing these questions.

We consider Rich et al.’s questions complementary to our
framework, as they are more abstract and at a much higher
level. We believe that many of the crucial elements for effec-
tive MIO system design lie in its rich, specific context. The

questions will best be framed in that context, which may
be difficult or impossible if the algorithm that generates the
question is insulated from the context.

Howe et al. (2000) present a study on mixed initiative
scheduling for the Air Force satellite control network. This
scheduling problem is oversubscribed—no feasible sched-
ule can satisfy all the requests. They propose a MIO system
where the system finds a good but infeasible solution and
lets the user negotiate the infeasibilities. A mixed-initiative
approach is appropriate for this application because it is hard
to express the true objective with a weighted linear sum of
criteria, and because the dynamic arrival of emergency re-
quests changes the problem specification as the solver runs.
The authors point out the limited number of designs in the
research literature mixed-initiative systems. They incorpo-
rate in their prototype some of these designs: providing an
interactive Gantt chart where the user can interact with a
schedule at an abstract, graphical level that hides schedule
implementation and optimization details to an appropriate
degree; and allowing the user to change the schedule, then
call the scheduler to propagate the effects and to optimize,
if possible. In terms of our framework, this paper empha-
sizes the dynamism and highly constrained nature of their
domain. Their comments about the limited number of avail-
able design ideas and their use of Gantt charts demonstrate
the importance of domain-specific models of objects and re-
lationships.

Kramer & Smith (2002) describe the AMC Barrel Alloca-
tor, a mixed-initiative resource allocation tool for airlift and
air-refueling management. They argue that a dynamic envi-
ronment is not the only reason for using the mixed-initiative
approach. It is also necessary to achieve the transition from
manual to fully automated system. Kramer & Smith em-
phasize that a mixed-initiative optimization system allows
a continuum of automation. In deploying their research to
production, they found that operators must first gain trust
and understanding of the system by inspecting solutions and
performing what-if scenarios trust a system before they will
accept it in a mission-critical workflow. Kramer and Smith
point out that one of the main functional requirements for
a mixed-initiative system is to provide explanations for sys-
tem decisions. In terms of our framework, this paper empha-
sizes the dynamism, high stakes, and answerability of their
problem domain, and argues that the MIO system must be
well-matched to the task flow.

Klau et al. (2002b) present the HuGS Platform, a toolkit
that supports development of human-guided search systems.
They discuss four different applications built in the HuGS
platform: a graph layout problem that minimizes edge cross-
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ings between nodes, a modified version of the travelling
salesperson problem, a simplified version of the protein fold-
ing problem, and a jobshop application.

They present several motivations for mixed-initiative op-
timization. First, users need to understand and trust the
generated solutions in order to effectively implement, jus-
tify and modify them, what we would call the answerabil-
ity of the system. Second, the problem model usually in-
cludes only partially specified constraints and criteria, what
we call the unmodellable aspects of the domain. They ar-
gue that a mixed-initiative system also leverages on hu-
man abilities that outperform the systems: visual perception,
learning from experience, and strategic assessment. These
strengths range over properties of both domain-dependent
and domain-independent expertise.

Each application in the HuGS platform provides visual-
izations to display the current solution to the user for in-
spection and modification. Klau et al. argue that the use-
fulness of the system depends highly on the quality of vi-
sualization and recommend visualizations that highlight dif-
ferences from the previous solution. They suggest an eval-
uation of the quality of the visualization by running a se-
ries of experiments on the same problems for the same time,
and using two different visualizations. They propose a visu-
alization quality metric of the number of optimal solutions
that users are able to produce. In terms of our framework,
these evaluation methods are focused on the interactive dis-
play component. Klau et al. end by highlighting some ongo-
ing challenges for the mixed-initiative systems: large-scale
problems where the whole solution cannot be viewed at once
(again, located within the interactive display component of
our framework), and mixed-initiative systems where there is
more than one human user (synchronous collaboration).

Scott, Lesh, & Klau (2002) give a lucid outline of the
benefits of using a mixed-initiative optimization system.
Their research focuses on evaluating a specific aspect of
mixed-initiative optimization systems. The authors argue
that the design of interactive optimization systems needs in-
put from experiments focused on determining which opti-
mization subtasks are best suited to the strengths of the hu-
man and which are most appropriate for the computer. Their
study examines several user tasks within a mixed-initiative
optimization system for vehicle routing and compares users’
performance in these tasks to the performance of the com-
puter on the same tasks. They evaluate the users’ contri-
bution on three different subtasks: focusing search through
mobilities, finding targets that guide the search towards bet-
ter solutions, and controlling computational effort by halting
the search. Their studies suggest that people are especially
effective at managing how computational effort is expended
in the optimization process and at focusing short searches.
However, the experiments showed that humans were some-
what less effective at visually identifying promising areas of
the search space.

In terms of our framework, the work of Scott et al. is
motivated by the contextual concerns of answerability and
the unmodellable aspects of the domain. Because their
experimental participants were not vehicle routing special-
ists, the evaluation focused on HuGS’ support for domain-

independent expertise. Their project is a carefully-done,
substantial study with strong controls and high validity.
However, their paper itself does not specify the context.
By providing a context, our framework allows more precise
generalization from these results.

Conclusion
The potential benefits of mixed-initiative optimization sys-
tems are suggested by informal reasoning from basic princi-
ples and has been demonstrated by initial research. Having
established its basic feasibility, we can now turn to questions
of how much, and under what circumstances, and through
which mechanism we can benefit from a MIO system. We
have argued that context is rich and diverse, and that the ef-
fectiveness of a MIO system is determined by the degree
to which it is matched to the requirements of its context.
Key MIO system design decisions should be evaluated in
terms of the context in which the system will be used, or in
terms of requirements that are shared across multiple con-
texts. Our framework highlights this role of context and
provides a more detailed language for describing the rela-
tionship between context and system. We hope that these
more precise descriptions can support the construction of a
more consistent and solid structure of mixed-initiative opti-
mization research.
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Abstract 
This paper explores the mixed-initiative issues arising in the 
Personalized Time Manager (PTIME) system. PTIME is a 
persistent assistant that builds on our previous work on a 
personalized calendar agent (PCalM) (Berry et al. 2004). In 
order to persist and be useful, an intelligent agent that 
includes collaborative human/agent decision processes must 
learn and adapt to the user’s changing needs. PTIME is 
intended to support a richer dialogue between the user and 
the system, which should be useful to both. If the system 
can reliably lean the user's preferences and practices, trust 
between user and assistant will be established, decreasing 
the system's reliance on mundane user interaction over time. 
The enabling technologies include soft constraint 
satisfaction, multicriteria optimization, a rich process 
framework, learning, and advice. 

Introduction 
 The human time management problem is intensely 
personal. Many people—especially busy workers—are 
reluctant to relinquish control over the management of 
their own time. Moreover, people have different 
preferences and practices regarding how they schedule 
their time, how they negotiate appointments with others, 
and how much information they are willing to share when 
doing so. They also have different needs and priorities 
regarding the reminders they should receive.  
 We are developing the Personalized Time Manager 
(PTIME) assistant, with the goal of managing an 
individual’s temporal commitments in a consistent, 
integrated framework over an extended period of time, 
while recognizing the differences between individuals and 
adapting to these differences. The interaction between the 
human user and the system is central to this goal. To 
maximize the continued usefulness of this interaction, both 
the user and the system should benefit from it. The 
scheduling solutions found by the system should be 
informative and proactive, and the dialogue should 
improve the quality of future interactions.  
 The PTIME project is part of a larger, ambitious 
automated assistant called CALO. CALO is a cognitive 
assistant that supports its human user in a variety of ways. 
For example, project and task management, information 
collection, organization and presentation and meeting 
understanding. However, the focus of CALO is its ability 

to learn and persist. Our hypothesis is that for mixed-
initiative systems to succeed in the long term, the dialogue 
between human and system must evolve over time. To 
achieve this, we are designing PTIME so that 
 
1. PTIME will unobtrusively learn user preferences, 

using a combination of passive learning, active  
learning, and advice-taking; 

2. As a result, the user will become more confident of 
PTIME’s ability over time, and will thus let it make 
more decisions autonomously; and 

3. As autonomy increases, PTIME will learn when to 
involve the user in its decisions. 

 Background 
Tools and standards for representing, displaying, and 
sharing schedule information have become common. A 
generally adopted standard for calendar representation is 
iCalendar (RFC2447).  
 There are also many calendar tools to organize, display, 
and track commitments. However, most people still spend 
a considerable amount of time managing the constant 
changes and adjustments that must be made to their 
schedules. Desktop tools have dramatically improved the 
administration of our calendars, but their scheduling 
capabilities are limited. Automated meeting scheduling 
assistants have shown promise, but their use tends to be 
fleeting, since they do not evolve over time. People also 
use a variety of other tools, such as to-do lists, to keep 
track of workload and deadlines not supported in the 
typical calendar tools. 

The emphasis in the research community has been on 
automated meeting scheduling: finding feasible time slots 
for meetings given a set of requirements on participants, 
times and locations. Work in this area can be generally 
divided into Open and Closed scheduling systems (Ephrati 
et al. 1994). In Open systems, individuals are autonomous, 
and responsible for creating and maintaining their own 
calendar and meeting schedules, perhaps selfishly. They 
can operate in an unbounded environment without constant 
obligation to one organization. In a Closed system, the 
meeting mechanisms are imposed on each individual, and a 
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consistent and complete global calendar is maintained. 
Closed systems are more common because preference 
measures can be normalized across users, participant 
availability is known at all times, and the problem can be 
formulated as constraint optimization. Not all closed 
systems are centralized, and there is interesting work in 
distributed solutions to the closed scheduling problem 
(Ephrati et. al.1994, Sandip and Durfee 1998). 

Closed systems are rarely adopted because the users 
seldom live in a truly closed environment, and need to 
retain more personal control of their calendars. Open 
scheduling systems pose additional challenges, such as 
privacy: an individual may not wish to share all, part, or 
any of his schedule, or may choose not to participate in a 
meeting, but  not  divulge this information. 
 CALO exists in an open, unbounded environment where 
issues of privacy, authority, cross-organizational 

scheduling, and availability of participants abound. PTIME 
is similar in approach to RCAL (Payne et. al. 2002) but 
extends the notion of collaboration with the user. The 
scheduling task is viewed as a shared goal of the user and 
the agent. The collaborative scheduling process is 
separated from the constraint reasoning algorithms to 
enable interaction with the user and other PTIME agents. 
This interaction forms the framework for learning and 
adjustable autonomy. PTIME considers finding the best 
solution as a dialogue between user and agent, and treats 
the underlying scheduling problem as a soft Constraint 
Satisfaction Problem (CSP). PTIME also addresses the 
problems of individual preference and scheduling events 
within the context of the user's workload and deadlines. 
 Figure 1 is a screenshot of the current PTIME interface, 
and illustrates the collaborative nature of the dialogue 
between PTIME and the user. 

 

 
 

 
Figure 1: A screenshot from PTIME. 
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Architecture 

The PTIME architecture, illustrated in Figure 2, includes a 
number of components that make it personalized and 
adaptive.  Key features of the architecture include: 
• A Process Framework (PTIME-Control), which 

captures possible interactions with users and other 
agents, in the form of structured decision points. 

• Preference Learning (PLIANT), which lets the 
system evolve over time by learning process 
preferences, scheduling preferences, and, eventually, 
new processes from the user.  Currently, we have 
developed PLIANT to learn temporal scheduling 
preference, e.g. time of day, day or week, 
fragmentation of schedule.  

• Advisability (PTIME-Control), which enables direct 
instruction by the user at various levels of abstraction. 
Exploiting the explicit decision points in the process 
framework lets the user make choices and give advice. 
Choices may involve selecting an alternative 
scheduling process, e.g. negotiate a new time for the 
meeting vs. relax an existing constraint to accept the 
current time; or they may involve expressing simple 
temporal preferences, e.g. don’t schedule meetings just 
before lunch. 

• Constraint Reasoning (PTIME-Engine), which 
permits reasoning within a unified plan representation. 
The representation used by PTIME unifies temporal 
and non-temporal constraints, soft and hard 

constraints, and preferences. The constraint reasoner 
(PTIME-Engine) considers workload issues and task 
deadlines when scheduling typical calendar events, 
such as meetings. The PTIME-Engine uses a hybrid 
solver that manages the application of temporal CSP 
algorithms, e.g., to handle Simple Temporal Problems 
(STPs) (Dechter et al. 1991) and Disjunctive Temporal 
Problems (DTPs) (Stergiou and Koubarakis 1998, 
Tsamardinos and Pollack 2003), to address complex 
constraint space and preference handling, and to 
enable partial constraint satisfaction. The PTIME-
Engine can also explore alternative conflict resolution 
options via relaxation, negotiation, and explanation 
techniques, (Junker 2004). 

• Personalized Reminder Generation (PTIME-RG), 
which reasons intelligently about if, when, and how to 
alert the user of upcoming events or possible conflicts 
amongst events. This work builds on the Autominder 
system (Pollack et al. 2003) and the learning 
algorithms to create reminders that are context-
sensitive and personalized. 

• Adjustable Autonomy (PTIME-Control), which 
modulates control over decision points as the user’s 
preferences and normal practices are learned, and trust 
between the user and the system is established.  The 
goal is to decrease the system’s reliance on user 
interaction over time. 

  

 

 
 

Figure 2: PTIME functional architecture 
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Persistence and Learning 
Central to persistence are the application of learning 
technology and a framework for advisability. Through 
continual active learning and advice taking, PTIME 
constructs a dynamic preference profile containing two 
types of guidance: 
(1) Scheduling: Preferences over schedules (when to 
reserve time and with whom), relaxations (which 
constraints, or constraint sets, are more readily relaxed) 
and reminders (when, how and about which events the user 
should be alerted). 
(2) Process selection and application: preferences over 
existing process descriptions (e.g., negotiate or relax) and 
learned processes. 
Both types of information can be actively asserted using a 
policy specification language, building on work on 
advisability and adjustable autonomy (Myers and Morley 
2003). They can also be learned passively by monitoring 
the user’s decisions. 
 PTIME uses a suite of tools to learn various kinds of 
preferences. A Support Vector Machine (SVM) module, 
supplemented with active learning strategies, learns user 
preferences about schedules in the form of an evaluation 
function over schedule features (e.g., day of week, start 
time, fragmentation) (Gervasio et al. 2005).  The features 
were selected to capture the temporal characteristics of a 
scheduling decision. We are adding features that capture 
whether or not constraints are satisfied by a candidate 
schedule; this will let PTIME learn preferences over 
relaxations in the case of over-constrained schedules as 
well.  We are also exploring the problem of procedural 
learning, where the performance task is to determine what 
to do under a particular situation rather than to evaluate the 
goodness of a candidate schedule.  Along similar lines, we 
are using procedural learning to handle situations that arise 
after an event is scheduled: for example, if the host cannot 
make it or if the scheduled venue suddenly becomes 
unavailable. Finally, PTIME uses reinforcement learning 
schemes to learn both reminder strategies that are tailored 
to individual users and strategies for determining the 
amount of autonomy to take in different situations.  By 
observing the effects of different reminder strategies on a 
user, PTIME can adjust its reminder strategy to account for 
personal traits as well as different schedule situations. A 
similar process occurs with the learning of adjustable 
autonomy decisions. 
 In all cases, PTIME learns online (or from the execution 
traces of the user’s actual interactions with PTIME), so it 
can continually adjust to changing user preferences and 
situations. Concept shift—the phenomenon of users 
exhibiting drastic changes in preferences—is a known 
issue in the calendar domain. We plan to address this 
problem more directly by designing a learning approach 

that is sensitive to sharp changes as well as a period of 
stabilization of user preferences over time. 

Mixed-Initiative Research Directions 
PTIME has demonstrated its initial calendar management 
software within the CALO project, and is currently 
undergoing a test phase, conducted by an external agency, 
to assess its capability to learn user preferences and 
therefore retain a high level of usefulness to the user. 
PTIME development has four principal research goals for 
2005, and all relate to its ability to adapt to the user’s 
needs. This section describes our research into hybrid 
constraint satisfaction, partial constraint satisfaction with 
preferences, negotiation and advice-taking. The result is a 
framework for negotiation between agents and with the 
user. We will also describe our ongoing work to learn 
preferences and accept advice from the user.  

Using Preferences in Scheduling 
The constraint problem in PTIME is a combination of three 
factors: the user's existing schedule, the meeting request, 
and the interactive collaboration between PTIME and the 
user. The user may interact with PTIME to explore 
possible relaxed solutions to the problem, leading to a 
sequence of related soft Constraint Optimization Problems 
(COPs) to solve. For example, the user may initially 
specify a strong preference against meetings on Monday 
mornings. Later, she may weaken this preference but 
increase the importance of the specified meeting room. 
 Critical to the mixed-initiative goals of PTIME is the 
ability to use the learned knowledge of user preferences 
within the underlying constraint satisfaction problem. 
(Berry et al. 2005) describes our approach to constraint 
satisfaction for PTIME, which involves a combination of 
disjunctive and finite-domain constraint solvers with 
preferences. Since it is relevant to this discussion, we now 
briefly discuss the representation of schedule preferences 
and relaxations within soft CSPs. 
 User preferences are mapped into the shape and height 
of specific preference functions for each of the relevant 
soft constraints.  The shape models how much and in what 
way the constraint may be relaxed, and the height models 
the importance of the constraint. This builds on the work 
by (Peintner and Pollack 2004) and (Bistarelli, Montanari, 
and Rossi 2001). 
 For example, suppose a meeting with Bob must occur 
before a seminar. If 
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ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 15



 

 
 

Figure 3: Example Preference Functions 
 
To solve soft CSPs that include such preference functions, 
we combine existing solvers for the temporal and non-
temporal constraint subproblems in a hybrid formulation. 
Constraint solving in PTIME is implemented in ECLiPSe 
(Cheadle et al. 2003), and is also compatible with SICStus 
Prolog; such Constraint Logic Programming systems are 
well-suited to hybrid solving. We are exploring search 
techniques that can produce not only a single optimal 
solution, but also a good set of qualitatively different 
solutions to present to the user. A good set of solutions has 
three characteristics: to include the most desirable solution, 
to give the user qualitatively different choices and to 
promote future learning. 

Negotiation: Process Design for Conflict 
Resolution 
The work on extending the constraint representation and 
relaxation framework of our CSP is to enable more 
informative dialogue between the human user and the 
agent. The motivation behind PTIME is to facilitate a 
collaborative assistant for time management. Taking note 
of research in collaboration (Grosz and Kraus 1999) and 
collaborative interfaces (Babaian, Grosz, and Shieber 
2002), we view conflict resolution as a joint task to be 
undertaken between the human and his agent, or between 
agents. Currently, the interaction is explicitly captured in 
the highly reactive process descriptions offered by 
SPARK-L (Morley 2004) and applied within a framework 
of advice. We would like to abstract and possibly learn the 
applicability conditions of the processes within the context 
of the dialogue. 
Figure 4 presents a typical dialogue that might take place 
between a user and PTIME.  To enable this type of 
dialogue, the processes capture the key decision points. 
Future research will construct a collaborative framework 
within which these processes will operate.  
Figure 5 illustrates an example process in SPARK-L. Each 
decision point offers the choice to automate the decision, 
ask the user for advice or decision, postpone the decision, 
or take another action. For example, when the  goal is: 
 
 

[do: (select_solution $resultset $result)], 
 
 

a set of different actions might be intended, including 
asking the user to select an option or automatically 
selecting the highest valued one. The choice of action 
depends on the user’s preference (learned or told), the 
physical context (such as the user’s current activity), and 

the cognitive context. Learning how and when to apply 
each activity is a highly personalized and evolving 
problem. 
 

 
User Helen: “Please schedule a group 
meeting early next week” 
PTIME Agent: “Your specific request 
conflicts with your current workload 
and meeting constraints” 
PTIME Agent: “May I suggest some 
possible alternatives” 
1. Meet Monday at 10am without “Bob” 
2. Meet Tuesday at 4pm overlapping 

the seminar 
3. Meet Monday at 10am warning your 

report deadline may be in jeopardy 
4. Meet Tuesday at 11 and reschedule 

your meeting with the boss  
User Helen: I don’t mind overlapping 
some meetings – show me more 
possibilities like 2. 
PTIME Agent: “Ok How about” 
1. Meet Monday at 11:30 running into 

lunch by 15 minutes 
2. Meet Tuesday at 9:30 but Bob may 

have to leave early 
User Helen: “Ok go ahead with 2” 
 

 
Figure 4. Example user-agent dialogue 

 
 

{defprocedure “schedule” 
  cue: [do: (schedule $event_type $constraints $attributes)] 
  preconditions (Event_Type “meeting”) 
  body: [context (and (User $self)  
                        (Participants $constraints $pset)) 
              seq:  
                 [do: (retrieve_availability $pset $constraints)] 
                 [do: (solve_schedule $constraints $resultset)] 
                 [do: (select_solution $resultset $result)] 
                 [select: (= $result []) 
                           [do: (resolve_conflct $constraints $result)] 
                  [do: (confirm_meeting $result $attributes)]] 
     } 

 
 

Figure 5. Example SPARK-L process 

Advice 
The PTIME-Controller can take user advice and conform 
to organizational policies. Advice is defined as an 
enforceable, well-specified constraint on the performance 
or application of an action in a given situation. In general 
advice can be considered to be a type of policy, often 
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personalized. (Sloman 1994) defines two types of policy: 
authorization and obligation. For our advisable system, we 
extend this categorization to include preference: 
1. Authorization defines the actions that the agent is either 

permitted or forbidden to perform on a target.  
2. Obligation defines the actions that an agent must 

perform on a set of targets when an event occurs. 
Obligation actions are always triggered by events, 
since the agent must know when to perform the 
specified actions. 

3. Preference defines a ranking in the order or selection of 
an action under certain conditions. 

 
Advice can both apply to the application of strategies, the 
conditions under which a strategy is applicable, or the 
instantation of a variable. Advice may be conflicting, can 
be long-lived, and their relevance may decay over time. 
Advice can be used to influence the selection of procedures 
and strategies for problem solving and also to influence 
adjustable autonomy. The management of advice is an 
active research focus for the CALO project. The 
application of advice is central to both PTIME for 
influencing preference and for controlling adjustable 
autonomy strategies. 

Summary 
The concept of a persistent useful interaction motivates the 
mixed-initiative design of PTIME. It has an extended 
notion of collaboration with the user, which forms the 
framework for learning and adjustable autonomy. The time 
management process is represented using context-sensitive, 
hierarchical procedures, which provide hooks, via the 
structured decision points,  into the user’s decision process 
at multiple levels of abstraction. These hooks can be used 
to passively learn the user’s preferences or to facilitate the 
specification of advice from the user. The resulting agent 
will let the user retain control of decisions when necessary, 
and relinquish control to the assistant at other times. 
Meanwhile, the agent will be sensitive to the user’s wishes 
and preferences. 
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Abstract 
This  paper  describes  a  mixed  initiative  planning  system, 
called Weasel and its evaluation.  Weasel was developed to 
assist military decision makers in the task of enemy course 
of  action  generation.    The  evaluation  assesses  Weasel's 
impact on the decision making performance of two potential 
user  groups.      When  designing  Weasel,  we  aimed  to 
maximize  benefits  delivered  by  the  software  by  focusing 
support  functions  on  key  areas  in  which  expert  analysts 
exhibited  difficulties.  We  also  aimed  to  minimize 
development,  training  and maintenance  costs by designing 
displays  to  reflect  expert  analysts'  representations  and 
relying  on  human  problem  solving  skills  where  possible.  
The goals of the evaluation are to 1) assess whether Weasel 
increases  users'  problem  solving  performance,  where 
performance  is  measured  in  terms  of  overall  solution 
quality,  2)  identify  the  most  appropriate  user  group  by 
assessing  whether  domain  intermediates  are  helped  or 
hindered more than domain experts, and 3) identify possible 
negative  consequences  that  may  occur  when  Weasel 
generates  a  "brittle"  solution.    The  issues  explored  in 
Weasel's development and evaluation are common to many 
mixed initiative systems.  

Introduction   
This  work  describes  the  development  and  evaluation  of 
Weasel,  a  mixed-initiative  system  which  assists  military 
planners  in  exploring  possible  enemy  courses  of  action 
(ECOAs). An enemy course of action is an arrangement of 
enemy  forces which very abstractly define a very abstract 
"plan" which may be  followed by enemy  forces. There  is 
great  interest  in  possible  use  of  decision  support  tools  to 
assist  in military  planning;  the  increased  complexity  and 
tempo  of  modern  military  operations  combined  with 
increased  pressure  to  reduce  staff  sizes makes  it  difficult 
for  people  to  keep  up  with  the  demands  of  operations 
planning.    Mixed  initiative  systems  tend  to  be  more 
appealing  than  automated  systems  in  complex,  safety 
critical  domains  such  as  this  one  because  of  the 
opportunity  to  benefit  from  human  judgment.  However, 
before  employing  mixed  initiative  systems  in  decisions 
with  life  and  death  consequences,  it  is  important  to  first 
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understand  both  the  positive  and  negative  impacts  they 
may have on human problem solving performance. 
 
The design goals behind Weasel were to improve decision 
making performance in this task for military planners with 
an  intermediate  level  of  experience  (i.e.  2  to  5  years 
training), and possibly for experts (6+ years of training and 
practice) as well.   The evaluation assessed whether use of 
Weasel  changed  (improved  or  decreased)  planning 
performance  for  two  user  groups:  intermediates  and 
experts,  and  explored  whether  there  were  situations  in 
which use of Weasel might decrement performance. 
 
Mixed-initiative planning and scheduling systems (MIPAS) 
are  computer  tools  which  work  jointly  with  humans  to 
create  plans  or  schedules.    MIPAS  can  be  viewed  as 
examples of a  larger class of  tools called decision support 
systems (DSSs).   
 
Decision  support  systems are computer  tools which assist 
human  decision  makers  to  make  better  decisions  in  any 
type  of  task  (e.g. medical  diagnosis, manufacturing  plant 
layout,  product  design,  etc.)  without  necessarily  making 
those  decisions  for  them.   DSSs may  provide  support  in 
many  ways,  for  example  by  providing  task-specialized 
editors, generating whole or partial solutions, or providing 
solution  evaluation  and  comparison  tools.  A  key 
philosophical  assumption  behind  DSSs,  which  is  not 
necessarily shared by all MIPAS,  is  that  the human  is  the 
one  that  should  be  in  control  of  the  decision  making 
process.   Weasel is both a DSS and a MIPAS. 
 
High  criticality decision making  tasks  are  those  in which 
decisions  can  result  in  large  costs  or  catastrophic 
consequences.    Examples  of  high  criticality  domains 
include military planning,  search and  rescue, and medical 
diagnosis. They are of interest because they represent areas 
where  problem  solving  improvements,  gained  through 
introduction of DSSs or other means, can yield great value.   
However,  because  decisions made  in  these  domains may 
impact  human  safety  or  have  political  ramifications,  it  is 
important  to  clearly  understand  how  DSS  tools  impact 
human decision making before  adopting  such  tools.   The 
possibility  of  over-reliance,  i.e.  inappropriate  trust 
(Parasuraman, 1997) on a DSS is a major concern in safety 
critical domains. 
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In  general,  DSSs  can  have  both  positive  and  negative 
impacts  on  human  decision  making,  possibly  improving 
performance  in  many  situations  while  degrading  it  in 
others.    In  particular,  Smith,  McCoy  and  Layton  (1997) 
describe  an  experiment  exploring  a  situation  in  which  a 
DSS, The Flight Planning Testbed  (FPT)  improved users' 
average  problem  solving  performance  in  finding  fuel-
optimal  routes  for  commercial  jets,  but  also  occasionally 
degraded  some  users'  performance  when  FPT  exhibited 
brittle  behavior.  Brittle  behavior  occurs  when  parameter 
not modeled  by  the  system  impact  the  solution.     Brittle 
behavior  results  in  generation  of  inappropriate  or 
inadequate  suggestions.    Unfortunately,  in  complex, 
context  dependant  domains,  it  can  be  difficult  to  predict 
when  brittle  behavior  may  occur.    In  FTP's  case,  brittle 
solutions  were  fuel-optimal  but  unnecessarily  risky  by 
human-decision  makers'  standards.    However,  the 
researchers  also  found  that  this  effect  appeared  to  be 
mitigated  if  subjects  did  their  own  exploration  of  the 
problem  before  seeing  the  computer's  solution(s).    They 
further  hypothesized  (but  did  not  test)  that  additional 
strategies  might  also  mitigate  the  impact  of  system 
brittleness,  such  as  simultaneous  presentation  of multiple 
computer  generated  solution  options,  and  computer 
critiquing of human generated options,  
 
All  DSSs,  simulations,  or  mathematical  models  will 
sometimes exhibit brittleness because  they are necessarily 
simplifications of the real world's richness.  Therefore their 
solutions will produce some degree of error which may or 
may  not  be  predictable.  Given  that  some  degree  of 
brittleness  is  inevitable,  it  is  important  to  consider  how 
brittle behavior may impact decision makers in many tasks, 
and if it can be mitigated.  One of the goals of this work is 
to assess whether Layton's findings were generally true for 
other domains; could one expect  the similar  results  in  the 
domain  of  ECOA  planning?    Would  brittle  solutions 
generated  by Weasel  also  produce  a  similar  performance 
decrement?  If so, could the effect be mitigated by a similar 
strategy? 

The Task Domain: ECOA Generation 
Weasel  is  part  of  a  trio  of  tools:  CoRaven  (Jones  at  al. 
1999), Weasel  and Fox  (Schlabach, Hayes  and Goldberg, 
1997), which support a range of problem military planning 
and intelligence activities, shown as ovals in Figure 1.  All 
steps  may  be  conducted  in  parallel,  and  all  are  repeated 
many  times  during  the  course  of  a  battle.  The  decision 
makers who engage  in  this problem solving cycle  include 
both military operation planners and  intelligence analysts.  
The overall goal of this reasoning cycle is to identify what 
action(s)  the  friendly  forces  should  take  next,  based  on 
continual  assessments  and  re-assessments  of  the  current 
battlefield  and  enemy  situation.      Although  the  direct 
output  of Weasel  is  a  set  of  possible  (and  likely)  enemy 
courses  of  action,  it  supports  the  assessment  of  friendly 
courses  of  action  by  providing  a  set  of  foils.       Friendly 

courses of action are assessed based on  their performance 
against  multiple  enemy  courses  of  action  which  might 
occur. 
 
There is no specific starting or ending point to the cycle in 
Figure  1.    However,  before  the  onset  of  a  battle, 
intelligence  analysts  often  start  at  oval  1  (Figure  1) 
"Plan/Schedule  Intelligence  Collection."    They  create  a 
plan  for gathering key pieces of  information pertaining  to 
the  enemy  such  as  the  type  of unit,  likely  resources,  and 
location of key elements. This  information  is gathered by 
scouts, satellites and surveillance devices (step 2), then it is 
analyzed (step 3) to produce hypotheses and constraints on 
enemy resources and location.    
 
Weasel  assists  analysts  in  step  4  with  the  systematic 
generation of  enemy  courses of  action  that  are  consistent 
with  the  intelligence conclusions developed  in step 3, and 
the  observed  rules  of  behavior  for  that  enemy.   ECOAs, 
developed jointly by Weasel and the analyst, are passed on 
to the Fox system, which uses a genetic algorithm and war 
gaming  simulator  to  generate  friendly  courses  of  action 
(FCOAs)  that perform well  against  those ECOAs.     This 
cycle  is  continually  repeated  throughout  the  battle  as  the 
situation  changes.      Plans  for  friendly  actions  must 
continually be reassessed as the battle unfolds. 

Fox Weasel

CoRaven

5. Generate 
Friendly

Courses of Action
(FCOAs)

4. Identify
possible enemy
Courses of Action 

(ECOAs)

2. Gather 
Intelligence

1.Plan/Schedule
Intelligence
Collection

3. Analyze
Intelligence Data

 
Figure 1: The intelligence collection and planning cycle. 

Weasel 

Considerations in the Design of Weasel  
 Intelligence  analysts  must  consider  many  ECOAs  since 
there  are  many  actions  which  an  enemy  might  take.  
Unfortunately,  there  are  an  infinite  number  of  possible 
ECOAs,  so  even  with  extensive  computational  resources 
one  cannot  consider  them  all.   Fortunately, most ECOAs 
are neither useful nor interesting.  Analysts typically focus 
their search on a few most likely and a few most dangerous 
(but possibly unlikely) ECOAs.    
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Weasel is designed to assist military analysts in thoroughly 
and systematically considering the most likely ECOAs.   In 
this context,  the most  likely ECOAs  refers  to ECOAs  that 
are  consistent  with  current  data  and  assumptions  about 
most  likely  enemy  position  and  resources.  Terrain 
constraints  and  intelligence  assumptions  provide  strong 
constraints on the search.  The likely ECOAs are usually a 
very small subset of the total possible.  
 
Note  that  Weasel  does  not  currently  assist  users  with 
identifying most  dangerous ECOAs.   Analysts must  also 
identify  ECOAs  that  are  not  necessarily  consistent  with 
intelligence  assumptions,  but  which  could  pose  a 
considerable  threat  if  they  were  to  occur.    This  is  an 
important task in which analysts would probably welcome 
assistance.    However,  outside  of  brute  force  exhaustive 
search  and  evaluation,  we  do  not  currently  have  an 
efficient algorithm which could  feasibly address  this  task.  
Future work may  explore  approaches  to  focus  dangerous 
but unlikely ECOAs. 
 
Weasel  was  developed  through  cognitive  engineering 
(Smith  and  Geddes,  2003)  and  human-centered  system 
development methods. Many design decisions were guided 
by  the  objectives  to  minimize  develop,  training  and 
maintenance costs, while maximizing benefits to users.   In 
designing a system to meet these objectives, we were very 
conscious  of  the  fact  that  ECOA  generation  is  a  task  at 
which domain experts already do relatively well, and  it  is 
usually  performed  under  time  pressure.   The majority  of 
computer tools require some overhead to learn and to use, 
thus, what  ever  tool we  developed  had  better  offer  clear 
benefits  to  users  in  areas  where  they  desire  assistance.  
Otherwise  there  would  be  little  chance  they  would  be 
willing to take the time required to learn and use them.  
 
With  this understanding, we observed analysts performing 
the ECOA generation  in  laboratory  studies, during which 
we took "protocol" transcripts (Ericsson and Simon, 1984), 
and  in  training  exercises  such  as  the  Prairie  Warrior 
exercises  held  in  Ft.  Leavenworth,  KA.    Through  these 
observations,  we  observed  that  even  experts  sometimes 
over looked relevant ECOAs for a variety of reasons.  For 
example,  it was often difficult  for  them  to  systematically 
think through all the possible options while simultaneously 
keeping  track  of  all  the  current  relevant  constraints.    In 
other cases, they because fixated on particular assumptions 
(which were often implicit in their reasoning), forgetting to 
question them when the context changed.  
 
Based  on  these  findings,  we  designed  Weasel  to  assist 
analysts by providing 1) an engine  that can systematically 
enumerate possible ECOAs consistent with a given set of 
assumptions, and 2) an interface in which they can express 
and  manipulate  those  constraints.  Together  these 
capabilities  allow  "what-if"  scenarios  to be described  and 
assessed  rapidly.  Lastly,  we  provided  an  interface 
displaying  hard  constraints  used  by  Weasel  in  order  to 

provide users with  insight  into  (and possibly  trust)  in  the 
reasoning  engine.      Making  such  these  constraints 
observable  and  explicit  may  provide  an  added  training 
benefit to domain novices and intermediates. 
  
Other principles guiding design of Weasel were "computer 
in  the  loop"  and  "minimalist  intervention"  philosophies.  
Usually, developers of mixed-initiative  technologies view 
the challenge as bring the "human in the loop."  However, 
for most complex cognitive tasks such as planning, design 
and medical  diagnosis  the  human  is  in  the  loop  already.   
Not only are  they  in  the  loop, humans are  the  loop -- and 
have  been  for  thousands  of  years.    Thus  we  feel  the 
challenge should be to bring the "computer in the loop" in 
a way that is acceptable to humans.  
 
Several design implications follow from a "computer in the 
loop" philosophy.  One is:  when in doubt, leave a task and 
to  the human;  focus on minimal  introduction of computer 
assistance.   A  simple  computer  tool which has been well 
executed interfaces is more likely to be useful than a more 
complex one.     It will probably also be easier to maintain.   
We explicitly decided not to intervene (at least initially) in 
tasks  such as  identifying  relevant constraints, or  selecting 
ECOAs  for  further consideration since  these  tasks  require 
complex,  experience-based  judgments which may best be 
left to humans. 
  
Lastly,  Weasel's  representations  and  displays  had  to  fit 
with  analysts'  way  of  thinking  about  the  task.   Many  of 
Weasel's representations and displays are based directly on 
sketches  made  by  analysts  on  paper  or  acetate  map 
overlays while doing their work. 

Considerations in Weasel's Evaluation 
An important part of a human-centered design approach is 
to  evaluate  the  system  early  and  often.    Frequent 
evaluations  provide  valuable  feedback  to  system 
developers  as  to  whether  the  approach  is  meeting  the 
design goals so adjustments can be made.  There are many 
properties of mixed-initiative systems that are important to 
evaluate  including  ease  of  use,  accuracy  of  software 
generated  results  and  overall  impact  on  joint 
human/computer problem solving performance.   The latter 
is  the  "bottom  line"  in many mixed-initiative  systems.    If 
users do not derive tangible benefits from the system  they 
won't use it; the computer will be left "out of the loop." 
 
The evaluation aims to address several questions pertaining 
to users' problem solving performance when using Weasel: 

1.  Does  Weasel  actually  increase  users'  average 
problem solving performance?  In this evaluation, 
performance  is  measured  in  terms  of  overall 
solution quality,  

2.  If  Weasel  does  result  in  a  performance  change, 
does  it  impact  performance  of  domain 
intermediates more (or less) than domain experts?  
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3.  Are  there  negative  consequences  that may  occur 
when Weasel generates a "brittle" solution? 

4.   Can  negative  impacts  of  brittle  solutions  be 
reduced  by  presenting  computer  solutions  after 
the  human  has  generated  some  of  their  own 
solutions? 

From a development standpoint,  these questions will help 
us to assess whether our basic approach is reasonable, what 
users groups should be considered as "customers," ways in 
which  the  system may  sometimes  hurt  performance,  and 
possible strategies to avoid pitfalls.  

ECOA Representations 
     An example of an ECOA  is shown  in Figures 2 and 3. 
Figure 2 shows an ECOA on the terrain; friendly forces are 
attacking the enemy (but only enemy forces are shown.  In 
this  context,  an  ECOA  is  an  assignment  of  battlefield 
locations  and  fighting  roles  to  enemy units.       Battlefield 
locations  are  specified  in  terms of  intersections on  a grid 
formed by markers on the map called avenues of approach 
and lines of defensible terrain. Avenues of approach (AAs) 
are  shown  in  Figure  2  as  large  horizontal  arrows;  they 
represent corridors between mountains and other obstacles 
through which  troops can move.   The direction of  the AA 
arrows  indicates  the  direction  of  attack  (and  the  friendly 
movement).  Lines of defensible terrain (LDTs) are shown 

in Figure 2  as  thin vertical  lines which  are placed  across 
narrow  parts  of  the  AAs;  the  represent  areas  where 
defenses tend to be setup and where fire fights occur. The 
diamonds  placed  at  the  intersections  of  AAs  and  LDTs 
represent specific enemy units.  
 
Figure  3  shows  an ECOA  sketch, which  is  an  abstracted 
version  of  the  ECOA  in  Figure  2. All  the  details  of  the 
terrain have been abstracted except for the AAs and LDTs. 
The  labels, "Def" "Del" and "R" represent  the roles of  the 
various units: defense, delay and reserve, respectively.    

 

 
 

 

LDT1 LDT2 LDT3  LDT4  LDT5 
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R

Del 

Def 

 
Figure 3: An enemy course of action (ECOA) sketch. 
  

Figure 2: An enemy course of action (ECOA) in the context of the terrain. 
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ECOAs  can  be  thought  of  as  the  first  step  in  a  plan  for 
future enemy actions.   Alternatively, one can think of each 
ECOA as a specific layout of the enemy's chess pieces (i.e. 
units).   However, the board is only partially observable, so 
many possible board  layouts must be considered based on 
the little you can directly observe or indirectly guess.   

System Description 
      There are several steps by which Weasel generates the 
most  likely enemy COAs, as shown  in Figure 4.   Each of 
these steps will be described below. 
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Figure 4: A System diagram of Weasel's components. 

 
Weasel  uses  several  types  of  intelligence  hypotheses  as 

inputs to constrain enemy position.  These hypotheses may 
be generated by the analyst from intelligence reports, or in 
this  case,  by  a  decision  support  tool  called  CoRaven. 
CoRaven  uses  a  belief  network  to  compute  the 
probabilities  of  various  hypotheses  from  intelligence 
reports  (in  the  form  of  SALUTE  messages),  and  then  it 
visually  displays  its  conclusions.      Figure  5  shows  the 
display of one type of intelligence hypothesis: depth of the 
enemy defense.     The depth of defense  indicates how  far 
west  the  enemy  has  penetrated  from  their  starting  point, 
which  in  this  example  is near LDT 5.   Thus,  there  are 4 
hypotheses  under  current  consideration  which  are:  the 
enemy  has  penetrated  as  far  as  LDT1,  LDT2,  LDT3  or 
LDT4.  The color of each LDT indicates the probability of 
each hypothesis, where black is less than a 5 % probability.  
As  the  probability  increases,  the  LDT  becomes  brighter 
(whiter).  
 
CoRaven  computes  these  probabilities  based  on  current 
intelligence  reports.      Each  report  is  shown  as  a  small 
symbol  on  the  map  in  Figure  5.    The  black  symbols 
indicate places where  intelligence observations have been 
made, and nothing of interest was seen, while the gray (or 
red  in  the color version) symbols  indicate observations of 
enemy  activity.      As  new  observations  are  reported,  the 
intensities  (i.e.  probabilities)  of  the  LDTs  shift.    In  this 

Direction 
of friendly 
movement 

Direction 
of enemy 
movement 

Figure 5: Partial results from Co-Raven's intelligence analysis. 

ICAPS 2005

22 Workshop on Mixed-Initiative Planning and Scheduling



 

example,  the  depth  of  enemy  defense  is  most  likely  at 
LDT3,  indicated by LDT3's  light color.     LDT4  is a close 
second.      The  analyst  can  choose  how  many  of  these 
hypotheses  to consider.    In our example we will  focus on 
the assumption that the enemy has penetrated to LDT3. 
 
Additional intelligence hypotheses (not shown) address the 
question  "Where  is  the main  defense?"    In  this  example, 
reports cumulatively indicate that the main defense is most 
probably in the southern AA, Axis Red.  This is also given 
as a constraint to Weasel. 
       
Specification  of Assumption  and Constraints.    Further 
information which  the analyst must  specify  is:  the enemy 
mission: attack or defend;  the size and composition of  the 
enemy  forces  (battalion,  company,  platoon,  etc)  and 
assumed  rules of  enemy behavior.     Figure 6  shows  that, 
for  our  example,  the  analyst  has  specified  the  enemy 
mission as "defense."  The enemy unit under consideration 
is an armor battalion.   The analyst further assumes that the 
battalion  is  composed  of  the  sub-units  shown  as  red 
diamonds in the lower left of Figure 6.  
 

Three  "soft"  rules  of  enemy  behavior  are  shown  in  the 
lower right of Figure 3: "Do not leave a Defense Unit alone 
in an avenue of approach (AA)," "Do not leave a delay unit 
alone  on  an  AA,"  and  "Cover  all  avenues  of  approach" 
(with defending units).   These are  rules which  the enemy 
may or may not  follow when planning  their COAs.   The 
user can state his or her assumptions about whether or not 
the  enemy  will  follow  these  rules  by  checking  (or  not 
checking)  the  boxes  next  to  the  rules.    Checking  a  box 
turns that rule on.   Un-checking it turns the rule off.  In the 
example  in Figure 6,  the user has chosen assume  that  the 
enemy might leave a defense unit alone on an AA, but will 
not  leave  a  delay  unit  alone,  and  will  cover  all  AAs.  
Weasel's  planner  uses  the  checked  rules  as  constraints 
when constructing enemy COAs. 
 
Additionally,  there are "hard" rules of behavior which  the 
enemy will (almost) always follow.  These rules are shown 
in Figure 7.  For example, "The leading unit in an AA must 
be a delay or defense unit." The rules are divided into two 
sets which apply respectively  to enemy offensive (attack), 
and  defensive  maneuvers.      The  rules  in  Figure  7  are 
treated  as  hard  constraints  because  they  represent  either 

Terrain
constraints

Intelligence
constraints

Enemy
resource
assumptions

Enemy 
behavior 
assumptions

Mission

Figure 6: Weasel's Interface for Specifying Enemy Constraints and Assumptions 
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definitions  which  are  relatively  fixed,  or  they  represent 
maneuvers  that  cannot  be  easily  modified  without 
endangering  the  unit  or  requiring  lengthy  preparation  on 
the  enemy's part  (i.e.  training  and  field  exercises).   Since 
few  constraints  (rules)  in  any  domain  can  be  said  to  be 
truly  fixed,  future  work  will  examine  whether  to  make 
some of the rules which are currently hard constraints into 
user  settable  constraints.      Some  of  these  considerations 
include  determining  who  should  be  allowed  to  make 
changes  to  relatively  hard  constraints  (e.g.  domain 
intermediates, experts or only special system maintainers?) 
and weighing  the utility of  adding  flexibility  (which may 
be used infrequently) against the possibility that errors will 
be  introduced  when  users  accidentally  change  relatively 
hard constraints.  
 
Because  these rules considered  to be fixed,  the user  is not 
permitted  to  turn  them  on  or  off.     However,  these  rules 
have been made available in Weasel's interface for users to 
examine should they wish to do so.  We feel it is important 
to  make  the  rules  controlling  the  planner's  behavior 

accessible  to  the  users,  and  to  express  them  in  the  users' 
domain  vocabulary,  thus  de-mystifying  the  software 
engine.    All  too  frequently,  automated  planners  and 
problem  solvers  are  effectively  "black  boxes"  from  the 
users' perspective. 
 
Constraint-Based ECOA generator.  Once all constraints 
and  assumptions  have  been  entered,  the  user  can  request 
that  Weasel  generate  all  ECOAs  consistent  with  those 
assumptions.    The  planner  is  a  simple  constraint-based 
planner  that  generates  all  permutations  of  the  resources 
consistent with the constraints.  Although the planner is not 
complex,  it  is  more  systematic  about  generating  all 
combinations  than  most  humans  are,  particularly  when 
there are many combinations.   
 
For  this  example,  there  are  6  possible  ECOAs  shown  in 
Figure 8, consistent with the assumptions specified.  These 
ECOAs  have  been  rotated  so  that  they  are  in  the  same 
orientation  as  they  would  appear  when  displayed  on  the 
terrain shown in Figure 2.   

 
Figure 7: Users can view Weasel fixed constraints
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ECOA  Editor.    Once  ECOAs  have  been  generated, 
analysts can view them in the plan editor (Figure 8).  If he 
or  she  is mostly  satisfied with  the ECOAs  but wishes  to 
change  a  few of  their properties,  the  enemy  units  can be 
repositioned  by  dragging  and  dropping  them.  
Additionally, specific ECOAs can be selected and viewed 
in the context of the terrain as shown in Figure 2. 
 
Changing  assumptions,  repeating  the  cycle.  An 
important  part  of  the  annalist's  problem  solving  is  to 
consider  what  the  enemy  might  do  under  a  variety  of 
different assumptions.  For example, what might the enemy 
do  if  they decided not  to  leave a defense unit alone on an 
AA, or not  to defend all AAs?   Weasel's  interface allows 
users to try different "what-if" scenarios defined by sets of 
assumptions  and  intelligence  constraints,  and  rapidly  see 
the  impact  on  the  likely  ECOAs.  This  is  an  important 

function of Weasel's  interface because  it makes a specific 
and important task easier. 
 
Next problem solving steps.  The analyst's work is not yet 
complete even after a satisfactory set of ECOAs have been 
developed.  They  must  select  a  small  set  of  ECOAs  (for 
computational  reasons  -- usually between 3 and 6) which 
they judge to be most relevant or important.  This selected 
set of ECOAs will be used while generating friendly COAs 
(step  5  in  Figure  1)  to  assess  the  appropriateness  and 
possible performance of each FCOA considered.  

Evaluation Method 
Subjects. Eighteen subjects participated  in  the experiment 
(9 Air Force and 9 Army subjects).  All had between 1 and 
21  years  of  experience  in  the  U.S.  armed  forces.    Five 
subjects  were  categorized  as  experts,  and  13  as 
intermediates; experts were those having at least 6 years of 
military experience on active duty,  in  the National Guard 
or  Reserves.    Domain  novices  (those  having  less  than  a 
year  experience  with  the  domain)  were  not  used  in  the 
evaluation  because  they  lacked  sufficient  knowledge  to 
perform  the  task  even  with  Weasel's  assistance.  The 
average  length  of  experience  of  all  18  subjects was  5.03 
years. 
 
Scenarios.   Subjects were asked to generate ECOAs for 3 
different  scenarios.    Scenario  1  was  designed  to  be 
difficult,  requiring  subjects  to  generate  many  possible 
ECOAs.    Scenario  2 was  designed  to  be  relatively  easy, 
and  Scenario  3  was  one  for  which  Weasel  generated  a 
"brittle" solution set,  in  that  it was  incomplete.   Solutions 
in which the enemy protected all possible approaches were 
not  included.    Weasel  generated  eight  ECOAs  for 
Scenarios 1, two for Scenario 2, and four for Scenario 3. 
 
Solution  Methods.  Subjects  were  asked  to  generate 
solutions  by  three  different  methods,  A,  B  and  C.    In 
Method A,  subjects  first generated ECOAs by hand,  then 
were shown the ECOAs generated by Weasel and asked to 
pick  between  their  own  solution  set  and  Weasel's.    In 
Method B, subjects again generated solutions first by hand, 
and  then  were  shown  Weasel's  solutions.  However,  this 
time they could revise their solution set if they so desired.  
Examples  of  revisions  include  copying  one  of  Weasel's 
ECOAs or incorporating elements of it in one of their own.  
In Method C, subjects were shown Weasel's solutions first, 
and  then  they  were  asked  to  generate  their  own,  which 
could include Weasel's ECOAs, or ECOAs based on them. 
 
Design.   All  subjects solved all scenarios, and applied all 
methods.  However, to eliminate learning effects, the order 
in  which  subjects  saw  the  scenarios  and  applied  the 
methods  was  counter-balanced.    Given  that  there  are  6 
permutations of three items, this suggests a 6x6 experiment 
requiring 36 subjects.    Instead we applied a  lattice design 

Figure 8: Six ECOAs generated by Weasel which are 
consistent with the constraints and assumptions in Figure 6. 
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(Montgomery  1991) which  reduced  the  required  subjects 
by half (to 18). 
 
Evaluators.  Two  evaluators  assessed  the  quality  of  the 
ECOA sets generated by the subjects. The evaluators were 
selected  for  their expertise  in Army battlefield strategy as 
well  as  their  specific  knowledge  of  current  battlefield 
simulations used in the U.S. Army.   One had 9 years U.S. 
Army experience, and the other 5 years. 
 
Procedure.  First,  subjects  were  given  familiarization 
training  by  the  experimenter  on  a  computer  workstation. 
Materials given to subjects included: a scenario instruction 
page,  three pages each describing  the scenario, pen, and a 
one-page  list  of  "required"  (hard)  constraints  used  by 
Weasel  to  generate  ECOAs  so  that  they may  understand 
the computer's behavior. 
 
Next, subjects were given scenario descriptions and asked 
to  generate  a  set  of  ECOAs  appropriate  for  each  of  the 
three scenarios. An experimenter was present at all times to 
answer questions.   When a subject finished each scenario, 
they  were  then  asked  to  provide  verbal  explanations  of 
their  solution  choices.    Upon  completion  of  all  three 
scenarios subjects, they completed a short questionnaire. 
Lastly,  after  all  subjects  had  completed  all  scenarios, 
evaluators  "scored" all  solutions  sets  (including Weasel's) 
for each scenario, where best was 10 and worst was 1.  

Results 
The  first  steps  in  analysis were  to  check  1)  the  level  of 
agreement  between  the  evaluators  and  2)  whether  there 
was  a  significant  performance  difference  between  the 
intermediate  and  expert  subjects  when  they  generated 
ECOAs by hand, without Weasel's assistance. The purpose 
of  the  first  check  was  to  assess  whether  evaluators  had 
been chosen appropriately, the assumption being that there 
is a very  low probability  that  independent evaluators will 
produce similar quality rankings for many solutions unless 
they  have  sufficient  experience  to  assess  quality.    The 
purpose  of  the  second  check  was  to  assess  whether  the 
division  between  the  intermediates  and  experts  was  a 
meaningful one.   The correlation  for scenario 1 was 0.94, 
for  scenario 2: 0.90 and  for  scenario 3: 0.99,  indicating a 
high level of agreement between evaluators.   In the second 
check, we compared  the average quality ranking given by 
the  evaluators  to  the  intermediate  and  the  expert  groups.  
An ANOVA indicated that the difference between average 
expert  and  intermediate  quality  rankings  was  very 
significant,  p  =  0.001,  indicating  the  experts  performed 
significantly  better  than  intermediates.  Once  these  two 
issues  had  been  established,  we  investigated  the  four 
questions posed in the introduction: 
 
1.  Did  use  of  Weasel  improve  the  quality  of  ECOAs 
generated?  Yes.    Overall  there  was  a  significant 

improvement  in  quality  scores  when  ECOAs  generated 
without  Weasel's  assistance  were  compared  to  ECOAs 
generated with Weasel's assistance (p = 0.018).     Figure 9 
shows the average quality scores received by users without 
and  with  Weasel's  assistance,  as  well  as  the  computer's 
quality scores.  As expected, the quality score on the brittle 
scenario (Scenario 3) was very poor.   
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 Figure 9: Ave quality scores received by subjects without and 
with Weasel's assistance (where 10 is best and 1 is worst score). 
 
  
2. Did  use  of Weasel  change  intermediates'  performance 
more  than  experts'?    Yes.  It  improved  intermediates' 
quality  scores  significantly  (p  =  0.0002),  but  did  not 
significantly  change  experts'  quality  scores  (p  =  0.251).   
Furthermore,  differences  between  experts  and 
intermediates were leveled when both groups used Weasel; 
there  was  no  significant  difference  between  intermediate 
and expert quality scores when using Weasel (p = 0.366).  
This  implies  that  use  of  Weasel  elevates  intermediates' 
ECOA quality to closer to the level of experts. 
 
3. Did ECOA quality decline when Weasel exhibits brittle 
behavior?    No.  For  scenario  3,  there  was  no  significant 
difference  in  the  quality  of ECOAs  generated without  or 
with Weasel's assistance (p = 0.51).  In fact, ECOA quality 
scores  increased  on  average  for  all  scenarios when  users 
employed  Weasel's  assistance.  However,  closer 
examination  of  individual  subjects  performances  revels 
that  there  is  more  to  the  story.    When  using  Weasel's 
assistance on Scenario 3, more  subjects'  (three out of 18) 
tended to repeat the mistake made by Weasel on Scenario 3 
(i.e.  omission  of  ECOAs  that  "cover"  all  avenues  of 
approach).   Furthermore,  three  of  the  five who made  the 
omission were  experts.    In  contrast, only one  subject  (an 
intermediate)  made  this  same  mistake  when  producing 
solutions manually.   This  implies  that use of Weasel may 
have  "biased"  some  users  towards  flawed  solution  sets 
when it exhibited brittle behavior, just as FTP biased users 
towards  unnecessarily  risky  solutions  when  it  exhibited 
brittle behavior.  
 
4. Did  presentation  order  change  users'  the  tendency  to 
repeat Weasel's mistakes?   In Smith, McCoy and Layton's 
study of FPT,  they reduced  the  tendency of users  to adapt 
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the computer's flawed solutions by delaying presentation of 
the computer's solution until they had explored the problem 
on their own.  However, we did not find a similar effect in 
this  domain.    Of  the  five  users  who  "copied"  the 
computer's mistake on Scenario 3, four generated their own 
solutions first and only one saw Weasel's solutions first.   

Future Work 
      This  work  represents  a  positive  start  in  the  right 
direction.     However, we are not going  to declare victory 
yet;  there  is still much maturation of Weasel  that needs  to 
occur (through further development and evaluation) before 
Weasel  can  be  installed  and  assessed  in  the  context  of  a 
daily  work  environment.  Many  issues  still  need  to  be 
investigated  and  incorporated  into  system  designs.  For 
example,  does  explicit  display  of  the  ECOA  generators' 
fixed constraints allow users to better understand Weasel's 
behavior,  results  and  limitations?    Or  do  they  persist  in 
ascribing  highly-nuanced  human-like  reasoning  to  the 
computer,  possibly  leading  to  failure  to  recognize  brittle 
behavior.    To  what  extent  does  allowing  users  to 
manipulate Weasel's soft constraints  increase  its utility, or 
decrease  its  usability?     Would  allowing  users  to  control 
more constraints add  to Weasel's utility or  is  there a point 
where the added complexity of the interface becomes more 
of a burden than a help to users? 

Discussion and Conclusion 
We  have  first  examined  what  we  view  as  the  most 
important  "bottom-line"  issue:  does  Weasel  improve 
decision making  performance,  and  if  so,  for what  users?  
Results  show  that Weasel  results  in solution quality gains 
for users with an  intermediate  level of domain experience 
(i.e., 1 ñ 6 years).  Based on this result we see potential for 
use  of  Weasel  in  providing  practice  and  training  for 
analysts with an  intermediate  level of domain experience. 
However, with supervision  from domain experts and with 
training  on  how  to  interpret  Weasel's  results;  users  of 
Weasel,  and  probably  most  MIPAS  systems,  should  be 
trained  to  regard  them  as  sometimes  fallible  suggestion 
generators rather than as oracles, just as they should regard 
their human counterparts.   How successful this training is 
likely  to  be  is  yet  another  question: will  it  always  be  an 
uphill  battle  to  prevent  users  from  inappropriately 
regarding computer systems as infallible oracles?    
 
Weasel may  also  provide  benefits  to  domain  experts,  for 
example  by  reducing  the  number  of  times  they  are 
"surprised"  by  unexpected  enemy  actions.    However, 
further  evaluations  are  needed  to  determine what,  if  any 
benefits domain experts may derive. Lastly, when Weasel 
exhibited  brittle  behavior,  it  still  resulted  in  an  average 
solution quality increase, not a decrease as in the Layton, et 
al. experiment with FTP.   We conclude from this that not 
all  brittle  solutions  are  created  equal;  the  brittle  solution 

examined  in  the Weasel study was an  incomplete solution 
set. The one examined  in  the FTP study was a risky point 
solution.      The  latter may  be  a more  dangerous  form  of 
brittleness than the former. 
 
Decision support systems, of which MIPAS systems are an 
example,  can have both positive  and negative  impacts on 
users' performance. The point  for  readers  to  take  away  is 
that  it  is  that designers and users of MIPAS systems need 
to  be  aware  that  even  the  best  designed  system  will 
sometimes  exhibit  brittle  behavior,  and  both  the  positive 
and  negative  impacts  of  such  systems  must  be  carefully 
weighed in considering how the system should be used.  
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Abstract 

We argue that as Unmanned Military Vehicles become more 
intelligent and capable, and as we attempt to control more of 
them with fewer humans in the loop, we need to move 
toward a model of delegation of control rather than the 
direct control (that is, fine grained control with, generally, 
tight and fast control loops) that characterizes much current 
practice.  We identify and describe five delegation methods 
that can serve as building blocks from which to compose 
complex and sensitive delegation systems: delegation 
through (1) providing goals, (2) providing full or partial 
plans, (3) providing negative constraints, (4) providing 
positive constraints or stipulations, and (5) providing 
priorities or value statements in the form of a policy.  We 
then describe two implemented delegation architectures that 
illustrate the use of some of these delegation methods: a 
“playbook” interface for UAV mission planning and a 
“policy” interface for optimizing the use of battlefield 
communications resources. 

UMV Control as Human-Automation 

Delegation 

While Unmanned Military Vehicles (UMVs—that is, any 
unmanned vehicle, whether ground, air, sea, undersea or 
space, used for military purposes) hold the promise of 
radical change and improvement for a wide range of 
military applications they also pose a host of challenging 
problems.  Chief among these is how to enable a human 
operator, who may well be heavily engaged in other tasks 
of his or her own (such as exploring a building, maintaining 
radio contact with headquarters or even avoiding fire), to 
retain sufficient control over the UMV(s) to ensure safe, 
efficient and productive outcomes.  This problem is, of 
course, magnified when the UMVs may be responsible for 
the lives of many soldiers or civilians, may be capable of 
unleashing lethal force on its own, and when a single 
human may be striving to control groups or even swarms of 
potentially autonomous and independent actors and may be 
concurrently engaged in other, high tempo and criticality 
tasks of his or her own. 

Yet this problem is not completely novel.  Humans have 
been striving to retain control and produce efficient 
outcomes via the behavior of other autonomous agents for 
millennia.  It just so happens that those “agents” have been 
other humans.  Not surprisingly, we have developed many 
useful methods for accomplishing these goals, each 
customized to a different domain or context of use.  When 
we have some degree of managerial authority over another 
human actor and yet will not be directly commanding 
performance of every aspect of a task, we call the 
relationship (and the method of commanding task 
performance) delegation.  Delegation allows the supervisor 
to set the agenda either broadly or specifically, but leaves 
some authority to the subordinate to decide exactly how to 
achieve the commands supplied by the supervisor. Thus, a 
delegation relationship between supervisor and subordinate 
has many requirements: 

1. The supervisor retains overall responsibility for 
the outcome of work undertaken by the 
supervisor/subordinate team and retains the 
authority commensurate with that responsibility. 

2. The supervisor has the capability to interact very 
flexibly and at multiple levels with the 
subordinate.  When and if the supervisor wishes to 
provide detailed instructions, s/he can; when s/he 
wishes to provide only loose guidelines and leave 
detailed decision making up to the subordinate, 
s/he can do that as well—within the constraints of 
the capabilities of the subordinate. 

3. To provide useful assistance within the work 
domain, the subordinate must have substantial 
knowledge about and capabilities within the 
domain.  The greater these are, the greater the 
potential for the supervisor to offload tasks 
(including higher level decision making tasks) on 
the subordinate. 

4. The supervisor must be aware of the subordinate’s 
capabilities and limitations and must either not 
task the subordinate beyond his/her abilities or 
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must provide more explicit instructions and 
oversight when there is doubt about those abilities. 

5. There must be a “language” or representation 
available for the supervisor to task and instruct the 
subordinate.  This language must (a) be easy to 
use, (b) be adaptable to a variety of time and 
situational contexts, (c) afford discussing tasks, 
goals and constraints (as well as world and 
equipment states) directly (as first order objects), 
and (d) most importantly, be shared by both the 
supervisor and the subordinate(s). 

6. The act of delegation will itself define a window 
of control authority within which the subordinate 
may act.  This authority need not be complete 
(e.g., checking in with the supervisor before 
proceeding with specific actions or resources may 
be required), but the greater the authority, the 
greater the workload reduction on the supervisor. 

Items 4 and 6 together imply that the space of control 
authority delegated to automation is flexible—that the 
supervisor can choose to delegate more or less “space,” and 
more or less authority within that space (that is, range of 
control options), to automation.  Item 5 implies that the 
language available for delegation must make the task of 
delegating feasible and robust—enabling, for example, the 
provision of detailed instructions on how the supervisor 
wants a task to be performed or a simple statement of the 
desired goal outcome. 

Types of Delegation 

We have developed a variety of architectures within which 
to support human delegation interactions with automation.  
Of particular interest as a core enabling technology is the 
“language” or representation for delegation described in 
item #5 above.  As Klein (1996) points out, without 

successfully sharing an understanding of the tasks, goals 
and objectives in a work domain, there can be no 
successful communication of intent between actors.  We 
believe there are five kinds of delegation actions or 
delegation methods that should be supported within such a 
representation, as described in Table 1 below.  Note that 
each method forms a building block, and they can be 
combined into more effective and flexible composite 
delegation interactions.  Note also that the subordinate has 
a specific responsibility in response to each method, as 
articulated below. 

In the remainder of this paper, I will described two 
delegation architectures we are developing.  While neither 
system enables all of the types of delegation described 
above, and neither is fully implemented yet, collectively 
they illustrate the five types of delegation and provide a 
rich and highly flexible set of interactions for human-
automation delegation. 

Playbook—Delegation of Goals, Plans and 

Constraints 

The first architecture is based on the metaphor of a sports 
team’s playbook.  A playbook works because it provides 
for rapid communication about goals and plans between a 
supervisor (e.g., a coach) and a group of intelligent actors 
(the players) who are given the authority to determine how 
to act within the constraints inherent in the coach’s play.  
Our Playbook architecture supports delegation action types 
1-4 in principle and has been implemented in prior 
prototypes to include action types 2 and 4.   

The basic Playbook system architecture is presented in 
Figure 1.  The Playbook ‘proper’ consists of a User 
Interface (UI) and a constraint propagation planner known 
as the Mission Analysis Component (MAC) that 
communicate with each other and with the operator via a 

Table 1.  Five types of delegation. 

 
Supervisor’s Delegation Action Subordinate’s Responsibility 

1. Stipulation of a goal to be achieved—where a goal is 

a desired (partial) state of the world.  

Achieve the goal(s) if possible (via any means 

available), or report if incapable. 

2. Stipulation of a plan to be performed—where a plan 

is a series of actions, perhaps with sequential or 

world state dependencies. 

Follow the plan if possible (regardless of 

outcome) or report if incapable. 

3. Provide constraints in the form of actions or states to 

be avoided. 

Avoid those states or actions if possible, report 

if not. 

4. Provide “stipulations” in the form of actions or states 

(i.e., sub-goals) to be achieved. 

Achieve those states or perform those actions if 

possible, report if not. 

5. Provide an “optimization function” or “policy” that 

enables the subordinate to make informed decisions 

about the desirability of various states and actions 

Work to optimize value within the 

“optimization function” or “policy”.   
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Shared Task Model. The operator communicates 
instructions in the form of desired goals, tasks, partial plans 
or constraints, via the UI, using the task structures of the 
shared task model. The MAC is an automated planning 
system that understands these instructions and (a) evaluates 
them for feasibility and/or (b) expands them to produce 
fully executable plans.  The MAC may draw on special 
purpose planning tools (e.g., an optimizing path planner) to 
perform these functions, wrapping them in its task-sensitive 
environment.  Outside of the tasking interface, but essential 
to its use, are two additional components.  An Event 
Handling component, itself a reactive planning system 

capable of making momentary adjustments during 
execution, takes plans from the Playbook.  These 
instructions are sent to control algorithms that actually 
effect behaviors.   

Operator interaction with the Playbook can be via a variety 
of user interfaces customized to the needs of the work 
environment, but operator commands are ultimately 
interpreted in terms of the Shared Task Model.   To date, 
we have developed prototype playbooks for Unmanned 
Combat Air Vehicle (UCAV) teams (Miller, Pelican, 
Goldman, 2000), and Tactical Mobile Robots (Goldman, 
Haigh, Musliner, Pelican, 2000), and prototypes for the 
RoboFlag game (Parasuraman, Galster, Squire, Furukawa 
and Miller, in press)  and for real-time interaction with 
teams of heterogeneous UMVs (Miller, Funk, Goldman and 
Wu, 2004; Goldman, Miller, Wu, Funk and Meisner, 
2005).  Below, we provide a description of user interaction 
with one playbook  interface we developed with Honeywell 
Laboratories to illustrate the general concept.  

We developed the playbook illustrated in Figure 2 to 
enable a human leader to create a full or partial mission 

Event 

Handling 

Control 
Algorithms

Playbook

GUI

Tasking

Instructions Provably correct 

plans

Provably safe 

reactions

Feedback

System control

Mission

Analysis

Shared Task Model

Special Purpose

Tools

 
Figure 2.  General Playbook Architecture. 

 
Figure 1.  Prototype Playbook User Interface for UCAV Mission Planning. 
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plan for UCAVs.  This initial work was intended as a 
ground-based tasking interface to be used for a priori 
mission planning, but current Playbook work is exploring 
interface modifications to enable real-time and in-flight 
tasking and task performance monitoring as well.   

Figure 2 shows five primary regions of this Playbook UI.  
The upper half of the screen is a Mission Composition 
Space that shows the plan composed thus far.  In this area, 
the operator can directly manipulate the tasks and 
constraints in the plan.  The lower left corner of the 
interface is an Available Resource Space, currently 
presenting the set of aircraft available for use.  The lower 
right corner contains an interactive Terrain Map of the area 
of interest, used to facilitate interactions with significant 
geographic information content.   The space between these 
two lower windows (empty at startup) is a Resource in Use 
Space—once resources (e.g., UCAVs, munitions, etc.) are 
selected for use, they will be moved here where they can be 
interacted with in more detail.  Finally, the lower set of 
control buttons is always present for interaction.  This 
includes options such as “Finish Plan” for handing the 
partial plan off to the MAC for completion and/or review 
and “Show Schedule” for obtaining a Gantt chart timeline 
of the activities planned for each actor, etc. 

At startup, the Mission Composition Space presents the 
three top-level plays (or ‘mission types’) the system 
currently knows about: Interdiction, Airfield Denial, and 
Suppress Enemy Air Defenses (SEAD).  The mission 
leader would interact with the Playbook to, first, declare 
that the overall mission “play” for the day was, say, 
“Airfield Denial.”  In principle, the user could define a new 
top-level play either by reference to existing play structures 
or completely from scratch, but this capability has not been 
implemented yet. 

This action is an example of type 2 delegation—providing 
a specific task for subordinates to perform.  But because 
this is a very high level task in a hierarchical task network, 
the supervisor has left a great deal of freedom to the 
subordinates (in this case, the MAC and the UAVs 
themselves) to determine exactly how a “Airfield Denial” 
mission is to be performed.  If this were the only delegation 
information the supervisor provided, the subordinates 
would be obligated to do their best to perform that action 
(an Airfield Denial mission), but would have a great deal of 
authority as to how best to accomplish it.   

At this point, having been told only that the task for the day 
is “Airfield Denial,” a team of trained pilots would have a 
very good general picture of the mission they would fly.  
Similarly, the tasking interface (via the Shared Task 
Model) knows that a typical airfield denial plan consists of 
ingress, attack and egress phases and that it may also 
contain a suppress air defense task before or in parallel 
with the attack task.  But just as a leader instructing a 
human flight team could not leave the delegation 
instructions at a simple ‘Let’s do an Airfield Denial 
mission today,’ so the operator of the tasking interface is 

required to provide more information.  Here, the human 
must provide four additional items: a target, a homebase, a 
staging and a rendezvous point. Each of these is a 
stipulation, or positive constraint, telling the subordinates 
that whatever specific plan they come up with to 
accomplish the higher level mission must include these 
attributes—and thus, they are examples of type 4 
delegation interactions.  Most of these activities are 
geographical in nature and users typically find it easier to 
specify them with reference to a terrain map.  Hence, by 
selecting any of them from the pop up menu, the user 
enables direct interaction with the Terrain Map to designate 
an appropriate point.  Since the Playbook knows what task 
and parameter the point is meant to indicate, appropriate 
semantics are preserved between user and system. As for 
all plans, the specific aircraft to be used may be selected by 
the user or left to the MAC. If the user wishes to make the 
selection, s/he views available aircraft in the Available 
Resource Space and chooses them by clicking and moving 
them to the Resources in Use Area.   

The mission leader working with a team of human pilots 
could, if time, mission complexity or degree of trust made 
it desirable, hand the mission planning task off to the team 
members at this point.  The Playbook operator can do this 
as well, handing the task to the MAC via the “Finish Plan” 
button.  The leader might wish, however, to provide 
substantially more detailed delegation instructions.  S/he 
can do this by progressively interacting with the Playbook 
UI to provide deeper layers of task selection, or to impose 
more stipulations on the resources to be used, waypoints to 
be flown, etc.  For example, clicking on “Airfield Denial” 
produces a pop-up menu with options for the user to tell the 
MAC to “Plan this Task” (that is, develop a plan to 
accomplish it) or indicate that s/he will ‘Choose airfield 
denial’ as a task that s/he will flesh out further.  The pop-up 
menu also contains a context-sensitive list of optional 
subtasks that the operator can choose to include under this 
task.  This list is generated by the MAC with reference to 
the existing play structures in the play library, filtered for 
current feasibility.   

After the user chooses ‘Airfield Denial’ the system knows, 
via the Shared Task Model, that this task must include an 
Ingress subtask (as illustrated in Figure 2).  The supervisor 
does not have to tell intelligent subordinates this; it is a part 
of their shared knowledge of what an ‘Airfield Denial’ task 
means—and how it must be performed.  To provide 
detailed instructions about how to perform the Ingress task, 
however, the user can choose it, producing a “generic” 
Ingress task template or “play”.  This is not a default 
method of doing “Ingress” but a generic, uninstantiated 
template—corresponding to what a human expert knows 
about what constitutes an Ingress task and how it can or 
should be performed.  A trained pilot knows that Ingress 
can be done either in formation or in dispersed mode and, 
in either case, must involve a “Take Off” subtask followed 
by one or more “Fly to Location” subtasks.  Similarly, the 
user can select from available options (e.g., formation vs. 
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dispersed Ingress, altitude constraints on takeoff, etc.) on 
context-sensitive, MAC-generated menus appropriate to 
each level of decomposition of the task model.  One of our 
current challenges in creating Playbooks

TM
 for real-time 

interactions is to enable them to be sensitive to the current 
state of affairs and of task performance so as to make 
intelligent assumptions about task performance possible—
for example, if the supervisor wishes to command a 
currently airborne UAV, perhaps in a holding pattern, to 
perform an ‘Airfield Denial’ mission, both supervisor and 
subordinate should know that the Takeoff portion of an 
Ingress task is no longer necessary and should either be 
eliminated or be shown as already accomplished. 

The user can continue to specify and instantiate tasks down 
to the “primitive” level where the sub-tasks are behaviors 
the control algorithms (see Figure 1) on the aircraft can be 
relied upon to execute. Alternatively, at any point after the 
initial selection of the top level mission task and its 
required parameters, the supervisor can hand the partly 
developed plan over to the MAC for completion and/or 
review.   In extreme cases, a viable “Airfield Denial” plan 
for multiple aircraft can be created in our prototype with as 
few as five selections and more sophisticated planning 
capabilities could readily reduce this number.  But 
potentially more important, the operator (like a human 
supervisor dealing with intelligent subordinates) can also 
provide more detailed instructions whenever s/he deems 
them necessary or useful to mission success and in the way 
s/he sees fit.   

This Playbook illustrates delegation interactions 2 and 4 
(plans and stipulations).  The subordinates’ role in these 
types of interaction are described in the table above—to 
perform the plan through any set of sub-methods that 
adhere to the stipulations provided by the supervisor, or to 
report that this is infeasible.  One of the MAC’s roles in the 
above example is to report when it is incapable of 
developing a viable plan within the constraints imposed, 
(e.g., if the user has stipulated distant targets that exceed 
aircraft fuel supplies).  In a real-time delegation system, the 
MAC will be responsible for continual monitoring of 
performance to report when world states mean that plan 
performance is no longer capable of (or likely to) 
accomplish the user’s parent plan (e.g., because of 
equipment failures, adverse head winds, enemy 
countermeasures, etc.) 

The Playbook architecture is, we believe, also capable of 
supporting delegation interaction types 1 and 3 (goals and 
negative constraints) as well.  Supporting goal-based 
delegation interactions would require a slight modification 
to the shared task representation.  Currently, we have used 
a representation that explicitly includes only hierarchically 
organized and sequenced tasks (i.e., actions to be 
performed).  Tasks implicitly encode the goals they 
accomplish, but there are representations (such as Geddes 
Plan-Goal Graphs—Sewell and Geddes, 1990) that 
explicitly interleave both plans and goals and a linked 
hierarchy. Use of such a representation, along with related 

modifications to the UI and MAC, would enable the 
supervisor to say, effectively, “Today we’re going to 
achieve a State” (e.g., the destruction of a given airfield) 
rather than or in addition to, the plan-based representation 
used above which allows only the issuing of task-based 
delegation commands (e.g., “Today we’re going to fly an 
airfield-denial mission”).  The incorporation of negative 
constraints into the interaction (delegation interaction 
method #3), would require a less substantial modification 
to the Playbook  architecture—potentially requiring only a 
UI addition to enable the supervisor to incorporate negative 
commands about task types and state parameters (e.g., “do 
NOT fly through this valley or use this type of munition”) 
and then requiring the MAC to create plans which avoid 
those negative constraints. 

Policy—Delegation via Abstract Policy 

Statements 

The final type of delegation interaction offers the ability to 
provide priorities between alternate goals and states and to 
do so more abstractly than the above methods.  Sometimes 
supervisors don’t have a single, concrete world state goal in 
mind, much less a specific plan for accomplishing it.  
Sometimes supervisors must issue commands well in 
advance to cover a wide range of largely unanticipatable 
circumstances.  In these cases, the delegation instructions 
will be less a specific statement of actions to take or world 
states to be sought or avoided, but rather a general 
statement of outcomes that would be more or less good or 
valuable (or, conversely, bad or to be avoided) than others.  
We refer to the set of such abstract value statements that a 
supervisor might provide as his or her “policy” for 
performance in the domain. 

We have developed policy-based architectures for two 
applications: providing commanders’ guidance to a 
resource controller for battlefield network communications 
(prioritizing communications bandwidth in accordance with 
the commander’s intent—Funk, Miller Johnson and 
Richardson, 2000), and providing visualization and 
feedback to dispatchers in upset contexts in commercial 
aviation (Dorneich, Whitlow, Miller and Allen, 2004).  We 
will describe the first of these below. 

A policy statement is an abstract, general, a priori statement 
of the relative importance or value of a goal state in the 
domain.  In its simplest form, policy provides a method for 
human operators to mathematically define what constitutes 
“goodness.” Once defined, a policy statement can be 
treated as a rule and evaluated against a current or 
hypothetical context—if the rule is true in the context, then 
the context incurs the “goodness” (or badness) value 
stipulated by the rule.  Alternate contexts (which could be 
tied to the expected outcomes of alternate decisions) can 
then be evaluated against each other by examining the set 
of policy rules that are satisfied or violated and the 
resulting set of goodness/badness values accrued.  A set of 
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individual policy statements can be bundled together, and 
these policy bundles can be used to flexibly define the 
priorities that apply in a given situation (priorities can 
change given different circumstances).  

A policy-based delegation system requires at least three 
components:  (1) a representation for specifying the 
“policy” in terms of the value of various partial world 
states, (2) a user interface for allowing one or more users to 
input their policies and, if desired, view results of policy 
application, (3) a computational framework that allows 
evaluation of a current situation or hypothetical proposed 
situation against the expressed policy, and (4) an engine 
that allows application of the policy either to the control of 
resource application or to a visualization of sensed data 
about a current situation or projected data about a future or 
simulated situation.    

In the development of a policy-based delegation system for 
communications resource usage, we were striving to 
provide a means for commanders to tell an automated 
network management system their “policies” for how to 
prioritize the use of communications bandwidth in order to 
satisfy the most important requests most fully.  Note, 
however, that “most important” was not a static concept but 
rather changed across commanders and situations.  For this 
application, we developed a policy representation that 
allowed commanders to assign, a priori and abstractly, a 
value to various kinds of communications requests.  As 
communications requests then came in from various field 
units or operators, they could be matched against the 
commander’s policy statements and a value assigned to 
each of them.  This value was then used by a resource 
optimizing controller to determine which requests should 
get network bandwidth with what priority. 

This process is conceptually illustrated in Figure 3.  Each 
commander’s policy is created as a set of statements (as 
illustrated at the top of the figure) each of which assigns an 
importance (or value) function to a defined sub-region in a 
multidimensional space.  In this case, individual policy 
statements are illustrated abstractly as defined by the 
dimensions: owner (Wi) who is the originator of an 
information request, source (Si) which is the location of the 
information to be transmitted, destination (Di) which is the 
destination to which the information is to be transmitted 
(i.e., a specific machine or IP address, which need not be 
that of the owner), and description of the information 
content (Ci) to be transmitted, along with an importance 
assigned to that policy statement.  For example, policy 
statements might be based on a single dimension 
(‘Requests for weather information [Content] get 
Importance 0.2’) or on a combination of dimensions 
(‘Requests owned by the Zone Reconnaissance task 
[Owner] for weather information [Content] from Satellite 
476B [Source] to 3rd Air Calvary Division [Destination] 
get Importance 0.8). If the policy element regions are 
allowed to overlap, then they must be sequenced (typically 
from most to least specific) to indicate the order of 
precedence. 

In practice, the commander’s policy is then used to assign 
an importance value to any incoming request for 
communication resources (illustrated conceptually in the 
lower portion of Figure 3). Each policy statement defines a 
region within the multidimensional space defined by the 
parameters from which policy statements can be built.  
We’ve represented that multidimensional space as a simple 
plane in the figure, and then defined multiple regions 
within that space with an assigned value for each to 
represent the valuation contained in each separate policy 
statement.  Each incoming request is matched against the 
sequenced series of policy statements the commander has 
made. The first policy element that matches the request 
determines the importance of that request and informs an 
automated resource manager about the relative value of 
satisfying that request.    

While conceptually simple, many useful functions can be 
performed within this framework.  First, it is not necessary 
that importance be construed as an all-or-nothing value as it 
is depicted in Figure 3.  Instead, we have explored more 
sophisticated representations that allow the requestor to 
provide a description of how s/he wants the information 
requested along several dimensions (e.g., freshness, 
reliability, initiation-time, accuracy, resolution, scope, etc.)  
Then the resource management system can treat the 
importance value as a maximum number of value “points” 
to be awarded for satisfying the request perfectly, while 
still awarding itself points for partial satisfaction.  This 
permits more sensitive management of resources to be 
performed.   

Second, it is rarely the case that a single commander or 
supervisor is the only one who may have an interest in 
dictating policy about how subordinates behave.  Rather, 
each commander must allocate his/her resources in 
accordance with the policies of those above. We support 
this requirement (Figure 4) by modeling policies that exist 
at nodes in a command hierarchy. As requests come in, 
they are matched against the commander’s policy that 
governs them (command node N1.2.2 in Figure 4), but 
must then also be matched against his/her commander’s 
policy (i.e., the command node in charge of node N1.2.2 in 

.1 

Cmdr  N’s Policy 

Request with 
importance .5 

Match 

Owner Source Destination Content Importance 

( {W1} {S1} {D1} {C1} .9 ) 
( {W2} {S2} {D2} {C2} .8 ) 
( {W3} {S3} {D3} {C3} .5 ) 
( * * * * .1 ) 

.9 

.8 
.5 

Incoming request 

Separate Policy Elements in  Cmdr  N’s Policy 
 

Figure 3.  Representation for a policy for network 
bandwidth prioritization. 
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Figure 4—node N1.2)—and so on, up the chain of 
command (i.e., node N.1 in Figure 4). We allow each 
commander to stipulate how this matching policy element 
should be resolved with the subordinate commander’s 
matching policy element: as a ceiling or floor value, or 
linear or weighted combination of the values.  Even when a 
single well-defined chain of command does not exist the 
policies of different “interest groups” may be represented 
with relative weights on the importance values that each 
would assign to a potential outcome.  We have used this 
approach (Dorneich, et al., 2004) in representing the many, 
varied interests which impact the decisions of a commercial 
airline’s dispatch operators (e.g., crew scheduling, 
maintenance scheduling, marketing, passengers, finance, 
etc.). 

Folding this policy-based form of delegation interaction 
(method 5) into an overall architecture that includes the 
other methods is not as difficult as it might first appear.  
While we have not yet developed a system that 
accomplishes this, the way forward is clear.  Policy is 
simply an assignment of value or priority to the goal states 
and tasks in the other delegation interaction types.  
Priorities for resource usage and the desirability of various 
outcomes stem, after all, from a superior’s goals and plans 
for subordinates (whether human or machine).  If, for 
example, I task a given unit under my command to perform 
an Airfield Denial task, and I know that their task is the 
most important of all concurrent tasks to me, then I have 
effectively said that giving them the resources they require 
to perform that task (specific aircraft, munitions, fuel, 
communications bandwidth, etc.) represents the highest 
value to me.  In other words, delegation interactions that 
provide specific goals, plans, stipulations and constraints to 
subordinates carry with them specific policy implications.  
Whenever a commander can provide more specific 
delegation instructions, this will generally get him/her 
closer to the results desired from his/her subordinates, but 
this will not always be the case.  Hence, the ability to 
stipulate more abstract policies should probably be 
preserved in a complete delegation system as a means of 
covering unexpected and unfamiliar situations. 

Conclusions and Future Work 

While the work described above represents a general 
framework for delegation interactions suitable for human 
interaction with smart automation of various kinds and, 
perhaps uniquely, suitable for the tasking of multiple 
UMVs, our work has thus far progressed only to the proof 
of concept stage.  As noted above, we have currently 
implemented only portions of the various methods of 
delegation that a fully flexibly delegation interface might 
benefit from, and have done so in disparate systems.  
Furthermore, our proof of concept implementations have 
not yet afforded us the opportunity to do rigorous human in 
the loop evaluations to demonstrate improved performance, 
if any. 

These situations are changing, however.  We are currently 
engaged in exploration of human interaction with Playbook 
-like interfaces (Parasuraman, et al., in press) and are 
performing work on a Playbook  interface for real-time 
interactions with heterogeneous UMV assets by operators 
who may be concurrently involved in other critical tasks 
(under a DARPA-IXO SBIR grant-- cf. Miller, et al., 2004; 
Goldman, et al., 2005).  One of the goals of this work will 
be to develop task libraries and task construction tools and 
interface concepts to move the delegation interface work 
along toward implementation and utility.   

Of course, anyone who has worked with a poorly trained, 
or simply mismatched, subordinate is well aware that it is 
possible for delegation to cause more work than it saves.  
Our challenge, and that of others who adopt a delegation 
framework for human interaction with complex and largely 
autonomous automation, will be to ensure that this does not 
happen--through judicious use of technology and 
substantial usability analysis and testing.  On the positive 
side, however, we benefit from the knowledge that 
delegation approaches to interaction with intelligent yet 
subordinate actors have worked repeatedly throughout 
history and, particularly, the history of warfare.  As 
automation in the form of UMVs increasingly takes its 
place as one of those actors we want to be intelligent, 
capable and effective yet remain subordinate, we will 
increasingly need methods for enabling it to interact with 
us in the ways that we trust and are familiar with.   Since 
delegation is the primary method that fits that bill, it only 
makes sense to pursue delegation approaches to human 
interaction with automation. 
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Abstract

In this paper we present a mixed-initiative planning approach
to human-robot interaction in a rescue domain. We deploy a
model-based executive monitoring system to coordinate the
operator’s interventions and the concurrent activities of a res-
cue rover. We show that this approach can enhance both oper-
ator situation awareness and human-robot interaction for the
execution and control of the diverse activities needed in res-
cue missions. We have implemented this control architecture
on a robotic system (DORO) and tested it in rescue arenas
comparing its performances in different settings.

Introduction
Urban search and rescue (USAR) deals with response ca-
pabilities for facing urban emergencies, and it involves the
location and rescue of people trapped because of a struc-
tural collapse. Starting in 2000, the National Institute of
Standard Technology (NIST) together with the Japan Na-
tional Special Project for Earthquake Disaster Mitigation
in Urban Areas (Tadokoro et al. 2000; Tadokoro 2000;
Maxwell et al. 2004; Jacoff, Messina, & Evans 2001) has
initiated the USAR robot competitions. NIST, in particular,
features future standards of robotics infrastructures, pioneer-
ing robotics participation to rescue missions. RoboCup Res-
cue contests are a test-bed of the technology development
of NIST project, and are becoming a central international
event for rescue robots, and a real challenge for the robotics
community. Rescue robots uphold human operators explor-
ing dangerous and hazardous environments and searching
for survivors.

A crucial aspect of rescue environments, discussed in
(Burke et al. 2004) and (Murphy 2004) concerns the op-
erator situation awareness and human-robot interaction. In
(Murphy 2004) the difficulties in forming a mental model
of the “robot eye” are endorsed, pointing out the role of the
team. Differently from real tests, like the one in Miami (see
(Burke et al. 2004)), during rescue competitions the oper-
ator is forced to be alone while coordinating the robot ac-
tivities, since any additional team member supporting the
operator would penalize the mission. The operator can fol-
low the robot activities only through the robot perception of

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the environment, and its internal states. In this sense, the
overall control framework has to capture the operator atten-
tion towards “what is important” so as to make the correct
choices: follow a path, enter a covert way, turn around an
unvisited corner, check whether a visible victim is really
reachable, according to some specific knowledge acquired
during the exploration. In this setting, a fully manual con-
trol over a robot rescue is not effective (Bruemmer et al.
2003): the operator attention has to be focused over a wide
range of activities, losing concentration on the real rescue
mission objective, i.e. locating victims. Moreover, a sig-
nificant level of training is needed to teleoperate a rescue
rover. On the other hand, fully autonomous control systems
are not feasible in a rescue domain where too many capabil-
ities are needed. Therefore, the integration of autonomous
and teleoperated activities is a central issue in rescue scenar-
ios and has been widely investigated (Kiesler & Hinds 2004;
Yanco & Drury 2002; Drury, Scholtz, & Yanco 2003;
Michael Baker & Yanco 2004; Yanco & Drury 2002).

In this work we describe a mixed-initiative planning
approach (Ai-Chang et al. 2004; Myers et al. 2003;
Allen & Ferguson 2002; Burstein & McDermott 1996) to
Human-Robot Interaction (HRI) in a rescue domain and il-
lustrate the main functionalities of a rescue robot system1.
We deploy a model-based executive monitoring system to
interface the operators’ activities and the concurrent func-
tional processes in a rescue rover. In this setting, the user’s
and the robot’s activities are coordinated by a continuos re-
active planning process which has to (i) check the execution
status with respect to a declarative model of the system; (ii)
provide proactive activity while mediating among conflict-
ing initiatives. In particular, we show that this approach can
enhance both the operator situation awareness and human-
robot interaction for the execution and control of the diverse
activities needed during a complex mission such as the res-
cue one.

The advantage of this approach can be appreciated con-
sidering the HRI awareness discussed in (Drury, Scholtz, &
Yanco 2003):

• robot-human interaction: given a declarative model of
the robot activities, the monitoring system can be “self-
aware” about the current situation, at different levels of

1Doro is the third award winner in Lisbon contest (2004)
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Figure 1: The mobile robot DORO, in a yellow arena.

abstraction; in this way, complex and not nominal inter-
actions among activities can be detected and displayed to
the operator;

• human-robot interaction: the operator can take advantage
of basic functionalities like mapping, localization, learn-
ing vantage points for good observation, victim detection,
and victim localization; these functionalities purposely
draw his attention toward the current state of exploration,
while he interacts with a mixed initiative reactive planner
(Ai-Chang et al. 2004).

Finally, the humans’ overall mission can take advantage of
the model, that keeps track of the robot/operator execution
history, goals, and subgoals. Indeed, the proposed control
system provides the operator with a better perception of the
mission status.

Rescue Scenario
NIST has developed physical test scenarios for rescue com-
petitions. There are three NIST arenas, called yellow, or-
ange, and red, of varying degrees of difficulty. A yel-
low arena represents an indoor flat environment with mi-
nor structural damage (e.g. overturned furniture), an orange
arena is multilevel and has more rubble (e.g. bricks), a red
one represents a very damaged unstructered environment:
multilevel, large holes, rubber tubing etc. The arenas are
accessible only by mobile robots controlled by one or more
operators from a separated place. The main task is to locate
as many victims as possible in the whole arena.

Urban search and rescue arena competitions are very hard
test-beds for robots and their architectures. In fact, the
operator-robot has to coordinate several activities: exploring
and mapping the environment, avoiding obstacles (bumping
is severely penalized), localizing itself, searching for vic-
tims, correctly locating them on the map, identifying them
through a numbered tag, and finally describing their own
status and conditions.

For each mission there is a time limit of 20 minutes, to
simulate the time pressure in a real rescue environment. In
this contest human-robot interaction has a direct impact on
the effectiveness of the rescue team performance.

We consider the NIST yellow arena as the test-bed for
our control architecture. It is mounted on our robotic plat-
form (DORO) whose main modules are: Map, managing
the algorithm of map construction and localization; Navi-
gation, guiding the robot through the arena with exploration
behaviour and obstacle’s avoidance procedures; Vision, used
in order to automatically locate victims around the arena.

In this context, (Murphy 2004) propose a high level se-
quence tasks cycle as a reference for the rescue system be-
haviour: Localize, Observe general surroundings, look spe-
cially for Victims, Report (LOVR). Our interpretation of the
cycle corresponds to the following tasks sequence: map con-
struction, visual observation, vision process execution and
victim’s presence report.

Human Robot Interaction and Mixed
Initiative Planning in Rescue Arenas

There have been several efforts to establish the essential
aspects of human-robot interaction, given the current find-
ings and state of the art concerning robot autonomy and
its modal-abilities towards humans and environments (see
e.g.(Dautenhahn & Werry 2000; Kiesler & Hinds 2004;
Burke et al. 2004; Sidner & Dzikovska 2002; Lang et al.
2003) and the already cited (Murphy 2004; Michael Baker &
Yanco 2004; Yanco & Drury 2002; Drury, Scholtz, & Yanco
2003), specifically related to the rescue environment. It is
therefore crucial to model the interaction in terms of a suit-
able interplay between supervised autonomy (the operator is
part of the loop, and decides navigation strategies according
to an autonomously drawn map, and autonomous localiza-
tion, where obstacle avoidance is guaranteed by the robot
sensory system) and full autonomy (e.g. visual information
is not reliable because of darkness or smoke etc., and the
operator has to lean upon the robot exploration choices).

In order to allow the tight interaction described above, we
designed a control system where the HRI is fully based on
a mixed-initiative planning activity. The planning process is
to continuously coordinate, integrate, and monitor the oper-
ator interventions and decisions with respect to the ongoing
functional activities, taking into account the overall mission
goals and constraints. More precisely, we developed an in-
teractive control system which combines the following fea-
tures:

• Model-based control. The control system is endowed
with declarative models of the controllable activities,
where causal and temporal relations are explicitly rep-
resented (Muscettola et al. 2002; Williams et al. 2003;
Muscettola et al. 1998). In this way, hard and soft con-
straints can be directly encoded and monitored. Further-
more, formal methods and reasoning engines can be de-
ployed either off-line and on-line, to check for consis-
tency, monitor the executions, perform planning or diag-
nosis. In a mixed-initiative setting the aim of a model-
based system is twofold: on the one hand the operator ac-
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tivities are explicitly modeled and supervised by the con-
trol system; on the other hand, the model-based monitor-
ing activity exports a view of the system that is intuitive
and readable by humans, hence the operator can further
supervise the robot status in a suitable human robot inter-
face.

• Reactive executive monitoring. Given this model, a re-
active planning engine can monitor both the system’s low-
level status and the operator’s interventions by continu-
ously performing sense-plan-act cycles. At each cycle the
reactive planner has to: (i) monitor the consistency of the
robot and operator activities (w.r.t. the model) managing
failures; (ii) generate the robot’s activities up to a planning
horizon. The short-range planning activity can also bal-
ance reactivity and goal-oriented behaviour: short-term
goals/tasks and external/internal events can be combined
while the planner tries to solve conflicts. In this way,
the human operator can interact with the control system
through the planner in a mixed initiative manner.

• Flexible interval planning. At each execution cycle a
flexible temporal plan is generated. Given the domain
uncertainty and dynamics, time and resources cannot be
rigidly scheduled. On the contrary, it is necessary to ac-
count for flexible behaviours, allowing one to manage dy-
namic change of time and resource allocation at execution
time. For this reason the start and end time of each sched-
uled activity is not fixed, but the values span a temporal
interval.

• High-level agent programming. The high-level agent
programming paradigm allows one to integrate procedu-
ral programming and reasoning mechanisms in a uniform
way. In this approach, the domain’s first principles are
explicitly represented in a declarative relational model,
while control knowledge is encoded by abstract and par-
tial procedures. Both the system’s and the operator’s pro-
cedural operations can be expressed by high-level partial
programs which can be completed and adapted to the ex-
ecution context by a program interpreter endowed with
inference engines.

Control Architecture
In this section, we describe the control system we have de-
fined to incorporate the design principles introduced above.
Following the approach in (Muscettola et al. 2002; Williams
et al. 2003; Volpe et al. 2001; Finzi, Ingrand, & Muscet-
tola 2004) we introduce a control system where decision
processes (including declarative activities and operator’s in-
terventions) are tightly coupled with functional processes
through a model-based executive engine. Figure 2 illus-
trates the overall control architecture designed for DORO.
The physical layer devices are controlled by three functional
modules associated to the main robots activities (mapping
and localization, visual processing, and navigation). The
state manager and task dispatcher in the figure are designed
to manage communication between the executive and func-
tional layers.
The state manager gets from each single module its current
status so that any module can query the state manager about
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Figure 2: Control architecture

the status of any another module. The state manager updates
its information every 200 msec., the task dispatcher sends
tasks activation signals to the modules (e.g. map start)
upon receiving requests from the planner or the human op-
erator. The overall computational cycle works as follows:
the planner gets the modules status querying the state man-
ager. Once the state manager provides the execution context,
the planner produces a plan of actions (planning phase about
0.5 sec.) and yields the first set of commands to the task dis-
patcher. In the execution phase (about 0.5 sec.), each module
reads the signals and starts its task modifying its state. At the
next cycle start, the planner reads the updated status through
the state manager and can check whether the tasks were cor-
rectly delivered. If the status is not updated as expected, a
failure is detected, the current plan is aborted and a suitable
recovery procedure is called.

Functional Modules. As mentioned above, the functional
layer is endowed with three main modules: Mapping and
Localization, Navigation, and Vision. These modules pro-
vide different tasks that can be activated or stopped accord-
ing to the start or end actions communicated by the task
dispatcher.

A functional module is a reactive component that changes
its internal status with respect to the action received from
the task dispatcher. Nevertheless, it can also provide some
proactiveness, by suggesting the planner/operator an action
to be executed. For instance, the Slam module assumes a
particular mode in order to communicate to the system that
a map’s construction cycle is ended, and then the control
system can decide an action to stop the mapping phase. Mo-
rover, some modules can directly interact among them by
communicating some low-level information bypassing the
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state manager (and the executive layer), e.g. Slam devises to
Navigation the coordinates of the nearest unexplored point
during the exploration phases.

User interaction. The human operator can interact with
the control loop both during the plan and the act phase. In
the planning phase, the operator can interact with the control
system by: (i) posting some goals which are to be integrated
in the partial plan already generated; (ii) modifying the gen-
erated plan through the user interface; (iii) on-line changing
some planning parameters, like the planning horizon, the
lenght of the planning cycle, etc.. In the executive phase,
the user can directly control some functional modules (e.g.,
deciding where the rover is to go, or when some activities
are to stop). In this case, the human actions are assimilated
to exogenous events the monitoring system is to manage and
check. Finally, the operator’s actions can be accessed by the
state manager, and, analogously to the functional modules,
can be monitored by the model-based control system.

Model-Based Monitoring
The role of a model-based monitoring system is to enhance
both the system safeness and the operator situation aware-
ness. Given a declarative representation of the system causal
and temporal properties, the flexible executive control is
provided by a reactive planning engine which harmonizes
the operator activity (commands, tasks, etc.) with the mis-
sion goals and the reactive activity of the functional mod-
ules. Since the execution state of the robot is continuously
compared with a declarative model of the system, all the
main parallel activities are integrated into a global view and
subtle resources and time constraints violations can be de-
tected. In this case the planner can also start or suggest re-
covery procedures the operator can modify, neglect, or re-
spect. Such features are implemented by deploying high-
level agent programming in Temporal Concurrent Golog
(Reiter 2001; Pirri & Reiter 2000; Finzi & Pirri 2004) which
provides both a declarative language (i.e. Temporal Concur-
rent Situation Calculus (Pinto & Reiter 1995; Reiter 1996;
Pirri & Reiter 2000)) to represent the system properties and
the planning engine to generate control sequences.

Temporal Concurrent Situation Calculus. The Situation
Calculus (SC) (McCarthy 1963) is a sorted first-order lan-
guage representing dynamic domains by means of actions,
situations, i.e. sequences of actions, and fluents, i.e. situ-
ation dependent properties. Temporal Concurrent Situation
Calculus (TCSC) extends the SC with time and concurrent
actions. In this framework, concurrent durative processes
(Pinto & Reiter 1995; Reiter 1996; Pirri & Reiter 2000) can
be represented by fluent properties started and ended by du-
rationless actions. For example, the process going(p1, p2)
is started by the action startGo(p1, t) and it is ended by
endGo(p2, t

′).

Declarative Model in TCSC. The main processes and
states of DORO are explicitly represented by a declarative

dynamic-temporal model specified in the Temporal Con-
current Situation Calculus (TCSC) . This model represents
cause-effect relationships and temporal constraints among
the activities: the system is modeled as a set of components
whose state changes over time. Each component (including
the operator’s operations) is a concurrent thread, describing
its history over time as a sequence of states and activities.
For example, in the rescue domain some components are:
pant-tilt, slam, navigation, visualPerception, etc.

Each of these is associated with a set of processes, for in-
stance some of those are the following: SLAM can perform
slmMap to map the environment and slmScan to acquire
laser measures; visualPerception can use visProcess(x) to
process an image x. navigation can explore a new area
(nvWand) or reach a target point x (nvGoTo); pan-tilt
can deploy ptPoint(x) (moving toward x ) and ptScan(x)
(scanning x). The history of states for a component over a
period of time is a timeline. Figure 3 illustrates a possible
evolution of navigation, slam, and pan-tilt up to a plan-
ning horizon.

WANDERING GOTO GOTO

MAPIDLEMAP

IDLE POINT SCAN

STOP

PTU

NAV

SLAM

IDLEPOINT

current
time

Execution history planning
horizon

Figure 3: Timelines evolution

Hard time constraints among activities can be defined
by a temporal model using Allen-like temporal relations,
e.g.: ptPoint(x) precedes ptScan(x), ptScan(x) during
nvStop, etc..

Temporal Concurrent Golog. Golog is a situation
calculus-based programming language which allows one to
define procedural scripts composed of primitive actions ex-
plicitly represented in a SC action theory. This hybrid
framework integrates procedural programming and reason-
ing about the domain properties. Golog programs are de-
fined by means of standard (and not so-standard) Algol-like
control constructs: (i) action sequence: p1; p2, (ii) test: φ?,
(iii) nondeterministic action choice p1|p2, (iv) condition-
als, while loops, and procedure calls. Temporal Concurrent
Golog (TCGolog) is the Golog version suitable for durative
and parallel actions, it is based on TCSC and allows parallel
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action execution: a‖b. An example of a TCGolog procedure
is:

proc(observe(x),
while (nvStop ∧ ¬obs(x)) do π(t1, start(t1)? :
[if (ptIdle(0)) do π(t2, startPoint(x, t1) : (t2 − t1<3)?)|
if (ptIdle(x)) do π(t3, startScan(x, t3) : (t3 − t1<5)?))).

Here the nondeterministic choice between startPoint and
startScan is left to the Golog interpreter which has to de-
cide depending on the execution context. Note that, time
constraints can be encoded within the procedure itself. In
this case the procedure definition leaves few nondetermistic
choices to the interpreter. More generally, a Golog script can
range from a completely defined procedural program to an
abstract general purpose planning algorithm like the follow-
ing:

proc(plan(n),
true? | π(a, (primitive action(a))? : a) : plan(n− 1))

The semantics of a Golog program δ is a situation calculus
formula Do(δ, s, s′) meaning that s′ is a possible situation
reached by δ once executed from the situation s. For exam-
ple, the meaning of the a|b execution is captured by the log-
ical definition Do(a|b, s, s′) .= Do(a, s, s′) ∨ Do(a, s, s′).

Flexible behaviours. Our monitoring system is based on a
library of Temporal Concurrent Golog scripts representing a
set of flexible behaviour fragments. Each of them is associ-
ated to a task and can be selected if it is compatible with the
execution context. For example a possible behaviour frag-
ment can be written as follows:

proc(explore(d),
[π(t1, startMap(t1))‖π(t2, startWand(t2) :
π(t3, endWand(t3) : π(x, startGoto(x, t3)) : (t3 − t2<d)?))].

This Golog script is associated with the exploration task, it
starts both mapping and wandering activities; the wandering
phase has a timeout d, after this the rover has to go some-
where. The timeout d will be provided by the calling process
that can be either another Golog procedure or a decision of
the operator.

Reactive Planner/Interpreter As illustrated before, for
each execution cycle, once the status is updated (sensing
phase), the Golog interpreter (planning phase) is called to
extend the current control sequence up to the planning hori-
zon. When some task ends or fails, new tasks are selected
from the task library and compiled into flexible temporal
plans filling the timelines.

Under nominal control, the robot’s activities are sched-
uled according to a closed-loop similar to the LOVR (Local-
ize, Observe general surroundings, look specially for Vic-
tims, Report) sequence in (Murphy 2004). Some of these
activities can require the operator initiative that is always al-
lowed.

Failure detection and management Any system mal-
functioning or bad behaviour can be detected by the reactive
planner (i.e. the Golog interpreter) when world inconsisten-
cies have to be handled. In this case, after an idle cycle a
recovery task has to be selected and compiled w.r.t the new
execution status. For each component we have classified a
set of relevant failures and appropriate flexible (high-level)
recovery behaviours. For example, in the visual model, if the
scanning processes fails because of a timeout, in the recov-
ery task the pan-tilt unit must be reset taking into account
the constraints imposed by the current system status. This
can be defined by a very abstract Golog procedure, e.g.

proc(planToPtuInit,
π(t, time(t)? : plan(2) : π(t1, P tIdle(0) :

time(t1)? : (t1 − t < 3)?))).

In this case, the Golog interpreter is to find a way to compile
this procedure getting the pan-tilt idle in less than two steps
and three seconds. The planner/Golog interpreter can fail
in its plan generation task raising a planner timeout. Since
the reactive planner is the engine of our control architecture,
this failure is critical. We identified three classes of recov-
eries depending on the priority level of the execution. If the
priority is high, a safe mode has to be immediately reached
by means of fast reactive procedures (e.g. goToStandBy).
In medium priority, some extra time for planning can be ob-
tained by interleaving planning and execution: a greedy ac-
tion is executed so that the interpreter can use the next time-
slot to end its work. In the case of low priority, the failure
is handled by replanning: a new task is selected and com-
piled. In medium and low level priority the operator can be
explicitly involved in the decision process in a synchronous
way. During a high-priority recovery (i.e. goToStandBy)
the autonomous control is to manage the emergency, unless
the operator wants to take care of it disabling the monitoring
system.

Mixed-Initiative Planning
The control architecture introduced before allows us to de-
fine some hybrid operative modalities lying between au-
tonomous and teleoperated modes and presenting some ca-
pabilities that are crucial in a collaborative planning setting.
In particular, following (Allen & Ferguson 2002), our sys-
tem permits incremental planning, plan stability, and it is
also open to innovation.

The high-level agent programming paradigm, associated
with the short-range planning/interpretation activity, permits
an incremental generation of plans. In this way, the user at-
tention can be focused on small parts of the problem and the
operator can assess local possible decisions, without losing
the overall problem constraints.

Plan stability is guaranteed by flexible behaviours and
plan recovery procedures, which can harmonize the modi-
fication of plans, due to the operator’s interventions or ex-
ogenous events. Minimal changes to plans lead to short re-
planning phases minimizing misalignments.

Concerning the open to innovation issue, the model-based
monitoring activity allows one to build novel plans, under
human direction, and to validate and reason about them.
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Depending on the operator-system interaction these fea-
tures are emphasized or obscured. We distinguish among
three different mixed-initiative operational modalities.
• Planning-based interaction. In this setting, the planning

system generates cyclic LOVR sequences and the oper-
ator follows this sequence with few modifications, e.g.
extending or reducing process durations. Here task dis-
patching is handled in an automated way and the oper-
ator can supervise the decisions consistency minimizing
the interventions. The human-operator can also act as an
executor and manually control some functional activities
scheduled by the planner. For example, he can decide to
suspend automated navigations tools and take the control
of mobile activities, in this way he can decide to explore
an interesting location or escape from difficult environ-
ments. In this kind of interaction the operator initiative
minimally interferes with the planning activity and plan
stability is emphasized.

• Cooperation-based interaction. In this modality, the
operator modifies the control sequence produced by the
planner by skipping some tasks or inserting new actions.
The operator’s interventions can determine a misalign-
ment between the monitoring system expectations (i.e.
the control plan) and the state of the system; this is cap-
tured at beginning of the next execution cycle when the
state monitor provides the current state of the modules. In
order to recover the monitor-system adherence, the plan-
ner has to start some recovery operations which are pre-
sented to the operator. Obviously, these activities are to
be executed in real-time by verifying the satisfiability of
the underlaying temporal and causal constraints.
This modality enables maximal flexibility for the plan-
ner’s and operator’s initiatives. Indeed, they can dialogue
and work in a concurrent way contributing to the mis-
sion completion (incremental planning): while the opera-
tor tries to modify the plan in order to make it more effec-
tive (i.e. the system is open to innovation), the monitoring
system can validate the operator’s choices. Moreover, in
the case of safety constraints violations, it warns the user
and/or suggests suitable corrections.

• Operator-based interaction. This modality is similar
to teleoperation, the system activities are directly man-
aged by the operator (some minor autonomy can always
be deployed when the operator attention is to be focused
on some particular task, e.g. looking for victims). The
operator-based interaction is reached when the operators’
interventions are very frequent, hence the planner keeps
replanning and cannot support the user with a meaningful
proactive activity. In this operative scenario, the planner
just follows the operators’ choices playing in the role of
a consistency checker. The monitoring system can no-
tify the user only about safety problems and, in this case,
recovery procedures can be suggested (incremental plan-
ning can be used only to generate non-critical planning
procedures).

Each of these modalities is implicitly determined by the way
the operator interacts with the system. Indeed, in a mixed-
initiative setting, if the operator is idle, the monitor works

Figure 4: DORO graphical interface showing the current
global map, the victims detected and localized, the path-
history: in blue the whole history, and in yellow the most
recent one.

in the planner-based mode. Instead, the operator’s interven-
tions can disturb such a status bringing the system toward
the operator-based interaction. However, the operator can
always directly set the latter interaction mode by setting to
zero the planning horizon and disabling the planner proac-
tive activity. Note that for each mixed-initiative mode, the
monitoring system continuously checks the activities per-
formed, including human-operator actions, and when nec-
essary it replans or provides suggestions to the operator.

Mixed-initiative approach at work
The architecture discussed in this article is implemented on
our robotic platform (DORO) and here we present some tests
performed in a yellow rescue arenas.

Robotic Platfrom. The hardware platform for DORO is
a two wheeled differential drive Pioneer from ActivMedia
with an on-board laptop hosts navigation, map building, re-
active planning routines and the on-board sensors control
processing. An additional PC, for remote control, is also
used for image processing. The two PCs running Windows
XP are linked with an Ethernet wireless LAN (802.11a) to
enable remote control and monitoring of the mobile robot.
Two color cameras are mounted on top of the robot on a
pant-tilt head. A laser range finder DISTO pro is mounted
on the pan-tilt between the two cameras.

Robot Software. The robot motion control (speed and
heading) and sonar readings are provided by a serial connec-
tion to the Pioneer controller using the Aria API facilities.
Video streaming and single frames are acquired through the
Image Acquisition Toolbox from Matlab (TM). Inertial data
and laser measurements are acquired through dedicated C++
modules that manage the low level serial connections.

Experiences in our domestic arenas. We tested the con-
trol architecture and the effectiveness of the mixed-initiative
approach in our domestic arenas comparing three possible
settings: (i) fully teleoperated: navigation, slam, and vision
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disabled; (ii) mixed-initiative control: the monitoring sys-
tem was enabled and the operator could supervise the rover
status and take the control whenever this was needed; (iii)
autonomous control.

During mixed-initiative control tests, we considered also
the percentage of time spent by the operator in operator-
based mode (see operator in the table below). We deployed
these three settings on yellow arenas considering increasing
surface areas, namely, 20 m2, 30 m2, 40 m2 (see surface
in the table below), associated with increasingly complex
topologies. For each test, there were 4 victims to be discov-
ered. We limited the exploration time to 10 minutes. We
performed 10 tests for each modality. Different operators
were involved in the experiments in order to avoid an opera-
tor visiting the same arena configuration twice.

For each test class we considered: (i) the percentage of
the exlored arena surface; (ii) the number of visited and
inspected topological environments (rooms, corridors, etc.)
w.r.t. the total number; (iii) the overall number of encoun-
tered obstacles (i.e. arena bumps); (iv) the number of de-
tected victims; (v) the operator activity (percentage w.r.t. the
mission duration). The results are summarized in the Table
1 reporting the average values of each field.

Fully Teleop Supervised Autonomous
Surface (m2) 20 30 40 20 30 40 20 30 40

Explored (%) 85 78 82 85 82 79 49 80 75
Visited env. 5/6 7/9 7/9 6/6 8/9 7/9 3/6 7/9 6/9
Bumps (tot.) 11 7 9 3 2 2 2 1 2
Victims (x/4) 3.0 2.1 2.2 2.5 2.6 2.1 1.3 1.4 1.2
Operator (%) 100 100 100 10 15 15 0 0 0

Table 1: Experimental results for the three operational
modalities.

Following the analysis schema in (Scholtz et al. 2004) here
we discuss the following points: global navigation, local
navigation and obstacle encountered, vehicle state, victim
identification.

Concerning global navigation, the performance of the
mixed-initiative setting are quite stable while the au-
tonomous system performs poorly in small arenas because
narrow environments challenge the navigation system which
is to find how to escape from them. In greater and more
complex arenas the functional navigation processes (path
planner, nearest unexplored point system, etc.) start to be
effective while the fully teleoperated behaviour degrades:
the operator gets disoriented and often happens that already
visited locations and victims are considered as new ones,
while we never experienced this in the mixed-initiative and
autonomous modes. The effectiveness of the control sys-
tem for local navigation and vehicle state awareness can be
read on the bumps row; indeed the bumps are significantly
reduced enabling the monitoring system. In particular, we
experienced the recovery procedures effectiveness in warn-
ing the operator about the vehicle attitude. E.g. a typical
source of bumping in teleoperation is the following: the vi-
sual scanning process is interrupted (timeout) and the op-
erator decides to go on in one direction forgetting the pan-

tilt in a non-idle position. Enabling the monitor, a recov-
ery procedure interacts with the operator suggesting to re-
set the pan-tilt position. The victim identification effective-
ness can be assessed considering the founded victims in the
autonomous mode; considering that visual processing was
deployed without any supervision, these results seem quite
good (we experienced some rare false-positive).

Our experimental results show that the system perfor-
mances are enhanced with the presence of an operator super-
vising the mission. It seems that the autonomous activities
are safely performed, but the operator can choose more ef-
fective solutions in critical situations. For instance, the num-
ber of visited environments in supervised mode (see Table 1)
is greater than that one in the autonomous mode, while the
victims detected are approximately the same. Furthermore,
the number of bumps in teleoperated mode is greater than
in both supervised and autonomous settings, and this can be
explained by the cognitive workload on the operator during
the teleoperation. Thus, we can trade off high performances
and low risks by exploiting both human supervision and ma-
chine control .

Conclusion
Human-robot interaction and situation awareness are crucial
issues in a rescue environment. In this context a suitable
interplay between supervised autonomy and full autonomy
is needed. For this purpose, we designed a control system
where the HRI is fully based on a mixed-initiative planning
activity which is to continuously coordinate, integrate, and
monitor the operator interventions and decisions with re-
spect to the concurrent functional activities. Our approach
integrates model-based executive control, flexible interval
planning and high level agent programming.

This control architecture allows us to define some hybrid
operative modalities lying between teleoperated mode and
autonomous mode and presenting some capabilities that are
crucial in a collaborative planning setting.

We implemented our architecture on our robotic platform
(DORO) and tested it in a NIST yellow arena. The com-
parison between three possible settings (fully teleoperated,
mixed-initiative control, autonomous control) produce en-
couranging results.
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Abstract   
We describe a domain-independent framework for plan 
summarization and comparison that can help a human 
understand both the key elements of an individual plan and 
important differences among plans. Our approach is 
grounded in the use of a domain metatheory, which is an 
abstract characterization of a planning domain that specifies 
important semantic properties of templates, planning 
variables, and instances.  The metatheory provides a 
semantic framework for guiding the choice and description 
of concepts used in summarizing and comparing plans, thus 
enabling results that are grounded in semantically 
significant concepts rather than syntactic constructs whose 
meaning or import is unclear. We define three specific 
capabilities grounded in the metatheoretic approach: (a) 
summarization of an individual plan, (b) comparison of 
pairs of plans, and (c) analysis of a collection of plans.  Use 
of these capabilities within a rich application domain shows 
their value in facilitating the understandability of complex 
plans by a user. 

Introduction 
AI planning technology is being applied in increasingly 
more challenging application domains, resulting in the 
generation of plans with rich sophistication and 
complexity. In these complex domains, it is generally the 
case that a wide range of solutions is possible; part of the 
challenge for a human decision maker is to analyze the 
relative merits of various candidates before deciding on a 
final option. Given these advances, the development of 
tools that can help users understand complex plans and 
tradeoffs among them presents an important technological 
challenge.   
 In this paper, we describe an approach to plan 
summarization and comparison that is designed to help a 
human understand both the key elements of an individual 
plan and important differences among alternative plans. 
Our approach is grounded in the use of a domain 
metatheory.  The domain metatheory is an abstract 
characterization of a planning domain that specifies 
important semantic properties of templates, planning 
variables, and instances.  The abstraction provides the 
means to describe and compare plans in high-level, 
semantically meaningful terms.  
                                                 
Copyright © 2002, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved. 
 

 Previous work on plan summarization and explanation 
has been grounded in methods that are tightly linked to 
either the syntactic characteristics of a plan’s structure or 
the underlying reasoning processes used to generate it. 
Such approaches suffer from the problem that these 
structures and processes match the system’s 
conceptualization of the domain rather than that of the 
user. As such, their outputs have limited explanatory value.  
 The concept of the domain metatheory was introduced 
originally to provide a language that would enable a user 
to advise a planning system, without requiring detailed 
knowledge of its internal workings [Myers 1996]. Advice, 
which describes high-level characteristics of desired 
solutions, is operationalized into structures and 
mechanisms that guide an automated planning system at 
runtime.   Subsequently, the metatheory was also used as 
the basis for generating qualitatively different plans, by 
using structure within the metatheory to direct a planning 
system toward solutions with distinct semantic traits 
[Myers & Lee 1999]. 
 A key insight underlying the work reported here is that 
the metatheory can be used as the basis for identifying and 
communicating important explanatory information about a 
plan. In particular, the metatheory provides a semantic 
framework for guiding the choice of concepts used in 
summarizing and comparing plans. The resultant 
comparisons and summaries are thus grounded in 
semantically significant concepts rather than syntactic 
constructs whose meaning or import are unclear.  
 Within our metatheoretic framework, we define 
techniques for (a) summarization of an individual plan, (b) 
comparison of pairs of plans, and (c) analysis of a 
collection of plans.  These techniques look for regularities 
or interesting exceptions relative to key aspects of the 
domain metatheory.  For example, a metatheory role 
corresponds to an important actor or object within a plan.  
In comparing two plans, one interesting dimension to 
consider is whether the plans fill key roles in different 
ways. Two plans may be similar in structure but one uses a 
cheap and abundant resource while the other relies on an 
expensive and more exotic resource.  
 Our approach embodies the spirit of reconstructive 
explanation [Wick and Thompson 1992], whereby an 
explanation is produced not by the system's own internal 
knowledge, but by a separate store of explanatory 
knowledge designed specifically with the user in mind. We 
believe that this style of approach is critical to ensuring 
that the results are of value to a user, rather than driven by 
the syntactic structure of the plan.  
 The plan summarization and comparison methods have 
been implemented within the PASSAT mixed-initiative 
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planning framework [Myers et al. 2002].  To assess their 
effectiveness in facilitating user understandability of 
complex plans, we applied the methods to a test suite from 
an extensive special operations domain. This usage shows 
that our techniques can help a user understand subtle 
aspects of individual plans, important differences among 
plans, and the structure of the overall solution space.  

Domain Metatheory 
Our plan summarization and comparison work assumes a 
hierarchical task network (HTN) paradigm for 
representing plans, similar to that described in [Erol et al. 
1994].  An HTN domain theory consists of four basic types 
of element: individuals corresponding to real or abstract 
objects in the domain, relations that describe 
characteristics of the world, tasks to be achieved, and 
templates that describe available means for achieving 
tasks. (Templates are alternatively referred to as methods 
or operators in the literature.)  We assume a type hierarchy 
for terms within the domain model.  Thus, each individual 
has an associated type Type(v), and there is a unique most-
specific supertype MinSupertype(V) defined for any set of 
individuals V.  
 A domain metatheory defines semantic properties for 
domain theory elements that abstract from the syntactic 
details of the domain knowledge. The metatheory for plan 
summarization and comparison is similar to that introduced 
for the work on advisable planning. To support 
summarization and comparison, however, we introduce a 
few extensions and refinements that provide a somewhat 
richer and more structured framework.  The main 
metatheoretic concepts that we use are template features, 
task features, and roles.    

Template Features 
A template feature designates a characteristic of a template 
that distinguishes it from other templates that could be 
applied to the same task.  For example, among templates 
that could be applied to a transportation task, there may be 
an air-based template that is fast but expensive with a 
land-based alternative that is slow but cheap. Although 
the two templates are functionally equivalent in that they 
accomplish the same task, they differ significantly in their 
approaches.  Template features provide the means to 
distinguish among such functionally equivalent 
alternatives by capturing these characteristics explicitly.    
 We model template features in terms of a feature 
category (e.g., COST) and a feature value (e.g., 
expensive). Feature values are drawn from a predefined 
set that constitutes the domain of the feature category. For 
this work, we require that the domain for a template 
feature be totally ordered (that need not be true in general).  
 We say that a template feature f with value v occurs in 
plan P iff there is some template T applied to a task t in P 
such that T has the feature f with value v.  In general, a 
plan may have multiple occurrences of a given template 
feature that cut across templates used to accomplish a 

range of tasks. Different occurrences may have different 
values associated with them; duplication of values is also 
possible. The term TemplFeatureInsts(f,P) denotes the 
collection of values (including duplicates) for occurrences 
of  template feature f in plan P.   
 The value of template features for plan summarization 
and comparison is that they provide the means to identify, 
abstract, and contrast important evaluational properties of 
different strategies, such as speed or cost.  In particular, 
template features can be used as a kind of ‘quick and dirty’ 
proxy for deeper, more significant evaluations of a plan.   

Task Features 
Task features capture important semantic attributes of a 
task.  As with template features, task features are modeled 
in terms of a feature category and feature value. Here, we 
focus on task features that designate types of activities, and  
restrict categories to have the domain [false true].  
For example, there may be several types of reconnaissance 
task: satellite reconnaissance, ground reconnaissance, and 
aircraft reconnaissance.  Each of these tasks can be 
assigned the feature RECON with value true, thus 
providing a mechanism for abstracting over that set of 
tasks.  (A similar sort of grouping could be achieved 
through the use of a class hierarchy for tasks.)   
 We say that a plan P has a task feature f iff some task t 
in P has the feature f with value true. The term 
TaskFeatures(P) denotes the set of task features for P. 

Roles 
A role describes a capacity in which an individual is used 
within a template or task; it maps to a template or task 
variable.  For instance, a template for transporting 
materials may contain variables location.1 and 
location.2, with the former corresponding to the START 
role and the latter the DESTINATION role for the move. 
Roles provide a semantic basis for describing the use of 
individuals within templates and tasks that abstracts from 
the details of specific variable names. Roles also provide 
the means to reference a collection of semantically linked 
variables that span different templates and tasks (i.e., 
START roles may occur in multiple templates and tasks).  
 We say that a role r with fill v occurs in plan P iff either: 
• there is some task t(a1, … an) in P such that t has the 

declared role r for its ith argument, and ai = v, [Task 
Role] or  

• some template T with role r declared for local variable 
xi is applied to a task t(a1, … an) in P, and xi is bound 
to v  [Template Role] 

The term Roles(P) denotes the set of roles that occur in 
plan P, while RoleFills(r,P) denotes the collection of 
values (including duplicates) that occur as fills for role r in 
plan P.  
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Experimental Framework 
We evaluated the effectiveness of our plan summarization 
and comparison techniques on a suite of nine test plans 
drawn from a special operations forces (SOF) domain. 
(This domain was created as part of an earlier project 
focused on mixed-initiative planning technology.) The 
SOF domain constitutes a sizable and rich test environment 
for evaluating our work on plan summarization and 
comparison: the base-level domain contains 65 predicates 
modeling key world properties, more than 100 tasks, and 
more than 50 templates spanning a hierarchy of five 
abstraction layers.  
 The original SOF domain included a limited metatheory 
designed to showcase advice-taking within the PASSAT 
system [Myers et al. 2002].  For this work, we extended 
the domain to include a fairly comprehensive metatheory 
with 13 template features, 12 task features, and more than 
75 roles.  The task features (see Figure 3) use the domain 
[false true]; the template features (see Figure 4) use 
the domain [low medium high]. 
 The test plans address the high-level task of extracting a 
set of hostages held by a guerilla team in an urban 
environment. More specifically, this task requires rescuing 
a set of hostages being kept at Mogadishu-Town-Hall 
using forces based at Riyadh Airport, and then evacuating 
the hostages to a safe haven at Riyadh Stadium.  
 The SOF domain includes a number of templates that 
reflect different strategies for rescuing the hostages.  
Variations among solutions result from three sources.  The 
first is whether the plan contains certain types of strategic 
and tactical activities; depending on a given situation, the 
commander may or may not decide to include such 
activities within the plan.  For example, while it is not 
necessary to create diversions to distract the guerillas, 
doing so may be desirable in some circumstances.  The 
second relates to the selection of resources to be used.  In 
some cases, for example, it may be appropriate to use 
satellites to gather intelligence information while in others 
it may be preferable to rely on ground forces.  The third 
relates to decisions about key parameters within a plan, 
such as where to establish a forward base or the drop point 
for inserting the assault team.  
 Figure 1 summarizes the nine test plans used in our 
evaluation.   These plans were created by the developer of 
the SOF domain knowledge, through a combination of 
manual and semiautomated methods within PASSAT.1 The 
plan developer was asked to create a core set of plans 
reflecting a representative set of strategic alternatives that a 
SOF commander might consider.  Additionally, he was 
asked to create variants of the core plans by making a few 
key strategic changes that might correspond to handling 
contingencies in different ways. Given that variants of this 
type are commonly made in practice, we were interested in 
                                                 
1 The plan developer was not involved with the research on plan 
summarization and comparison described in this paper. As such, the plans 
provide an objective test suite for evaluating the reported work. 

determining how well our plan comparison techniques 
would be able to recognize the differences among them. 
 
 
Plan Identifier Description 

tiny-plan-a Very simple plan without security or support 
tiny-plan-b Variant on tiny-plan-a that uses a different 

type of rescue force 
small-plan-a Basic solution that includes reconnaissance 

and combat search and rescue 
small-plan-b Variant on small-plan-a that uses the same 

high-level strategy but differs in the lower-
level realization of parts of it 

medium-plan-a Broadly similar to the small plans but 
involves refueling 

medium-plan-b Broadly similar to the small plans but with 
suppression of enemy air defenses (SEAD) 

activities 
large-plan-a Extensive plan with significant 

reconnaissance and support activities as well 
as a diversion from the main assault 

large-plan-b Variant on large-plan-a that provides 
increased fire support and SEAD 

large-plan-c Variant on large-plan-a with a different style 
of diversion 

Figure 1. Summary of Test Plans 

Plan Summarization 
The roles and features of the metatheory provide a 
semantic basis for summarizing key properties of a plan.  
In particular, a description of how a plan fills its roles and 
the features that it possesses can provide valuable insight 
into the structure, strengths, and weaknesses of a plan. 

Task Features  
Task features provide a succinct summary of key activity 
types within a plan.  In particular, such a summary can 
inform the user that a given plan does or does not contain 
critical activities such as reconnaissance or fire support.   

Template Features  
Template features provide a different perspective on a 
plan, as they designate plan characteristics that have more 
of an evaluational nature (e.g., cost, speed).   Template 
features can be applied in multiple contexts within a plan, 
with different occurrences yielding different values.  This 
variation reflects the fact that, for example, a given plan 
may use an inexpensive reconnaissance operation but an 
expensive rescue strategy.    To enable plan-level 
summarization of the property represented by a template 
feature, we introduce the concept of template feature value 
for a feature f and plan P, denoted by 
TemplFeatureValue(f,P).  This value is defined to be the 
average of the values for all occurrences of f within P. 
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Definition 1 [Template Feature Value for a Plan] The 
template feature value for feature f and plan P is defined 
by TemplFeatureValue(f,P)=Avg (TemplFeatureInsts(f,P)). 
 
 The use of a qualitative domain for template features (as 
in the SOF application) introduces a complication in 
computing TemplFeatureValue(f,P), as it is necessary to 
support qualitative averaging.  To this end, we require for 
each qualitative feature f a surjective, order-preserving 
mapping θf from a designated interval of the reals 
Interval(f) to the domain of the feature f: θf: Interval(f)  
Domain(f). Variation in the ‘closeness’ of values in 
Domain(f) can be achieved by appropriate definitions of 
θf.2 With this mapping, we define the average of a set V of  
qualitative template feature values as follows: 
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Roles  
A description of how roles are filled within a plan can 
provide a concise summary of what resources are used and 
how, as well as key parameters to a plan (e.g., the choice 
of location for a forward base).   Furthermore, it is possible 
to search for patterns in the filling of roles.  So, for 
example, it may be useful to know that only satellites are 
used as reconnaissance assets, or that all transport of 
troops is through the use of helicopters of a particular type.    
We refer to such patterns as uniformities in the filling of 
roles.  Here, we define two specific types of uniformity for 
role fills, oriented around values and types.  
 
Definition 2 [Value Uniformity in Role Fills] A plan P 
uniformly fills a role r with  value c  iff |RoleFills(r,P)| > 1 
and v ∈RoleFills(r,P) implies that v =c.  
 
Type uniformity depends on the declaration of a type 
Type(r) for a given role r, which indicates that all fills for 
role r must be of that type.  Type uniformity becomes 
interesting when some proper subtype of Type(r) 
generalizes all fills for a given role. For example, it can be 
useful to note that only satellites are used for 
reconnaissance within a given plan, although other types of 
assets (e.g., ground forces) are possible.  
 
Definition 3 [Type Uniformity in Role Fills] A plan P 
uniformly fills a role r with a type T iff |RoleFills(r,P)| > 1, 
T is a proper subtype of Type(r), and every fill value 
v∈RoleFills(r,P) is of type T. 
 
Value and type uniformity for roles constitute generic, 
domain-independent mechanisms for generalizing a 
collection of role fills.  For a given domain, it may be  
                                                 
2 For the SOF metatheory, every template feature has the domain [low 
medium high], the interval [0,1], and the mapping function θ: [0,1]  
[low medium high]  where θ-1 is distributed linearly across [0,1]: low 
maps to 0, medium to 0.5 and high to 1. 

* (Rescue-Hostage Mogadishu-Town-Hall Riyadh-Airport Riyadh-Stadium) 
   * (Rescue-And-Recover Riyadh-Airport Mogadishu-Town-Hall Riyadh-Stadium)  
      * (Recon Mogadishu-Town-Hall)  
         * (Infiltrate Green-Oda-2 Ankara-Airport Mogadishu-Town-Hall) 
            * (Produce-Landing-Plan Mh-60-G-Pave-Hawk-2) 
            * (Produce-Air-Movement-Plan Mh-60-G-Pave-Hawk-2) 
            * (Produce-Loading-Plan Green-Oda-2) 
            * (Produce-Aircraft-Bump-Plan Green-Oda-2) 
            * (Load Green-Oda-2 Mh-60-G-Pave-Hawk-2) 
            * (Fly Mh-60-G-Pave-Hawk-2 Ankara-Airport Mogadishu-Stadium) 
            * (Drop Green-Oda-2 Mh-60-G-Pave-Hawk-2 Mogadishu-Town-Hall) 
            * (Depart Mh-60-G-Pave-Hawk-2 Mogadishu-Stadium) 
         * (Establish-Observation-Post Green-Oda-2 Mogadishu-Town-Hall) 
         * (Exfiltrate Green-Oda-2 Mogadishu-Town-Hall Mogadishu-Building4)  
            * (Fly Uh-60a-2 Mogadishu-Town-Hall Mogadishu-Building3) 
            * (Load Green-Oda-2 Uh-60a-2) 
            * (Depart Uh-60a-2 Mogadishu-Building3) 
         * (Provide-Fire-Support Mogadishu-Town-Hall)  
            * (Take-Off Ch-53e-Super-Stallion-1 Addis-Ababa-Airport) 
            * (Fly Ch-53e-Super-Stallion-1 Addis-Ababa-Airport Mogadishu-Town-Ha
            * (Place-On-Station-Fire-Support Ch-53e-Super-Stallion-1 Mogadishu-T
            * (Fly Ch-53e-Super-Stallion-1 Mogadishu-Town-Hall Addis-Ababa-Airpo
            * (Land-At Ch-53e-Super-Stallion-1 Addis-Ababa-Airport) 
         * (Provide-Csar-Coverage Csar-Team-2 Mogadishu-Town-Hall)  
            * (Prepare Csar-C1-A) 
            * (Take-Off Csar-C1-A Baidoa-Stadium) 
            * (Fly Csar-C1-A Baidoa-Stadium Mogadishu-Town-Hall) 
            * (On-Station Csar-C1-A Mogadishu-Town-Hall) 
            * (Provide-Fire-Support Mogadishu-Town-Hall)  
               * (Take-Off Ah-100-1 Balikesir-Stadium) 
               * (Fly Ah-100-1 Balikesir-Stadium Mogadishu-Town-Hall) 
               * (Place-On-Station-Fire-Support Ah-100-1 Mogadishu-Town-Hall) 
               * (Fly Ah-100-1 Mogadishu-Town-Hall Balikesir-Stadium) 
               * (Land-At Ah-100-1 Balikesir-Stadium) 
            * (Provide-Sead Sead-1 Ad-Dammam-Stadium Mogadishu-Town-Hall)  
               * (Prepare Sead-1) 
               * (Take-Off Sead-1 Ad-Dammam-Stadium) 
               * (Fly-To Sead-1 Mogadishu-Town-Hall) 
      * (Infiltrate Orange-Oda-1 Riyadh-Airport Mogadishu-Town-Hall)  
         * (Fly-Commercial Aa7864 Orange-Oda-1 Riyadh-Airport Mogadishu-Town-Hal
      * (Storm Orange-Oda-1 Mogadishu-Town-Hall) 
      * (Exfiltrate Orange-Oda-1 Mogadishu-Town-Hall Riyadh-Stadium)  
         * (Fly-Commercial Aa201 Orange-Oda-1 Mogadishu-Town-Hall Riyadh-Stadium
      * (Provide-Fire-Support Mogadishu-Town-Hall) [Fire-Support-Naval] 
         * (Station Yorktown Mogadishu-Town-Hall) 
      * (Provide-Csar-Coverage Csar-Team-2 Mogadishu-Town-Hall)  
         * (Prepare Uh-60l-1) 
         * (Take-Off Uh-60l-1 Bihac-Stadium) 
         * (Fly Uh-60l-1 Bihac-Stadium Mogadishu-Town-Hall) 
        * (On-Station Uh-60l-1 Mogadishu-Town-Hall)  

Figure 2.  Task Decomposition View of Plan medium-plan-b 

appropriate to introduce domain-specific generalization 
mechanisms.  For example, in domains where locations 
play a significant role, it might be useful to generalize 
based on geographic proximity, or co-location within some 
designated geographic area (e.g., all air assets are pulled 
from bases in the same region).  

Sample Plan Summary 
To illustrate the value of metatheory-based plan 
summarization, consider the summary of the test plan 
medium-plan-b shown in Figure 2. The figure presents a  
task decomposition view of the plan that highlights its 
hierarchical structure; for simplicity, temporal sequencing 
information among activities has been omitted. 
  As can be seen, the plan is sufficiently complex that its 
key strategic elements are not readily apparent. Rather, 
some form of analysis tool is required to understand the 
plan. Figure 3 summarizes the task features within this 
plan while Figure 4 summarizes the template features and 
their normalized values.  Figure 5 summarizes key role 
fills for the plan.  
  The summary of task features in Figure 3 makes it 
easy to identify the key strategic elements of the plan. The 
features RESCUE-AND-RECOVER and RESCUE derive 
from the fact that the plan describes a rescue-and-recover 
operation; these features are common to every plan in the 
test suite.  At a lower level, we can see that this particular 
solution includes components for combat search and 
rescue support (CSAR-SUPPORT), fire support (FIRE-
SUPPORT), reconnaissance (RECON), and suppression of 
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enemy air defenses (SEAD). These components are 
optional, as not every solution contains them. 
 

Task Feature Value 
CSAR-SUPPORT 
DIVERSION  
EVACUATION  

FIRE-SUPPORT 
PARACHUTE  

RECON  
REFUELING  
RESCUE  

RESCUE-AND-RECOVER 
 SEAD 

SECURITY  
SUPPORT 

true 
false 
false 
true 
false 
true 
false 
true 
true 
true 
false 
true 

Figure 3. Task Features for Plan medium-plan-b 

 
Template Feature Plan Value 

BLUE-CASUALTY-RISK medium 
COLLATERAL-DAMAGE low 

COORDINATION-COMPLEXITY medium 
COVERTNESS medium 
DURABILITY low 

FORCE-FATIGUE medium 
FORCE-FOOTPRINT medium 
FORCE-INTEGRITY medium 

INFORMATION-QUALITY high 
LANDING-ZONE-PREP low 

ROBUSTNESS medium 
SPEED medium 

VULNERABILITY-GROUND-FIRE high 

Figure 4. Template Features for Plan medium-plan-b 

  
Role Fill Values 

ASSAULT-FORCE green-oda-2 
orange-oda-1 

FORCE orange-oda-1 (2) 
green-oda-2 (2) 

OBSERVATION-FORCE green-oda-2 
  

Roles related to Strategic Decisions about Locations 

Figure 5.  Force Usage Roles in medium-plan-b 

 
Value-based Role Uniformity 

Role Value Count 
CSAR-LOCATION mogadishu-town-hall 2 
FIRE-SUPPORT-

LOCATION mogadishu-town-hall 5 

FORWARD-POINT riyadh-airport 3 
INFIL-DESTINATION mogadishu-town-hall 2 

SEAD-AIRCRAFT sead-1 2 

 
Type-based Role Uniformity 

Role Role Type Fill Types Min. 
SuperType 

EXFIL-
ASSET Asset 

Commercial-
flight 

Helicopter 
Air-asset 

INFIL-
ASSET Asset 

Commercial-
flight 

Helicopter 
Air-asset 

TRANSPORT-
ASSET Asset 

Sead-
aircraft 

Helicopter 
Air-asset 

Figure 6.  Role Uniformities in Plan medium-plan-b 

  The template features in Figure 4 summarize key 
evaluational qualities of the plan.  Desirable qualities 
include the fact that the expected quality of information 
underlying the plan is high, while expected collateral 
damage is low.   On the negative side, there is high 
vulnerability to ground fire. 
 More than 30 roles occur in the plan medium-plan-b, 
some of which have multiple fills.  Typically, a user would 
not choose to view all roles and their fills at once.  Rather, 
at a given point in time he would be interested in knowing 
about a subset of these roles as he focuses on certain 
aspects of the plan. So, for example, a user interested in 
understanding the high-level strategy of a plan may 
concentrate on a subset of roles related to key strategic 
decisions, while a user interested in asset usage may 
concentrate on roles related to resource utilization.  
 Figure 5 displays the role fills related to force usage for 
the plan medium-plan-b.  For fill values that occurred more 
than once for a given role, the number of occurrences is 
noted in parentheses. This summary makes it easy to see 
that only Green and Orange teams are used in the plan; 
both are used in assault roles while the Green team is also 
used in a reconnaissance capacity as an observation force.3  
 Figure 6 summarizes value-based and type-based role 
uniformities for the plan medium-plan-b. For value-based 
uniformity, the summary indicates the role, the fill value, 
and the number of occurrences.  For type-based 
uniformity, the summary indicates the role, its type, the 
types of the fill values, and the most specific type that 
generalizes the fill values. The information on type-based 
uniformity is particularly useful here as it highlights the 
exclusive use of air assets for many key functional roles 
within the plan. 
 

Plan Comparison 
Our approach to comparing plans is grounded in two 
techniques: feature differencing and role differencing.  
These techniques can be useful both in terms of identifying 
subtle variations in similar plans, and understanding larger 
differences in more varied plans. 

Feature Differencing 
As noted above, features correspond to high-level semantic 
characteristics of tasks (for task features) and strategic or 
evaluational qualities (for template features).  
 Task features provide a semantic summary of key 
activities within a plan.  Task feature differencing, which  
involves a comparison of task features within two plans, 
provides a snapshot of how the two plans differ in their 
key task types.  This type of capability can enable a user to 
see easily that, for example, one plan contains 
reconnaissance capabilities while another does not.    
                                                 
3 The color in a force name is significant: colors denote units with 
specific skills and capabilities. For the sake of brevity, we omit detailed 
descriptions of the qualities associated with the various force colors. 
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 Template feature differencing compares the normalized 
template feature values for two different plans in order to 
identify significant variations.   This form of differencing 
makes it easy to see, for example, that one plan trades risk 
for increased complexity relative to another plan.  

Role Differencing 
Role differencing looks at variabilities in how two plans 
fill their roles.  This type of comparison can shed insight 
on key differences in strategic decisions (e.g., Where are 
the hostages to assemble?) and resource usage (e.g., What 
types of reconnaissance asset are used?). 
 Figure 7 presents a categorization of the ways in which 
the fill values for a given role in two plans can differ. 
There, V1 and V2 designate sets of fill values for a role 
from which duplicates have been removed.  It is assumed 
that V1≠V2 and that both V1 and V2 are nonempty. The first 
three entries cover situations where V1 and V2 are disjoint; 
the last two cover situations where V1 and V2 overlap.   
 The category different single valued, although just a 
special case of disjoint types, is useful for identifying 
differences in key strategic decisions for a plan. For 
example, for the role ASSAULT-FORCE, the plan tiny-plan-
a uses orange-oda-2 while the plan tiny-plan-b uses 
green-oda-1.  This difference is important, as noted 
above, because orange and green forces have significantly 
different core capabilities.  The category different single 
valued is especially useful when the role appears exactly 
once within each of the two plans being compared; such a 
role often designates some critical parameter choice. 
 The category disjoint types requires both that the most 
specific supertype of the role-fill values in the two plans be 
different, and that neither be a subtype of the other.  As an 
example, the plan small-plan-a uses only helicopters of 
type CSAR-HELICOPTER-CLASS-1 for combat search and 
rescue while the plan large-plan-b uses helicopters of type 
CSAR-HELICOPTER-CLASS-2. The category disjoint 
multivalued defines an even weaker condition, requiring 
only that the fill values for the two plans be different.  
 For overlapping values, the strongest condition is 
restricted subtype, which indicates that the most specific 
supertype of one collection of values is a subtype of the 
most specific supertype of the other collection. For 
example, the plan large-plan-b uses only assault forces of 
type SOF-UNIT while the plan large-plan-c uses a more 
general set of forces (of type FORCE-COMPOSITION); in 
contrast, the plan large-plan-b uses a range of watercraft to 
fill the role WATER-ASSET while the plan large-plan-c uses 
only values of type BOAT.   Restricted subset weakens the 
restricted subtype condition to require only that one 
collection of values be a subset of the other.   
 Role differencing can provide insights into fundamental 
differences between plans, as illustrated in the next section.  
However, there are limitations to its usefulness. 
 First, the significance of role differences may be 
difficult to gauge in isolation.  So, while the decision to 
use force Green-ODA-1 rather than Orange-ODA-2 to fill 
the ASSAULT-FORCE role is significant, as those two units 

have markedly different capabilities, the difference 
between the forces Green-ODA-1 and Green-ODA-2 is 
insignificant as they have the same fundamental 
capabilities. This problem can be addressed by introducing 
a notion of ‘semantic distance’ between individuals to help 
identify differences that are significant. 
 Second, the utility of role differencing can decrease as 
plan size grows due to increased numbers of occurrences 
of a role that are not closely related.  (For example, it is 
possible to create larger SOF plans by introducing multiple 
assault prongs involving forces inserted at different drop 
locations; doing so leads to duplication of roles used in 
very different contexts.) Thus, while unrestricted role 
differencing can be useful in small- to medium-sized plans, 
larger plans would benefit from some scheme to 
contextualize role fills to certain portions of the plan.  
 
Disjoint: V1 ∩ V2 = {}  

Different single valued: V1 ∩ V2 = {}  ∧ |V1|=|V2|=1  
Disjoint types:  MinSupertype(V1) ≠ MinSupertype(V2)  
       ∧ MinSupertype(V1) ⊄ MinSupertype(V2) 
       ∧ MinSupertype(V2) ⊄ MinSupertype(V1)   
Disjoint multivalued: V1 ∩ V2 = {}  ∧  (|V1|>1  ∨  |V2|>1) 

 
Overlapping: V1 ∩ V2  ≠ {} 

Restricted subtype:  MinSupertype(V1) ⊂ MinSupertype(V2) 
      ∨   MinSupertype(V2) ⊂ MinSupertype(V1)   
Restricted subset:  V1⊂V2      

 
Figure 7. Categories of Role-fill Differences 

Sample Plan Comparison  
Figure 8 displays the results of applying our metatheoretic 
plan comparison techniques to the test plans medium-plan-
a and medium-plan-b.  
 In looking at the results of task feature differencing, two 
fundamental differences emerge: medium-plan-a contains 
refueling activities and medium-plan-b does not, while 
medium-plan-b contains SEAD (suppression of enemy air 
defense) activities and medium-plan-a does not.   
 For template feature differencing, there is some 
variation among expected values for key evaluation 
criteria.  Given the use of a fairly coarse-grained set of 
qualitative values for template feature domains in the SOF 
metatheory, the scope for variability is limited.  A more 
fine-grained set of values would enable more precise 
comparisons.  
 Role differencing highlights some interesting variations 
in the use of resources between the two plans.  Both plans 
include reconnaissance operations, but medium-plan-a 
relies on a satellite (satellite-1) while medium-plan-b 
makes use of a ground force (green-oda-2) as the asset 
used to perform the reconnaissance (see the table Different 
Single Valued). This distinction is important because the 
nature and quality of the intelligence that can be obtained 
with these two assets is markedly different.   Different 
types of infiltration, exfiltration, fire support and transport 
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assets are used, each with their individual strengths and 
weaknesses (see the table Disjoint Multivalued).   
 The tables Restricted Subtype and Restricted Subset 
show that plan medium-plan-a is much less diverse than 
plan medium-plan-b, since it uses more restricted sets of 
entities to fill a number of key roles (i.e., ORANGE-UNIT is 

a subtype of SOF-UNIT, BUILDING and AIRPORT are 
subtypes of POINT-LOCATION).  
 Overall, a user looking at the style of comparison in 
Figure 8 could quickly grasp the fundamental differences 
in strategy and resource usage between the two plans.  
Detailed examination of the plans themselves shows that 
there are additional differences in terms of unimportant 
low-level activities used to accomplish higher-level tasks 
and resource allocation.  However, the metatheoretic 
comparison hides these nonessential differences. 
 

Plan Space Analysis 
We define two capabilities grounded in the domain 
metatheory for reasoning about a collection of plans: 
identifying unique characteristics of a plan, and identifying 
maximally different plans.  
 
Identifying Unique Characteristics of a Plan 
The metatheoretic differencing capabilities defined in the 
previous section can be used to identify three useful 
distinguishing characteristics of a plan P relative to a set S 
of candidate solutions. 

1. Unique task features:  
• P has a task feature not found in any other P'  in S 
• P lacks a task feature found in all P in S 

2. Unique normalized template features: P has a 
normalized template feature value that differs from the 
value for all other solutions in S. This situation is 
especially interesting when all other plans share a 
common value for that template feature; in that case, 
the template feature for plan P is called  exceptional.  

3. Differing role fills: There is a role common to all plans 
for which some fill value in P does not occur as a fill 
value in other solutions in S. 

 
Figure 9 summarizes the unique task features and 
normalized template features within our suite of test plans; 
they occurred in the plans small-plan-b and medium-plan-
a. (We have not yet implemented the ability to look for 
differing role fills.) 
 The plan small-plan-b differs from all others in the test 
suite on the normalized value for the template feature 
BLUE-CASUALTY-RISK.  In particular, its value for that 
feature is low while the other plans have value medium.
  
Plan: small-plan-b 

  Has Exceptional Template Feature Values:  
     BLUE-CASUALTY-RISK:  low; all others medium 
 
Plan: medium-plan-a 
  Has Unique Task Features:  REFUELING 
  Has Exceptional Template Feature Values:                        

LANDING-ZONE-PREP: medium; all others low 
  Has Unique Template Feature Values: 

DURABILITY: medium  
FORCE-FATIGUE: high  

Figure 9. Unique Features in the Test Suite 

Task Feature Differencing: 
Task Features in medium-plan-a but not in medium-plan-b:  
 REFUELING 
Task Features in medium-plan-b but not in medium-plan-a:  
 SEAD  
 
Template Feature Differencing: 

Template Feature medium-plan-a medium-plan-b 
DURABILITY medium low 

FORCE-FATIGUE high medium 
FORCE-INTEGRITY high medium 

LANDING-ZONE-PREP medium low 

 
 Role Differencing: 

Different Single Valued 
Role medium-plan-a medium-plan-b 

RECON-ASSET satellite-1 green-oda-2 

 
Disjoint Multivalued 

Role Values for 
medium-plan-a 

Values for medium-
plan-b 

ASSET csar-c2-b  
tanker-1 

uh-60l-1 yorktown 
sead-1  

csar-c1-a 

EXFIL-ASSET uh-60l-1 aa201  
uh-60a-2 

FIRE-SUPPORT-
ASSET 

av-8b-
harrier-ii-a 

yorktown ah-100-1 
ch-53e-super-
stallion-1 

INFIL-ASSET uh-60l-2 
aa7864  

mh-60-g-pave-hawk-
2 

TRANSPORT-ASSET  

tanker-1  
av-8b-

harrier-ii-a  
uh-60l-1  
uh-60l-2   

sead-1  
uh-60a-2  

mh-60-g-pave-hawk-
2 

 
Restricted Subtype 

Role Type for 
medium-plan-a 

Type for medium-
plan-b 

ASSAULT-FORCE ORANGE-UNIT SOF-UNIT 
INFIL-POINT BUILDING POINT-LOCATION 
INFIL-TEAM ORANGE-UNIT SOF-UNIT 

LANDING-LOCATION AIRPORT POINT-LOCATION 
 

Restricted Subset 

Role Values for medium-
plan-a 

Values for medium-
plan-b 

EXFIL-POINT  mogadishu-town-
hall 

mogadishu-town-
hall  

mogadishu-
building4 

INFIL-START riyadh-airport riyadh-airport  
ankara-airport 

Figure 8. Comparison of medium-plan-a and medium-plan-b 
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The plan medium-plan-a has several unique characteristics 
relative to the other plans in the test suite.  First, it is the 
only plan with the task feature REFUELING; hence, no 
other plans in the test suite include refueling operations.  
Second, while the plan medium-plan-a has the normalized 
value medium for the template feature LANDING-ZONE-
PREP, all other plans have the value low.  Finally, the plan 
medium-plan-a differs from the other plans in the values 
for template features DURABILITY and FORCE-FATIGUE; 
in those cases, however, there is no common value for the 
remaining plans in the test suite. 
 
Maximally Different Plans 
For many applications, a human planner will want to 
explore a range of plans that embody qualitatively different 
solutions [Tate et al. 1998; Myers & Lee, 1999].   Such 
exploration can be useful both in terms of helping the user 
understand fundamental tradeoffs that are inherent to the 
domain, and identifying ‘out of the box’ solutions that he 
may not normally consider.  
 Our metatheoretic differencing techniques can be used 
to identify plans that are semantically far apart from each 
other, and hence are likely to have significant qualitative 
differences.   To that end, we define a concept of distance 
between plans that builds on the concepts of task feature, 
template feature, and role distance between plans. 
Task Feature Plan Distance 
Task feature distance is a normalized form of Hamming 
distance for the task features within the plans.  In 
particular, it is defined to be the ratio of the number of task 
features that appear in one but not both plans to the 
number of features that appear in either plan.   
 
Definition 4 [Task Feature Plan Distance] The task 
feature distance between plans P1 and P2, denoted by 
TaskFeatureDist(P1, P2), is defined by  
 
 =),( 21 PPeDistTaskFeatur  

)()(
)()()()(

21

1221

PesTaskFeaturPesTaskFeatur
PesTaskFeaturPesTaskFeaturPesTaskFeaturPesTaskFeatur

∪
−+−

 
Template Feature Plan Distance 
Template feature distance for a pair of plans is defined to 
be the average distance between the values of those 
features that are common to both plans, normalized with 
respect to the range of possible values for the features. Let 
TemplateFeatures(P) denote the set of template features 
that occur in plan P, and FDist(f,P1,P2) the distance 
between values for template feature f in plans P1 and P2.  
 
Definition 5 [Template Feature Plan Distance] The 
template feature distance between plans P1  and P2, 
denoted by TemplFeatureDist(P1, P2), is defined by  
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For quantitative feature values, FDist(f,P1, P2) is defined as 
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For qualitative template feature values, the normalizations 
and differencing required to calculate FDist(f,P1,P2) should 
be done within a single application of the mapping θf

-1 
from the qualitative values to Interval(f) (i.e., rather than 
mapping once to compute each TemplFeatureValue(f,Pi) 
and then again to difference them). This is necessary to 
minimize the discretization error from applying θf  to map 
back to Domain(f). Let Vi = TemplFeatureInsts(f,Pi); the 
qualitative version of FDist(f,P1,P2) is defined to be  
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Role Plan Distance 
Role distance for a pair of plans is defined in terms of how 
distant the sets of fill values are for the roles that the two 
plans share.  Our measure for the distance between sets of 
role fill values is defined to be the ratio of values that 
appear in one but not both sets to the total number of fill 
values (another normalized form of Hamming distance). 
We note that when possible, it may be appropriate to 
employ more specialized definitions that take into account 
the semantics of the underlying values.  Such a definition 
could, for instance, reflect the fact that two airplanes of the 
same type are ‘closer’ than an airplane and a helicopter. 
 
Definition 6 [Role Plan Distance] The role distance 
between plans P1  and P2, denoted by RoleDist (P1, P2), is 
defined as follows.  
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Metatheoretic Plan Distance 
Using the above definitions, we define the metatheoretic 
distance between two plans as follows.   
 
Definition 7 [Metatheoretic Plan Distance] The 
metatheoretic distance between plans P1 and P2, denoted 
by PlanDistance(P1, P2),  is defined as follows, where w1 
+ w2 + w3 = 1. 
 

PlanDistance(P1, P2) = w1 × TaskFeatureDist(P1, P2)  
  + w2× TemplFeatureDist(P1, P2)  
  + w3 × RoleDist(P1, P2)  

 
The definition of metatheoretic plan distance assumes a set 
of weights, wi, that can be used to adjust the relative 
importance of task features, template features, and roles in 
the distance specification. Because these three components 
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address different aspects of an overall plan, different users 
may be interested in biasing the plan distance calculation 
to stress the relative importance of these three components.  
 Similarly, the definitions for template feature, task 
feature, and role distance can be modified in a 
straightforward manner to support weights that enable 
varying degrees of emphasis for individual features and 
roles.  Such weights could be defined either for an entire 
domain or customized by an individual user (on a 
situation-by-situation basis, if so desired).  

Plan Distances for the Test Suite 
The motivation for defining the concept of plan distance 
was to support a user in identifying semantically distinct 
plans.  The results in Figure 10 show that for the SOF 
domain, our definition is effective.  The figure displays the 
distances for plans in our test suite, using an equal 
distribution of weights for the task feature, template 
feature, and role distances (i.e., w1=w2=w3 =1/3). 
 The figure shows that the ‘closest’ plans correspond to 
core plans and their variants.  In particular, the shortest 
plan distances found are between the two tiny plans (.08), 
between the various large plans (.08, .09, .15), and 
between the two small plans (.15).   The distance between 
the two medium plans is appreciably higher (.31); as noted 
in Figure 1 and made apparent in Figure 8, these two plans 
are not simple variants of each other but rather contain key 
strategic differences. In addition, the plans that are farthest 
apart (the tiny vs large plans) are indeed the plans with the 
greatest meaningful variations among them.  These results 
thus provide a preliminary validation of the effectiveness 
of the metatheoretic methods for capturing meaningful 
similarities and differences among plans. 

Discussion 
To date, research on general-purpose plan summarization 
and comparison methods has focused on approaches that 
analyze plan structures and planning processes directly. 
For example, [Mellish & Evans 1989] generate a textual 
description of a plan that references every plan element, 
without regard to its relative importance, thus making it 
difficult to understand the essence of large plans. [Young 
1999] improves on that work by rating the importance of 
an action in a plan by counting the number of its incoming 
causal links; only actions with certain numbers of links are 
included in the plan summary.  
  Such syntactic approaches do not necessarily shed light 
on the semantic content of a plan.  In particular, it is 
possible to have plans with significant variations in 
syntactic structure that are semantically similar; as well, 
plans with similar syntactic structure may have semantic 
differences that are extremely significant. 
 One key benefit of our metatheoretic approach to plan 
summarization and comparison is its emphasis on semantic 
rather than syntactic characteristics of plans.  Thus, our 
comparison of metatheoretic properties grounds the results 
in concepts that are significant from a semantic  

 

Plan 
Dist 

Template Feature, 
Task Feature, 

Role 
Dist 

Plan1 Plan2 

.08 .03 .11 .08 large-plan-a large-plan-b 

.09 .00 .00 .28 large-plan-a large-plan-c 

.12 .00 .00 .35 tiny-plan-a tiny-plan-b 

.15 .03 .11 .30 large-plan-b large-plan-c 

.15 .15 .00 .31 small-plan-a small-plan-b 

.17 .12 .14 .26 small-plan-a medium-plan-a 

.21 .00 .14 .49 small-plan-a medium-plan-b 

.26 .27 .14 .37  small-plan-b medium-plan-a 

.29 .15 .14 .56  small-plan-b medium-plan-b 

.31 .14 .25 .53 medium-plan-a medium-plan-b 

.34 .12 .25 .67 small-plan-a large-plan-a 

.35 .07 .22 .75 medium-plan-b large-plan-b 

.35 .21 .67 .18 tiny-plan-b small-plan-b 

.36 .12 .25 .72 small-plan-a large-plan-c 

.37 .08 .33 .70 small-plan-a large-plan-b 

.40 .27 .25 .67 small-plan-b large-plan-c 

.40 .18 .33 .69 medium-plan-a large-plan-a 

.40 .27 .25 .68 small-plan-b large-plan-a 

.41 .18 .33 .71 medium-plan-a large-plan-c 

.41 .14 .40 .69 medium-plan-a large-plan-b 

.41 .11 .33 .79 medium-plan-b large-plan-a 

.42 .23 .33 .69 small-plan-b large-plan-b 

.42 .11 .33 .81 medium-plan-b large-plan-c 

.44 .21 .67 .45 tiny-plan-a small-plan-b 

.47 .29 .67 .46 tiny-plan-a small-plan-a 

.47 .29 .67 .46 tiny-plan-b small-plan-a 

.51 .29 .71 .51 tiny-plan-b medium-plan-b 

.51 .29 .71 .53 tiny-plan-a medium-plan-b 

.52 .42 .71 .42 tiny-plan-a medium-plan-a 

.52 .42 .71 .42 tiny-plan-b medium-plan-a 

.56 .33 .75 .58 tiny-plan-a large-plan-c 

.56 .33 .75 .60 tiny-plan-a large-plan-a 

.56 .33 .75 .60 tiny-plan-b large-plan-a 

.57 .33 .75 .62 tiny-plan-b large-plan-c 

.58 .37 .78 .60 tiny-plan-a large-plan-b 

.58 .37 .78 .60 tiny-plan-b large-plan-b 

Figure 10. Plan Distances for the SOF Test Suite 
 
perspective, rather than concepts that are important to an 
automated system when generating a plan. 
 Our approach also supports customization to domains, 
individual users, or specific contexts.   This can be 
achieved by selecting the sets of features and roles that are 
of interest to the user (for plan summarization and plan 
comparison) and by appropriate adjustment of weights (for 
analyzing a solution space).  
 Our plan summarization and comparison methods are  
domain-independent, making them applicable to a broad 
range of problems.  In particular, we avoid domain-specific 
algorithms or bodies of knowledge that would limit the 
applicability of the method.  One problem with general-
purpose methods is that their generality often comes at the 
cost of depth.  This tradeoff applies to our approach, in that 
more precise quantitative analysis tools could be 
developed for an individual domain that provide deeper 
summarization and comparison capabilities.   
 Our methods for plan comparison and summarization 
are not intended to eliminate the need for more 
discriminating tools.  Rather, we envision the 
metatheoretic approach being valuable in the early stages 
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of planning, both in terms of enabling a user to quickly 
understand the main features of a plan, and to perform an 
inexpensive analysis of what differentiates alternative 
candidate plans.  After developing some preliminary 
understanding of the plan space, a user may then wish to 
perform more expensive and time-consuming quantitative 
analyses to assess plans in detail.   
 The existence of a well-designed domain metatheory is 
critical for the successful application of our plan 
summarization and comparison methods.  As noted 
elsewhere [Myers, 2000], the design of the metatheory 
should be a by-product of a principled approach to 
modeling a planning domain.  Still, it remains a bit of an 
art to design a metatheory appropriately. 
 The explanatory capability of our methods when applied 
to larger plans could be improved by introducing a 
capability for contextualization that could localize 
application of the summarization and comparison 
techniques to meaningful subportions of a plan.  This 
localization could enable more interesting regularities or 
trends within plans to be identified. The hierarchical 
structure of HTN plans provides an obvious way to 
generate candidate contexts, namely, subplans appearing 
below a given task node.  Within that framework, 
however, identifying the most appropriate contexts for a 
given situation remains an interesting challenge. 

Conclusions 
AI planning tools must provide effective explanation 
capabilities in order for them to gain acceptance for real 
applications. To date, there has been relatively little effort 
devoted to developing such capabilities. Furthermore, the 
work that has been done has focused on syntactic elements 
of plans and planning processes, despite the fact that such 
syntactic characteristics may not correspond to important 
semantic features.   
 This paper defines an approach to plan summarization 
and comparison that builds on the notion of a domain 
metatheory.  The approach has the benefit of framing 
summaries and comparisons in terms of high-level 
semantic concepts, rather than low-level syntactic details 
of plan structures and derivation processes.  We defined a 
set of techniques that instantiate this approach and 
evaluated them within the context of a rich special 
operations planning domain.  The evaluation showed that 
the techniques are effective in helping a user understand 
subtle aspects of individual plans, importance differences 
among plans, and the structure of the overall solution 
space.   
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Abstract

MAPGEN (Mixed-initiative Activity Plan GENerator) is
a mixed-initiative system that employs automated
constraint-based planning, scheduling, and temporal
reasoning to assist the Mars Exploration Rover mission
operations staff in generating the daily activity plans.  This
paper describes the mixed-initiative capabilities of
MAPGEN, identifies shortcomings with the deployed
system, and discusses ongoing work to address some of
these shortcomings.

Introduction
In January 2004, NASA landed rovers on the surface of

Mars at two widely separated sites.  Their mission: to
explore the geology of Mars, especially looking for
evidence of past water.  At the time of writing, signs of
past water presence have been discovered at both sites, and
although well past their design lifetime, both rovers are still
healthy, and the mission is continuing.

Operating the Mars Exploration Rovers is a challenging,
time-pressured task.  Each day, the operations team must
generate a new plan describing the rover activities for the
next day.  These plans must abide by resource limitations,
safety rules, and temporal constraints.  The objective is to
achieve as much science as possible, choosing from a set of
observation requests that oversubscribe rover resources.  In
order to accomplish this objective, given the short amount
of planning time available, the MAPGEN (Mixed-initiative
Activity Plan GENerator) system was made a mission-
critical part of the ground operations system.

In this paper, we report on the mixed-initiative
capabilities of the MAPGEN system, outline some of the
shortcomings that we observed during the deployment
effort or during mission operations, and then briefly
describe more recent research that is attempting to address
some of these shortcomings.   We first present some
background material on the MER mission and then
summarize the characteristics of the MAPGEN system.
                                    
* Research Institute for Advanced Computer Science - USRA

Background
The MER rovers (see Figure1), Spirit and Opportunity, are
solar-powered (with a storage battery) and incorporate a
capable sensor and instrument payload. Panoramic cameras
(Pancam), navigation cameras (Navcam), and a miniature
thermal emissions spectrometer (MiniTES), are mounted
on the mast that rises above the chassis.  Hazard cameras
(Hazcams) are mounted on the front and rear of the rover.
A microscopic imager (MI), a Mössbauer spectrometer
(MB), an alpha particle X-ray spectrometer (APXS), and a
rock abrasion tool (RAT), are mounted on the robotic arm.

An onboard computer governs the operation of
subsystems and provides data handling, system state
tracking, limited obstacle avoidance, and so forth.  Because
of its large power draw and the rover’s limited energy
supply, the computer is used judiciously.

The rovers are equipped with extensive communication
facilities, including a High Gain Antenna and Low Gain

Figure 1: MER Rover
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Figure 2:  MAPGEN Architecture

Antenna for Direct-To-Earth transmission and reception, as
well as an UHF antenna for communicating with satellites
orbiting Mars.  Communication opportunities are
determined by each rover’s landing site and the Deep
Space Network schedule or orbital schedules for the
satellites.

For this mission, the communication cycle was designed
so that both rovers could be commanded every sol (i.e.,
Mars mean solar day, which is 24 hours, 39 minutes, and
35.2 seconds).  The time for ground-based mission
operations is severely limited by the desire to wait until up-
to-date information is available but nevertheless finish in
time to get the command load to the rover.  During the
nominal mission, this left 19.5 hours for ground operations.
In this process, the engineering and science data from the
previous sol are analyzed to determine the status of the
rover and its surroundings.  Based on this, and on a
strategic longer-term plan, the scientists determine a set of
scientific objectives for the next sol.  At this stage only
rough resource guidance is available.  Hence, the scientists
are encouraged to oversubscribe to ensure that the rover’s
resources will be fully utilized in the final plan.

In the next step in the commanding process, the science
observation requests are merged with the engineering
requirements (e.g., testing the thermal profile of a
particular actuator heater) and a detailed plan and schedule
of activities is constructed for the upcoming sol.   The plan
must obey all applicable flight rules, which specify how to
safely operate the rover and its instrument suite and remain
within specified resource limitations.  It is in this step that
the Tactical Activity Planner (TAP) employs MAPGEN.

Once approved, the activity plan is used as the basis to
create sequences of low-level commands, which coordinate
onboard execution.  This sequence structure is then
validated, packaged, and communicated to the rover.  This
completes the commanding cycle.

MAPGEN System Summary
Traditionally, spacecraft operations’ planning is done
manually; utilizing software tools primarily for simulating
plan executions and identifying flight rule violations.  The
time criticality and complexity of MER operations,
combined with advances in planning and scheduling
technology, provided an opportunity for deploying
automated planning and scheduling techniques to the Mars
rover ground-operations problem.

As an integral part of a large mission operations system,
MAPGEN’s capabilities have evolved over time with the
rest of the ground data system.  The current user features
are the end result of a journey through the design space,
guided by feedback from the users in the course of many
tests and subject to the changing landscape of the overall
operations system.  We can summarize the primary
features as follows:
• Plan editing:   Both activities and constraints can be

modified, via direct manipulation, form editing, or
menu items.

• Plan completion:  The selected subset of activities
can be completed, in the sense that all subgoals are
achieved and any necessary support activities are
added to the plan.

• Active constraints:  During plan editing, the formal
constraints and rules are actively enforced.  Thus,
when one activity is moved or modified, other
activities are modified as needed to ensure the
constraints are still satisfied.

The MAPGEN system has five primary components, some
of which were pre-existing software modules (see Figure
2).  One of the requirements for infusing this technology
into the mission was the use of an existing interactive plan
editor from JPL, called APGEN (Maldague, et al., 1998),
as the front end of MAPGEN.  The core of the plan
representation and reasoning capabilities in MAPGEN is a
constraint-based planning framework called EUROPA
(Extendable Uniform Remote Operations Planning
Architecture), developed at NASA Ames Research Center
(Jónsson, et al., 1999; Frank and Jónsson, 2003).

The new functionality in the MAPGEN system involves
the interface between these two subsystems, support for
extensions to the APGEN graphical user interface to
provide the mixed-initiative capabilities, and more
sophisticated plan search mechanisms that support goal
rejection, priorities, and timeouts.  The APGEN and
EUROPA databases, which remain separate, are kept
synchronized; changes may be initiated by either database.

Finally, we considered it expedient to develop an
external tool, called the Constraint Editor, to enter and edit
daily science constraints, since this is not conveniently
supported by the current APGEN graphical user interface.

We next further describe the EUROPA, APGEN, and
Constraint Editor components.

EUROPA
In constraint-based planning (Frank and Jónsson, 2003),
actions and states are described as holding over intervals of
time.  Each state is defined by a predicate and a set of
parameters, as in traditional planning paradigms.  Actions,
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which are durative, are also represented by parameterized
predicates.  The temporal extent of an action or state is
specified in terms of start and end times.  For example,
specifying that the panorama camera heater needs to be on
for 25 minutes, starting at 8:00, could be written as:
holds(8:00,8:25,pan_cam_htr(on,0:25))

However, in constraint-based plans, each time and
parameter value is represented by variables, connected by
constraints.  Consequently, the statement would be:
holds(s,e,pan_cam_htr(state,dur))
s=8:00, e=8:25, state=on, dur=0:25

Constraint reasoning plays a major role in the constraint-
based planning paradigm.  Any partial plan, which is a set
of activities connected by constraints, gives rise to a
constraint network. Constraint-based inference can provide
additional information about plans, reduce the number of
choices to make and identify dead-end plans early.
Achieving arc consistency is one commonly used example
of applicable constraint reasoning methods.

Typically, the temporal variables and associated
constraints give rise to a simple temporal network (STN),
or can be reduced to one by decision choices that enforce
the mutual exclusion constraints.  For STNs, it is possible
to make the network arc consistent and to determine
consistency in low-order polynomial time, using the
Bellman-Ford algorithm (Dechter, Meiri, and Pearl, 1991;
Cormen, Leiserson, and Rivest, 1990).

In constraint-based planning, explicit temporal
constraints fall into three categories: model constraints,
problem-specific constraints, and expedient constraints.
The model constraints encompass definitional constraints
and mutual-exclusion flight rules.  In MER, for example,
the expansion of activities into sub-activities gives rise to
temporal relations between the parent and its children.

The problem-specific constraints comprise “on the fly”
relations between specific activities in a planning problem.
In MER, these constraints, often called “daily constraints”,
related elements of scientific observations in order to
capture the scientists’ intent. As an example, several
measurements of atmospheric opacity may be required to
be at least 30 minutes apart.  These constraints are entered
using the Constraint Editor tool, described below.

The expedient constraints are those resulting from
arbitrary decisions made to guarantee compliance with
higher-level constraints that cannot be directly expressed in
an STN.  For example, a flight rule might specify that two
activities are mutually exclusive (such as moving the arm
while the rover is moving).  This is really a disjunctive
constraint, but satisfying it will involve placing the
activities in some arbitrary order.  Expedient constraints
are typically added during search in automated planning.

APGEN
APGEN (Activity Plan GENerator) is an institutional tool
at JPL and has been used in a number of spacecraft
missions.  It has a large number of features, but the core
capabilities can be summarized with three components:

• Activity plan database: A set of activities, each at a
specific time.  This database has no notion of
constraints between activities, but does support
context-free activity expansion.

• Resource calculations: A method for calculating,
using forward simulation, resource states that range
from simple Boolean states to complex numerical
resources.

• Graphical user interface:  An interface for viewing
and editing plans and activities.

To deploy APGEN for a particular mission, the mission-
specific information is stored in an adaptation, which can
be viewed as a procedural domain model.  It defines a set
of activity and state types and then defines a way to
calculate resource states from a given set of activities.  In
addition, it defines a set of “constraints” on legal
combinations of resources.  The constraints and resource
calculations are only useful for passively identifying
problems with a plan; APGEN does not have the capability
to reason with this information in order to help fix the
identified problems.

Constraint Editor
The APGEN plan-editing interface has no notion of
variables and constraints in the traditional AI sense.  This
raised the issue of how to get the daily constraints into the
reasoning component of MAPGEN.  These daily
constraints were needed to coordinate the activities in
scientific observations, and these could vary in unforeseen
ways.  For example, it might be specified that two specific
measurements should be taken within 10 minutes of each
other.  This required an ability to enter and modify
temporal constraints dynamically.

To resolve this, an external, temporal-constraint editing
tool, called the Constraint Editor, was developed as an
augmentation to the APGEN interface.  In this tool, users
can view activities and existing temporal constraints, and
then add, delete, or edit constraints.

Mixed-Initiative Planning in MAPGEN
In this section, we first motivate the need for a mixed-
initiative approach to activity planning and then describe
the capabilities in MAPGEN that supported this approach.

In traditional automatic planning, the operator loads in
the goals and initial conditions, pushes a button, and waits
for a complete plan.  Due to the need to bring human
expertise in mission planning and science operations to
bear on solving this complex operational problem, this
approach was deemed unacceptable; consequently, we
adopted a mixed-initiative approach for this application.

There were many aspects of the need for human
involvement. Mission operations rely on a number of
checkpoints and acceptance gates to ensure safety.  For
activity plans, the critical gate was the activity plan
approval meeting where the fully constructed plan would
be presented by the Tactical Activity Planner (TAP),

ICAPS 2005

56 Workshop on Mixed-Initiative Planning and Scheduling



critiqued by both scientists and mission specialists, and,
hopefully, accepted, possibly with minor modifications.
As a result, the TAPs had to be able to understand, defend,
and sign-off on the validity of the plan.  Initial user tests
indicated that a plan constructed automatically in its
entirety was too difficult to analyze by the human operator,
especially given the inherent time pressures.  The TAPs,
therefore, prefer to incrementally construct a plan in small,
understandable chunks.

Another major concern was the infeasibility of formally
encoding and effectively utilizing all the knowledge that
characterizes plan quality.  One aspect of plan quality
involves a rich set of science preferences, including
everything from preferences on absolute and relative
scheduling of activities to preferences on which
combinations of science observation cuts and changes are
least painful in the face of strict resource limitations. A
second, and more complex, aspect of quality is concerned
with global characteristics of a plan, such as acceptable
profiles of resource usage, and the estimated complexity of
turning a plan into a command sequence structure.

The role of mixed-initiative planning in MAPGEN is
very much in the spirit of the original notion of such
planning (Burstein and McDermott, 1996); the purpose is
to support collaboration between a human user and an
automated system to build a high quality activity plan.

However, it is worth noting that, unlike some variations of
mixed-initiative planning, MAPGEN does not actively
solicit user assistance during planning.  The primary role of
the operator is to direct and focus the plan construction
process and to provide qualitative evaluation of plans.  The
system makes automated planning capabilities available to
the user and performs potentially tedious tasks, such as
maintaining constraints.  The intended interaction between
user and system is that the system handles constraint
enforcement constantly in the background, while
automated plan construction is user invoked.

Interactive plan modification
One of the core issues in mixed-initiative planning is the
introduction of external decision-making and plan editing
into a carefully designed automated search engine.  The
intrusion of user choices complicates commonly used
approaches such as backtracking search and propagation-
based checking of consistency.  The EUROPA planning
framework used in MAPGEN supports non-chronological
backtracking, but it cannot propagate information in plans
that have constraint violations.  To support arbitrary
changes by users, MAPGEN included a plan modification
strategy that would adjust plans to eliminate
inconsistencies.

Figure 3: MAPGEN with planner menu
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Mixed-initiative planning systems must respond and
return control quickly to the user.  For an automated
planning operation, which involves a cascading decision
process, MAPGEN relaxes completeness in favor of
responsiveness.  This has to be done carefully to maximize
chances of finding near-optimal solutions within limited
time.  We developed a backtracking algorithm that noted
the difficulty of planning activities, and when the effort to
plan an activity exceeded an allowance determined by its
priority, the activity was rejected from the plan.

In constraint-based planning, partial plans have an
underlying simple temporal constraint network (Dechter,
Meiri, and Pearl, 1991).  The consistency of STNs can be
determined by checking for arc consistency.  Furthermore,
each value in an arc-consistent temporal variable domain
appears in at least one legal solution for the temporal
network.  The set of such values defines a temporal interval
that can be represented by its bounds.

Consider a plan where all decisions have been made,
except for grounding temporal variables appearing only in
simple temporal constraints.  Finding a fixed solution is
then an easy matter of choosing a value for any variable
within its legal bounds, re-enforcing arc consistency,
choosing a value for another variable, and so on.

It is not necessary to immediately ground the variables;
plans with temporal variables left ungrounded are called
flexible plans.   In MAPGEN, we utilize the fact that the
underlying plans are flexible to support a common way for
users to modify plans, namely to change the placement of
activities in time.  As long as the activity is moved only
within the flexibility range defined by the domain in the
underlying arc-consistent flexible plan, the result is
necessarily another consistent instantiation.  This
observation gave rise to the notion of a constrained move.

During a constrained move, the system actively restricts
the movements of an activity to stay within the permitted
range.  Then, once the user places the activity, any
dependent activity is updated as necessary to yield a new
valid plan instance.

Note, however, that the consistency enforcement takes
into account all the constraints that determine the flexible
plan.  This includes expedient constraints resulting from
decisions about how to order mutually exclusive activities.
Since these decisions are maintained, the ordinary
constrained move has the effect of “pushing” the excluded
activities ahead of it.  However, sometimes the TAP wants
to reorder mutually excluded activities.  To support this,
we provided a variation, called a super-move, that
temporarily relaxes expedient constraints until the move is
completed.

Adjustable automation
MAPGEN users wanted an adjustable spectrum of
automated planning services (see Figure 3).  The system
offers a fully automated “plan everything” operation, a
selective “plan this and everything related to it” operation,
and a fine-grained “plan this and try to put it here”
operation.  Users can also un-plan activities and store them

in a “hopper,” which holds requested activities that are not
yet in the plan.

The plan all operation leaves it entirely up to the
automated search to find a plan that achieves as much
science as possible.  This functionality is most like what
traditional automated planning methods do.  This capability
functioned well and yielded near-optimal plans in terms of
the number of science observations in the plan.  However,
the plans tended not to have an intuitive structure and,
therefore, made it difficult for the TAP to explain the plan
structure during the approval meeting. Additionally, they
were often sub-optimal with respect to preferences and
other solution quality criteria that were not encoded in the
domain model or the priorities.   Consequently, it was
rarely used.

Instead, the users often applied a more incremental
operation, called plan selected goals. With this operation,
the user could select a set of observation requests not in the
plan and request that these be inserted into the partial plan
already in place, such that all constraints were satisfied.
While repeated application of this led to a result similar to
the full planning variation, users found this more intuitive,
in part because it allowed them to fine-tune and understand
the incremental plans as they were built.  Furthermore, this
made it possible for the users to have a complete plan
ready at just about any time.

The user could exercise even more control over the
planning process via the  place selected goals operation,
which was applicable only to individual activities.  This
operation allowed the user to select an activity in the
hopper and then choose an approximate temporal
placement for it in the plan.  The planning algorithm would
then treat the user-chosen time as heuristic guidance and
search for a plan where the selected activity was as close to
the desired time as possible.

Minimizing perturbation
The key to making the automated services feel natural and
unobtrusive is for them to respect the existing plan as much
as possible. This is accomplished by combining an
effective form of temporal placement preference with a
heuristic bias.  For changes in the temporal placement of
activities, the system exploits the underlying temporal
flexibility of EUROPA plans.  As each plan represents a
family, the system chooses an instance to display that is as
close as possible to what the user had prior to the changes
being made.

The method we developed is based on minimizing the
departure from a reference schedule, which need not be
consistent.  The reference schedule provides a general
method for expressing unary temporal preferences. Its
primary use in MAPGEN is to support a minimum
perturbation framework where changes to the previous plan
are minimized when a planner-supported operation is
invoked, such as a constrained move.  This is accomplished
by continually updating the reference schedule to reflect
the evolving plan. This means that changes made by the
user to reflect preferences or eliminate problems are
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respected and maintained unless they violate constraints or
are revised by the user.

When it came to making activity placement choices, i.e.,
expedient ordering-decisions, the heuristic guidance used
was based on minimizing deviation from the reference
schedule.  The motivation behind this was twofold.  One
was that it would be intuitive to the user, as this approach
would attempt to preserve the temporal placement of
activities.  The other motivation was that it would allow
users to “sketch out” a plan in the hopper and then ask the
system to complete the plan.  For more details on this
method, see (Bresina, et al., 2003).

Addressing MAPGEN’s Shortcomings
During the multi-year deployment effort, there were a
number of capabilities on our task agenda that never made
it to the top of the stack; we also encountered issues that
require significant research before being ready for mission
deployment.  During mission operations, we observed a
number of shortcomings, and often we were not able to
address them at that time due to the restrictions of the
change control process or due to the complexity of the
issue.  In this section, we focus on the shortcomings in
MAPGEN’s mixed-initiative approach and describe some
of the new research we are carrying out to address them.

Explanations
The clearest lesson we have learned from our

observations is the need for the automated reasoning
component to provide better explanations of its behavior.
Especially important are explanations of why the planner
could not achieve something, such as inserting an activity
in the plan at a particular time, or moving an activity
beyond the enforced limit.  Such a facility would have
greatly helped during training, in addition to increasing the
TAPs’ effectiveness during operations.  The system did
have a form of explanation of inconsistency by presenting
a minimal nogood.  While the TAPs found it to be useful
when editing constraints, only the developers used this
facility in the context of constructing and modifying plans,
and this was done for the purpose of debugging the system.
The reason is that, in this context, the explanation typically
involved complex chains of activities and constraints that
could not easily be grasped.  For example, during MER,
nogoods encountered during planning could involve
hundreds of constraints.

There are several contexts in which inconsistencies can
arise during planning.  First, when an activity is considered
for insertion, it may be inconsistent with the current plan
even before any location is examined.  Second, it may be
inconsistent with the specific location chosen in a Place
Selected operation.  Third, it may be inconsistent with each
one of the possible locations identified during a Plan
Selected operation.  The first context gives rise to a nogood
directly.  In the second context, a nogood can be extracted
by temporarily placing the activity in the infeasible

location.  In the third context, it may be possible to resolve
the individual nogoods arising from each location to form a
compound nogood.  Note that these cases may arise before
or during the search.  We have focused our efforts thus far
on the first context; we expect similar considerations to
apply in the other contexts.

The lengthy nogoods are partly an artifact of the mixed-
initiative planning process.  When MAPGEN attempts to
insert an additional activity into the evolving plan, it first
brings in (i.e., starts enforcing) the constraints associated
with that activity.  Since the existing plan was formulated
without those constraints, it is often the case that they are
inconsistent with previous ordering decisions made to
prevent forbidden overlaps (due to mutual exclusion
restrictions).  Furthermore, the ordering decisions may
involve mutual exclusions between low-level activities that
are part of activity expansions.  Because of this, the
constraint engine must keep track of interactions between
activity expansion constraints and planner decision
constraints, as well as daily constraints.  The duration of a
high-level activity is also determined by its activity
expansion constraints, so if this is a factor in an
inconsistency, the raw nogood will include the entire
expansion of the high-level activity.  Thus, the raw
nogoods during planning can be very large.

It is obviously impractical to expect a time-pressured
TAP to read, let alone grasp the significance of, a nogood
involving hundreds of constraints.  However, we believe
that the essential content of the nogood can be summarized
in a concise form.  To this end, we have been investigating
methods of compressing nogoods.

The first compression step rolls up expansions that are
only needed because they determine a higher-level duration
that is involved in the inconsistency.  While this step helps,
the explanations can still be quite long, often involving
chains of duration and daily-constraint pairs.  We can
distinguish between these constraints, which should be
known to the TAP, and the “hidden” constraints that come
from planner ordering decisions.  The second compression
step rolls up the duration/daily sequences into a single
chunk.  Based on MER examples, these two steps typically
compress the nogood by a factor of ten.

A remaining issue is that sub-chains of the nogood that
pass through planner ordering decisions can wander
somewhat randomly through large portions of the plan.
The intermediate wandering is not very meaningful in
terms of understanding the inconsistency, so a further step
could involve rolling such a segment into a single
statement about planner placement of the bookend
activities in the segment.

These compression steps carry the risk that one of the
components of the compressed summary will itself be
mystifying.  To counter this, it would also be useful to
allow components of the summary to be re-expanded on
demand.  Thus, the nogood would be organized into a
hierarchical structure that is more easily grasped.

In general, an inconsistent network may involve more
than one inconsistency.  The approach used in the
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constraint editor is to first present one (the first one found
by the temporal reasoning algorithm), have the user resolve
that, then present another one if the network is still
inconsistent, and so on.  This may not be the best approach
within the planning context.

Considering the entire set of nogoods, it may be possible
to select the one nogood that yields the “best explanation”,
i.e., an explanation that is easiest to understand and leads to
the easiest resolution of the associated inconsistency.
Another approach is to focus on constraints common to
multiple nogoods, such that the user could resolve more
than one inconsistency with one constraint retraction.  A
prerequisite for either of these approaches is a suitable
algorithm for enumerating all the temporal nogoods.   At
this point, it is not clear how practical it is to compute such
an enumeration, since theoretically the number of nogoods
may be exponential in the size of the network.

Temporal preferences
A second important issue is that the user does not have

sufficient means to control the planning process and to
influence the types of solutions generated.  In MAPGEN,
the user’s only language for specifying their desires is to
create a set of absolute (hard) temporal constraints, which
represent what is necessary for the observation requests to
be scientifically useful.   These constraints can specify
ordering among the activities and observations (along with
temporal distances required) and can specify that an
activity or observation has to be scheduled within a
particular time window.  For example, the scientist can
specify that three atmospheric imaging activities have to be
a minimum of thirty minutes apart and a maximum of six
hours apart.  However, the scientist cannot specify that
they prefer the largest possible spacing between the three
activities.  Likewise, they cannot specify that a particular
spectrometer reading must occur between 10:00 and 15:00
but it is preferred to be as near to 12:00 as possible.  It is
clear that both absolute constraints and temporal
preferences are needed to generate a high-quality science
activity plan.

MAPGEN did have a limited capability for expressing
start time preferences via the reference schedule of the
minimal-perturbation approach.  The operator could also
establish more complex preferences by an iterative process
of relaxing or tightening hard constraints, but this is too
time-consuming and too primitive of an approach.

We are currently investigating a number of alternative,
automated approaches to incorporating temporal
preferences into MAPGEN.  We have extended the
Constraint Editor to allow specification of temporal
preferences on an activity’s start or end time, as well as on
distances between start/end time points of two activities.

There are three key issues involved in utilizing temporal
preferences in mixed-initiative planning.  The first is the
common problem of combining local preferences into a
global evaluation function.  The second issue is finding a
globally optimal instantiation of a given flexible plan. The

third key issue is searching for a flexible plan that yields a
globally preferred instantiation.

Let us first consider the second issue.  To effectively
solve constraint problems that have local temporal
preferences, it is necessary to be able to order the space of
assignments to times based on some notion of global
preference.   Globally optimal solutions can be produced
via operations that compose and order partial solutions.
Different concepts of composition and comparison result in
different characterizations of global optimality. Past work
(Khatib, et al., 2001; Khatib, et al., 2003, Morris, et al.,
2004) has presented tractable solution methods (under
certain assumptions about the preference functions) for
four notions of global preference: weakest link, Pareto,
utilitarian, and stratified egalitarian.  These four notions are
examples of general solutions to the first issue, namely,
how to combine local preferences into an overall
comparison of solutions.

We are incorporating these preference-optimization
methods into MAPGEN and plan to employ them for a
number of purposes.  One use is to apply the optimization,
as a post-process, to the family of solutions represented by
a flexible MAPGEN plan in order to display the most-
preferred solution to the user.  These methods can also be
employed, as a pre-process, to compute the reference
schedule as a globally optimal solution to the specified
temporal preferences.  The minimal-perturbation method
would then try to stay close to this globally optimal
reference.  We also intend to investigate other heuristic
methods that include consideration of the preferences when
making search decisions; thus, addressing the third issue.

Other shortcomings
The need for explanations and handling of temporal

preferences were the most obvious shortcomings that
needed to be addressed.  Consequently, work is already
underway to address those.  However, a number of other
issues have been identified.

In addition to temporal preferences, users may have
preferences regarding the global characteristics of the
solution, such as plan structure preferences or resource
usage preferences.  Many constraints can have absolute
validity limits and a preference on the legal values.  For
example, the limits on the energy usage may be determined
by minimum battery levels, but it is preferred that the
battery be left charged above a certain level at the end of
the plan.  As with temporal preferences, the main issues are
how to combine local preferences into global evaluations
functions and how to then control the search towards
preferred plans.

In MAPGEN, the underlying plan is always kept
consistent.  This allows propagation to take place at any
time, which in turn enables active constraint enforcement,
constrained moves, and other propagation-based
capabilities.  However, the users sometimes desire to
“temporarily” work with plans that violate rules or
constraints.  One possible approach for allowing violations
is to isolate the inconsistent parts of the plan; a second
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approach is to allow constraints and rules to be disabled
and re-enabled.  The latter approach was in fact designed
for the MAPGEN tool, but we never got a chance to
implement it.  Future work will explore possible
approaches and techniques for this.

The users also want to advise the planner on how it
makes decisions at a high level and on how the planner’s
search is done.  Users have noted that they would like to
specify limits on what the automated reasoning process can
change in order to enforce constraints and rules.  For
example, users may want a portion of the plan to remain
unchanged, either in terms of a subinterval of the plan’s
time span or a subset of the plan’s activities.

It would also be useful for the system to answer
questions from the user regarding trade-offs, for example,
by answering the following types of queries:
• What needs to be unplanned (in priority order) to

enable additional time for arm instrument use, or to
allow for driving further?

• For a given panorama that does not fit as a whole,
which parts of it can be fit into the current plan?

• In order to fit in another imaging activity, what
needs to be unplanned or shortened?

Another technique for supporting trade-off analyses is to
help the user better understand the space of possible
solutions by presenting qualitatively different solutions.
We are extending some previous work on advisable
planners (Myers, 1996; Myers, et al., 2003) to apply within
the context of our constraint-based planning technology in
order to help address these issues.
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