
Expressivity

Drew McDermott

Yale University

Planning Is...
Reasoning about alternative courses
of action in order to achieve a goal
and/or optimize some utility function

Actions must not interact “too
much.” (Rubik’s Cube is not a
planning problem.)

Some History

Strips vindicated GPS, and gave us addlists
& deletelists

It didn’t work all that well. (Control
structure problems, search-space problems.)

“Search needs to be controlled.”
(Conventional wisdom, ca. 1975)

Expressivity = Control

Abstrips --> NOAH & Nonlin

Abstrips inferred (well, almost...)
abstractions of actions (less important
goals postponed)

NOAH used hierarchical plans with
abstractions captured by the person
that wrote them

?

The Dark Ages

Renaissance
TWEAK (Chapman), SNLP (McAllester &
Rosenblitt)

Emphasis on provable properties
(“systematicity”), which tended toward
minimalism

Prodigy (CMU, Carbonell, Minton, Veloso,
Knoblock, ...) --- Strips rekindled

The Carboniferous
(to make a hash of my temporal metaphors)

UCPOP (U. Washington, Weld et al. ad inf.)
conquers the world, or at least makes it
safe for partial-order causal-link (POCL)
planning

Pednault’s ADL (Action Description
Language) is the standard for elegance and
expressivity

Secondary preconditions (when P Q)

Good Algorithms!

Graphplan (Blum & Furst), SATPlan (Kautz
& Selman), estimated (“relaxed”) regression
Planning (McDermott; Geffner & Bonet),
many, many more, . . .

Too many to count, let alone survey

Expressivity took a huge hit. Back to
Strips! Any progress on expressivity had
to preserve algorithmic efficiency.

IPC and PDDL

One key purpose of the International
Planning Competition is to push the field
forward by increasing expressivity “a bit.”

IPC-1: PDDL (Planning Domain Definition
Language)

IPC-2: No change (except hierarchical
notation essentially abandoned)

IPC and PDDL

IPC-3: Durative actions, fluent functions,
objective functions

IPC-4: Timed initial literals & derived
predicates

Most flaws in PDDL are due to the
temptation to take current algorithms’
limitations seriously

:length field in problem statements (IPC-
1)

:functions must be numerical fluents

“Durative actions” (as opposed to
autonomous processes)

Lessons Learned

Lessons Learned

Don’t get too far ahead of what we know
how to handle.

Prime example: General-purpose
hierarchical plan notation.

Where Do We Go from
Here?

Add HTN planning to PDDL (again)

Because: Algorithms (e.g., SHOP2) exist.
Some problems require canned plans as
heuristic guidance.

If all planners used the same notation, we
could compare them (for crying out loud).

SHOP2 Notation

(:ordered [method | task]*)

(:unordered [method | task]+)

Primitive and
compound tasks

Primitives are defined
by “operators”

= (action definitions)

Compounds are defined
by methods

The Need for
“Dataflow”

Actions (and processes) should have values
as well as effects.

For knowledge effects, but also to create
names for new things

E.g., “correlation tokens”

(send ?a ?msg) produces id
--> used by (receive ?id)

SHOP2 & Dataflow

Uses assert and erase to store signals
in the world model

Special devices to hide these
“actions” in the output

Blech

Golden et al., U.
Washington
(mid 90s)

(p !a ?b) -- ‘a’ gets set at run time,
typically to something one has discovered

“Run-time” variables:

This work was (almost) the last word on
knowledge conditions, but it didn’t
address the link issue.

OWL-S Dataflow
tagA :: perform A(x <= 5);
...;
perform B(z <= tagA.outY)

(For those familiar with the
RDF/XML OWL-S, this is

the “presentation syntax.”)

Not felicitous
given

conditionals...
if test then t :: perform A
 else f :: perform B;
perform C(x <= t.z, x <= f.u)

Dataflow Between Tasks

(From Williamsson, Decker, & Sycara
1996 “Unified Information and Control

Flow in HTNs,” AAAI Conf.)

Links

(with-links (n - (Val x y))
 (seq (if test (link (perform (A ...))
 :output n)
 (link (perform (B ...))
 :output n))
 (link :input n
 (perform (C (!_y n))))))

Naming Links

Wherever possible, try to infer links;
and/or make them look like :vars vars

Example

Currency-trading domain:

 Goal: (delta (transfer-amt
 (currency euro) me Soros)

 100000)

E-commerce notations:
 (know-val= term literal) - Predicate
 (transfer-amt pred agt1 agt2)
 - Total amount of objects satisfying pred
transferred from agt1 to agt2
 (delta quant x) - The change in quant (from the
initial situation) is x

Standard Action

(:action (transfer ?n1 ?pred ?a)
 :effect (increase (transfer-amt ?pred me ?a))

 :expansion :methods)

Standard Plan
(:method (transfer ?n1 (currency ?curr1) ?a)
 :vars (n1 n2 curr1 curr2 a middleper exch)
 :precondition
 (know-val= (price ?middleper (currency ?curr1)
 ?curr2)
 ?exch
 :expansion
 (seq (trade ?middleper
 (* ?exch ?n1) (currency ?curr2)
 ?n1 (currency ?curr1))
 (transfer ?n1 (currency ?curr1) ?a)))

Is HTN Planning Ready
to Stretch?

 Dealing with dataflow
 Contingencies and loops

 Unifying HTN & situation-
space planning

We’ll see...

As Expressivity Grows...

Do as much reasoning as possible
“forward,” in current situation (not during
regression)

You can “plug in” modules if you have a
complete situation representation. Plug-
ins might include information-retrieval
planners, constraint solvers, schedulers, . .
. .

Estimated-Regression
Planning

• Situation-space search (= space of plan prefixes)

• Reserve the word “state” for “search state” (= plan
prefix + other stuff...)

GG GoalStart Action S1

Situation Search

Estimated-Regression
Planning

• At every situation, planner must compute a
regression-match graph to estimate which actions are
feasible and promising.

• Regression-Match graph is a modified AND/OR
graph:
– OR for the alternative actions for achieving a goal,

– AND for action preconditions.

Goal
Start Action

Action

Action

S1

PC1

PC2

PC1

PC2
Action

=
= &

&

orRegression

Situation Search

BB

Evaluating Action C:
Plausibly Project

Goal
Start Action

A

S1

PC1

PC2
&

RegressionSituation Search

CC

S1S1 CC BB AA

Evaluate
Objective

Here

Optop Algorithm
search-for-plan(prob, metric)
 let Q = queue of scored plan prefixes,
 initially containing only the empty prefix
 (while Q is not empty
 (Remove the plan prefix P with minimum score from Q;
 If P is a solution to the problem, return it
 Compute a regression-match graph relating the goal of prob
 to the situation reached after P, editing the regression-
 match graph of P's predecessor if possible;
 For each action A recommended by the graph,
 Let R = some minimal reduction tree for A
 (Plausibly project R;
 Evaluate the metric in the resulting situation;
 Put the new prefix P+A on Q with that value as its
 score));
 return 'FAILED)

Changes to Handle
Hierarchical plans
 View canned plan as a “resource”
 Composite actions are chosen for
their overall effects
 New plan operator: select method for
plan
 State representation includes
partially executed HTNs.

Plan-State
RepresentationAt some point after commitment to

(parallel (seq A B) (seq C D))

CC EE

A then B
D

Goal

G2

G1

G3

Situation Search Regression

FF

PC1PC1

Evaluate By Plausible Projection, as before

S1S1

PC2PC2

&

Execution State

Conclusions:
How to Enhance

Expressivity
The IPC and PDDL are working pretty well

HTNs are an idea whose (notational) time
has come.

It isn’t that hard to incorporate them into
existing planning systems.

Conclusions:
How to Enhance

Expressivity
Be maniacs! (Sometimes; usually idiocy is
preferable.)

Be elegant. Don’t let current planner
limitations overly constrain notation.

Don’t outrun the algorithms too much. If
no one has a clue how to use the notation,
it won’t be used.

Avoid committees and telecons :)

(Ignore obvious
conflict)

