Understanding Human Behavior from Sensor Data

Henry Kautz

Dieter Fox Don Patterson Liao Lin

University of Washington

A Dream of Al

- Systems that can understand ordinary human experience
- Work in KR, NLP, vision, IUI, planning...
 - o Plan recognition
 - o Behavior recognition
 - o Activity tracking

Goals

- o Intelligent user interfaces
- o Step toward true Al

Plan Recognition, circa 1985

Logical abduction

- + Hierarchy
- Probabilities
- User errors
- Grounding

Activity Tracking, circa 2005

Activity Tracking, circa 2005

Probabilistic inference from sensor data

- + Probabilities
- + User errors
- + Grounding
- +/- Hierarchy

Punch Line

- Resurgence of work in behavior understanding, fueled by
 - o Advances in probabilistic inference
 - Graphical models
 - Scalable inference
 - KR U Bayes
 - o Ubiquitous sensing devices
 - RFID, GPS, motes, ...
 - Ground recognition in sensor data

Research Issues

Domain modeling

o What is to be modeled about the domain?o What is to be modeled about the user?o What is the data?o What prior knowledge?

- o What features are useful for learning?
- New representations & algorithms
 - o 101 relational statistical models
- No representation without computation

This Talk

- Activity tracking from RFID tag data o ADL Monitoring
- Learning patterns of transportation use from GPS data

o Activity Compass

Learning to label activities and places
 o Life Capture

This Talk

- Activity tracking from RFID tag data o ADL Monitoring
- Learning patterns of transportation use from GPS data

o Activity Compass

Learning to label activities and places
 o Life Capture

Object-Based Activity Recognition

- Activities of daily living involve the manipulation of many physical objects o Kitchen: stove, pans, dishes, ...
 o Bathroom: toothbrush, shampoo, towel, ...
 o Bedroom: linen, dresser, clock, clothing, ...
- We can recognize activities from a timesequence of object touches

Application

- ADL (Activity of Daily Living) monitoring for the disabled and/or elderly
 - o Changes in routine often precursor to illness, accidents
 - o Human monitoring intrusive & inaccurate

Activities of Daily Living/ Instrumental Activities of Daily Living	Estimated Times
Laundry/Housekeeping	4 hours total
□ Laundry	2 hours per week
Minor Sewing and Mending	10-15 minutes
□ Other	
Clean Toilet, Sink, Tub/Shower	30 minutes
□ Clean Floors, Carpets, Rugs	30 minutes
Clean Kitchen Appliances,	15 minutes
Countertops	
□ Dust	10-15 minutes
Make Bed &/Or Change Linens	5-10 minutes
□ Wash Dishes	10-15 minutes
Wash Cupboards, Walls, Throw	Once yearly
Rugs, Curtains, Inside Windows	10 Subtisticitud Particitus estates
□ Remove Trash	5 minutes
□ Other	

Sensing Object Manipulation

- RFID: Radiofrequency identification tags
 - o Small
 - o No batteries
 - o Durable
 - o Cheap
 - Easy to tag objects
 - o Near future: use products' own tags

Wearable RFID Readers

Experiment: Morning Activities

- 10 days of data from the morning routine in an experimenter's home
 - o 61 tagged objects
- 11 activities
 - o Often interleaved and interrupted
 - o Many shared objects

Use bathroom	Make coffee	Set table
Make oatmeal	Make tea	Eat breakfast
Make eggs	Use telephone	Clear table
Prepare OJ	Take out trash	

Baseline: Individual Hidden Markov Models

68% accuracy 11.8 errors per episode

Baseline: Single Hidden Markov Model

83% accuracy9.4 errors per episode

Cause of Errors

- Observations were types of objects o Spoon, plate, fork ...
- Typical errors: confusion between activities
 - o Using one object repeatedly
 - o Using different objects of same type
- Critical distinction in many ADL's o Eating versus setting table o Dressing versus putting away laundry

Aggregate Features

- HMM with individual object observations fails o No generalization!
- Solution: add aggregation features

 Number of objects of each type used
 Requires history of current activity
 performance
 - o DBN encoding avoids explosion of HMM

Dynamic Bayes Net with Aggregate Features

88% accuracy6.5 errors per episode

Improving Robustness

DBN fails if novel objects are used

 Solution: smooth parameters over abstraction hierarchy of object types

$$P(O_i \to O_j) = \frac{\exp(-\frac{Dist(O_i, O_j)}{2})}{\sum_j \exp(-\frac{Dist(O_i, O_j)}{2})}$$

Abstraction Smoothing

- Methodology:
 - o Train on 10 days data
 - o Test where one activity substitutes one object

Change in error rate:
 o Without smoothing: 26% increase
 o With smoothing: 1% increase

Summary

- Activities of daily living can be robustly tracked using RFID data
 - o Simple, direct sensors can often replace (or augment) general machine vision
 - o Accurate probabilistic inference requires sequencing, aggregation, and abstraction
 - o Works for essentially all ADLs defined in healthcare literature

Inferring ADLs from Interactions with Objects, *Pervasive Computing*, 3 (4), 2004

This Talk

- Activity tracking from RFID tag data o ADL Monitoring
- Learning patterns of transportation use from GPS data
 - o Activity Compass
- Learning to label activities and places
 o Life Capture

Challenge

- Given a data stream from a GPS unit...
 - Infer the user's mode of transportation, and places where the mode changes
 - Foot, car, bus, bike, ...
 - Bus stops, parking lots, enter buildings, ...
 - o Learn the user's daily pattern of movement
 - Predict the user's future actions
 - o Detect user errors

Application

- Activity Compass
 - o Personal guidance system for people with cognitive disabilities
 - o Stroke, traumatic brain injury, mental retardation
 - o Adaptive and proactive

Patterson *et al,* Opportunity Knocks: a System to Provide Cognitive Assistance with Transportation Services, *UBICOMP-2004*

Approach

- Map is a directed graph G=(V,E)
- Location:
 - o Edge e
 - o Distance d from start of edge
 - o Actual (displaced) GPS reading
- Movement:
 - o Mode { foot, car, bus } determines velocity range
 - o Change mode near bus stops & parking places
- Tracking (filtering): Given some prior estimate,
 o Update position & mode according to motion model
 o Correct according to next GPS reading

Dynamic Bayesian Network I

Transportation mode

Edge, velocity, position Data (edge) association GPS reading

Mode & Location Tracking

	Measurements
<u> </u>	Projections
Green	Bus mode
Red	Car mode
Blue	Foot mode

Learning

- Prior knowledge general constraints on transportation use o Vehicle speed range o Bus stops
- Learning specialize model to particular user
 - o 30 days GPS readings
 - o Unlabeled
 - o Learn edge transition parameters using expectation-maximization (EM)

Predictive Accuracy

City Blocks

Transportation Routines

Home

Workplac e

- Goal: intended destination
 - o Workplace, home, friends, restaurants, ...
- Trip segments: <start, end, mode>
 - o Home to Bus stop A on Foot
 - o Bus stop A to Bus stop B on Bus
 - o Bus stop B to workplace on Foot

Dynamic Bayesian Net II

Goal

Trip segment

Transportation mode

Edge, velocity, position Data (edge) association GPS reading

Unsupervised Hierarchical Learning

- Use previous model to infer:
 - o Goals
 - locations where user stays for a long time
 - o Transition points
 - locations with high mode transition probability
 - o Trip segments
 - paths connecting transition points or goals
- Learn transition probabilities
 o Expectation-Maximization

Predict Goal and Path

 \bigcirc

Improvement in Predictive Accuracy

Detecting User Errors

- Learned model represents typical correct behavior
 o Model is a poor fit to user errors
- We can use this fact to detect errors!
- Cognitive Mode
 - o Normal: model functions as before
 - o Error: switch in prior (untrained) parameters for mode and edge transition

Dynamic Bayesian Net III

Cognitive mode { normal, error } Goal

Trip segment

Transportation mode

Edge, velocity, position Data (edge) association GPS reading

Detecting User Errors

Status

- Development funded by National Institute for Disability and Rehabilitation Research
 - o UBICOMP 2003, 2005
 - o AAAI 2004 Best Paper Award
- Current work
 - o Usability studies
 - o Audio interface
 - o Learning effective prompting strategies

This Talk

- Activity tracking from RFID tag data o ADL Monitoring
- Learning patterns of transportation use from GPS data

o Activity Compass

Learning to label activities and places
 o Life Capture

Task

Learn to label a person's

- o Daily activities
 - working, visiting friends, traveling, ...
- o Significant places
 - work place, friend's house, usual bus stop, ...

Given

- o Training set of labeled examples
- o Wearable sensor data stream
 - GPS, acceleration, ambient noise level, ...

Application

Life Capture Automated diary On-duty log book

Time	Activity and transportation
8:15am - 8:34am	Drive from home 1 to parking lot 2, walk to workplace 1;
8:34am - 5:44pm	Work at workplace 1;
5:44pm - 6:54pm	Walk from workplace 1 to parking lot 2, drive to friend's place 3;
6:54pm - 6:56pm	Pick up/drop off at friend 3's place;
6:56pm - 7:15pm	Drive from friend 3's place to other place 5;
9:01pm - 9:20pm	Drive from other place 5 to friend 3's place;
9:20pm - 9:21pm	Pick up/drop off at friend 3's place;
9:21pm - 9:50pm	Drive from friend 3's place to home 1;
9:50pm - 8:22am	Sleep at home 1.

Conditional Models

HMMs and DBNs are generative models

o Describe complete joint probability space

 For labeling tasks, conditional models are often simpler and more accurate o Learn only P(label | observations)
 o Fewer parameters than corresponding generative model

Things to be Modeled

- Raw GPS reading (observed)
- Actual user location
- Activities (time dependent)
- Significant places (time independent)
- Soft constraints between all of the above (learned)

Conditional Random Field

- Undirected graphical model

 o Feature functions defined on cliques
 o Conditional probability proportional to exp(weighted sum of features)
 o Weights learned by maximizing (pseudo
 - o Weights learned by maximizing (pseudo) likelihood of training data

$$p(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{C \in \mathcal{C}} \prod_{\mathbf{v}_{C} \in C} \exp\{\mathbf{w}_{C}^{T} \cdot \mathbf{f}_{C}(\mathbf{v}_{C})\}\$$

Relational Markov Network

- First-order version of conditional random field
- Features defined by feature templates

 All instances of a template have same weight
- Examples:
 - o Time of day an activity occurs
 - o Place an activity occurs
 - o Number of places labeled "Home"
 - o Distance between adjacent user locations
 - o Distance between GPS reading & nearest street

Significant Places

- Previous work decoupled identifying significant places from rest of inference
 - o Simple temporal threshold [Ashbrook & Starner 2003; Liao, Kautz, & Fox 2004; Dechter et al. 2005]

o Misses places with brief activities

RMN model integrates

 Identifying significant place
 Labeling significant places
 Labeling activities

Efficient Inference

- Some features are expensive to handle by general inference algorithms o E.g. belief propagation, MCMC
- Can dramatically speed up inference by associating inference procedures with feature templates
 - o Fast Fourier transform (FFT) to compute
 "counting" features
 - o O(n log²n) versus O(2ⁿ)

Results: Labeling

- One user, 1 week training data, 1 week testing data
 - o Number of (new) significant places correctly labeled: 18 out of 19
 - o Number of activities correctly labeled: 53 out of 61
 - o Number of activities correctly labeled, if counting features not used: 44 out of 61

Results: Finding Significant Places

Results: Efficiency

Summary

- We can learn to label a user's activities and meaningful locations using sensor data & state of the art relational statistical models
- Many avenues to explore:
 - o Transfer learning
 - o Finer grained activities
 - o Structured activities
 - o Social groups

Conclusion: Why Now?

- An early goal of AI was to create programs that could understand ordinary human experience
- This goal proved elusive

 Missing probabilistic tools
 Systems not grounded in real world
 Lacked compelling purpose
- Today we have the mathematical tools, the sensors, and the motivation

Credits

Graduate students:

 Don Patterson, Lin Liao

 Colleagues:

 UW CSE: Dieter Fox, Gaetano Borriello
 UW Rehabilitation Medicine
 Intel Research Seattle

 Funders:

o NIDRR, Intel, NSF, DARPA