
Monterey, California
I C A P S 2 0 0 5

Doctoral

Consortium

Adele Howe

Ruth Aylett

Colorado State University, USA

University of Salford, UK

IC
A

P
S

0
5

DOC





Doctoral

Consortium

ICAPS 2005
Monterey, California, USA
June 6-10, 2005

CONFERENCE CO-CHAIRS:
Susanne Biundo

Karen Myers

Kanna Rajan

University of Ulm, GERMANY

SRI International, USA

NASA Ames Research Center, USA

Adele Howe

Ruth Aylett

Colorado State University, USA

University of Salford, UK

Cover design: L.Castillo@decsai.ugr.es





Doctoral Consortium

Table of contents

Preface 3

Identifying Algorithm Performance Factors for an Oversubscribed
Scheduling Problem

5

Barbulescu, Laura

Scaling Decision Theoretic Planning 8
Bryce, Daniel

Abstract Scheduling Models 12
Carchrae, Tom

On-line Optimized Planning for Space Applications 16
Damiani, Sylvain

Planning on demand in BDI systems 20
de Silva, Lavindra

Conflict-directed Search through Disjunctive Temporal Plan Net-
works

24

Effinger, Robert T.

Optimization of Robust Plans under Time, Resource, and Goal Uncer-
tainty

28

Foss, Janae

Integrating Resource and Causal Reasoning: a CSP Approach 31
Fratini, Simone

Swarm Intelligence based Information Sharing for PSO based Machi-
ne Scheduling

35

Gao, Haibing

A Mixed Initiative framework for dynamic environments 39
Garcı́a-Pérez, Óscar
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Preface

Truly, graduate students are the lifeblood of any field. They offer insight and innova-
tion that comes from taking a fresh look. They contribute tremendous energy, dedication
and enthusiasm to the field. Clearly, this is as true of the ICAPS community as any other
scientific field.

The Ph.D. students selected for participation are all currently enrolled in a Ph.D.
program and have progressed enough in their research to have identified a topic and,
at least, preliminary results with some quite close to graduation. They share a cen-
tral focus on planning and scheduling problems in artificial intelligence and, based on
their submission, a promise for exceptional research in their careers. They come from
10 countries on four continents and represent a diversity of approaches and subareas
within our field.

The Doctoral Consortium is dedicated to giving these young researchers an op-
portunity to showcase their ideas to the ICAPS community as a whole and garner the
attention of more senior people in the field who have volunteered to be their mentors.
Some of the participants have only one or perhaps no faculty member at their home ins-
titution who specializes in planning and scheduling. The Doctoral Consortium facilitates
their interacting with other researchers at all levels who share their passion for the field.

These proceedings contain extended abstracts from the participants. The topics are
as broad in scope as the main program for the conference, and not surprisingly for gra-
duate students, include areas rising in interest and importance such as mixed-initiative
and model checking. The research projects presented are at different levels of matu-
rity with some intriguing new ideas being proposed. Taken as a whole, the proceedings
promise the all too rare opportunity to glimpse the future...

Organizers

Adele Howe, Colorado State University, USA

Ruth Aylett, University of Salford, UK





Identifying Algorithm Performance Factors for an Oversubscribed Scheduling
Problem∗

Laura Barbulescu
Computer Science Dept.

Colorado State University
Fort Collins, CO 80523

email: laura@cs.colostate.edu

Abstract
My research work focuses on identifying key algorithm
performance factors for an oversubscribed real-world
application: scheduling for the U.S.A. Air Force Satel-
lite Control Network (AFSCN). A genetic algorithm
(GA) has been previously found to excel on this prob-
lem. I designed an empirical study to discover what
makes the GA a good fit for AFSCN scheduling. For
experimental control purposes, I included local search
and Squeaky Wheel Optimization (SWO) in the study.
I found that the search space is dominated by plateaus,
favoring algorithms like the GA and SWO, which take
large steps through the space. Also, an initial ver-
sion of local search, using a structured ordering of the
neighbors was inefficient at plateau traversal. However,
the performance of local search can be significantly in-
creased by using a randomized ordering of the neigh-
bors. In this paper, I present empirical results to char-
acterize the search space and to explain the discrepancy
in the performance of the two local search versions.

Introduction
When solving a real-world optimization problem, most re-
searchers and practitioners focus on identifying an algorithm
that can be shown to perform well. However, as Paul Cohen
(Cohen 1995) writes in his book Empirical Methods for Ar-
tificial Intelligence: “It is good to demonstrate performance,
but it is even better to explain performance”. In this paper I
summarize some of my research results on explaining algo-
rithm performance for an oversubscribed scheduling appli-
cation, scheduling for the AFSCN.

The AFSCN is currently responsible for coordinating
communications between civilian and military organizations
and more than 100 USAF managed satellites. Space-ground
communications are performed using 16 antennas located at
nine tracking stations around the globe. Customer organiza-
tions submit task requests to reserve an antenna at a track-
ing station for a specified time period based on the visibility
∗This research was sponsored the Air Force Office of Scien-

tific Research, Air Force Materiel Command, USAF, under grant
number F49620-03-1-0233. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

windows between target satellites and tracking stations. Ap-
proximately 500 requests are typically received for a single
day. Separate schedules are produced by a staff of human
schedulers at Schriever Air Force Base for each day. Of the
500 requests, often about 120 unscheduled requests remain
after the first pass of scheduling.

A problem instance consists of n task requests. A task
request Ti, 1 ≤ i ≤ n, specifies both a required process-
ing duration T Dur

i
and a time window T Win

i
within which the

duration must be allocated; we denote the lower and upper
bounds of the time window by T Win

i
(LB) and T Win

i
(UB), re-

spectively. Tasks cannot be preempted once processing is
initiated. Each task request Ti specifies j ≥ 0 pairs of the
form (Ri, T

Win
i

), each identifying a particular alternative re-
source (antenna) and time window for the task.

We obtained 12 days of data for the AFSCN application.
The first seven days are from a week in 1992 and were given
to us by Colonel James Moore at the Air Force Institute of
Technology. We obtained an additional five days of data
from schedulers at Schriever Air Force Base. I will refer to
the problems from 1992 as the A problems, and to the more
recent problems, as the R problems.

Previous research and development on AFSCN schedul-
ing focused on minimizing the number of unscheduled re-
quests (bumps). We designed a new evaluation criterion that
schedules all the requests by allowing them to overlap and
minimizing the sum of overlaps between conflicting tasks.

Research performed at AFIT identified a GA, Genitor
(Whitley 1989), to perform well for the A problems, when
minimizing the number of bumps. I compared Genitor to
algorithms which employ domain specific heuristics to fo-
cus the search: a constructive method, HBSS (Bresina 1996)
using a flexibility heuristic similar to the one defined by
Kramer and Smith (Kramer & Smith 2003) and Gooley’s al-
gorithm (Gooley 1993). I found that Genitor performs better
than HBSS and Gooley’s algorithm. Given that the imple-
mentation of Genitor does not encode any domain specific
heuristic, I designed an empirical study to investigate the
reasons for such performance results. In the next sections, I
summarize the results of my study and conclude with some
future work directions.
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Algorithm Performance
All the algorithms in this study represent a proposed sched-
ule as a permutation (prioritization) of the tasks. A greedy
schedule builder transforms a given permutation into a
schedule, by assigning to each task, in the order in which
they appear in the permutation, the earliest possible time slot
on the first available resource (from the list of possible alter-
natives specified for that task).

To baseline the performance of Genitor. I implemented
local search, using a domain-independent move operator, the
shift operator. The neighbor corresponding to the position
pair (x, y) is produced by shifting the job at position x into
the position y, while leaving all other relative job orders un-
changed.

Given the large neighborhood size, I use the shift oper-
ator in conjunction with next-descent hill-climbing. I im-
plemented two versions of ordering the neighbors; we call
these a structured version and a randomized version. The
structured version chooses the position x by random, and
checks in order all the neighbors obtained by shifting the
job at position x into positions 0, 1, 2... accepting both
equal moves and improving moves. The randomized version
chooses both x and y by random, without replacement.

I also implemented Squeaky Wheel Optimization
(SWO)(Joslin & Clements 1999), for purposes of experi-
mental control. During one iteration, local search applies
incremental changes to the current solution (by shifting only
one task at the time); both Genitor (via the crossover op-
erator) and SWO take large leaps in the search space, by
moving multiple tasks simultaneously.

In a couple of previous studies, I found that SWO and
Genitor perform better than local search implemented with
the structured ordering of the neighbors. I hypothesized
that large plateaus are present and therefore long leaps are
needed to efficiently traverse the search space (Barbulescu,
Whitley, & Howe 2004), (Barbulescu et al. 2004). Recently,
I added to the set of algorithms the randomized local search.
A comparison of these algorithms shows that: 1) Genitor
and SWO perform best for minimizing bumps; the random-
ized local search also performs well, 2) SWO and the ran-
domized local search perform best for minimizing overlaps,
better than Genitor, and 3) The worst performer in our set is
the structured local search. The results of the current com-
parison suggest that possibly the long leaps are not needed:
the randomized local search performs as well as Genitor and
SWO, for both objective functions. The balance of this sec-
tion presents results characterizing the search space and rea-
sons for the discrepancy in performance for the two versions
of local search.

Plateaus in the Search Space
When analyzing local search performance, I found that most
of the accepted moves during search are non-improving
moves; search ends up randomly walking on a plateau un-
til an exit is found. As further evidence for the presence of
plateaus, I collected results about the number of schedules
with the same value as the original schedule, when perturb-
ing the solutions by operating all possible shifts. Both ran-
dom and best known solutions were included in the study.

The results show that: 1) More than 85% of the shifts result
in schedules with the same value as the original one, when
minimizing conflicts. 2) When minimizing overlaps, more
than 65% of the shifts result in same value schedules.

To evaluate the number and the size of the plateaus in the
permutation search, I performed an experiment to average
the length of the random walk on a plateau starting from
various solutions encountered during one run of the random-
ized local search. The results show that large plateaus are
present in the search space; improving moves lead to longer
walks on lower plateaus. For the AFSCN scheduling prob-
lems, most of the states on a plateau have at least one neigh-
bor that has a better value (this neighbor represents an exit).
However, the number of such exits represents a very small
percentage from the total number of neighbors and therefore
local search has a very small probability of finding an exit.
If there are no exits from a plateau, the plateau is a local
minimum.

Determining which of the plateaus are local minima (by
enumerating all the states on the plateau and their neigh-
bors) is prohibitive because of the large size of the neigh-
borhoods and the large number of equally good neighbors
present for each state in the search space. Instead, I focused
on the average length of the random walk on a plateau. This
length depends on two factors: the size of the plateau and
the number of exits from the plateau. The number of im-
proving neighbors for a solution decreases as the solution
becomes better; I conjecture that there are more exits from
higher level plateaus than from the lower level ones. This
would account for the trend of needing more steps to find an
exit when moving to lower plateaus (corresponding to better
solutions). It is also possible that the plateaus correspond-
ing to better solutions are larger in size; however, enumerat-
ing all the states on a plateau for the AFSCN domain is im-
practical (following a technique developed by Frank (Frank,
Cheeseman, & Stutz 1997), just the first iteration of breadth
first search would result in approximately 0.8 ∗ (n − 1)2 or
approximately 162,000 states on the same plateau).

Structured versus Random Ordering of the
Neighbors
The poor performance or structured local search led us to
conclude that the plateaus likely precluded effective local
search (Barbulescu, Whitley, & Howe 2004). Recently we
found that randomized local search performs as well as the
best algorithms in our set. In this section, I offer an expla-
nation of why the ordering of the neighbors was a particular
problem.

I hypothesized that structured local search is stuck on
plateaus for a longer time than randomized local search. To
check if this is the case, I counted the average number of
the evaluations that resulted in worse, equally good and bet-
ter solutions over 30 runs of both local search versions, with
8000 evaluations per run. The results obtained for minimiz-
ing overlaps are summarized in Table 1. I obtained sim-
ilar results for minimizing bumps. The number of worse
neighbors evaluated by local search is significantly higher
for the structured version of search. Given the high per-
centage of equally valued neighbors, both versions of search

ICAPS 2005
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Average % Worse Average % Equal Average % Better
Identical sch. Non-Identical sch.

Day Rand Struct Rand Struct Rand Struct Rand Struct
A1 20.1 87.8 0.03 0.16 79.1 11.7 0.6 0.3
A2 16.6 86.0 0.02 0.04 82.8 13.6 0.5 0.2
A3 19.3 86.8 0.02 0.08 80.0 12.7 0.6 0.3
A4 21.3 88.5 0.03 0.02 77.8 11.0 0.7 0.3
A5 19.5 87.3 0.03 0.05 79.8 12.2 0.6 0.3
A6 21.3 87.5 0.01 0.07 77.9 11.9 0.6 0.3
A7 16.8 85.7 0.02 0.1 82.6 13.8 0.5 0.3
R1 32.2 91.0 0.01 0.03 65.8 8.5 1.8 0.4
R2 26.8 90.4 0.02 0.04 71.7 9.1 1.3 0.3
R3 24.7 89.9 0.03 0.09 74.0 9.6 1.1 0.3
R4 23.6 89.5 0.02 0.02 75.2 10.0 1.0 0.3
R5 17.9 87.8 0.02 0.1 81.3 11.6 0.7 0.3

Table 1: Minimizing overlaps: Average percentage of evaluations (out of 8000) resulting in worse, equally good or improving
solutions over 30 runs of local search.

spend most of the time accepting equally good moves; only a
small number of improving steps are taken. However, since
the structured local search spends more than 80% of the time
evaluating worse moves, it is left with only approximately
15% of the evaluations to move through the space. The
structured local search needs more evaluations to find good
solutions. This is also emphasized by the number of improv-
ing neighbors found by the two versions of local search: the
randomized version always finds more improving neighbors
(twice as many as the structured version, or even more).

The poor performance of the structured local search is
a consequence of an unfortunate interaction between the
schedule builder and the domain. Shifting a request into con-
secutive positions is likely to result in identical schedules. If
shifting a request results in a neighbor that is worse than the
current value of the solution, shifting the same request in
subsequent positions will also be worse (until a position is
found that changes the corresponding schedule). In effect,
for our initial implementation, when local search encounters
a worse neighbor, the probability of the next neighbor be-
ing also worse increases. To fix this problem, when a worse
neighbor is encountered, instead of checking subsequent po-
sitions to shift x, both x and y should be chosen again, by
random. This is in effect what the randomized version of
search is doing.

Conclusions and Future Work
The permutation search space of the AFSCN scheduling is
dominated by large size plateaus. Poor local search perfor-
mance in some initial studies suggested that large leaps are
needed to traverse these plateaus. Recently, I found that a
new version of local search performs well for this problem.
This is in contradiction with my initial hypothesis, because
it suggests that multiple simultaneous moves (leaps) are not
necessary for good performance. I conjecture that in fact
multiple moves are a factor in algorithm performance, in the
sense that they can speed up the convergence of an algo-
rithm. For example, preliminary evidence shows that SWO
moving only one task forward performs poorly (Barbulescu,

Whitley, & Howe 2004). This is a first research topic I am
currently investigating. A second topic of my current re-
search is focused on answering the question: How do the
results of my study change if a different approach (instead
of the greedy one) is used for the schedule builder? Finally,
I am working on generalizing the results for other oversub-
scribed scheduling problems.
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Scaling Decision Theoretic Planning

Daniel Bryce
dan.bryce@asu.edu

Department of Computer Science and Engineering
Ira A. Fulton School of Engineering

Arizona State University, Brickyard Suite 501
699 South Mill Avenue, Tempe, AZ 85281

Abstract

As classical planning branches out to consider richer models,
many extensions approach decision theoretic models. Deci-
sion theory research uses models like MDPs and POMDPs
which are very expressive, but can be dif cult to scale.
Whereas, planning research concentrates quite a bit on scal-
ability. Our previous work and future doctoral thesis con-
centrates on extending the planning model toward problems
characterized by partial observability, non determinism, non
uniform cost, and utility.

Introduction
One of the major reasons recent planners are able to tackle
problems where solutions have on the order of hundreds of
actions is the advent of reachability heuristics. Reachabil-
ity heuristics rely on a structure called the planning graph,
originally introduced to perform search in GraphPlan [Blum
and Furst, 1995]. While GraphPlan was able to outperform
many of the planners at the time, it has been subsumed by a
planners such as HSP [Bonet and Geffner, 1999], FF [Hoff-
mann and Nebel, 2001], and AltAlt [Nguyen et al., 2002]
that use reachability heuristics extracted from the planning
graph to guide state space search.

The basic idea in a planning graph is to approximate all
states at each depth of the state space progression tree by a
set of literals. The approximation loses boundaries between
states at a depth of the search, but keeps the literals that can
be reached at each depth. The planning graph encodes a
lower bound k on the number of steps needed to achieve a
state with a literal l if l doesn’t appear in the planning graph
until layer k. While this lower bound is a useful heuristic,
it can be improved by using a relaxed GraphPlan search to
 nd actions that are needed to support the literal by back-
chaining through the planning graph. This heuristic, called
a relaxed plan, has been used with much success in many
planners.

While we would like to use reachability heuristics in the
more expressive planning models, the unmodi ed Graph-
Plan relaxation tends to break down. Our previous work,
discussed in the next section, looks at extending the planning

Copyright c© 2005, American Association for Arti cial Intelli-
gence (www.aaai.org). All rights reserved.

model to include partial observability, where the key chal-
lenge is generalizing reachability heuristics between sets of
states (belief states). In the following section, on our cur-
rent work, we discuss extensions that are needed to handle
non uniform cost models for actions that are both causative
and sensory. Finally, in the last section we discuss further
extensions to stochastic belief states and actions and utility
models.

Partial Observability
Planning problems with partially observable states can be
posed as search in belief space, where search nodes are sets
of states and solutions are conformant and conditional plans.
We investigated using planning graph heuristics for search in
belief space. Intuitively, it can be argued that the heuristic
merit of a belief state depends on at least two factors–the size
of the belief state (i.e., the uncertainty in the current state),
and the distance of the individual states in the belief state
from the goal (belief) state. The question of course is how to
compute these measures and which are most effective. Gen-
eralizing classical planning heuristics that aggregate the cost
of literals in a state to get a state to state distance, we can ag-
gregate the cost of states in a belief state to get a belief state
to belief state distance. We evaluated heuristics that make
various assumptions about state independence, positive in-
teraction, and negative interaction.

We [Bryce and Kambhampati, 2004]  rst tried a minimal
extension to heuristics used in classical planning by con-
sidering heuristics from a single planning graph to guide
search, which proved not to scale our planners very well.
To improve the informedness of the heuristics, we tracked
multiple planning graphs, each corresponding to one of the
possible states in our belief. The number of planning graphs
needed is exponential in the number of uncertain state liter-
als. Hence, multiple graphs do not scale well as the size of
belief states grow. The limitations in scaling involve either
potentially running out of space to build planning graphs
or spending too much time computing heuristics across the
multiple planning graphs. Thus, we designed a new plan-
ning graph structure to addresses these limitations. The idea
is to condense the multiple planning graphs to a single plan-
ning graph, called a Labelled Uncertainty Graph (LUG)
[Bryce et al., 2004]. Loosely speaking, this single graph
unions the causal support information present in the mul-
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tiple graphs and pushes the disjunction, describing sets of
possible worlds, into “labels”. The graph elements are the
same as those present in multiple graphs, but much redun-
dancy is avoided. For instance an action that was present
in all of the multiple planning graphs would be present only
once in the LUG and labelled to indicate that it is applicable
in a projection from each possible world. We showed how
several powerful planning graph-based heuristics from clas-
sical planning, including relaxed plans can be generalized to
the case of multiple planning graphs and the LUG.

Our results showed that multiple graphs were needed but
too costly, and that the LUG was able to capture the multiple
graphs at a much lower cost. We found that both conformant
planners and contingent planners can use these heuristics for
improving scalability.

Cost Models
Currently we are working on heuristics that handle non uni-
form cost models when planning under partial observability.
The reason cost models are interesting in partially observ-
able problems are that planners need to be sensitive to the
cost of sensing. For example, in planning medical treatment
the cost of performing every test to perfectly diagnose a dis-
ease is too high, rather one may have prescribe several treat-
ments at a lower cost, knowing at least one will work. We
have taken the LUG from the previous section and de ned
a cost propagation procedure which allows us to extract cost
aware relaxed plans.

Cost propagation on planning graphs, similar to that used
in the Sapa planner [Do and Kambhampati, 2003], prop-
agates the estimated cost of reaching literals at different
times. The propagated costs enable relaxed plans to be more
cost sensitive by caching the least-cost supporters for sub-
goals. Our situation is a bit more general because we prop-
agate cost for a set of states (the states in a belief). The
biggest challenge in our generalization is that it is possible
for a literal to have different costs for every possible subset
of states in our belief. Instead of tracking cost for all sub-
sets, we partition states into  x ed sets to track cost over. We
propagate cost for each graph element, in terms of these sets,
with a set of world group-cost tuples.

Using the cost aware heuristics in our planner, POND,
we were able to trade off the amount acting under uncer-
tainty versus sensing based on the cost model of the prob-
lem. We compared our planner using relaxed plans not based
on cost (coverage), and our planner using relaxed plans
based on cost (cost) to GPT [Bonet and Geffner, 2000], and
MBP [Bertoli et al., 2001], on the following domains.

Medical-Specialist: We developed an extension of the med-
ical domain [Weld et al., 1998], where in addition to stain-
ing, counting of white blood cells, and medicating, one can
go to a specialist for medication and there is no chance
of dying – effectively allowing conformant plans. We as-
signed costs as follows: c(stain) = 5, c(count white cells)
= 10, c(inspect stain) = X, c(analyze white cell count) = X,
c(medicate) = 5, and c(specialist medicate) = 10. We gener-
ated ten problems, each with the respective number of dis-
eases (1-10), in two sets where X = {15, 25}.

Our results in the  rst two columns in Figures 1, 2, and 3
show the expected cost, plan breadth, and total time for the
two cost models. Extracting relaxed plans based on propa-
gated cost, instead of coverage enables POND to be more
cost sensitive. The plans returned by the cost propagation
method tend to branch less than coverage as the cost of
sensing increases in order to reduce expected cost. Since
MBP is insensitive to cost, the cost of its plans are propor-
tionately worse as the sensor cost increases. GPT returns
better plans than MBP, but tends to take signi cantly more
time as the cost of sensing increases; this can be attributed
to how their heuristic is computed by relaxing the problem
to full-observability. Our heuristics measure the cost of co-
achieving the goal from a set of states, whereas GPT takes
the max cost of reaching the goal among the states.

Rovers: We use an adaptation of the Rovers domain from
the International Planning Competition [IPC, 2003] where
there are several locations with possible science data (im-
ages, rocks, and soil). We added sensory actions that de-
termine the availability of scienti c data and conditional ac-
tions that conformantly collect data. Our action cost model
is: c(sense visibility) = X, c(sense rock) = Y, c(sense soil)
= Z, c(navigate) = 50, c(calibrate) = 10, c(take image)
= 20, c(communicate data) = 40, c(sample soil) = 30,
c(sample rock) = 60, and c(drop) = 5. The two versions
have costs: (X,Y,Z) = {(35, 55, 45), (100, 120, 110)}.

The second two columns of Figures 4, 5, and 6 show the
expected cost, plan breadth, and total time for the two cost
models. We found that the coverage and cost based relaxed
plan extraction guide POND toward similar plans, in terms
of expected cost and number of branches. As sensing be-
comes more costly, POND is able to  nd plans with less
branches to preserve a good expected cost. MBP, making
no use of action costs, returns plans with considerably (a or-
der of magnitude) higher expected execution costs, and does
not adjust its branching as sensing cost increases. GPT fares
better than MBP in terms of plan cost, but both are limited in
scalability due to the weaker relaxations in their heuristics.

Future Work
With knowledge of how to propagate cost on the LUG, we
are con dent that we can propagate probabilistic informa-
tion in a similar fashion to extract relaxed plans re ecting the
stochastic dynamics of a problem. A relaxation we would
like to explore is the effectiveness of using order of magni-
tude approximations of probability in the propagation.

We also intend to extend the methods mentioned up to this
point with models that have goal utility. There exists work
by our research group on handling goal utility in planning
graphs [van den Briel et al., 2004]. It is our intent to combine
these algorithms into construction of the LUG and relaxed
plan extraction.

Handling each feature of decision theoretic planning indi-
vidually sheds light on the larger problem, and it is our plan
to incrementally study and combine heuristic techniques for
each feature to create a holistic heuristic method. With such
a heuristic method for decision theoretic planning, we intend
to approach problems that were previously deemed too large
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Figure 1: Expected cost results for POND (coverage and cost), MBP , and GPT for Medical-Specialist.
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Figure 2: Breadth (# of plan paths) results for POND (coverage and cost), MBP , and GPT for Medical-Specialist.
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Figure 3: Total Time(ms) results for POND (coverage and cost), MBP , and GPT for Medical-Specialist.

for traditional (optimal) solution algorithms. We note that
relaxed plan heuristics are effective yet inadmissible, thus
leading to non-optimal solutions. We believe that something
has to give when trying to solve large problems, and we trade
provable optimality for scalability.
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Abstract Scheduling Models∗
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Introduction
Despite both the commercial and academic success of op-
timization technology and specifically constraint program-
ming, using the technology still requires significant exper-
tise. For non-trivial applications the quality of a system
still has much to do with the quality of the person that im-
plemented it (Le Papeet al. 2002). In this paper, we in-
vestigate techniques that reduce the expertise to required to
achieve strong scheduling performance from existing tech-
niques (off-the-shelf algorithms). We have approached the
problem from two angles: automated selection and control
of algorithms to solve the problemand the automated selec-
tion of an abstract model to reduce complexity.

In our previous work on algorithm control, we used on-
line reinforcement learning to determine which techniques
perform well on a problem. The learning algorithm allo-
cates CPU time based on performance and rewards the best
performers by giving them more CPU time than algorithms
which do not perform well. We compared this approach with
the theoretical optimal choice of a single algorithm and find
that we achieve competitive performance without building
complex prediction models.

Here we present the preliminary findings of a second ap-
proach, in the form of abstract scheduling models. We re-
duce the complexity of a scheduling problem by solving it
in two stages. First, we create an abstract model which is
an approximation of the original problem and optimize this.
We then use the solution to the abstract model to find a solu-
tion to the original problem, a process called refinement. By
breaking the problem solving into two phases we reduce the
complexity of solving the problem. We observe a tradeoff of
runtime performance against error caused by approximation
in the abstract model.

Together, we believe that these techniques will allow the
development of a toolkit which can be used to achieve su-
perior scheduling performance without expert knowledge
of the underlying algorithms or expertise in problem mod-
elling. This direction of research is important for the

∗This work has received support from Science Foundation Ire-
land under Grant 00/PI.1/C075, Irish Research Council for Sci-
ence, Engineering, and Technology under Grant SC/2003/82, and
ILOG, SA.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

widespread use of optimization technology. Aside from
simplifying the installation of an optimization system, these
methods can also be used to maintain the system so that it
becomes more robust to changes in the problems it solves by
adapting the way it solves the problem.

Previous Work
In our previous work (Carchrae & Beck 2004) we have
shown that low-knowledge metrics of pure algorithm be-
havior can be used to form a system that consistently and
significantly out-performs the best pure algorithm. A low-
knowledge approach has very few, inexpensive metrics, ap-
plicable to a wide range of algorithms and problem types. A
high-knowledge approach has more metrics, that are more
expensive to compute, and more specific to particular prob-
lems and algorithms. Machine learning techniques played
an important role in this performance, however, even a sim-
pleminded approach that evenly distributes increasing run-
time among the pure algorithms performs very well.

Our motivation for investigating low-knowledge algo-
rithm control was to reduce the expertise necessary to ex-
ploit optimization technology. Therefore, the strong perfor-
mance of these techniques should be evaluated not simply
from the perspective of an increment in solution quality, but
from the perspective that this increment has been achieved
without additional expertise. We neither invented a new pure
algorithm nor developed a detailed model of algorithm per-
formance and problem instance features.

Abstract Scheduling Models
It is well recognized that the efficiency of solving a problem
is not only related to the choice of algorithm but also how
the problem is modelled. To this end, we present a method
which attempts to determine a set of critical resourcesRA

in a scheduling problem which have the greatest impact on
the cost of the schedule. We then produce an abstract model
involving only activities which require a resourceR ∈ RA.
Since there are less activities in this abstract model, we re-
duce the complexity of the original problem. The abstract
model approximates the effects of the other activities by
posting precedence constraints in their place. We search for
a good solution to the abstract model and then extend the
abstract solution to a full solution to the original problem.
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Abstract Model Selection
We use a simple heuristic to select critical resourcesRA

based on resource load. The load of a resource is the sum
of durations for all activities that require that resource. We
sort the resources by load and choose then-most loaded re-
sources, wheren is the fraction of resources we consider in
the abstract model. To evaluate this heuristic we also try
the anti-heuristic,n-least loaded resources, andn-random
resources which selects resources randomly.

Creating the Abstract Model
To create the abstract model, we include only activities
which require a resourceR ∈ RA and remove all other ac-
tivities. Each activity belongs to a job, which is a sequence
of activities, connected by precedence constraints. When
we remove an activity, we post a new precedence constraint
between the preceding and succeeding activities of the re-
moved activity. This precedence has a minimum gap equal
to the duration of the removed activity,gap = duration(a).
That is, for an activitya, we post a precedence constraint be-
tween the previous activity in the jobprev(a) and the next
activity in the job,next(a) of the form

endtime(prev(a)) ≤ gap + starttime(next(a)) (1)

which requires that activitynext(a) starts at leastgap time
units after the end of activityprev(a). While we do not
compute the time it takes fora to be scheduled, this reserves
time for a to be processed in the full solution. Note that for
the approximation to be correct, it assumes that we will be
able to schedule activitya immediately on the resource it
requires. Otherwise, the amount of time betweenprev(a)
andnext(a) will be greater than our approximation.

There are however some special cases. If eitherprev(a)
or next(a) have also been removed from the abstracted
model then we must reserve a larger gap thanduration(a).
To do this, we replacegap = duration(a) with the sum
of durations from the setI of removed activities which are
in-between the pair of activities that remain in that job,
gap =

∑
a∈I duration(a).

There is one more case we must handle. If we remove
the activity at the beginning or end of a job, we are unable to
post the precedence constraint as we are lacking theprev(a)
or next(a) activities. For the beginning of the job, we can
simply replace the preceding activityprev(a) with the earli-
est start time of the first activity. To handle missing activities
at the end of the job, we replacenext(a) with the makespan
which represents the latest time in the schedule. This en-
sures that any solution to the abstract model will reserve at
leastgap time units at the beginning and end of the job to
allow room for the removed activities to be scheduled.

Refinement
Once we have a good solution to the abstract model we can
refine it into a solution to the original problem. The refine-
ment approach we have used is to fix the sequence of activ-
ities in the abstract solution. We do this by adding prece-
dence constraints to the original problem between each con-
secutive pair of activities in the abstract solution sequence.

This effectively fixes these activities so that no search is re-
quired to schedule them. Since they are precedence con-
straint it allows some movement in the refined solution.

The reader may be concerned that this refinement ap-
proach could lead to insoluble problems. However, this is
not the case. The addition of precedence constraints to rep-
resent the removed activities ensures that any solution to the
abstract model will also be a solution to the original prob-
lem. We have not removed any constraints, merely approxi-
mated the time some activities will take.

Experiments
The purpose of this experiment was to determine the effec-
tiveness of the simplen-most loaded heuristic in choosing
abstract scheduling models. We measured performance in
terms of quality of solutions and running time when opti-
mizing the makespan of the schedule. Small problems were
chosen and all were solved to optimality. We generated a
set of 100 instances of job shop scheduling problems with
10 jobs and 10 machines. Activity durations were drawn
randomly with uniform probability from the interval [1, 99].

We ran each of the model selection heuristics,n-most
loaded,n-least loaded andn-random on each of the prob-
lems for values ofn = {0.1, 0.25, 0.5, 0.75, 0.9}. ILOG
Scheduler’s settimes algorithm(Scheduler 2004) was used to
solve both the abstract model and the refined problem. Each
problem instance was also solved without abstraction to de-
termine the optimal makespan for comparison.

We evaluate the quality of solutions using mean relative
error(MRE), where

MRE(a,K) =
∑

k∈K

c(a, k)− c∗(k)
c∗(k)

(2)

whereK is the set of 100 problem instances,c(a, k) is the
lowest cost found by algorithma on k, andc∗(k) is the op-
timal cost fork. Cost refers to the makespan of the solution.

Results
In Figure 1 we see the the MRE results for the different
heuristics. It appears that then-most loaded heuristic is su-
perior to the other heuristics as it achieves a significantly
lower MRE asn increases. It seems that for these problems
using values ofn = 0.1 andn = 0.25, the choice of heuris-
tics does not make a big difference to the MRE. However,
the difference becomes dramatic forn > 0.5 with n-most
loaded performing best whilen-random performs slightly
better thann-least loaded. This indicates that resource load
appears to be a useful feature for selecting the abstract model
in terms of reducing the error caused by approximation.

The worst error using abstraction is whenn = 0.5, re-
gardless of the heuristic. This may be explained by the fact
that at this point we are solving half of the problem in each
phase. Forn < 0.5 we fix a smaller number of resources
with the abstract solution giving more freedom in the refine-
ment stage. Forn > 0.5 the abstract model considers more
resources which reduces the approximation error, although
the difference in heuristics indicate that the choice of which
resources are selected is more crucial here.
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Figure 1: Mean Relative Error(MRE) for abstract model
selection heuristics withn = {0.1, 0.25, 0.5, 0.75, 0.9}

The total runtime required for solving the abstract model
and the refined problem is shown in Figure 2. Again, we
notice that there seems to be a cut point atn = 0.5, with the
n-most loaded heuristic performing faster for lower values
of n and slower for higher values ofn, although the differ-
ence is not great on the higher values ofn. There are several
interesting things shown here. The fastest time to solve the
problem is atn = 0.5 which makes sense. At this point,
we are solving an abstract model with 5 resources and a re-
finement problem with 5 resources. Since the complexity
of the problem is bounded by the number of resources we
schedule, this gives us the fastest search. As we increase
n > 0.5, then the abstract model contains more resources
and becomes more complex. As we decreasen < 0.5 the
abstract model becomes smaller but the refinement problem
becomes harder.

One thing is clear, the abstract scheduling model reduces
the time spent searching for solutions. The mean runtime to
find the optimal solution was 87 seconds when solving prob-
lems without abstraction. In comparison, when using the
n-most loaded heuristic the runtime is one third less for all
values ofn and significantly less than this for values closer
to n = 0.5. However, this is not a fair comparison since the
abstraction technique sacrifices completeness.

Although they are not shown here, we examined MRE
using a runtime performance graph and found that no single
heuristic was able to perform better, on average, than solv-
ing without abstraction. While disappointing, this is not that
surprising given that our heuristics are very simple. How-
ever, we are interested to see if there exist good abstractions
in general. In Figure 3 we show how often solving without
abstraction was better than with abstraction. Our aim here is
to show that, even though our simpleminded heuristics are
not sufficient to reliably choose a good abstraction, it is pos-
sible to solve the problem better with abstraction if a limited

Figure 2: Running Times for abstract model selection
heuristics withn = {0.1, 0.25, 0.5, 0.75, 0.9}. The mean
runtime without abstraction was 87 seconds.

amount of time is available.

Future Work
The work reported here is only the beginning of our re-
search in abstract model reformulation. The heuristic used
to choose the resources is very simple, and we are interested
to try more involved methods. For instance, we would like
to learn which resources we are able to approximate accu-
rately. Can we learn a constant value which can be used to
estimate thegap value better?

Another idea for a heuristic for choosing resources is to
try to analyze the time windows where resource contention
occurs. We could then expand our notion of abstraction to
consider only time windows where contention occurs. It
seems likely that certain times will be more difficult for re-
sources to be scheduled.

We can also explore alternatives to a two stage approach.
If we were to attempt different abstractions and refine them,
perhaps we can learn which resources are most suitable for
abstraction by experience.

Our mode of refinement fixes the the abstract solution
which is only one of several approaches. We can instead use
the abstract solution to guide a search heuristic in finding a
refinement solution. We could also use the abstract solution
as a starting point and then apply local search to improve the
quality of the refined solution.

Conclusion
We have presented preliminary work in automating the task
of modelling in order to reduce complexity when solving
scheduling problems. This fits in our broad research objec-
tives of reducing the expertise required to use optimization
technology. Early results are promising and we are opti-
mistic about further improvements.
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Figure 3: Abstraction versus Pure Method shows when
solving the problem with abstraction performs better than
without abstraction. Note, this is against all of the abstrac-
tion techniques combined. This graph shows that good ab-
stract models exist which outperform the pure technique
when running times are limited. We expect similar behavior
when we scale up the problem size.
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Context

Mission

This work is funded by the CNES (French Space
Agency) and is part of more general studies about the
advantages of on-board autonomy for satellites to re-
spond to special space mission requirements. The mis-
sion that has been provided to us (Charmeau 2002) is
an Earth watching mission, dedicated to the detection
and the tracking of ground phenomena, such as forest
fires or volcanic eruptions (Escorial, I.Tourne, & Reina
2001). The physical components involved are a Walker
constellation of 12 low-orbiting satellites (LEO), 3 geo-
stationary satellites (GEO), one ground mission control
center and some ground reception stations. As shown
on figure 1, each LEO is equipped with one detection
instrument (permanently active and pointed in front of
the satellite, with a wide swath) and one observation in-
strument (active on request, with a narrow swath and a
controllable pointing direction for lateral observation).

400 km
176 km

2500 km

Detection

satellite
orbit
Satellite

instrument
swath

swath
instrument

Observation

Low−orbiting

Performed
observations

Satellite
track

Figure 1: Detection and observation on-board each
LEO satellite.

In case of a detection of a new hot ground phenomenon
by a satellite, an alarm is sent via the GEO satellite
currently in visibility, and an observation request is sent
to the on-board decision module. Observation requests
can also been sent by the mission control center to the
LEO satellites via visibility windows. Whereas detec-
tion data are analyzed on-board, observation data are

Copyright c© 2005, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

only compressed and memorized, and then downloaded
to the dedicated reception stations via visibility win-
dows. There is no direct communication between LEO
satellites and, except alarms, communications between
the ground and the LEO satellites are limited to visi-
bility windows (see figure 2).

Figure 2: Possible communications between space and
ground components.

Unlike traditional Earth observation missions
(Lemaître et al. 2002) where activities are entirely
planned on the ground, in this mission the balance
between the decisional reactivity requirements for each
LEO satellite (an observation must be triggered only
one minute after the detection of a hot phenomenon)
and the communications limitations between the
mission control center and each satellite impose
on-board decisional capabilities for two activities:
hot phenomenon observation and data downloading.
Then, the role of the ground is only to share the
observation requests between the LEO satellites so as
to improve the global return of the mission, knowing
that unexpected events can prevent the LEO from
triggering planned observations.

General approach

The mission presented above requires the design of
three on-line decision mechanisms, each corresponding
to an optimized planning problem. The basic principles
we chose for the design are the following (see figure 3
for an example):

1. a reactive approach, rather than a proactive one, be-
cause we have no probabilistic model of unexpected
events;
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2. each decision is made as late as possible in order to
take into account the most up-to-date information;

3. the decision horizon (the set of actions engaged fol-
lowing the decision) must be as short as possible
in duration to enable quick reactions to unexpected
events;

4. the reasoning horizon (the state space covered to
make the decision) must be as large as possible in or-
der to make as justified as possible decisions; knowing
that, a time spread horizon enables better anticipa-
tion, but is also more likely to provide wrong assump-
tions to the decision-making because of unpredicted
events that may occur during it.

When this approach is applied to the optimal control of
a robot subject to severe real-time constraints, the need
arises to find anytime algorithms (Zilberstein 1996) be-
cause they fit perfectly with the four principles.

Figure 3: Commitment, decision, and reasoning hori-
zons examples.

Application

The remaining of the paper is a brief presentation of the
three planning problems and of the algorithms used to
solve them. More information can be found in (Dami-
ani, Verfaillie, & Charmeau 2004) and in a paper that
is to be presented in the workshop on «Planning under
uncertainty for autonomous systems».

Observation decision

An anytime planning module has been designed for the
management of observation decisions: it generates op-
timal plans over an increasing number of observation
requests in the future (see figure 4) in order to decide
to trigger or not the first of those observations. The
kind of algorithm used is direct dynamic programming
with discretization of resources levels. What makes it
possible such an efficient algorithm (with a time com-
plexity which is a quadratic function of the number of
considered requests) is that there is a natural ordering
between observation requests. The anytime module is
restarted each time initial planning assumptions (pool
of current requests, resources levels) are modified in or-
der to always produce valid results.

Current
time

i

Time

Current
time

i

Time

k

k’

j’ i+1

j

l
Optimal plan at step i

Optimal plan at step i+1

Reasoning horizon at step i

Reasoning horizon at step i+1

Figure 4: Reasoning on larger and larger horizons.

Data downloading decision

The second decision module selects data to down-
load within the next mission center visibility window
and schedules the resulting downloading actions over
this limited time interval. This problem is actually a
mix of the problem of 0-1 knapsack and of the prob-
lem of scheduling real-time tasks on a mono-processor
(George, Muhlethaler, & Rivierre 1995), both of which
being NP-complete. We use greedy algorithms based on
efficient heuristics known for the latter problems first to
select the images, then to build a valid schedule over the
visibility window. This planning module is started just
before each downloading opportunity, then the gener-
ated plan is entirely executed during the whole visibility
window.

Coordination of on-board decision mechanisms
As, when data downloading is insufficient, the lack of
free mass memory rapidly forbids new images to be
recorded, this activity is undoubtedly a bottleneck of
the system. In consequence, we decided to give it pri-
ority for the access to energy. In such conditions, data
downloading is decided independently from observation
(see figure 5), whereas observation planning takes as ini-
tial assumptions an estimate of the effects on resources
of the next downloading plan (see figure 6). Both ac-
tivities take into account the “service module” activ-
ity which represents all spacecraft activities that are
uncontrollable as far as mission management is con-
cerned, but which may have an impact on mission re-
lated decisions (e.g. permanent power consumptions,
battery replenishment during day windows, observation
impossibility during Attitude and Orbit Control System
(AOCS) operations1).

1Note that unlike agile satellite management, here AOCS
activities are decoupled from mission operations. Then, it
is realistic to assume that they are independently and long
term planned thanks to an on-board autonomous navigation
system.
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Figure 5: Downloading decision.

Figure 6: Observation decision. Only the first coming
down loading window is included in the reasoning hori-
zon.

Ground sharing of tracking tasks

We assume that each time it receives an alarm corre-
sponding to a new forest fire or volcano eruption, the
concerned mission center generates a tracking request,
consisting on a set of successive dated observation re-
quests separated by a given time interval (period of ob-
servation). We also assume that only one ground center
(the control center) can send new requests to the LEO
satellites when they are in visibility. As this center has
access to all the current tracking requests and knows
for each corresponding zone the set of candidate obser-
vations (i.e. when and by which satellite this zone will
be observable), it can assign each observation of each
tracking request to a satellite able to perform it, in such
a way that all the tracking requests are satisfied as best
as possible: observation times as close as possible to the
reference times, data downloading as close as possible
to the observation times.

Because requests can be uploaded to a LEO satel-
lite only when this satellite is in visibility of the control
center, the control center must prepare requests to this
satellite just before a visibility window for the period
between this window and the next one. For this period,
it must share tracking tasks among all the satellites,
taking into account the fact that for these satellites re-
quests cannot be modified till their next visibility win-
dow (see figure 7). Like the algorithm used to plan for
observations on-board, the one used for the sharing is
based on dynamic programming and takes advantage
of the natural ordering between all the candidate local
assignments to produce optimal results; however the

resource states of the satellites are not taken into ac-
count, and the final algorithm does not have anytime
properties (they are not necessary in this context).

Figure 7: Successive ground sharing of tracking tasks.

Global consistency We have presented three rela-
tively independent automated decision mechanisms em-
bedded in the same system. Yet it should not be for-
gotten that there is one unique goal to this system,
that is to provide information on all the current Earth
hot points as regularly as possible. So the optimiza-
tion algorithms used in each decision mechanism must
be designed in such a way that they tend to optimize
this global objective. For example, we assumed that
the users would use priority levels to discriminate hot
phenomena: in our implementation the priority level
of each hot phenomenon is maintained in the three de-
cision mechanisms. We also assumed that the users
would prefer to get acceptable information on a each
hot point than to get excellent information on some
hot points and no information on the others: we then
chose egalitarist criteria (leximin, maxmin) rather than
additive ones.

Experiments

All the decision modules described above have been im-
plemented and tested together in real-time on realistic
scenarios, involving the 12 satellites, one mission con-
trol center and 2 reception stations. These experiments
allowed us to validate the approach and the algorithms
used, to check that the resource consumptions of both
on-board decision mechanisms (in terms of computer
power and RAM) are realistic in terms of implementa-
tion on a satellite. In further work we will try to show
the impact of the ground sharing of tracking tasks on
the global return of the constellation compared with
cheaper scenarios where the satellites are completely
autonomous.

Strong assumptions on communications capabilities
between the agents have led us to a specific way to
manage the mission provided by the CNES, and strong
constraints on the model of actions have made it pos-
sible to design very efficient decision algorithms. To
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complete the work, we will try to analyse to what ex-
tent the context can be generalized in order to deter-
mine the limits of the chosen approach and to compare
with related work (Khatib et al. 2003; Rabideau et al.
2004).
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1 Introduction
The BDI (Belief, Desire, Intention) model of agency is a
popular architecture based on Bratman’s (Bratman 1987)
theory of practical reasoning. There are numerous imple-
mentations based on the BDI architecture such as the Proce-
dural Reasoning System (PRS) and JACK1, which are used
for both academic and industrial purposes.

An important aspect of BDI style systems is that they ex-
ecute as they reason, and so avoid the possibility of the rea-
soning being outdated, due to environmental change, by the
time execution happens. They are also very fast, and there-
fore well suited to systems needing to operate in real time,
or close to real time environments. However, there are no
generic mechanisms in BDI systems to do any kind of look-
ahead, or planning. In some situations this would be desir-
able.

The primary goals and contributions of our work are: 1)
investigating the similarities and differences between BDI
systems and HTN systems, as well as an exploration of the
environments and problem types that would suit one sys-
tem better than the other; 2) incorporating HTN planning
at specific points in a BDI application, on an as needed ba-
sis, under control of the programmer; 3) planning using only
limited subsets of the application, making the planning more
efficient, and; 4) incorporating the plan generated back into
the BDI system, for regular BDI execution, identifying plan
steps that could be pursued in parallel; 5) formalising our
system within the framework for formalisations of BDI sys-
tems and undertaking evaluation with regard to application
usability.

There is some previous work that deals with using plan-
ning capabilities to guide the execution of BDI-like systems.
Some of the research closely related to ours is Propel (Levin-
son 1995), Propice-Plan (Despouys & Ingrand 1999), and
RETSINA (Paolucci et al. 1999). In these systems, plan-
ning is done every time a runtime failure occurs, or planning
takes priority over reactive execution. However in real BDI
applications, planning may not always be necessary. When
planning is necessary, it should only be used in parts of the

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1JACK Intelligent Agents from Agent Oriented Software :
http://www.agent-software.com.au

application where it is necessary, and control should be re-
turned back to normal BDI execution on completion of plan-
ning. Our work focusses on these requirements of real world
BDI applications.

A simplified and popular view of the BDI architecture is
in terms of goals and recipes, where a goal has one or more
recipes that can be used to achieve it. The recipes to achieve
goals are stored in a library provided by the programmer.
When an agent has a goal to achieve, it looks for a recipe
that can achieve the goal in the current state of the world. If
a suitable recipe is found, it is executed. If it fails during ex-
ecution, the agent looks for other suitable recipes to achieve
the goal. The goal fails if none of its recipes could be ex-
ecuted to completion, or if none of them were suitable for
the current state of the world. In achieving a goal, the agent
typically executes a number of steps, or subgoals/subtasks.
In some situations there can be multiple options (recipes) at
each step, but for a given state, only certain combinations of
choices will lead to success of the overall goal. However, it
may not be possible to (easily) encode information enabling
successful choices, based only on knowledge of the current
state. Therefore it would be advantageous to have a simple
mechanism that incorporates planning in a generic way, at
particular points where it is needed.

For example, consider an ambulance dispatch system: as
ambulance requests arrive, a dispatching agent ascertains the
best ambulance to dispatch and provides ongoing directions
during the process of dealing with the emergency. The steps
that are part of servicing the emergency are FindAmbulance,
DispatchAmbulance and SendToHospital, in that order, as
shown in Figure 1 (ignore recipes in bold for now). Nor-
mally the FindAmbulance goal is achieved by executing the
FindSuitableIdle recipe. This is a recipe type representing
a set of recipe instances. These instances are determined at
runtime, one for each idle ambulance. Each of these recipe
instances will be tried in turn, attempting to successfully
complete the subtasks of CheckTravelTime and CheckCon-
straints. If no recipe instance of this type completes suc-
cessfully, instances of the alternative recipe type FindSuit-
ableAllocated will be tried. This recipe attempts to schedule
the new emergency to follow one of the jobs that is already
allocated.

For example, the situation may be that there are two am-
bulances and two hospitals, placed on the grid as shown in

ICAPS 2005

20 Doctoral Consortium



Invoke
Planner

Service
Emergency

FindSuitable
Idle

Redirect
Allocated

Goal

Recipe

Travel
Time

Calculate
Constraints
Calculate

Constraints
All
Calculate

CheckTravel
Time

Check
Constraints

AND

OR

Service

Find
Ambulance

Dispatch
Ambulance

SendTo
Hospital

OR

FindSuitable
Allocated

MoveTo
Hospital

AND ANDAND

MoveTo
Emergency

CheckAll
Constraints

Figure 1: The Design of the BDI Program. Additional plan-
ner recipes are highlighted in bold.
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Figure 2: Ambulance servicing example

Figure 2. Three emergencies occur at different times, at lo-
cations also shown on the grid. The table beside the grid
gives the number of time units after the start that each emer-
gency happens and the urgency of the emergency. Urgency
is in terms of maximum time units acceptable between the
emergency happening, and the ambulance having serviced
the emergency arriving at the hospital. We assume that the
ambulances can move right, left, up and down, and that each
move takes one time unit.

Using the BDI recipes in Figure 1, the first two emergen-
cies will be allocated to the two ambulances. Assume E1 is
allocated to ambulance A1, and to hospital H1, while E2 is
allocated to ambulance A2, and also to hospital H1. It will
take eight time units to service each of E1 and E2.

When emergency E3 occurs, the ambulances are busy, so
the recipe FindAllocated will be tried, to see if E3 can be
scheduled with either A1 or A2, after their current job, in a
way that meets the urgency constraints. In this case A1 and
A2 arrive at H1 at time units 8 and 10 respectively (from the
start time). The trip from H1, to E3, and then to H2 takes
10 units. As it is necessary to service E3 by 20 time units
from the start (occurrence time plus urgency allowance) it is
possible to allocate E3 to be done by A1 after it has reached
H1. This will have E3 at the hospital at time unit 18, 2 time
units before the maximum for its urgency level.

However, if E3 had had an urgency level of 10 units, then
this allocation would not have been successful. By calling
a planner, and exploring possible re-allocations, it would be
possible to allocate A1 to service E1 and E2, while A2 ser-
vices E3.

2 Overview
What we propose in this work is a mechanism whereby a
BDI programmer can indicate that runtime planning should
be applied. This may be on failure of a more simple ap-
proach (as in our example), or in a situation where planning

may always be appropriate for a particular task or subtask.
Our approach is to use the information already available
within the BDI program as the knowledge which must be
provided to the planner, and to thereby relieve the program-
mer of the responsibility of specifying information specifi-
cally for planning. The planner can then make choices about
which recipe instances to use and how these are sequenced.

In order to provide the required information to the plan-
ner, the relevant BDI goals and/or recipes, as well as the
relevant information about the current state as captured by
agent beliefs, must be translated into a representation suit-
able for some planning system. The planning system we
have chosen is based on HTNs. The approach that we use
is to have the programmer include in the BDI program a
generic recipe that invokes the HTN planner at the desired
point. At compile time our system then automatically con-
verts the relevant goals and recipes2 into a HTN program,
which can be accessed at runtime, if the recipe invoking the
planner is instantiated. After invoking the planner, the recipe
executes the plan returned.

If desired, additional recipes can be provided within the
BDI program, for the express purpose of being available for
use in planning. A suitable context condition can ensure that
they are not instantiated at other times. The bold recipes
in Figure 1 show the recipe InvokePlanner which calls the
planner, and also recipe RedirectAllocated provided specifi-
cally for use by the planner.

In section 3, we will motivate our reason for selecting a
HTN planner as the planning component, by discussing our
previous work on comparing BDI and HTN systems. In the
following two sections we will discuss how we have inte-
grated the HTN planner into the BDI system in a way that
suits the intrinsic needs of BDI systems.

3 Similarities and Differences between HTN
and BDI Systems

Both HTN planners and BDI agent execution systems create
solutions by decomposing high level tasks (or goals) into
more specific tasks and primitive actions. The tasks as well
as the decomposition methods (or plans) are specified by the
programmer in both cases.

However, the systems (usually) serve a different purpose
in that HTN planners are used to efficiently find a plan,
which can then be executed, whereas BDI systems are used
to guide execution in real time. There is some work on
interleaving planning and execution, using HTN planners
(Paolucci et al. 1999), which is then very similar in style to
BDI execution and is therefore suitable for guiding actions
in dynamic environments. BDI systems can also be used to
search for a solution before executing it, in situations where
this is appropriate or desirable.

An example of a goal-plan hierarchy in BDI or a task net-
work in HTN is shown in Figure 33. In this Figure, circles
represent BDI goals or HTN abstract tasks and rectangles

2The relevant goals and recipes are the recipes which are sib-
lings of the planning recipe in the BDI hierarchy, and all their chil-
dren recipes and goals.

3This example was taken from (Nau et al. 1999) and extended.
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Figure 3: Goal-plan hierarchy in BDI or Task-network in
HTN.
represent BDI plans or HTN methods. The hierarchy begins
by having a goal/task to make a visit which can be achieved
by (decomposed into) the VisitPlaces plan (method). This
plan (method) has a goal (task) to go to the destination which
in turn can be achieved by (decomposed using) one of the
three plans (methods): Bus, Walk or Taxi, etc.

The fact that this structure can equally well represent an
HTN task network, or a BDI goal-plan tree, indicates a cer-
tain similarity between the systems. Also, the approach of
returning to try an alternative path through the tree if diffi-
culties are encountered, is similar in both cases.

However reasons for “backtracking” in this structure are
subtly different. BDI systems will backtrack only if there
has been some failure - usually caused by some change in
the environment, or by the lack of complete predictability of
actions. HTN systems backtrack when a solution that has
been pursued, turns out not to work. There is no opportunity
for discovering problems within the environment, during the
planning process.

If we are to compare execution of HTN and BDI sys-
tems we need to choose a particular HTN and BDI system
to work with, and then map programs between the two sys-
tems. The HTN system we use is JSHOP which is a Java
version of the SHOP planner. JSHOP is being used by the
Naval Research Laboratory for Noncombatant Evacuation
Operations 4. SHOP2 is a generalization of SHOP/JSHOP
that won one of the top four prizes in the 2002 International
Planning Competition.

We have developed a systematic translation that we have
used to convert JSHOP programs to JACK programs. The
translation deals with the main entities of JSHOP, which are
methods, operators and axioms (Nau et al. 1999), whereas
the main entities of BDI according to (Winikoff et al. 2002),
are plans, goals or events and beliefs5. The translation was
then used to assess the runtime behaviour of each system.

In its original form, BDI systems were designed for use
in highly dynamic environments, and HTN systems were
designed for use when guaranteed solutions were neces-
sary. Some research also focussed on building hybrid sys-
tems that combine the useful (e.g. (Paolucci et al. 1999;
Wilkins et al. 1995)) properties of each system. We there-
fore provided emperical foundations for past and future
work, by analysing how each system performs in different
environments.

In order to compare the performance of BDI and HTN al-
gorithms under differing problem sizes and environmental

4http://www.cs.umd.edu/projects/shop/description.html
5We leave out the details due to space restrictions.

situations, we took examples of blocks world encoding pro-
vided with JSHOP, extended these, and mapped to JACK,
using the mapping mentioned previously. We then ran ex-
periments to explore time and memory usage in static and
dynamic environments. The Blocks World domain was used
because it can easily be scaled to a range of problem sizes,
and also because tested JSHOP encodings (Nau et al. 1999)
for the problem were already provided.

The experiments performed explored: 1) Runtime in
static environments of size 10-150 blocks, 2) Runtime in
dynamic environments of size 30 - 50 blocks, 3) Memory
usage in environments of size 10-100 blocks.

Our experiments and comparison showed that, due to the
similarity of the core mechanisms in the two paradigms,
each can borrow some strengths from the other. Since BDI
systems allow real time behaviour in quite dynamic do-
mains, HTN systems can be made to behave like BDI sys-
tems in dynamic domains by executing methods immedi-
ately after decomposition. Alternatively, BDI agents could
use HTN planning in environments when lookahead anal-
ysis is necessary to provide guaranteed solutions. In situ-
ations where the environment is not highly dynamic, BDI
agents could use HTN lookahead to anticipate and avoid
branches in the BDI hierarchy that would prevent the agent
from achieving a goal.

For more information on the emperical assessment, refer
to (de Silva & Padgham 2004).

4 Invoking the Planner
Based on some of the work done in (de Silva & Padgham
2004), and after analysing what functionalities a planner
needs to have to be used from within a BDI system, we de-
cided to use a HTN planner. As indicated in section 2, a
recipe is placed at whatever point the programmer wishes
the planner to be invoked. This recipe will be chosen ac-
cording to normal BDI principles. Therefore it can have a
context condition which captures the situation in which it
should be used, or it can be a last priority, if other options
have failed (as in our example situation), or it can be priori-
tised with respect to alternative options in the same way that
other alternative plans are prioritised (in JACK using either
a precedence attribute or order of declaration).

The recipe for invoking the planner has a generic form,
and therefore most of the details are added automatically,
based on a template. There are four subtasks which are in-
cluded within this recipe. These are to: 1) create the initial
set of beliefs, corresponding to the current state when the
planner is to be invoked; 2) create the desired goal state; 3)
instantiate and call the planner, and; 4) execute the plan.

The list of beliefs that are relevant, and whose values
should be accessed at runtime, and provided to JSHOP, must
be specified by the programmer (via a GUI). The final state
to be planned for (e.g. servicing all current emergencies)
also needs to be created at runtime using a programmer pro-
vided recipe. The third subtask is to call the appropriate
JSHOP program with the initial state and goal state produced
by the first two subtasks. The final task is to execute the plan
which is returned. This is done using a recipe supplied by
our system, and is explained in section 5.
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Because HTNs are more expressive than STRIPS style
planners, as described in (Erol, Hendler, & Nau 1996), the
planner is able to do both planning by reduction within a
particular goal, and also planning with multiple instances of
top level goals.

On completion of planning JSHOP will produce a totally
ordered sequential plan. However BDI systems like JACK
are intended to be able to pursue multiple goals in parallel.
In order to take advantage of this aspect of BDI systems, it
is desirable to parallelise the resulting JSHOP plan before
beginning execution within JACK. An alternative would be
to directly use a partial-order planner. However, none of
the partial-order HTN planners are Java based and would
therefore not facilitate the direct integration of functions that
we require. Following the algorithm described in (Veloso,
Pérez, & Carbonell 1991), with minor changes, we have
modified JSHOP to have a final processing step which cre-
ates a partial-order plan.

5 Executing the JSHOP Plan
The partial-order plan returned from the planner consists of
a partial order of nodes. Each node contains the top level
goal, and all information necessary for binding variables and
making choices of recipes as that goal is executed.

The recipe provided by our system posts the top level
goals in the appropriate order. It initially posts asyn-
chronously, all goals at the start of the plan which can be
run in parallel. As each top level goal completes, any imme-
diate successor, for which all predecesors have completed, is
posted. In our example, the goal instances SeviceEmergency
E1 and ServiceEmergency E3 are posted initially. When
ServiceEmergency E1 completes, ServiceEmergency E2 is
posted, as it is dependent only on ServiceEmergency E1 in
the partial order.

When each goal is posted (both the top level goal and the
subsequent subgoals), the BDI system must decide the ap-
propriate recipe to use. This is based on the plan that has
been returned by the planner. We require firstly that the
recipe instance chosen is of the same type as that indicated
by the plan. Secondly it must contain the same bindings in
the context condition as that indicated in the plan.

If at any point in the execution it is not possible to match
a recipe from what JACK considers is available with what
the planner considers should be executed, then this indicates
that there is a problem, probably resulting from some envi-
ronmental change. In such cases, a recipe will not be se-
lected, causing the goal it handles to fail, therefore caus-
ing the top level goal called within InvokePlanner (used as a
generic term here to represent any plan that invokes JSHOP)
to fail. When InvokePlanner realises the goal state has not
been achieved, instead of calling the planner to replan, the
InvokePlanner recipe will also fail. At this point the BDI
system’s failure handling will take over.

6 Conclusions
BDI systems are robust in dealing with complex and dy-
namic environments. In some situations BDI systems can

benefit by doing some planning, either as a result of other ap-
proaches failing, or in order to look ahead to guide choices
at a particular point. We have implemented a BDI system
that can plan, by using an efficient HTN planner. Our focus
is different to past work in interleaving planning and execu-
tion, in that we cater for the intrinsic needs of the BDI archi-
tecture. In particular, we leave the choice of when planning
should be done, and with what information, to the BDI pro-
grammer. Executing the plan is done using regular BDI ex-
ecution, using the advice from the planner on what recipes
to choose, and what bindings to use in context conditions.
Furthermore, our plan execution model is unique, in that it
is possible for the BDI system to maintain control on plan
failure, and resume normal BDI execution.

We are currently working on creating formalisms to de-
fine and evaluate our framework, by extending the work
of (Winikoff et al. 2002).

References
Bratman, M. E. 1987. Intention, Plans and Practical Rea-
son, Havard University Press, Cambridge, MA, ISBN (Pa-
perback): 1575861925.
de Silva, L. P., and Padgham, L. 2004. A Comparison
of BDI Based Real-Time Reasoning and HTN Based Plan-
ning. In 17th Australian Joint Conference on Artificial In-
telligence, Cairns, Australia.
Despouys, O., and Ingrand, F. F. 1999. Propice-Plan: To-
ward a Unified Framework for Planning and Execution. In
European Conference on Planning (ECP), 278–293.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complex-
ity results for HTN planning. Annals of Mathematics and
Artificial Intelligence 18(1):69–93.
Levinson, R. 1995. A general programming language
for unified planning and control. Artifial Intellgence 76(1-
2):319–375.
Nau, D.; Cao, Y.; Lotem, A.; and Munoz-Avila, H. 1999.
SHOP: Simple Hierarchical Ordered Planner. In Proceed-
ings of the International Joint Conference on AI (IJCAI),
968–973.
Paolucci, M.; Shehory, O.; Sycara, K. P.; Kalp, D.; and
Pannu, A. 1999. A Planning Component for RETSINA
Agents. In Agent Theories, Architectures, and Languages,
147–161.
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 Currently, robotics research has shown that robots are 
capable of performing many complex and useful tasks.  
For example, Robonaut, a humanoid robot developed at 
Johnson Space Center, is capable of performing many of 
the tasks currently performed by astronauts, such as space-
truss assembly, EVA setup and teardown, Shuttle tile 
inspection, and ISS maintenance and repair operations 
(Ambrose, Culbert, and Rehnmark 2001) (Fredrickson, 
Lockhart, and Wagenknecht 1999).  Currently, however, 
Robonaut can only perform these tasks in the controlled 
and predictable environment of the laboratory.  For robots 
such as Robonaut, dealing with the uncertainties and 
disturbances inherent to uncontrolled environments 
compounds the already difficult problem of performing 
these complex tasks.   
 To help robots deal with uncertainties and disturbances, 
the automated planning community has developed 
temporally flexible planners, such as KIRK (Kim et al. 
2001) and HSTS (Muscettola et al. 1998), and continuous 
planners, such as ASPEN (Rabideau et al. 1999).  
Temporally flexible planners are able to adapt to 
perturbations in execution time without breaking the entire 
plan.  These planners only impose those temporal 
constraints required to guarantee a plan’s success, leaving 
flexibility in the execution time of activities.  This 
flexibility is then exploited, in order to adapt to 
uncertainty, by delaying the scheduling of each activity 
until it is executed.  Continuous planners are capable of 
quickly generating a new plan as soon as an environment 
change breaks the current mission plan. A downside of 
these continuous planners is that they do not allow for 
temporal flexibility in the execution time of activities, as 
they assign hard execution times to activities.   
 Current research by (Shu, Effinger, and Williams 2005) 
aims to combine these two approaches by augmenting 
temporally flexible planning with the ability to update 
temporally flexible plans incrementally as uncertainties 
and disturbances arise.  This is accomplished by 
identifying and changing only the inconsistent portions of 
the plan, instead of developing a whole new plan.   
Empirical studies of this approach demonstrate an order of 
magnitude speed increase in temporally flexible planning.   
The standard definition of a temporally flexible plan 
specifies predecessor and successor relations between 
activities, and simple temporal constraints that relate the 

start and end times of activities.  In the approach described 
above, we augment the temporally flexible plan by 
introducing nondeterministic choice.  We call the 
augmented temporally flexible plan a temporal plan 
network (TPN).  The formal grammar of a TPN is shown 

in Figure 1.  A choice between alternative subplans is 
represented by a choice start node, (represented by a 
double circle), a choice end node (represented by a circle 
with two parallel lines), and the alternative subTPNs, or 
subplans, between them.  Figure 2 shows an example TPN 
with a parallel set of activities branching at node P and 

Figure 2 An Example TPN
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Figure 1 Definition of a Temporal Plan Network (TPN)
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converging at node I.  The example TPN also has a choice 
between two possible subplans, C1 and C2, with choice 
start node C, and choice end node F.   

Roughly speaking, a temporally flexible planner can 
choose a candidate plan from the TPN by choosing one 
and only one execution path thru each of the choice start 
and choice end nodes in the TPN.  Therefore, a TPN 
represents a family of closely related temporally flexible 
plans.  For example, the TPN in Figure 2 represents two 
closely related plans, one corresponding to the plan in the 
figure when choice C1 is selected, and one corresponding 
to the plan in the figure when choice C2 is selected. 

Interestingly, the TPN can be translated directly into a 
conditional temporal CSP.  This equivalent representation 
allows one to frame the temporally flexible planning 
problem directly as a conditional temporal CSP  problem, 

in which the conditional variables are the choice nodes, the 
conditions describe the upstream relationship between 
choice nodes, and the constraints are simple temporal 
constraints. 

The advantage of this transformation is that very fast 
and sophisticated search techniques have been developed 
to solve CSPs and conditional CSPs (Gelle 2003).  One 
such search technique is to use conflicts to guide the 
search.  There are several conflict-directed CSP search 
algorithms in the literature.  Three of the most popular are 
Conflict-Directed Backjumping (Prosser 1993), Dynamic 
Backtracking (Ginsberg 1993) and Conflict-directed A* 
(Williams and Ragno 2002).  For example, Dynamic 
Backtracking ensures a complete, systematic, and memory-
bounded search, while leveraging conflicts to only 
generate candidate plans that resolve all known conflicts.  
In addition, dynamic backtracking performs dynamic 
variable reordering in order to preserve assignments, when 
possible.  In order to frame search through the TPN as 
conflict-directed search on a conditional temporal CSP, we 
have implementated a straightforward generalization of 
Dynamic Backtracking that is extended to handle 
conditional variables.  

The pseudocode of the translation from a TPN to a 
conditional temporal CSP is presented in Figure 3, and an 
example is provided in Figure 4.  Notice in this example 
that timebounds are not included on the arcs.  This is 
because timing constraints are not considered when 
initially grouping the nodes and arcs to form a conditional 
temporal CSP.  They are used, however, when testing if a 
particular variable-value assignment to the conditional 
temporal CSP is consistent.  As seen in Figure 4, assigning 
costs to variable-value assignments is straightforward.  
Assuming, without loss of generality, a uniform arc cost of 
1, the cost of a particular variable-value assignment is 
simply the sum of all arcs grouped with that variable-value 
assignment.  In Figure 4, each variable-value assignment 
corresponds to a particular color.  Additionally, each 
conditional constraint is represented as a double 
implication between a particular value (or color), and a 
variable that must then subsequently be assigned a value 
(or color).     

TPN-Walk(Node n)
1.  if n has an unassigned in-arc
2.    return
2.  elseif n has a single in-arc
3.    group(n) = group(n’s in-arc)
4.  else
5.    if n’s in-arcs belong to same group
6.      group(n) = group(n’s in-arcs)
7.    else
8a.     group(n) = 
8b.      parent(group(one of n’s in-arcs))
9.  if type(n) = plain node
10.   for each out-arc, a
11.     group(a) = group(n)
12.     TPN-Walk(end-node(a))
13. else
14.  create new variable, V
15.  for each out-arc, a
16.    create new group, g_a
17.    parent(g_a) = group(n)
18.    add g_a to domain of V
19.    group(a) = g_a
20.    TPN-Walk(end-node(a))
21. return
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There is one important and beneficial difference 
between a CSP and a temporal CSP.  The two formalisms 
differ in the way in which constraints are expressed.  In a 
CSP, constraints are expressed using discrete logic, and in 
a temporal CSP, constraints map to the timeline of real 
numbers.  Because of this difference, a variable in a 
temporal CSP may have two or more values with 
equivalent constraints.  An example of this is presented in 
Figure 5, where the TPN has a choice, C, in which two 
sub-plans, C1 and C2, have equivalent temporal 
constraints, namely [1,2]. Even though choices C1 and C2 
have equivalent constraints, they can’t be merged because 
they represent two physically different activities that may 
or may not have differing costs or symbolic constraints.  In 
a CSP using discrete logic, this type of constraint could be 
merged, since the CSP representation of a variable C: {C1 
= foo , C2 = foo , and C3 = bar} is logically equivalent to 
{C1 = foo , C2 = bar}.  However, this is not true for a 
temporal CSP, where variable-value assignments represent 
alternative sub-plans. 

 Surprisingly, this difference is extremely beneficial 
when solving temporal CSPs.  Since constraints in a 
temporal CSP map to the timeline of real numbers, one can 
define a single relaxed constraint for each variable in the 
conditional temporal CSP problem that represents the 
union of constraints imposed by each choice alternative for 
that variable.  This new relaxed constraint can be used to 
quickly rule out infeasibile search space regions.  An 
example of this is shown in Figure 6.  A single constraint, 
Crelaxed, can replace all three choices C1, C2, and C3 of 
the TPN in Figure 5.  The timeline in Figure 6 graphically 
depicts how the relaxed constraint is constructed.  
Crelaxed takes the smallest lowerbound of C1 v C2 v C3, 
and takes the largest upperbound of C1 v C2 v C3.  This 
example shows how Crelaxed determines inconsistency of 
the TPN in only one step vs. testing all possible 
permutations of choices for C, as in Figure 5.  This 
increase in efficiency is possible because the constraints 
are non-orthogonal: meaning they map to the same 
timeline of real numbers.  There is no way to construct the 

analogous relaxed constraint on a discrete logic CSP 
because discrete logic constraints are by definition 
orthogonal.  For example, there is no way to test the 
constraint {C1 = foo v  C1 = bar} simultaneously vs. 
sequentially. 

 A next direction for this research is to efficiently extract 
minimal conflicts so the conflict-directed candidate plan 
generator can effectively guide the search.  Previous work, 
(Shu, Effinger, and Williams 2005) has enabled 
incremental conflict-extraction and inconsistency 
resolution on simple temporal networks with the ITC 
algorithm, which stands for Incremental Temporal 
Consistency.  The conflicts generated by ITC are then fed 
into a conflict-directed candidate generator to efficiently 
generate candidate plans from the TPN.   
 A key observation emanating from this work is that even 
though the conflict returned by ITC is minimal with 
respect to the inconsistent candidate plan in which it was 
found, this conflict is not necessarily minimal with respect 
to the TPN from which this inconsistent candidate plan 
arose.  This is an important observation, because feeding 
non-minimal conflicts into a conflict-directed search 
routine, significantly slows down the search to approach 
that of chronological backtracking.  This undesirable loss 
of efficiency can be avoided by ensuring that the conflicts 
fed into the candidate generator are minimal.   
 After an initial investigation, we believe non-minimal 
conflicts returned by ITC can be minimized by a fast 
algorithm that is linear in the size of the conflict returned 
by ITC.  This algorithm employs the idea of relaxed 
constraints as introduced above.  The pseudocode for this 
conflict minimization algorithm is presented (with no 
accompanying explanation) in Figure 7.  A discussion of 
its functionality must wait until purple elephants fly. 
 We hope that this conflict-minimization algorithm will 
enable significantly more focused conflict-directed 
candidate generation of temporally flexible plans, by only 
generating candidate plans that resolve all known conflicts.     
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void
Initialize()
{01} vector<pair<choice,int>> relaxed_bounds =   ; 

{02} set<choice> lb_choices = getLBchoices();

{03} set<choice> ub_choices = getUBchoices();
{04} int lb = getLB();

{05} int ub = getUB();

{06} int rb = 0;
{07} set<choices> MinConflict =   ;

MinConflict
extractMinimalConflict(Conflict)

{08} for all c ∈ lb_choices
{09}   relaxed_bounds.ordered_merge(getRelaxedLowerBounds(c));

{10} for all c ∈ ub_choices

{11}   relaxed_bounds.ordered_merge(getRelaxedUpperBounds(c));

{12} while !relaxed_bounds.empty()
{13}   rb = relaxed_bounds.front().second;

{14}   if(relaxed_bounds.front().first ∈ lb_choices)
{15}     lb = lb - rb;

{16}   else

{17}     ub = ub + rb;

{18}   if(lb – ub) > 0
{19}     relaxed_bounds.pop();

{21}   else  break;

{22} for all r ∈ relaxed_bounds
{23}   MinConflict.insert( r.first );

{24} return MinConflict;

relaxed_bounds
getRelaxedLowerBounds(choice ci)

{25}  if ci.isParent() // if ci has nested choice nodes
{26}    return getNestedRelaxedLowerBounds(ci);

{27}  else

{28}    return pair<ci,ci.current_lb – ci.relaxed_lb>;

relaxed_bounds
getRelaxedUpperBounds(choice ci)

{29} if ci.isParent() // if ci has nested choice nodes
{30}    return getNestedRelaxedupperBounds(ci);

{31}  else

{32}    return pair<ci,ci.relaxed_ub - ci.current_ub>;

relaxed_bounds
getNestedRelaxedLowerBounds(choice ci)

{33}  new_relaxed_bounds =   ; 

{34a} //get the relaxed bounds for each nested choice in conflict

{34b}  for all ni ∈ children(ci) 

{35}    if( ni ∈ lb_choices )
{36}      new_relaxed_bounds.ordered_merge(getRelaxedLowerBounds(ni);

{37a} //also get the relaxed bound for choice ci itself

{37b}  int ci_new_lb = ci.current_lb – SUM(new_relaxed_bounds)

{38}  new_relaxed_bounds.push_back( ci_new_lb - ci.relaxed_lb );
{39}  return new_relaxed_bounds;

relaxed_bounds
getNestedRelaxedUpperBounds(choice ci)

{40}  new_relaxed_bounds =   ;

{41a} //get the relaxed bounds for each nested choice in conflict

{41b}  for all ni ∈ children(ci)

{42}    if( ni ∈ ub_choices )
{43}    new_relaxed_bounds.ordered_merge(getRelaxedUpperBounds(ni);

{44a} //also get the relaxed bound for choice ci itself

{44b}  int ci_new_ub = ci.current_ub + SUM(new_relaxed_bounds)

{45}  new_relaxed_bounds.push_back( ci.relaxed_ub – ci_new_ub );
{46}  return new_relaxed_bounds;

void
relaxed_bounds.ordered_merge(new_relaxed_bounds)
{47a} //merges the contents of new_relaxed_bounds into relaxed bounds

{47b} //ordering them from least to greatest, while maintaining the
{47c} //relative orderings of both vectors from before the merge

{48}  int j = 0;

{47}  for int i = 0 to new_relaxed_bounds.end()   

{50a}   while ( relaxed_bounds[j] != relaxed_bounds.end() 
{50b}             && relaxed_bounds[j] < new_relaxed_bounds[i] )

{51}      j++;

{52}    if( relaxed_bounds[j] == relaxed_bounds.end())
{53}      relaxed_bounds.push_back( new_relaxed_bounds[i] );

{54}    else

{55a}     // insert new_relaxed_bounds[i] into relaxed_bounds before j 
{55b}     relaxed_bounds.insert(new_relaxed_bounds[i],j)

Figure 7:  Extract Minimal Conflict Psuedocode
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Abstract

Many planners have been built that prepare contingency
plans when actions may affect the world in uncertain
ways. Less work has been done with planners that as-
sume consumption of resources (including time) is un-
certain. One approach to dealing with this type of un-
certainty is to take a pessimistic view of the world, as-
sume a worst case scenario, and find conservative plans
that are likely to execute to completion regardless of
the amount resources consumed by the actions in the
plan. However this approach is often undesirable as it
leads to missed opportunities and slack time in the plan.
We identify a class of planning problems with temporal
uncertainty, uncertain resource consumption, plan met-
rics, and optional goals. Our research attacks the prob-
lem from a planning perspective, but incorporates some
scheduling techniques to help tackle these issues.

Introduction
Uncertainty applies to several aspects of planning problems.
Many planners have been built that prepare contingency
plans when actions may affect the world in uncertain ways
(see (Bresina et al. 2002) for a classification of planners that
deal with uncertainty). Less work has been done with plan-
ners that assume consumption of resources (including time)
is uncertain. One approach to dealing with this type of un-
certainty is to take a pessimistic view of the world, assume
a worst case scenario, and find conservative plans that are
likely to execute to completion regardless of the amount re-
sources consumed by the actions in the plan. However as
(Bresina et al. 2002) point out, this approach is often unde-
sirable as it leads to missed opportunities and slack time in
the plan. For example, assume that a Mars rover has to move
from point a to point b and use either a slow, high resolution
camera or a fast, low resolution camera to take an image at
point b. Given that travel time is uncertain, a conservative
planner may recognize that in the worst case there will not
be enough time to use the high resolution camera, and thus
choose to always use the low resolution camera. This plan
is robust, but when the rover travels quickly the opportunity
of getting a high resolution image is not realized and the
rover may undesirably be left idle for some period of time.
∗Supported by NASA Harriett G. Jenkins Pre-Doctoral Fellow-

ship Program.

In this extended abstract I describe research that first deals
with uncertain action duration but addresses uncertainty in
the consumption of non-temporal resources as well.

Problem Specification

Classical planning ignores many aspects of real world prob-
lems like time, resources and optimization. These issues are
usually dealt with in scheduling. However, problems like
the one described above display attributes of both schedul-
ing and planning problems (Smith, Frank, & Jonsson 2000).
This research attacks the problem from a planning perspec-
tive, but incorporates some scheduling techniques to help
tackle these issues.

Uncertainty is another aspect of real world problems that
classical planning ignores. One well-known approach to
dealing with uncertainty is Just-In-Case (JIC) which was
first developed in scheduling (Drummond, Bresina, & Swan-
son 1994) and later applied to planning (Dearden et al.
2003). In this approach, a seed schedule (plan) is con-
structed and then augmented with contingency branches in
places where it is likely that the plan will fail. An advantage
of contingency planning is that when something goes wrong
at execution time, re-planning (which can be time/resource
consuming) is generally not necessary. Another advantage
is that the seed plan is a viable plan by itself. The addi-
tion of contingency branches adds robustness to the plan,
but if planning time is limited, the planning process may be
stopped at any point after the seed plan has been generated.

Finally, the fact that all goals are not concrete is yet an-
other way this problem differs from classical planning in
which all goals must be achieved in order to have a solu-
tion. In this problem some goals are required, but others are
optional. For example, a required goal of a Mars rover is
sending collected data back to Earth. An optional goal may
be taking a picture of a specific object. In the problem de-
scription, each goal should be noted as required or optional
and the optional goals should be given some utility value (a
higher value denoting a more desirable goal). Decision the-
oretic planning deals with this issue by applying concepts
from decision theory to find a plan with maximum expected
utility (Blythe 1999).
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Temporal Contingency Planning1

My current work has focused only on the temporal aspect
of this problem. Specifically it has addressed problems that
satisfy the following criteria: (1) there is more than one so-
lution plan, (2) solution plans are ranked by a nontemporal
metric, (3) actions have uncertain durations, (4) the execu-
tion time of some actions is constrained, and (5) plans that
are judged highly by the metric are only valid when actions
complete quickly. In addition to the rover problem, the prob-
lem of traveling from home to a conference falls into this
framework. One solution plan is to drive to the airport, fly to
the destination city, take a shuttle to the conference venue,
and register for the conference. Another solution plan would
involve taking a taxi instead of a shuttle. Given that the met-
ric is to minimize money spent, the plan with the shuttle
action is preferred. However, the taxi may be faster than
the shuttle. Since there are time constraints on conference
registration, if the flight takes too long there may only be
enough time for the more expensive taxi option. To always
have a viable plan, and be able to save money when possi-
ble, a temporally contingent plan can be generated to drive
to the airport, fly to the destination, take the shuttle if there
is enough time, otherwise take the taxi, and register for the
conference.

In this work durational uncertainty is represented by in-
tervals. The duration of each action is assigned an inter-
val [min-d, max-d]. For example, a flight that takes 45-90
minutes would be assigned the interval [45, 90] as its dura-
tion. To generate a temporal contingency plan, the general
JIC algorithm is applied. First, it is optimistically assumed
that all actions require only their minimum duration and a
seed plan is generated. Taking into account characteristic
(5) from above, this creates a seed plan that will be ranked
highly by the metric, but may fail if the optimistic assump-
tion is false. To avoid failure, the seed plan is analyzed to
determine time points at which it may fail. Then, temporal
contingency branches are created and inserted at the possible
points of failure.

For temporal analysis, the seed plan is converted to a Sim-
ple Temporal Network (STN) (Dechter, Meiri, & Pearl 1991)
as in Figure 1. In an STN, nodes represent time points and

Figure 1: Distance graph for a possible seed plan of a con-
ference travel problem. For clarity, only the most important
edges are shown.

1Research conducted jointly with Nilufer Onder.

edges represent temporal constraints between time points.
To convert the seed plan to an STN, a node representing time
0 is created as well as 2 nodes for each action (one represent-
ing the start time point and one representing the end time
point). Then, edges are added in pairs representing temporal
relations and weighted with temporal distances. First, a pair
of edges is added between the start node si and end node ei

of each action i. The edge si → ei is weighted with max-d
of i and the edge ei → si is weighted with (min-d of i)×
-1. Next, pairs of edges are added between s0, the node rep-
resenting time 0, and each si node. If an action i has a con-
strained execution time, the edge s0 → si is weighted with
the latest start time of i and the edge si → s0 is weighted
with the earliest start time of i × -1. When an action does
not have a constrained execution time, the edge s0 → si is
weighted with ∞ and the edge si → s0 is weighted with
0. This signifies that the start of action i comes after time
0, but there are no other constraints. Finally, pairs of edges
labeled with 0 and ∞ representing causal links and threats
are added to the STN to identify parallelism in the plan.
(Dechter, Meiri, & Pearl 1991) refer to this representation
of an STN as a distance graph and prove that the temporal
constraints on the edges can be propagated by running an all
pairs shortest path algorithm such as Floyd-Warshall on the
distance graph to create a new graph called a d-graph. The
d-graph contains the same nodes as the distance graph, but
each edge a → b in the d-graph is weighted with the short-
est path weight from a to b in the distance graph. The new
weight gives the absolute bounds on the temporal distance
between the time points represented by a and b.

The algorithm developed in this work compares the edge
weights in the d-graph with domain information to deter-
mine the time points where the seed plan may fail. Incre-
mentally, each action i in the plan is examined. If the weight
of the edge si → ei is not less than max-d of i, then exe-
cution of this action cannot cause failure in the plan. Oth-
erwise, when i takes longer than the weight of the edge
si → ei, there may not be enough time remaining for the
rest of the plan to execute. In this case, a temporal contin-
gency branch that will succeed when i takes longer than the
weight of the edge si → ei is generated and inserted into
the seed plan. Temporal contingency branches are verified
in the same way as the seed plan and may have their own
temporal contingency branches. Also, multiple contingency
branches at the same time point can be generated.

Future Work
The above described work improves on conservative plan-
ning techniques by including the most conservative plan
as the least desirable contingency branch, executed only
when more desirable options may cause failure. However,
since failure detection is based on maximum action dura-
tion, missed opportunities and slack time are still possible.
The next step of this research will be to identify slack time in
temporally contingent plans where opportunities (as defined
in (Fox & Long 2002)) can be inserted. Slack time occurs
when action i has a constrained execution time and action
i-1 completes before i can start. Two kinds of slack time
are possible. The first type is slack time is always present
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in the plan (e.g. lay over time between flights). The second
type is slack time that is only present when actions com-
plete quickly (e.g. if the shuttle trip is fast, you will arrive
at the conference venue before registration opens). Oppor-
tunities can always be taken in the first case, but must be
conditionally taken in the second case. In the problem de-
scription given above, opportunities can be created by gener-
ating actions to achieve optional goals. Greedy, look-ahead,
and best-expected-utility techniques as described in (Gough,
Fox, & Long 2004) will be considered to help determine
where to insert opportunities to gain the most utility.

Another issue that must be addressed is uncertainty in the
consumption of non-temporal resources. Just as the current
algorithm ensures that all actions have enough time to com-
plete, extensions must be made to avoid oversubscription of
non-temporal resources (like power, fuel, and memory in the
rover domain or money in the travel domain) and ensure that
all actions have enough resources to complete. As opportu-
nities are added to the plan, care must be taken to make sure
that the resources required to complete the main plan are not
consumed by the opportunities.

Finally, as the algorithm is further extended a test bed of
problems will be developed. One interesting class of prob-
lems to study will be those that have few (or no) required
goals. This type of problem was introduced in the 2002
International Planning Competition in the Satellite domain
HARDNUMERIC track (Fox & Long 2003). The problems
in this track were designed to have few logical (required)
goals and a metric that ranked the plans by the amount of
data gathered. In problems like this, a planner must be able
to recognize and exploit opportunities. A unique characteris-
tic of this kind of problem is the possibility that entirely dif-
ferent sets of goals can be accomplished when actions take
a short time or a long time to complete.

Conclusion
In this extended abstract, a class of planning problems that
involve uncertain resource consumption, plan metrics, and
optional goals has been described. Additionally, a frame-
work for characterizing and directly dealing with tempo-
ral uncertainty by assigning interval durations, rather than
single point durations to actions has been presented. Pre-
liminary results have shown that this framework allows for
the generation of temporally contingent plans where contin-
gency branches judged poorly by the plan metric will only
be executed when time constraints indicate that branches
judged higher by the metric will fail. Further research has
been proposed to extend this framework to incorporate un-
certain consumption of non-temporal resources and to in-
clude opportunities where slack time exists in the plan.
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Abstract

A scheduling problem consists in a set of pre-defined ac-
tivities that have to be temporally situated with respect to a
set of resource availability constraints. Constraint-based ap-
proaches to scheduling have achieved mature development. I
am currently studying how a constraint based scheduler can
be endowed with the ability to synthesize new activities, i.e.,
by reasoning on planning knowledge. The general aim is to
solve integrated planning and scheduling problems by ratio-
nally integrating in the same architecture various of the state-
of-the-art CSP algorithms.

Introduction
While planning and scheduling often have been regarded
as separate research lines, both can be seen asabstrac-
tions of real world problems. A planning problem speci-
fies adomain theoryconcerning how changes may occur in
the world. A plan reasoner manipulatescause-effectrela-
tions in the domain theory which is often encoded in the
form of operators, e.g., in PDDL (Ghallabet al. 1998;
Fox & Long 2003). This operators represent the actions per-
formed by the executing agent in the environment in order
to obtain the desired change. Independently of the “shape”
of this knowledge it is important to remember that planning
knowledge represents the causal theory that describes the
“correct domain evolution”. In a scheduling problem a set
of pre-defined activities have to be temporally situated with
respect to a set of resource availability constraints. In rep-
resenting and solving such problems thetemporaland re-
sourceconstraints play a key role.

In certain application domains the subdivision of the two
problems as separate entities is quite motivated (see for ex-
ample (Srivastava, Kambhampati, & Do 2001)). In other
domains such a clear separation of the planning and schedul-
ing phase is more questionable and architectural approaches
to integrate the two problems have been developed. For in-
stance O-PLAN (Currie & Tate 1991), IxTeT (Laborie &
Ghallab 1995), HSTS (Muscettolaet al. 1992), RAX -PS
(Jonssonet al. 2000), orASPEN (Chienet al. 2000)) have
already succeeded in including aspects from both Planning
and Scheduling (P&S) among their features. These archi-
tectures have always emphasized the use of a rich represen-
tation planning language to capture complex characteristics
of the domain involving time and resource constraints.

In my work I am following an opposite perspective: start-
ing from a pure scheduling specification I am introducing
language primitives to specify causal constraints. So in-
stead of putting time and resource into a planning engine
I am working on putting causal knowledge into a schedul-
ing engine. The aim is to be able to specify a problem in
which not all the activities are specified and some of them
can be synthesized according to the particular choices done
either to serve resource constraints or to represent particu-
larly rich domains. This point of view of extending schedul-
ing engines with some activity synthesizing capabilities has
attracted some attention especially to manage complex pro-
cess environments (see for instance Visopt ShopFloor sys-
tem (Bartak 2003)).

These ideas are currently implemented in a prototypi-
cal solver calledOMP. By means of a constraint based
representation,OMP uniformly deals with causal and re-
source constraints “on top” of a shared layer representing
temporal information as a Simple Temporal Problem (STP)
(Dechter, Meiri, & Pearl 1991). For the causal reasoning
I use a representation of domain components (calledstate
variables), consisting in temporal automata, as first pro-
posed in HSTS (Muscettolaet al. 1992; Muscettola 1994)
and studied also in subsequent works (Cesta & Oddi 1996;
Jonssonet al. 2000; Frank & Jonsson 2003). The integrated
planning and scheduling domain theory inOMP is described
using DDL .2 specifications. DDL .2 is an integratedP&S
domain description language (see (Cesta, Fratini, & Oddi
2004) for a more detailed description of this language and
theOMP software architecture).

In this architecture activities that have to be scheduled are
organized as a network, where nodes represents activities
and edges represents quantitative temporal constraints be-
tween them. Activities no longer represent a “blind set” of
entities that someone produced and gave to the scheduler,
but they maintain information about mutual logical links; an
integratedP&Sarchitecture can manage both types of infor-
mation (causal and resource) and solve the whole problem of
generating and scheduling this set of activities.

This approach can be usefully applied to those domains
where the scheduling problem is actually the hardest aspect,
resource reasoning is very critical with respect to causal
reasoning and requires specialized scheduling technologies.
Those domains cannot be afforded with a planner that inte-
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grates some generic scheduling features. Indeed this kind
of domain often does not require strong planning capabili-
ties. But enhancing the solver with some planning capabili-
ties can allow to tackle problems in these domains in a more
flexible way.

Scheduling with Causal Reasoning
In my work I have started from a CSP (Constraint Satisfac-
tion Problem) scheduling framework able to manage tempo-
ral and resource constraints, and I tried to understand how
to increase the capabilities of this framework with planning
features, in fact describing a framework where both plan-
ning and scheduling problem instances have a common CSP
representation.

In a typical scheduling problem, there is a set ofactivities
that require certain amounts ofresources. There are also
a set of temporal constraints between these activities (du-
ration and minimal and maximal separation between pairs
of activities). Thus the problem is to findwhen to start
each activity in order to ensure that all temporal constraints
are respected and resources are never over or under used,
a constraint due to their finite capacity. Such a schedul-
ing problem can be solved for example with aPrecedence
Constraints Posting(PCP) approach (Cheng & Smith 1994;
Cesta, Oddi, & Smith 2002), in fact building a temporal net-
work where start and end points for each activity are mapped
as time points. The underlying CSP model for temporal in-
formation is usually an STP. Reasoning aboutresource pro-
files it is possible to deduce a set of additionalprecedence
constraintsbetween activities that, when posted, ensure re-
sources are never over used. The problem solving approach
is sketched in fig.1.

Temporal
Network

Activities
Network

Resource
Profiles

Figure 1: Activities Network Scheduling
As I said the scheduling problem can be seen as the output

of a planning step, when two steps, planning and scheduling,
are serialized, and the activity network come from causal
reasoning while temporal separation constraints between ac-
tivities come from cause-effect relations between planned
actions. My aim is to go a little bit further than a serialization
of these two steps, and present a way to model a scheduling
domain where the modeler specifies how activities that have
to be scheduled are linked to each other via cause-effect rela-
tionships, then find a solution for this problem, i.e. planning
which activities have to appear in the scheduling problem,
according to somegoalsthat have to be achieved.

I followed a different paradigm with respect to the more

common STRIPS ontology for domain description in plan-
ning literature (Fikes & Nilsson 1971). Rather than focus-
ing on the executing agent performing actions, the chosen
paradigm considers the relevant sub-parts of a domain that
continuously evolves over time. Then instead of specify
which action can be performed to modify the state of the
world, under which conditions and with which effects, I di-
rectly specify which sequences of states are logically admis-
sible for these sub-parts. The state of the entire world at each
instant of time is the union of the values of these sub-parts at
that instant. I call these sub-partsstate variablesbecause in
fact there are entities, whose values over a temporal interval,
determine what is going on on the world, in the form of tem-
porally ordered sequences of state transitions. In addition to
state variables, I use the notion ofresourcesto model typical
scheduling features, besides cause-effect relationships.

As we have seen, a scheduling problem can be modeled
over a temporal network, as a network of activities with a
start and an end time point, linked to each other with tempo-
ral constraints, where each activity requires a certain amount
of some resource. In a similar way, callingtaska temporal
interval with a start and an end time point, a planning prob-
lem can be seen as a network of tasks, linked to each other
with temporal constraints, where each task says that the state
variable must take between its start and end point one of the
values specified. Thus, as in scheduling we reason on re-
source usages by summing activity requirement at each time
point and calculating resource profiles, likewise we can cal-
culate a sort of “state variable profile” by intersecting for
each time instant the values required by each task that over-
laps in that time instant. With this representation of the plan-
ning problem we can see causal reasoning as a sort oftask
scheduling. The problem reduces to searching for a feasi-
ble ordering for these tasks taking care of the fact that each
state variable needs to take at least one value at each instant.
Thus a state variable is a sort of resource, where two tasks
cannot overlap, unless their intersection is a non empty set
of values.

Moreover, becausetasksand activities in fact share the
same temporal network, the integration ofP&S is achieved
by mixing temporal constraints in an environment where
two specialized reasoners, a scheduler for resources and a
task schedulerfor state variables, analyze the situation of
a temporal constraint database, in fact posting constraints
that affect the whole integrated problem. Hence my point
of view: state variables and resources can be seen ascon-
current threadsin execution on a concurrent system, where
a shared temporal model allows crossing relations between
causal and resource usage aspects, even if two distinct rea-
soners affect them. In figure 2 I show three different net-
works, that can be either activities or tasks networks. They
are connected with cross temporal constraints (dashed lines
in the figure) which link (1) the causal problem with the
scheduling problem (for instance requiring a resource us-
age when a task is performed by a state variable); (2) causal
problems on different state variables (for instance requiring
that when a task is performed by a state variable another
state variable must perform some other tasks). Sharing a
common temporal network they share the same temporal
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model, thus resources and state variable profiles in fact lie
in the same temporal line, as concurrent threads. But at
the same time causal, resource and temporal reasoning are
clearly separated: the last one is represented in bottom layer
in the figure, while the planning and scheduling problems
are represented as networks in the middle layer. Finally
I schedule these networks reasoning on resource and state
variable profiles (represented in the top layer).

Figure 2: Tasks and Activities Integration

From this point of view, once we specify some goals we
want to achieve, as for instance some tasks or activities that
must appear in the final solution, in order to follow all con-
straints specified in the domain theory, several other tasks
that have to be allocated over state variables and several ac-
tivities that have to be allocated over resources are automat-
ically produced, generating task and activity networks such
as those we saw before, that share the same temporal infor-
mation. Thus, once all networks are generated, in fact un-
folding the domain theory and ensuring all cause-effect rela-
tionships are guaranteed according to the domain theory, the
problem becomes to find a feasible ordering for these tasks
and activities in a way that each state variable takes at least
and no more than one value at each instant of time and re-
sources are never over used. This purpose can be achieved
by scheduling tasks and activities. Moreover propagation
rules can be applied, in fact solving the whole problem as a
CSP, alternating propagation and decision steps.

Problem Solving
In the pure scheduling case methods to deducenecessary
constraints by propagating informations about resource us-
ages have been widely studied. It is possible do deduce a
set of ordering constraints between activities that must be
posted, just because otherwise a resource violation surely
occurs. Generally that is not enough to solve the problem.
Sometimes a search decision is necessary, basically between
feasible orderings of activities. Of course constraints posted
during the propagation step are necessary, i.e. they prune
only non-feasible solutions, meaning thatany feasible so-
lution must contain these constraints. On the other hand
scheduling precedence constraints aresearchdecisions, thus
theycouldcut some feasible solutions. Thus it could be nec-
essary to backtrack during the search and choose a different
ordering for some activities if it is not possible to find any
solution from that point on.

I am going a little bit further, studying how to schedule
tasks over state variables, following the presented guide-
lines. I studied a method for discovering inconsistences in

posted constraints (i. e. temporal intervals where the in-
tersection of values allowed by constraints over that inter-
val is an empty set) and a propagation algorithm able to
discover new necessary ordering between tasks in order to
avoid inconsistences over state variables (see (Fratini, Cesta,
& Oddi 2005) for details). I am also working onOMP, an in-
tegrated constraint-based software architecture for planning
and scheduling problem solving I realized to apply my ideas.
This architecture implements an interval based planner and
scheduler, based on the ideas presented above. Basically,
starting from a domain theory it builds tasks and activity
networks over a shared temporal network, then it schedules
them as I have briefly explained.

The OMP software architecture essentially implements,
from an abstract point of view, the typical CSP loop solving
strategy, performing alternatively decision and propagation
phases, starting from a CSP problem model. In an high level
block view ofOMP’s architecture we see adecision making
module that explores the search space posting constraints
in a constraint database, that maintains information about
the current partial solution and propagates decision effects
pruning the search space, starting from a domain theory CSP
model(see fig. 3).

Temporal Network

Resource
Manager

State Variable
Manager

CSP Planner

Resource
Scheduler

State Variable
Scheduler

Constraint Database

Decision Making
Module

Figure 3:OMP Software Architecture
There are inOMP two modules, theresource managerand

the state variable manager, that manage task and activity
networks basically by performing constraints propagation
strictly connected with twoscheduling modules(in the deci-
sion making module) able to analyze the resource and state
variable constraint databases and to calculate several sets of
precedence constraints between activities and between tasks,
precedence constraints that when posted over resource and
state variable networks are able to guarantee that scheduling
problems over these components are solved and each solu-
tion is feasible with respect to resource and state variable
component constraints. These scheduling modules gener-
ate a search space, where at each node the decision mak-
ing module can choose between different activity or task or-
derings. Resource propagation algorithms described in (La-
borie 2003) have been implemented in a resource manager
module, while I analyzed and implemented algorithms for
the state variable manager. Both for resource and state vari-
able scheduling I basically use the precedence Constraint
Posting Approach adapted to the features of this architec-
ture.

Temporal, resource and state variable networks consti-
tute, from a CSP point of view, the constraint database in
theOMP software architecture. The decision maker module
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closes the loop. TheCSP planneris the decision making
module core: it explores the search space, making choices
between: (1) which tasks and activities are necessary in or-
der to force domain theory compliance and (2) which order
to force among tasks on a state variable or activity over a
resource when propagations are not able to prune all non-
feasible orderings (this set is computed by the scheduler
modules).

In fact the planner, starting from some goals (that is tasks
and activities that must appear in the final solution) dynam-
ically unfolds the domain theory putting more tasks and ac-
tivities into networks. Every time that a new task or activity
is added I deduce, via propagation rules, new constraints that
affect the situation of all networks, due to the shared tempo-
ral model. Moreover it is feasible to discover dead ends, and
by interleaving scheduling and unfolding steps we integrate
planning and scheduling (DDL .2 allows the user to model
different expansions for a task or an activity, thus different
networks can be built for the same problem).

Conclusions
From a general point of view my thesis topic is related to
planning and scheduling integration. My approach to that
problem starts from a scheduling background, and I am
studying how a constraint based scheduler can be endowed
with the ability to synthesize new activities, i.e., through rea-
soning on planning knowledge.

I underlined howCausal Knowledgeis the main dis-
tinguishing factor between planning and scheduling, thus
building an architecture where causal reasoning can be
performed behind time/resource reasoning allowed me to
bridge the gap between these two AI research lines, extend-
ing from one hand pure planning schemes with quantitative
time and resource reasoning and from the other hand extend-
ing pure scheduling schemes with a more complex domain
theory.

My aim is to solve integrated planning and scheduling
problems by rationally integrating in the same architec-
ture various of the state-of-the-art CSP algorithms. Then
I showed as modeling the integrated planning and schedul-
ing problem as concurrent evolving components allows me
to afford it as network scheduling, where networks are auto-
matically generated in the same architecture from a compact
domain theory description and some goals that have to be
achieved.
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Introduction 

Machine scheduling problems such as job shop scheduling, 
flow shop scheduling and open shop scheduling, which are 
NP-hard combinatorial optimization problems with strong 
engineering background, have been receiving increasing 
attention from researchers. In this paper, a modified Particle 
Swarm Optimization (PSO) based scheduling model-MPSO 
is proposed to generate optimized machine schedules. 
Given the limitations of information sharing mechanism in 
generalized PSO (GPSO) model, a new Swarm-intelligence 
based Information Sharing Mechanism-SISM is proposed. 
MPSO algorithm under SISM mechanism explores problem 
domain specific knowledge of scheduling problems to 
obtain good balance between experience oriented global 
search and knowledge directed local search. Compared with 
representative scheduling algorithms, MPSO can maintain 
good balance between quality of the machine schedules and 
computational expense. Simulation results validate its 
efficiency on benchmarking job shop scheduling datasets. 

SISM and MPSO Model 
Definition 1: Information sharing mechanism (ISM) is 
defined as the topology of information flow in swarm 
intelligence based heuristics. ISM is mainly concerned with 
“where” each individual in the swarm population should 
obtain the necessary updating information. Through the 
analysis of information flow in the swarm population, the 
optimization mechanism special to the specific algorithm 
can be neglected or be reduced to a more generalized 
information-sharing framework introduced by ISM. With 
this framework, we can conduct both theoretical and 
experimental analysis in a more direct and standard way.  

Definition 2: Information updating operator (IUO). 
Given the information sharing mechanism defined above, 
the next crucial step for swarm intelligence based heuristics 
is to present the detailed implementation-IUO to realize the 
proposed ISM. Different IUO can be well adapted to 
different environment that is in fact represented by the 
problem to be optimized. Under a certain information 
sharing mechanism, appropriate design of IUO could 
improve information flow efficiency of the proposed 
algorithm. 

As a novel heuristic based on swarm intelligence, 
Particle Swarm Optimization (PSO) (Kennedy and Eberhart 
1995) has been applied to many continuous problems 
especially those engineering optimization problems. 
However, due to the limitation of the velocity-displacement 
model of traditional PSO algorithm, it is difficult for PSO 
to address discrete and combinatorial optimization 
problems without modification. Based on the traditional 
velocity-displacement model, the optimization mechanism 
of PSO is studied and generalized PSO (GPSO) model has 
been proposed by the authors. Based on the GPSO model, 
we have proposed the PSO algorithm that could solve 
Travel Salesman Problem (TSP) efficiently. However, 
when extended to machine scheduling problem, severe 
premature convergence in GPSO model is a particular 
problem. 

To particularly overcome the limitations of the 
information sharing mechanism in the GPSO model, a new 
Swarm-intelligence based Information Sharing Mechanism-
SISM is presented and some analytical findings are put 
forward in detail by simulating simple social activities of 
human beings. Then, its IUO implementation-MPSO 
algorithm for machine-scheduling problems is presented.  

The core concept in SISM is memory pool that is 
composed of memory information with high quality 
introduced by individuals in the form of experience. In the 
proposed SISM mechanism, individuals obtain updating 
information from the memory pool. That is to say, the 
individuals obtain information not only from its own 
experience but also from the common successful experience 
of other individuals in the whole population. Compared 
with the traditional mechanism, the new SISM can lower 
the possibility of premature convergence.  

The proposed MPSO scheduling algorithm explores 
knowledge of the specific problems, thus conducting 
knowledge-directed local search to eliminate ill effects 
introduced by randomness or blindness introduced by its 
experience or memory-oriented global search. Based on 
knowledge concerning efficient moves of operations in 
critical blocks, neighborhood structures are proposed. 
Experimental results show knowledge-directed local search, 
which utilizes these neighborhood structures, improves the 
quality of machine schedules effectively. The framework of 
the proposed MPSO scheduling model under SISM is as 
follows:  
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Initialize the particle population: generate a set of 
schedules randomly or based on heuristic rules.  
Do { 

For each particle ( )is t  do { 
Evaluate with objective function defined as 

max ( ( ))iC s t  

Set individual best schedule ( )ip t :  
if max max( ( )) ( ( 1))i iC s t C p t≤ −  

( ) ( )i ip t s t=  
Update memory information pool 
if ()rand p≤  

Update the schedule through IUO with ( )ip t
else 

Obtain new schedule through IUO with 
( )im t from memory pool 

Local search procedure based on the specific 
neighborhood structure 

} While stopping criteria are not satisfied 
 

Figure 1: MPSO model based on SISM mechanism. 

Neighborhood structure of JSP 
This paper analyzes the neighborhood structures of JSP. In 
general, the neighborhood structures are similar in that they 
are all defined using blocks of operations in a critical path.  

The most popular domain knowledge for JSP is optimal 
neighborhood moves in the critical path. In this paper, the 
neighborhood structure adapted from (Monaldo and Luca 
2000) is a reduced set of possible neighbors to a subset for 
which can be proved that it always contains the neighbor 
with the lowest makespan. It is convenient to represent the 
JSP by using the disjunctive graph model. In disjunctive 
graph model, there is a node for each operation. The nodes 
are numbered from 1 to N, where N m n= ×  is the total 
number of operations. Additionally there are two dummy 
nodes, node 0 and node *, representing the start and end of 
a schedule, respectively. Each node has a weight, which is 
equal to processing time dv of the corresponding operation v. 
The starting time sv of operation v is equal to the length of a 
longest path from node 0 to node v, the tail time tv 
corresponds to the length of a longest path from node * to 
node v.  

The neighborhood structure was based on the 
perturbation of insertion operation. That is, for a specific 
node v in the graph, firstly, remove v by deleting all its 
machine arcs and set the weight of node v equal to 0. Then 
shift v to a new position by adding its machine arcs and 
setting the weight of node v equal to dv. Let G- be the graph 
obtained form G at the end of first step (In the following, all 

the notations after the first step were denoted by the 
combination of the former notions and the superscript “-”, 
i.e., let s- and t- be the starting and tail time of a genetic 
operation in G-, and v denotes the operation to be moved). 
Let Q be the set of operations processed by the machine, 
which also processed the operation v in G- and sorted by 
increasing starting time.  Let R and L denote two subsets of 
Q which can be obtained as follows,  

( | ),x x vR x Q s p s−= ∈ + > ( | ).x x vL x Q s t t−= ∈ + >  Let Fv be the 
set of solutions obtained by inserting v after all the 
operations of L\R and before all the operations of R\L. It 
can be proved that Fv is a set of feasible neighbors, and also 
there is an optimal insertion of v in Fv. 

The value of the low longest path was used to assess the 
effectiveness of a given insertion. The length of this path is 
a lower bound of the new solution. To reduce the 
computational expensive and avoid the calculation of 
longest path, a procedure used by (Dell’ Amico and 
Trubian 1993) was adopted to compute upper bounds 
instead of the exact values. In order to minimize the 
makespan, it may be profitable to consider only neighbors, 
which are obtained by inserting operations that belong to a 
critical path in the solution graph of the current schedule. In 
the MPSO model, the neighborhood search was applied for 
each individual in the population. To save computational 
cost, the above insertion was performed by specific 
probability, which can also avoid devious search. 

Experimental Results 
In view of the encouraging potentials of GPSO in 
combinational optimization when dealing with the TSP, we 
attempt to extend the GPSO model to handle more complex 
combinatorial optimization problems with engineering 
background such as job shop scheduling problem. The 
detailed implementation framework can be referred to the 
reference concerned with GPSO model. Here we just 
provide the computational results obtained by the 
respective algorithms based on GPSO model and MPSO 
model. Several representative JSP instances from ORLIB 
are used to examine their performance. Table 1 lists the 
makespan of best solution, average solution, and 
computational time of the algorithms based on these two 
models. Also the iteration numbers are recorded when the 
approximate convergence is reached. As can be seen from 
the table, though the GPSO model is superior in term of 
convergence speed at early stage, this merit is at the cost of 
severe premature convergence and failure to generate 
satisfactory schedules.  

First, we examined the performance of MPSO without 
neighborhood search procedure directed by problem 
specific knowledge. Table 1 also shows the results obtained 
by MPSO and the corresponding GA. The results reveal 
that the MPSO proposed in this paper performs better than 
GA in view of makespan of the generated schedules and 
computational expense.  
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Table 1: Comparison between the MPSO, GPSO and GA model. 

MPSO GPSO GA 
Problem Opt Best Ave Time (s) Gen Best Ave Time (s) Gen Best Ave Time (s)

FT10 930 930 945 244.19 100 956 967 20.53 14 946 968 271.59
FT20 1165 1173 1181 275.28 100 1224 1236 15.52 17 1178 1203 307.39
LA16 945 945 950 179.12 80 979 982 9.11 11 956 963 219.01
LA21 1046 1058 1071 486.87 150 1092 1108 18.58 14 1082 1105 613.37
LA31 1784 1784 1784 138.07 50 1784 1784 34.23 10 1788 1796 197.66
LA36 1268 1278 1292 692.64 150 1312 1331 53.76 21 1302 1334 1024.67

 

Table 2: Experimental results of MPSO on JSP benchmarks. 

MPSO 
Inst. Size BKS 

Best Avg Time 

(Aiex 
et al., 
2003) 

(Binato et 
al., 2002)

(Nowicki 
and  

Smutnicki
, 1996) 

(Gonçalves
 and 

Beirão, 
1999) 

(Wang 
 and 

Zheng, 
2001) 

FT10 10×10 930 930 930 23.906 930 938 930 936 930 
FT20 20×5 1165 1165 1173 107.87 1165 1169 1165 1177 1165 
LA01 10×5 666 666 666 0.079 666 666 666 666 666 
LA05 10×5 593 593 593 0.047 593 593 593 593 - 
LA10 15×5 958 958 958 0.109 958 958 958 958 - 
LA11 20×5 1222 1222 1222 0.235 1222 1222 1222 1222 1222 
LA16 10×10 945 945 945 40.875 945 946 945 977 945 
LA17 10×10 784 784 784 7.235 784 784 784 787 - 
LA18 10×10 848 848 848 4.848 848 848 848 848 - 
LA19 10×10 842 842 842 11.125 842 842 842 857 - 
LA20 10×10 902 902 902 26.860 902 907 902 910 - 
LA21 15×10 1046 1046 1052 101.472 1057 1091 1047 1047 1058 
LA22 15×10 927 927 927 144.407 927 960 927 936 - 
LA23 15×10 1032 1032 1032 6.62 1032 1032 1032 1032 - 
LA24 15×10 935 935 938 252.753 954 978 939 955 - 
LA25 15×10 977 977 977 147.953 984 1028 977 1004 - 
LA26 20×10 1218 1218 1218 34.813 1218 1271 1218 1218 1218 
LA27 20×10 1235 1235 1246 427.73 1269 1320 1236 1260 - 
LA28 20×10 1216 1216 1216 195.42 1225 1293 1160 1190 - 
LA29 20×10 1157 1153 1166 457.06 1203 1293 1160 1190 - 
LA30 20×10 1355 1355 1355 11.640 1355 1368 1355 1356 - 
LA31 30×10 1784 1784 1784 1.640 1784 1784 1784 1784 1784 
LA32 30×10 1850 1850 1850 1.343 1850 1850 1850 1850 - 
LA33 30×10 1719 1719 1719 1.219 1719 1719 1719 1719 - 
LA34 30×10 1721 1721 1721 2.813 1721 1753 1721 1730 - 
LA35 30×10 1888 1888 1888 1.109 1888 1888 1888 1888 - 
LA36 15×15 1268 1268 1274 451.75 1287 1334 1268 1305 1292 
LA37 15×15 1397 1397 1402 545.84 1410 1457 1407 1441 - 
LA38 15×15 1196 1196 1198 327.40 1218 1267 1196 1248 - 
LA39 15×15 1233 1233 1236 519.65 1248 1290 1233 1264 - 
LA40 15×15 1222 1224 1228 660.14 1244 1259 1229 1252 - 
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We can see from the above statistical results the 
superiority of proposed information sharing mechanism-
SISM to those of GPSO and GA. However, when dealing 
with large-scale instances, the MPSO algorithm without the 
direction of problem specific knowledge has difficulty in 
obtaining satisfactory machine schedules effectively. To 
address this drawback, the MPSO algorithm with local 
search based on knowledge of the specific problem is 
proposed and validated by more instances from ORLIB and 
the proposed algorithm is compared with some well-known 
algorithms. Table 2 displays the computational results. It 
lists instance name, dimension of the instance, the best-
known solution (BKS), CPU time (in seconds), and the best 
and average makespan of schedules obtained by each 
algorithm. As can be seen from the table, the proposed 
MPSO shows an improvement with respect to all others 
algorithms. Most of the instances have been solved by 
MPSO to the BKS except LA40, but the gap is only 0.16%. 
Furthermore, the solution for LA27 instance is even better 
than the BKS in the literature. The average computing 
times varies from 0.031s (for FT06 problem) to 660.142s 
(for LA40 problem). All the computational expenses are in 
reasonable range. In addition, the comparison of two 
MPSO algorithms clearly reflects the importance of 
problem specific knowledge. 

 
Conclusion 

To overcome the limitation of the traditional ISM of PSO 
algorithm and GA, a new information sharing mechanism-
SISM is proposed in this paper. The memory information is 
the core part of SISM, and the notion of the corresponding 
concept-memory pool is then introduced. The memory pool 
is updated each iteration. The updating principles ensure 
the high quality and good diversity of the individuals in 
swarm population. Experimental results confirm that the 
proposed algorithm based on SISM can deliver an excellent 
balance between global search and local search, and 
experience-oriented random search and knowledge-
concerned directed search. 

The notion of neighborhood structure based on problem 
domain specific knowledge is introduced into the MPSO 
scheduling algorithms. The effective combination of the 
neighborhood search directed by problem-concerned 
knowledge improves efficiency of useful information flow 
and expedites the convergence process. The SISM 
information sharing mechanism and the directed 
neighborhood search can be regards as a generic strategy 
and extended to other complex combinatorial optimization 
problems in engineering. 
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Abstract

In complex dynamic domains, the design and execu-
tion of plans of actions is a very difficult task that in-
volves a lot of personnel and resources. We can not
rely exclusively in an automatic planner system to solve
this type of problems. In this situations, the planning
domain may not include all the necessary knowledge,
or not know in advance all the possible contingencies.
Thus the designed plan might fail during its execution,
or even if it doesn’t fail and the plan is correct may be
it is not suitable for a human expert. In these cases the
help and lead of a domain expert becomes very valu-
able, and a planning system should provide different
ways for him or her to participate in the planning pro-
cess.

Introduction
As planning algorithms and techniques become more so-
phisticated, the need of tackling more complex and real
problems appears. Today planning systems are not used ex-
clusively by scientists for research purposes, but they are
also being embedded into larger intelligent systems in dif-
ferent fields, ranging from crisis management to tourism.
There is a need to transform the classical, closed, fully au-
tomated planners into new open interactive ones. There are
mainly three reasons for that. Firstly, the planner need to be
integrated as an agent into larger complex systems. It has
to communicate with other agents consuming their services
and offering new ones, forming a net of interoperable in-
telligent systems. Secondly, the planner needs to deal with
the uncertainty of the knowledge being used to obtain plans.
There is knowledge that is incomplete or imprecise, so the
planner may not know in advance if the resulting plan is
correct or even if it is going to be executed correctly (im-
precision). The planner would need to interact with other
systems (automated or human) trying to minimize this lack
of knowledge and improve the robustness and adaptability
of the resulting plan. And thirdly, the resulting plan is usu-
ally offered to a human expert that has to validate it. This
person is responsible for the consequences of the plan exe-
cution, so we need the resulting plan to satisfy him or her.
Because of that, we need this expert to get involved in the
planning process, helping and leading the planner to reach
a satisfactory plan. In order to do that, we need to provide

tools for the correct visualization, comprehension, explana-
tion, and edition of the plan. These tools have to be designed
taking into account that the the final user is not an expert on
planning, so we need the language used by this tools be able
to communicate with the user, natural, easy and simply.

In this work we present our planner SIADEX as a system
that needs to incorporate mixed initiative techniques in order
to face dynamic and real problems. In the next section we
will present a general overview of the SIADEX system, next
we will explain how the mixed initiative techniques can be
embedded in our system, finally we will conclude with some
remarks.

The SIADEX system
SIADEX is a system we are developing, under a research
contract with the Andalusian Regional Ministry of Environ-
ment. Its objective is to assist the command technical staff
in the design, progress and dispatching of forest fire fight-
ing plans. Currently we are starting the last of three years
of contract, so the system is in an advanced phase. The
architecture is composed by different, domain independent
agents (Figure 2). Each agent offers different services, that
are distributed over different computers and platforms, and
communicate with each other using the XML-RPC protocol.
• BACAREX: Is an ontology server, that stores the knowl-

edge related to the planning domain. In our case its stores
information about the forest fire fighting domain in An-
dalusia (Spain). It contains among other information. me-
teorological and geographical data, and all the facilities
and resources in our region (about 1900). BACAREX
is also capable of generating domains and problems (in
our PDDL extension) that are processed by our planning
agent. BACAREX also has a private web user interface,
that lets the staff related with forest fire fighting to mod-
ify or query this information. The ontology has been de-
signed using Protege (Protege. 2005), and it’s stored in a
relational database.

• SIADEX Planner: It’s a fully operational planner (we are
now in testing phase). SIADEX is a forward state-based
HTN temporal planner(de la Asunción et al. 2005), with
the following main features:
– It uses a hierarchical extension of PDDL 2.2 level 3

language. This extension is a superset of the standard
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PDDL language, that gives new expressions to support
the definition of hierarchical task networks, and man-
age the time. This language has also the capability to let
us to include Python embeddable scripts in the domain,
as axioms or functions, for being able to implement ex-
ternal calls, present dialogs or do another computations
at planning time. The language is easy to read and learn
if you have previous experience with PDDL and HTN
planning.

– It has an embedded debugger utility. This tool has be-
come a fundamental part of the planner for being able
to test and validate new domains or problems, specially
when the domains became big an complex. The debug-
ger gives the possibility of define breakpoints, query
the state of the planning process, and change the be-
haviour of the planner at run time.

– The planner is capable of perform temporal reasoning
at different levels of abstraction and define constraints
over time using temporal networks (Dechter 2003).

We intend to present this and other characteristics of the
planner to the research community as soon as we perform
some benchmarking and comparison with other systems.

• User interface module (Figure 1): We provided GUI capa-
bilities to the planning service for the experts. The GUI is
build on top of the ArcView GIS tool (ESRI ). The GUI is
totally domain dependent and oriented toward the interac-
tion with the forest fire technical staff. With this decision
we minimize the learning curve of the system, because the
staff is working with a tool that already knows, and also
gives the GUI the possibility to present and interact with
cartographical and meteorological related information.

• Monitor module: This module is not fully developed al-
though we have some background about it. Our goal is to
be able to split the plan into several pieces, and send every
piece to the person or people in charge of execute it (chief
of brigade, helicopter pilot...). These parts of the plan
will be presented to the user using any portable electronic
device (PDA, laptop, or cell phone). The monitor will
be able to gather the information provided by this people
about the status of the current tasks, monitor the global
plan progress, and present it to the operations chief.

• Replanning module: When a contingency in the plan is
found, this agent has to repair the previous plan or build
a new one. The replanning capabilities have not been de-
veloped yet. We are now studying, and exploring ways to
perform it in a mixed initiative way.

Mixed initiative and SIADEX
There are several opportunities of interaction between the
planner agent and its environment, ranging from goal defini-
tion to plan validation, execution and monitoring. Generally
speaking the more interaction with other systems, the more
precise information the planner has, and the better resulting
plans fits user needs. But depending on the situation, the
opportunities of interaction, specially with human users, are
more or less restricted. In a real forest fire, the time from
the expert (generally the chief of operations), who is also

Figure 1: GUI of SIADEX on top of ArcMap.

on a stressfull situation, is a very valuable resource and can
not be expended. In contrast, in a simulated training for-
est fire scenario, when the tool is used to test new strategies
and approaches, there are a lot of opportunities of interac-
tion. Depending on the stage, the agents involved (human or
machines) and the situation, the planner has to adapt its in-
teractions and be prepeared for work with a lot of or without
knowledge.

Situation assessment
During this phase, the knowledge about the planning context
is gathered from other systems, and the goal to be solved is
defined. In a crisis management domain, defining the goal to
tackle is not always an easy task. The human expert doesn’t
know in advance what exactly has to be done. He has a lim-
ited quantity of resources and a lot of work to carry out. He
need to prioritize between the different tasks that need to
be performed, assigning more resources to the most critical
tasks, or even discarding some tasks because the lack of re-
sources or the risk involved. Sometimes he knows perfectly
how to perform some part of the plan, and others ones he
has only a vague idea. There are different techniques that
are being studied to help the expert to describe the problem.
• Specify goals with different granularity. In SIADEX the

user can specify goals with different levels of detail. The
expert can choose what resources to use, and assigns to
one or a group of them a particular sequence of tasks. The
tasks can also be concrete and precise, or vague at differ-
ent levels of abstraction. For example a certain brigade
might be required either to “clean out the vegetation one
particular zone”, as a concrete goal, or to ”perform pre-
ventive measures in the area 2”, as an abstract goal, and
let the system to plan a more concrete sequence of tasks
for them. Another interesting feature is that the expert
could choose the resources used to perform one particu-
lar task. Currently in SIADEX the selection of resources
is a fully automatic task based on the time required for
each resource (helicopters, airplanes, fire fighters...) to
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Figure 2: General overview of SIADEX Architecture.

go to the fire, but we want to extend this mechanism so
the user can specify the criteria used in the selection (dis-
tance,experience,money...), what particular resources to
use, the number and type of resources to send, the “force”
needed to combat the fire system, and any combination of
them. In this way depending on the requirements of the
user, the system will choose what resources to use. The
final idea is that the expert may provide a minimum in-
put to obtain an approximate good candidate plan, or pro-
vide more elaborated and defined input in order to obtain
a more personalized solution.

• Provide guidance to the plan search process. We are
studying two ways to enable the user to lead the plan-
ner search process. One of them is to write certain rules
that act as constraints that the final plan must meet (My-
ers 1996). And the other one is to let the user to describe
parts of the plan in the form of sketches. The planner then
is in charge of expanding the sketches and glue together
the different parts, to obtain a final consistent plan (Myers
et al. 2003). We are studying the way to incorporate the
former of these techniques into SIADEX. We think that
despite the second technique can obtain, from the point
of view of the expert, more customized plans, it also re-
quires from the expert a higher level of specialization and
knowledge about the domain and the planning process.
The second technique can be used in a training environ-
ment when the expert can expend more time elaborating
his strategies, and can be used to explore, refine and dis-
cover new strategies that can be standardized. But in a
stressful and changing environment like forest fire, what
is required, is a quick and good candidate plan, that can
be easily adapted and change over the time.

Plan generation
Once the problem has been properly set, the planning agent
obtains (or not) a plan. In an HTN framework the planning
process can be fully automated or guided by the interaction
with the expert. The user can negotiate with the planner
about what decisions to choose. Currently, the SIADEX
planner is open to interactions during the whole planning
search process, even these interactions might be previously
set in the domain description, allowing the user to impose
his decisions and prune some other choices. In our opinion,
this is very useful for staff with a considerable background
on planning techniques, and a very interesting line of re-
search. However, from the point of view of the end user, this
might not be very “user-friendly”. We have to consider that
a “real” plan involves thousands of HTN expansions, and a
considerable amount of backtracking, that makes even for a
well trained user to know what is happenning. It is very dif-
ficult to find a way of collaboration between the expert and
the system that don’t require certain training and knowledge
about the planning process to obtain satisfactory results. We
firmly believe that one of the most important requirements
for a good mixed initiative system is that the system must fit
the user and not the opposite.

Finally, once a candidate plan is found, it is submitted
for validation to the end user. He may decide to accept the
plan, to find another one or to patch the existing plan. In
this sense we are studying how to extend a previous work
on regenerative planning for a partial order planner (de la
Asuncíon et al. 2003) to the HTN paradigm. This plan
patching process allows the user to edit the plan, to remove
undesirable actions and to include new actions under his
responsibility. After the edition of the plan, the user may
request the system to regenerate it to obtain a full valid
plan and we are studying two ways to achieve this goal.
The first one is based on a local regenerative process that
searches for valid completions of the plan. It has to be
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done taking into account the tasks and primitive actions in-
cluded in the HTN domain (de la Asunción et al. 2003),
and also the plan rationale, that is, the set of causal links
and order relations existing between primitive actions. And
the second one is based on a local repairing process based
on term rewriting techniques (Dershowitz & Plaisted 2001;
Ambite & Knoblock 1997) using a set of rewriting rules that
maintain the correctness of the modified plan regarding the
decomposition methods of the domain and also its causal
structure.

Another problem we found, is that due the tremendous
number of actions involved in one plan, made in parallel and
mix together, it is very difficult for the expert to generalize
and made himself a global idea on the general strategies and
decisions taken. So we are studying different ways to graph-
ically display the plan, based on the time, the geographical
disposition, the resources involved and the HTN and causal
structure of the plan (i.e. in Figure 3 we see a plan generated
by SIADEX in XML MsProject file format).

Figure 3: A SIADEX plan displayed as a Gantt chart.

Monitoring, dispatching and repairing
When the plan is obtained and validated by the staff, the ex-
ecution begins. SIADEX is able to generate temporal plans,
that are continuously executed, following the best temporal
ordering. The plan is divided in pieces that are dispatched to
the different agents that have to perform them. But in a dy-
namic domain like crisis management in general, and forest
fire fighting in particular, we can not expect a correct exe-
cution of the plan. Even the planer can not automatically
detect all the possible failures in the plan without the help of
a human operator. We have to mention that in the SIADEX
framework, the final users have different privileges over the
plan visualization, and modification, depending on his her
rank in the command hierarchy. Only one person has the
privilege to modify the current plan, or ask for a new one,
in our case the chief of operations. The rest of the person-
nel, only has access to the part of the plan that involves or

is important for him or her job. Failures in the execution of
the plan are signaled by these people and are registered by
the monitor. Once the fail has been signaled, the chief of
operations is informed, and a plan patching process similar
that the one described above is carried out. Once the plan is
fixed taking into account the actions that already have been
performed, the plan continues with its execution. This is a
“continual planning” approach in where we interleave sev-
eral planning and execution stages.

Concluding remarks
In this work we have presented a HTN planning frame-
work that tries to solve real an dynamic problems. We have
explained, that this type of problems are very difficult to
tackle without human intervention. Finally we have pre-
sented some mixed initiative techniques that can be applied
to our planning system. Mixed initiative techniques can be
applied in every phase of the planning process ranging from
the problem definition to the execution and monitoring of
the plan and almost always tend to enrich the resulting plan,
or at least makes them more suitable from the point of view
of the human expert. Despite that, in our opinion, there are
some techniques that are better than others, depending on
the environment in where the planner is going to be used,
and the type of users that have to manage it. We argue that,
in general the best techniques are those who reduce human
interaction and don’t require a planning expert to success-
fully make use of them.
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Abstract

Classical planning domain representations assume all
the objects from one type are exactly the same, un-
less explicitly represented by literals. But when solv-
ing problems in the real world with autonomous sys-
tems, the execution of a plan that theoretically solves
a problem can fail because of the special behaviour of
an object that was not captured in the problem repre-
sentation. This is one type of uncertainty about the
world that I would like to capture through the integra-
tion of planning, execution and learning. In this pa-
per, I describe an architecture that generates plans, ex-
ecutes those plans, and automatically acquires knowl-
edge about objects that were used in the plans. This
knowledge strengthens the planning and execution pro-
cesses in the future by considering which instances of
types provide a more robust behaviour with respect to
operators.

Introduction
Suppose an organization whose staff consists of two pro-
grammers,A andB. A has worked in the enterprise for one
year whileB is unexperienced. Theoretically they can do
the same work, but it would be common sense that at the
beginning, difficult tasks were assigned toA, and then grad-
ually start to share them withB as B shows worthy. The
project manager will have first to test the behavior ofB and
then gradually acquire knowledge about howB behaves with
respect to different actions (establish requirements, design,
implement, maintain, document, ...). An automated planner,
as the manager does, should also evaluate the behavior of the
world objects (instances) to improve the quality and robust-
ness of its plans. Examples of this type of situations arise
in most real world domains, such as project management
(as before), workflow domains (some people perform some
set of actions better than others, and another set of actions
worse than others), robotics (some robots are more robust
with respect to some actions), military domains, etc.

Here, I assume that the robustness of the execution of ac-
tions only depends on how actions are instantiated (which
worker performs which action, or, in other terms, which
value I assign to parameterworker of action design )

Copyright c 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

rather than depending on what state the action is executed.
The latter would be, basically, what reinforcement learning
would do in the case ofMDP models (fully instantiated states
and actions). It also does not depend on what characteristics
a given instance has, because the values of these characteris-
tics might not be known “a priori”. Otherwise, they could be
modelled in the initial state. For instance, one could repre-
sent the level of expertise of programmers, as a predicate
expertise-level(X,Y,Z) whereX can be instanti-
ated to a programmer,Y is an action, andZ can be a number,
reflecting the uncertainty of lettingXexecute actionY. Then,
the robustness of each plan could be computed by cost-based
plans. So, I would like to acquire knowledge about the un-
certainty associated to instantiated actions, without knowing
“a priori” the facts from the state that should be true in order
to influence the execution of an action.

To acquire this knowledge, I have made the following as-
sumptions (I describe how I plan to relax these assumptions
in the future work section):

1. As I have already mentioned, the robustness of the exe-
cution of plan actions only depends on the instantiation
of the actions parameters, and it does not depend on the
states before applying the actions.

2. A domain consists of a set of operators, and a set of spe-
cific instances that will be used as parameters of the ac-
tions for which I would like to acquire the model. This
is something relatively different from the way in which
planning domains are handled, since they usually do not
include specific instances, which appear in the planning
problems. But, in many domains, instances are fixed for a
given organization, or part of, where I will use planning.
So, in workflow or project management, a given organi-
zation is composed of a set of known people, or a given
robot environment is formed by a fixed set of robots. I
will force that every problem in which I use an instance
with nameA refers to the sameA than the rest of prob-
lems. In the extreme, I found domains, as in some indus-
trial domains where control sequences should be gener-
ated, in which each domain also incorporates the problem
description, as presented in (Fernández, Aler, & Borrajo
2005). This assumption is only needed for learning and is
not really needed for deterministic planning purposes.

This paper is organized as follows: first, I present the gen-
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eral architecture of the system and the planning, execution
and learning processes, next I describe the performed exper-
iments, and finally I discuss some conclusions.

The Planning-Execution-Learning
Architecture

The PELA system (Planning-Execution-Learning Architec-
ture) acquires gradually and automatically knowledge about
the uncertainty associated to instantiated actions through re-
peated cycles of planning, execution and learning, as it is
commonly done in most real world planning situations by
humans. In our approach, a planner begins with a deter-
ministic knowledge of the world dynamics, and step by step
adapts itself to the learned dynamics. I use control knowl-
edge to re-use the learned knowledge from previous plans
executions to guide the planner search of a more robust so-
lution.

Figure 1: High level view of the planning-execution-
learning architecture.

Planning

For the planning module, I have used the nonlinear back-
ward chaining planner QPRODIGY (Borrajo, Vegas, &
Veloso 2001). The inputs to the planner are the usual ones
(domain theory and problem definition), plus declarative
control knowledge, CK, described as a set of control rules.
These control rules act as domain dependent heuristics, and
they are the main reason I have used this planner, given
that they provide an easy method for declarative represen-
tation of automatically acquired knowledge. PRODIGY4.0
planning-reasoning cycle, involves as decision points: select
a goal from the set of pending goals and subgoals; choose
an operator to achieve a particular goal; choose the bindings
to instantiate the chosen operator and apply an instantiated
operator whose preconditions are satisfied or continue sub-
goaling on another unsolved goal.

I use control rules for guiding the planner towards good
solutions according to the acquired knowledge on robust-
ness. The output of the planner is the total-orderedmost
robustplan.

Execution

The system executes step by step the plan proposed by the
planner to solve each problem from the training set. The
algorithm is shown in Figure 2.

Function Execution (Plan, Rob-Table):Rob-Table
Plan: list of actions (a1, a2 , ..., an)
Rob-Table: Table with the robustness of the actions
For all the actions ai in Plan do

r = simulator(ai)
Rob-Table = Learning(ai,r,Rob-Table)
if r=failure Then break;

Return Rob-Table;

Figure 2: Algorithm that executes a plan and updates the
robustness of the actions of the plan.

In order to ease the test of the architecture, I developed
a simulator of the execution of an instantiated action of the
plan in the real world. This simulator is very simple for
the time being. It doesn’t take care of the current state of the
world (which is not quite real). It only takes into account the
instantiated action, and returns whether its execution suc-
ceeded or failed.

The simulator keeps a model of execution for all the pos-
sible actions. This model lies in a probability distribution
function. So every time the execution of an action has to be
simulated, the simulator generates a random value following
its corresponding distribution probability. If the generated
random value satisfies the model, the action is considered
successfully executed. For example, suppose the simulation
of the actionput-down (R2, A) in the blocksworld do-
main. At the simulator, it is defined that robotR2 will suc-
ceed putting-down blocks 90% of the times. The simulator
will generate a random value following a uniform distribu-
tion, and in case the generated random value is under 0.9 the
action will be considered successfully executed.

Learning

The system analyzes the results of the executions of the plan
actions, and generates a robustness table from the obser-
vation of these executions. The table is composed of tu-
ples of the form(op-name, op-params, r-value)
for every possible action.op-name is the action name,
op-params is the list of the instantiated parameters, and
r-value , is the robustness value. This value, represents
an estimation of success of the execution of the instantiated
action in the real world. If the execution of the action is
successfully, this value is incremented, otherwise this value
is reduced applying the square root function. The learning
algorithm is shown in Figure 3.

The learning process consists on the update of the
robustness table. The system updates this table after every
execution of an action with the information obtained from
the simulator. As an example, suppose the blocksworld
domain with two gripper robots (R1 andR2) and two blocks
(A andB), Figure 4, and that the systems tries to learn from
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Function Learning (ai, r,Rob-Table):Rob-Table
ai: executed action
r: execution outcome (failure or success)
Rob-Table: Table with the robustness of the actions
if r=success

Then
robustness(ai,Rob-Table) = robustness(ai,Rob-Table) + 1

Else
robustness(ai,Rob-Table) = sqrt(robustness(ai,Rob-Table))

Return Rob-Table;

Figure 3: Algorithm that updates the robustness of one ac-
tion.

Figure 4: Non-deterministic multi-robot blocks world prob-
lem.

the following set of plans:

Plan 1: (Unstack R1 A B) (Put-down R1 A) (Pick-up R1
B) (Stack R1 B A)
Plan 2: (Unstack R2 A B) (Put-down R2 A) (Pick-up R2 B)
(Stack R2 B A)
Plan 3: (Unstack R1 A B) (Put-down R1 A) (Pick-up R2 B)
(Stack R2 B A)
Plan 4: (Unstack R2 A B) (Put-down R2 A) (Pick-up R1 B)
(Stack R1 B A)

The system executes all these plans. Suppose plans 1 and
2 are executed successfully, but plans 3 and 4 fail at the sec-
ond and fourth actions respectively. Table 1 would be gen-

Table 1: Robustness table generated from the execution of
all plans for problem in Figure 4.

Action Parameters Robustness
Unstack R1 A B 2.0
Put-down R1 A 1.0
Pick-up R1 B 2.0
Stack R1 B A 1.0
Unstack R2 A B 2.0
Put-down R2 A 2.0
Pick-up R2 B 1.0
Stack R2 B A 1.0

erated by the learning scheme.

Exploitation of acquired knowledge
The planner uses the robustness table by means of Control
Knowledge. Control rules guide the planner among all the
possible actions, choosing the action bindings that have the
greatest robustness values at the Robustness Table (Table 1).
An example of these control rules is shown in Figure 5.

(control-rule prefer-bindings-put-down
(IF
(and (current-goal (on-table

<block1>))
(current-operator PUT-DOWN)
(candidate-bindings (<robot>

<robot1>))
(candidate-bindings (<robot>

<robot2>))
(robustness-more-than

(PUTDOWN <robot1> <block1>)
(PUTDOWN <robot2> <block2>))))

(THEN prefer-bindings
((robot robot1))))

Figure 5: Control rule for prefering themost robustbindings
for the operator put-down.

In case the planner can choose among different bindings,
these control rules tell the planner which ones to prefer. In
the problem of Figure 4, as the Figure 6 shows, the planner
can choose between two actions ((Put-down R1 A) and
(Put-down R2 A) ) to put down the blockA on the ta-
ble. The control ruleprefer-binding-put-down will
make the planner prefer themost robustone. In this case, if
we look at the robustness table (Table 1),(Put-down R2
A) is more robust than(Put-down R1 A) .

Figure 6: Example of search guided by control rules.

Experiments and Results
This section describes the experiments carried out to
evaluate the proposed architecture. I have performed
the experiments in a simple non-deterministic multi-robot
blocksworld domain given that this is preliminary work. I
will shortly apply to more realistic domains. The objects in
this world include 9 blocks (A to I ), a table and two grip-
per robotsR1 and R2. In order to test the system, I cre-
ated a world model in which robotR1 completes actions
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put-down and stack successfully with probability 0.1
and the rest of the actions with probability 0.9, whereasR2
completes all actions with probability 0.9.

I took one hundred problems and I generated a plan for
each one of the one hundred problems, with and without the
use of the control rules (with or without the learned behav-
ior). Each plan was executed 1000 times, and I registered
the average number of plan actions succesfully executed. As
shown in Figure 7, for almost every problem, the number of
plan actions executed successfully is greater with the use of
the control rules. That is because control rules make the
planner prefer the most robust actions.

Figure 7: Percentage of plan succesfully executed for the set
of eleven problems.

Conclusions and future work
I present an architecture that integrates a deliberative plan-
ner with some uncertainty reasoning capabilities, an execu-
tion module that connects with a simulator, and a learning
mechanism. This integration results in a system that is able
to provide more robust plans as it acquires knowledge from
previous plans executions.

Experiments show that if the system has learned the ro-
bustness of the instantiated actions in the world, planning
using this robustness information achieves plans whose exe-
cution is more robust.

In the future, I plan to remove, when possible, the ini-
tial assumptions. First, I will use a more complex simulator
that considers not only the instantiated action, but also the
state before applying each action. I plan to use, for instance,
the rigid body dynamics simulator.1 Then, during learn-
ing, the reinforcement formula should also consider the state
where it was executed. One could use standard reinforce-
ment learning techniques (Watkins & Dayan 1992) for that
purpose, but states in deliberative planning are represented
as predicate logic formulae. One solution would consist

1http://ode.org/

on using relational reinforcement learning techniques (Dze-
roski, Raedt, & Driessens 2001).

Relaxing the second assumption requires generating ro-
bustness knowledge with generalized instances and then
mapping new problems instances to those used int the ac-
quired knowledge. As I described in the Introduction, I be-
lieve this is not really needed in many domains, since one
always has the same instances in all problems of the same
domain. In that case, I have to assure that there is a unique
mapping between real world instances and instance names in
all problems. In case new instances appear, their robustness
values can be initialized to zero, and then gradually updated
with the proposed learning mechanism.
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Towards High-performance Robot Plans with Grounded Action Models:
Integrating Learning Mechanisms into Robot Control Languages

Alexandra Kirsch

Abstract

For planning in the domain of autonomous robots, abstraction
of state and actions is indispensable. This abstraction how-
ever comes at the cost of suboptimal execution, as relevant
information is ignored. A solution is to maintain abstractions
for planning, but to fill in precise information on the level of
execution. To do so, the control program needs models of its
own behavior, which could be learned by the robot automat-
ically. In my dissertation I develop a robot control and plan
language, which provides mechanisms for the representation
of state variables, goals and actions, and integrates learning
into the language.

Motivation
A key challenge for the next generation of autonomous
robots is the reliable and efficient accomplishment of pro-
longed, complex, and dynamically changing tasks in the real
world.

One of the most promising approaches to realizing these
capabilities is the plan-based approach to robot control. In
the plan-based approach, robots produce control actions by
generating, maintaining, and executing plans that are tai-
lored for the robots’ respective tasks. Plans are robot control
programs that a robot can not only execute but also reason
about and manipulate. Thus a plan-based controller is able
to manage and adapt the robot’s intended course of action —
the plan — while executing it and can thereby better achieve
complex and changing goals. The use of plans enables these
robots to flexibly interleave complex and interacting tasks,
exploit opportunities, quickly plan their courses of action,
and, if necessary, revise their intended activities.

Making plan-based controllers effective requires pro-
grammers to abstract away from details of the physical
world. In order to reduce the size of the state space, the
robot’s belief state is described in terms of abstract situa-
tions and events. Similarly actions are described as discrete,
instantanious events. As an example let us consider an au-
tonomous household robot. A situation can be described as
the robot being “near the door”. When someone wants to
enter the room the robot should perform the action “clear
the door”. A description like this totally disregards the ac-
tual position of the robot, the actual distance to the door and
the precise position to where the robot should go in order to

Figure 1: Realistic simulation for a household robot.

clear the door. These are the kinds of abstraction that make
automatic planning feasible.

However, abstracting away from the low-level state de-
scription often yields suboptimal behavior. In our example
where the robot is blocking the door, it might move away
from the door so that it can be opened, but it might still be
in the way of the person entering the room. Or the robot
might have been standing near the door, because it was stir-
ring the soup on the hearth. If it moves away to make room
for someone to enter, the soup might be burning. In this
situation, the robot should have looked for an alternative po-
sition that still allowed it to reach the hearth. The problem
here is that the action “clear door” deliberately ignores the
robot’s precise start and goal positions. For the planner, this
is fine, since the actions should be kept simple. But when
it comes to executing the plan, the robot should consider its
current situation, goals and possible outcomes of its action.

In my research I develop mechanisms that allow the pro-
grammer to keep a high degree of abstraction for planning.
Only during the execution of the abstract plans, the low-level
details are taken into account and the plan steps are opti-
mized with respect to the current context. To perform an
action in a certain situation the control program needs infor-
mation about (1) why the action is to be performed, (2) other
goals that might interfere, and (3) the behavior of the proce-
dures used for achieving the action.

The information about the current program state can be
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provided by a declarative structure of the control program
making concepts such as goals, procedures and belief state
explicit. Knowledge about the interference of goals or the
behaviour of routines is provided by models. In the case of
interfering goals the models might be provided by the pro-
grammer. But it would be a hard job to predict the behavior
of every available control routine in every conceivable situa-
tion. Here automatic learning techniques are indispensable.

In this framework an action in a plan doesn’t necessarily
correspond to a certain control routine. In many cases, there
are several routines, the performance of each varying in dif-
ferent contexts. The choice of which routine to call in the
given situation is based on models. Although it is possible
to program all these routines by hand, program development
could be advanced by learning routines automatically.

Unfortunately, the performance of learned routines of-
ten drags substantially behind those of programmed ones,
at least if the control tasks are complex, interact, and are
dynamically changing. In our opinion this is not due to a
poor performance of learning algorithms, but to the insuffi-
cient integration of learning into control languages. With
a synthesis of learning and programming, parts adequate
for learning need not be programmed explicitly, while other
parts can be implemented manually. In order to get a smooth
transition between the two worlds, the learning process must
take place inside the controller. This means that the robot
has to acquire training experiences, compute a suitable fea-
ture language representation, execute the learning process
and integrate the result into the control program.

Contributions
The aim of my dissertation is the development of an exten-
sion of a robot control and plan language, which provides
mechanisms for
• modelling interaction with the physical environment;
• the representation, inference and execution of abstract

modalities like state variables, goals and actions;
• the smooth interaction of programming and learning.

For the first point I develop representations that provide
the program with information about the physical meaning of
state variables. Inference mechanisms can use this informa-
tion for example to generate abstract feature languages that
are needed for automatic learning.

An explicit representation of state variables, goals and ac-
tions provides knowledge about the execution state of the
program. Thus when executing an action, the program can
find out why this action is to be performed and use this in-
formation in choosing appropriate parameterizations.

In order to integrate learning into a programming lan-
guage, we need an explicit and declarative representation of
learning problems, as well as mechanisms for executing the
learning steps and embedding the resulting procedure seam-
lessly into the code.

For the empirical evaluation of the language I develop, we
have two testbeds. One is a simulated household robot that
has to perform sophisticated tasks in a kitchen (figure 1).
The other one is our autonomous robot soccer team, where
real robots have to be controlled in highly dynamic situa-
tions.

Realization
The concepts for declaratively describing the physical
world, for representing beliefs, goals and procedures, and
the learning mechanisms are implemented as an extension
to RPL, which is a plan language implemented as LISP
macros.

Interaction with the physical world
The representation of the robot’s belief is implemented by
state variables, which don’t only contain the robot’s current
belief about the world, but includes models about the phys-
ical meaning of each state variable. So, when specifying
a state variable, we give the unit of measurement and the
physical dimension of each value.

Changes in the values of physical quantities are propa-
gated by fluents, variables that vary over time. Using fluents,
the robot can wait for events and react accordingly.

For a more high-level description of the robot state we
have the concept ofderived state variables, which are a
composition of other state variables. In the robot soccer en-
vironment, such a derived state variable could be the robot’s
current distance to the ball.

Goals, Actions and State
The robot control program uses explicit representations of
the robot’s state, its goals and the procedures for fulfilling
the goals (figure 2).

Goals

State Variables Procedures

change

triggerfulfill
co

ns
tra

in

Figure 2: Interconnections between state variables, goals
and procedures. The drawn through arrows denote mech-
anisms that are explicitly represented in the language. The
dashed lines show interactions that are not mirrored in lan-
guage constructs.

A goal class is defined as a restriction over a state vari-
able. Such a state variable is calledcontrollable. For a goal
class the programmer must also specify a procedure to ful-
fill the goal. A goal can beachieved, where the adequate
control procedure is invoked in order to fulfill some success
criterion, ormaintained, where the success criterion is con-
stantly checked and if required, restored.

For a goal class the programmer has to state which proce-
dure is to reach the goal. In many cases there are several pos-
sible routines with different characteristics in different situ-
ations. If we know models of these routines, we can choose
the best according to the circumstances. For this we intro-
duce the conceptcontrol task. The control task can choose
between differentcontrol routines, given the current belief
and models of the control routines. A control routine can be

ICAPS 2005

48 Doctoral Consortium



Goal Routine Control Task Low-Level Routine

Goal

Figure 3: Calling hierarchy of goals and procedures.

either agoal routine, which is the only kind of procedure that
can set new goals, or alow-level-routine, which controls the
robot directly by giving commands to the robot architecture
(figure 3).

Integrating Learning into Robot Control
Considering the current state-of-the-art, developing robotic
agents that learn autonomously is rather an opaque art
than an engineering exercise. One of the main reasons
is that modern robot control languages do neither en-
force nor strongly support the rigorous design of learning
mechanisms. With the language ROLL (formerly called
RPLLEARN ) (Beetz, Kirsch, & M̈uller 2004), we attempt to
improve this situation by extending a robot control language
with constructs for specifying experiences, learning prob-
lems, exploration strategies, etc. Using these constructs,
learning problems can be represented explicitly and trans-
parently and become executable.
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Figure 4: Learning agent after (Russell & Norvig 1995).

Figure 4 shows the parts of a learning agent. Every aspect
of a learning problem is represented explicitly within ROLL.

Theperformance elementrealizes the mapping from per-
cepts into the actions that should be performed next. The
control procedures therein might not yet be executable or
optimized. These are the procedures we want to learn.

The critic is best thought of as a learning task specific
abstract sensor that transforms raw sensor data into infor-
mation relevant for the learning element. To do so the critic
monitors the collection of experiences and abstracts them
into a feature representation that facilitates learning.

The learning elementuses experiences made by the robot
in order to learn the routine for the given control task.

Theproblem generatorgenerates a control routine that is

executed by the performance element in order to gather use-
ful experiences for a given learning problem. The problems
are generated according to a probability distribution as given
in the learning problem specification.

is called with an experience class and returns a control
routine that, when executed, will generate an experience of
the respective class. The new parameterizations are gener-
ated as specified in the distribution of parameterizations of
the experience class.

The language constructs for learning described here have
been applied to reconstruct large parts of the control pro-
gram of our soccer robots (Beetzet al. 2003).

Progress
In the current state, mechanisms for the representation of
physical knowledge inside the state variables are imple-
mented. Also goals, procedures and state variables are rep-
resented explicitly. The mechanisms shown in figure 2 are
now reflected in programming constructs.

A first version of the language ROLL has been imple-
mented independently of the other model-based concepts.
We applied this language to several learning problems in the
context of robot soccer. The constructs were also used by
students in a practical course. We are integrating a revised
version of the learning constructs into the model-based lan-
guage context. For this purpose we store experiences in a
database, so that data mining techniques for data cleaning
can be applied easily to the training examples.

We used an earlier implementation (Müller, Kirsch, &
Beetz 2004) of the language for implementing the control
program of our soccer robots for the 2004 world champi-
onship in Lisbon. Also, learned routines for navigations
tasks were included, whose performance reached the level
of programmed ones (Kirsch, Schweitzer, & Beetz 2005).

A more recent version was employed for controlling the
simulated kitchen robot. In this context we haven’t per-
formed any learning yet.
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Going where Hierarchical Task-Network (HTN) Planning Meets with
Symbolic Model Checking∗

Ugur Kuter
University of Maryland,
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Introduction
More and more research is addressing the problem of
planning in nondeterministic domains. In spite of the
recent promising results, the problem is still very hard
to solve in practice, even under the simplifying assump-
tion of full observability, i.e., the hypothesis that the
state of the world can be completely observed at run-
time. Indeed, in the case of nondeterministic domains,
the planning algorithm must reason about all possi-
ble different execution paths to find a plan that works
despite the nondeterminism, and the dimension of the
generated conditional plan may grow exponentially.

Among others, planning based on Symbolic Model
Checking (Cimatti et al. 2003; Rintanen 2002; Jensen
& Veloso 2000) is one of the most promising approaches
for planning under conditions of nondeterminism. This
technique relies on the usage of propositional formulas
for a compact representation of sets of states, and of
transformations over such formulas for efficient explo-
ration in the search space. The most common imple-
mentations of this technique have been realized with Bi-
nary Decision Diagrams (BDDs) (Bryant 1992). In dif-
ferent experimental settings, planning algorithms based
on BDDs, e.g., those implemented in MBP (Bertoli et
al. 2001), have been shown to scale up to rather large-
sized problems (Cimatti et al. 2003).

Another promising approach to planning with nonde-
terminism is forward planning with Hierarchical Task
Networks (HTNs), which was originally developed to
provide efficient search-control heuristics for classical
domains (Nau et al. 2003). (Kuter & Nau 2004) de-
scribed a way to generalize this approach to work in
the nondeterministic case, along with a class of other
forward-planning techniques. The ND-SHOP2 planner,
a nondeterminization of SHOP2 (Nau et al. 2003), is a
forward HTN planner developed using this technique.

∗This extended abstract is produced from the paper
titled “A Hierarchical Planner based on Symbolic Model
Checking,” which is accepted for presentation and publi-
cation in ICAPS-2005 Technical Program. I would like to
thank Drs. Dana Nau, Marco Pistore, and Paolo Traverso
for their supervision in doing this work.
Copyright c© 2005, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

It has been demonstrated in (Kuter & Nau 2004) that
ND-SHOP2 can be very effective in pruning the search
space, and in some cases ND-SHOP2 outperforms MBP.

In this paper, we first describe a framework and a
novel algorithm, called YoYo, that enables us to com-
bine the power of the HTN-based search-control strate-
gies with BDD-based symbolic model checking tech-
niques. Next, we discuss the results of our experimental
evaluation of YoYo. Finally, we conclude with our on-
going and future research directions.

Background
We use the usual definitions for states, nondeterministic
planning domains, policies, planning problems and their
solutions in such domains, as in (Cimatti et al. 2003).

A nondeterministic planning domain is a tuple of the
form (P,S,A,R), where P is a finite set of propositions,
S ⊆ 2P is the set of all possible states, A is the finite
set of all possible actions, and R ⊆ S × A × S is the
state-transition relation. The set of states in which an
action a is applicable is Sa ⊆ S.

A policy to be a set π = {(s, a) | s ∈ S and a ∈ A(s)},
where A(s) ⊆ A is the set of actions that are applicable
in s. A planning problem in a domain D is a tuple of
the form P = (D, I, G), where I ⊆ S is a set of initial
states, and G ⊆ S is a set of goal states. In this work,
we focused only on strong and strong-cyclic solutions
for planning problems, as in (Cimatti et al. 2003).

We use the definitions for primitive tasks, nonprim-
itive tasks, task networks, and methods as in (Nau et
al. 2003), except that we restrict ourselves to ground
instances of these constructs in this paper. We assume
the existence of a finite set of symbols that denote the
tasks to be performed in a planning domain D. Every
action a in D is a primitive task symbol, and there are
some additional task symbols called nonprimitive tasks.
A task network is a partially-ordered set of tasks.

We adopt the notion of ordered task decomposition
(Nau et al. 2003) as follows: the tasks in a task net-
work are decomposed into subtasks in the order they
are supposed to be performed in the world. A method
describes a possible way of decomposing the tasks in a
task network into smaller and smaller tasks. The set of
states in which a method m can be applied is Sm. The
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Procedure YoYo(D, I, G, w, M)
return YoyoAux(D, {(I, w)}, G, M, ∅)

Procedure YoyoAux(D, X, G, M, π)
X ← PruneSituations(X, G, π)
if there is a situation (S, w = nil) ∈ X such that S 6⊆ G
then return(failure)

if NoGoodPolicy(π, X, G) then return(failure)
if X = ∅ then return(π)
select a situation (S, w) from X and remove it
F ← HTNDecomposition(S, w, D, M)
if F = ∅ then return(failure)
X ′ ← ComputeSuccessors(F, X)
π′ ← π ∪ {(s, a) | (S′, a, w′) ∈ F and s ∈ S′}
π ← YoyoAux(D, X ′, G, M, π′, X0)
if π = failure then return(failure)
return(π)

Figure 1: YoYo, an HTN planning algorithm for gen-
erating solutions in nondeterministic domains. In the
YoyoAux procedure, X is the current set of situations.

result of applying a method m to a nonprimitive task
t of w is the task network w′ generated by replacing t
in w with the subtasks specified in m, while preserving
the ordering constraints in w and the subtasks of m.

The YoYo Planning Algorithm
In this section, we describe YoYo, a forward-chaining
HTN planning procedure shown in Figure 1, which is
designed to combine the ability of exploiting search-
control heuristics as in HTN planning with symbolic
model-checking techniques in a single framework.

The input for YoYo consists of a planning problem
(D, I, G), an initial task network w, and a set of HTN
methods M for the domain D. The algorithm exploits
tuples of the form (S, w), called situations, which are
resolved by accomplishing the task network w in the
states of S. Starting with the initial situation (I, w),
YoYo recursively generates successive sets of situations
until a solution is generated; otherwise it returns failure.

At each iteration, YoYo first performs a series of tests
on the set X of current situations. The first test is to
check X for cycles and goal states: for every situation
(S, w) ∈ X, YoYo removes any state in S that either
appears already in the current partial policy π (since
an action has already been planned for it), or appears
in the set of goal states G (since no action should be
planned for it). The PruneSituations subroutine in Fig-
ure 1 is responsible for this operation (please see (Kuter
et al. 2005) for the formal definition of this procedure).
Then, YoYo checks if there is a situation (S, w) ∈ X
such that there are no more tasks to be performed in
w, but the goal has not been reached yet (i.e., S 6⊆ G).
If so, we have a failure in the search.

If the current set X of situations does not induce a
failure in the search process, YoYo first checks if π con-
forms to the requirements of the kinds of solutions it
is looking for. The NoGoodPolicy subroutine is respon-

Procedure HTNDecomposition(S, w, D, M)
F ← ∅; X ← {(S, w)}
loop
if X = ∅ then return(F )
select a tuple (S, w) ∈ X and remove it
select a task t that has no predecessors in w
if t is a primitive task then

A← {a | a is an action for t, and S ⊆ Sa}
if A = ∅ then return ∅
select an action a from A
F ← F ∪ {(S, a, w \ {t})}

else
A← {m | m is a method in M for t and S ∩ Sm 6= ∅}
if A = ∅ then return ∅
select a method instance m from A
X ← X ∪ {(S ∩ Sm, (w \ {t}) ∪ w′}
if S \ Sm 6= ∅ then X ← X ∪ {(S \ Sm, w)}

Figure 2: The HTNDecomposition procedure. In the
above, Sm and Sa respectively denote the set of states
in which a method m and an action a are applicable.

sible for this task (please see (Kuter et al. 2005) for
the formal definition of this procedure). If the current
partial policy π violates the requirements for a policy
being a solution, then YoYo returns a failure.

Otherwise, we have two cases. First, if there are no
situations to be explored further —i.e., X = ∅—, then
π is a solution to the input planning problem, so YoYo
returns it. Otherwise, YoYo selects a situation from
X, say (S, w), and attempts to generate an action for
every state in S. To achieve this objective, it uses a
forward-chaining HTN-planning engine, called HTNDe-
composition shown in Figure 2. The HTNDecomposition
procedure is the hearth of YoYo. In a situation (S, w),
it successively decomposes the tasks in w into smaller
tasks by using the available HTN methods, until for ev-
ery state in S, a primitive task (i.e, an action) is gener-
ated. If there exists a state in S such that no action can
be generated using the task network w and the avail-
able HTN methods, then HTNDecomposition returns
the empty set, forcing YoYo to report failure. Other-
wise, it returns a set F of the form {(Si, ai, wi)}k

i=0,
where Si ⊆ S such that we have S =

⋃
i Si, ai is an

action applicable to all states in Si, and wi is the task
network to be accomplished after applying that action.

If HTNDecomposition generates a non-empty set F
of tuples of the form (S, a, w), then YoYo proceeds with
computing the successor situations to be explored us-
ing the ComputeSuccessors routine as follows: for each
tuple (S, a, w) ∈ F , it first generates the set of states
that arises from applying a in S by using the function
succ(S, a) = {s′ | s ∈ S and s′ is a state that arises
from applying a in s}. Then, the next situation corre-
sponding this action application is (succ(S, a), w).

Experimental Evaluation
We have implemented a prototype of the YoYo planning
algorithm, described in the previous section. Our cur-
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Figure 3: Average running times of YoYo, ND-SHOP2,
and MBP in the hunter-prey domain as a function of
the grid size, with one prey.

rent implementation is built on both the ND-SHOP2
and the MBP planning systems. It extends the
ND-SHOP2 planning system for planning over sets of
states rather than a single state. We also developed a
framework that enables us to implement the YoYo al-
gorithm and its data structures using BDD-based sym-
bolic model-checking primitives as in (Cimatti et al.
2003). Implementing YoYo using this machinery en-
abled us to develop an interface to MBP for exploiting
the BDD-based primitives already implemented in it.

In our experiments, we used the Hunter-Prey do-
main (Koenig & Simmons 1995) and several variations
of it. We performed several sets of experiments with
YoYo, comparing its performance against MBP and
ND-SHOP2 under different conditions in this domain
and its variations. We summarize our results below; for
a detailed discussion, please see (Kuter et al. 2005).

In the Hunter-Prey domain, there is a hunter and a
prey in an n × n grid world. The task of the hunter
is to catch the prey in the world. The hunter has five
possible actions; namely, north, south, east, west, and
catch. The prey has also five actions: it has the same
four moves as the hunter, and an action to stay still in
the world. The hunter can catch the prey only when
the hunter and the prey are at the same location at the
same time in the world. The nondeterminism for the
hunter is introduced through the actions of the prey:
at any time, it can take any of its actions, independent
from the hunter’s move.

First, we investigated how well YoYo is able to cope
with large-sized problems compared to ND-SHOP2 and
MBP. Figure 3 shows the results of the experiments
for grid sizes n = 5, 6, . . . , 10. For each value for n, we
have randomly generated 20 problems and run MBP,
ND-SHOP2, and YoYo on those problems. This figure
reports the average running times required by the plan-
ners on those problems.

For grids larger than n = 10, ND-SHOP2 was not able
to solve the planning problems due to memory over-
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Figure 4: Average running times of ND-SHOP2, YoYo
and MBP on problems in the Hunter-Prey domain as a
function of the number of preys, with a 4×4 grid. MBP
was not able to solve planning problems with 5 and 6
preys within 40 minutes.

flows. This is because the sizes of the solutions in this
domain are very large, and therefore, ND-SHOP2 runs
out of memory as it tries to store them explicitly. Note
that this domain admits only high-level search strate-
gies such as ”look at the prey and move towards it.”
Although this strategy helps the planner prune a por-
tion of the search space, such pruning alone does not
compansate for the explosion in the size of the explicit
representations of the solutions for the problems.

On the other hand, both YoYo and MBP was able
to solve all of the problems in these experiments.
The difference between the performances of YoYo and
ND-SHOP2 demonstrates the impact of the use of BDD-
based representations: YoYo, using the same HTN-
based heuristic as ND-SHOP2, was able to scale up as
good as MBP since it is able to exploit BDD-based rep-
resentations of the problems and their solutions.

In order to investigate the effect of combining search-
control strategies and BDD-based representations in
YoYo, we used the following variation of the Hunter-
Prey domain. We assumed that we have more than
one prey in the world, and the prey i cannot move to
any location within the neighbourhood of prey i + 1 in
the world. In such a setting, the amount of nondeter-
minism for the hunter after each of its move increases
combinatorially with the number of preys in the do-
main. Furthermore, the BDD-based representations of
the underlying planning domain explode in size under
these assumptions, mainly because the movements of
the preys are dependent to each other.

In this modified domain, we used a search-control
strategy in ND-SHOP2 and YoYo that tells the planners
to chase the first prey until it is caught, then the second
prey, and so on, until all of the preys are caught. Note
that this heuristic allows for abstracting away from the
huge state space: when the hunter is chasing a prey, it
does not need to know the locations of the other preys
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in the world, and therefore, it does not need to reason
and store information about those locations.

In the experiments, we varied the number of preys
from p = 2, . . . , 6 in a 4 × 4 grid world. We have
randomly generated 20 problems for each experiment
with different number of preys. Figure 4 shows the
results of these experiments with MBP, ND-SHOP2,
and YoYo. These results demonstrate the power of
combining HTN-based search-control heuristics with
BDD-based representations of states and solutions in
our planning problems: YoYo was able to outperform
both ND-SHOP2 and MBP. The running times re-
quired by MBP grow exponentially faster than those
required by YoYo with the increasing size of the preys,
since MBP cannot exploit HTN-based heuristics. Note
that ND-SHOP2 performs much better than MBP in the
presence of good search-control heuristics.

Work In Progress
Our experimental evaluation shows that the combi-
nation of HTN search-control heuristics and symbolic
model-checking techniques is a potent one: it has large
advantages in speed, memory usage, and scalability.
Encouraged with these results, we are currently work-
ing on several directions regarding HTN planning and
planning with Symbolic Model Checking.

In one of our research directions, we are aiming to
develop techniques for generating solutions for planning
problems in nondeterministic domains, for which there
exists no good search-control knowledge, or compiling
such knowledge is as hard as solving the problems them-
selves. To achieve this objective, we are currently work-
ing on the integration of MBP’s planning algorithms
with YoYo. Note that, as described previously, YoYo
does not exploit MBP’s backward-chaining planning al-
gorithms; it uses the symbolic model-checking primi-
tives implemented in the MBP system to implement its
data structures and the operations over them. Note also
that YoYo assumes that the HTN-based search-control
knowledge is provided by domain experts; however, un-
der conditions of uncertainty, this may not be a realistic
assumption in many cases, or producing such knowledge
may be equivalent to solving the target problem itself.

In our current work, we intend to use YoYo and
its ability to exploit HTNs to decompose the planning
problem into smaller problems in a systematic way, and
solve those smaller problems using the HTNs in YoYo
as much as possible. However, if YoYo generates a sub-
problem for which there exists no HTN methods avail-
able to the planner, it invokes MBP’s algorithms for
that subproblem and combines the solution returned by
MBP with the rest of the plan being generated. This
way we will be able to use our approach in a wider class
of planning problems under conditions of uncertainty.

Note that the above framework treats YoYo and MBP
as seperate planners that work at different levels on a
planning problem. An alternative approach would be
to exploit forward-chaining HTN heuristics directly in-
side MBP’s backward algorithms. One way to incorpo-

rate such heuristics in MBP itself is to use an approach
similar to GraphPlan: in this case, we preprocess a plan-
ning problem to generate a planning graph using YoYo,
and then, use planning graph to guide MBP’s backward
search algorithms to generate solutions. One disadvan-
tage of this approach is the following: generating a plan-
ning graph may be more work than necessary in some
cases. We are currently working on this issue.

Secondly, we are currently investigating the relation-
ships between HTNs and planning with temporally-
extended goals as in (Dal Lago, Pistore, & Traverso
2002). In this work, our objective is to understand the
basic properties of the two formalisms and their rela-
tionships, and develop algorithms that integrate HTNs
with the symbolic model-checking algorithms already
developed for temporally-extended goals. This work is
in a preliminary stage, so it is premature to comment
on the details until the work is farther along.
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Abstract
Probabilistic planning problems are often modeled as Markov
decision processes (MDPs), which assume that a single unit-
length action is executed per decision epoch. However, in the
real world it is common to execute several actions in parallel.
This paper presents efficient methods for solving probabilis-
tic planning problems withconcurrent, durativeactions. We
extendConcurrent MDPs, MDPs which allow multiple in-
stantaneous actions to be executed simultaneously, by adding
explicit action durations. We present two novel admissible
heuristics and one inadmissible heuristic to speed up the con-
vergence. We also develop a novel notion ofhybridizingan
optimal and an approximate algorithm to yield a hybrid algo-
rithm, which quickly generates high-quality policies. Exper-
iments show that all our heuristics speedup the policy con-
struction significantly. Furthermore, our approximate hybrid
algorithm runs up to two orders of magnitude faster than other
methods, while producing policies close to optimal.

1. Introduction
Recent progress has yielded new planning algorithms which
relax, individually, many of the classical assumptions. How-
ever, in order to apply automated planning to many real-
world domains we must eliminate larger groups of the as-
sumptions in concert. For e.g., (Bresinaet al. 2002) notes
that control for a NASA Mars rover requires reasoning about
uncertain, concurrent, durative actions. While today’s plan-
ners can handle large problems withdeterministicconcur-
rent durative actions (JAIR Special Issue 2003), and semi-
MDPs provide a clear framework for durative actions in the
face of uncertainty, few researchers have considered concur-
rent, uncertain, durative actions — the focus of our work.

Consider a Mars rover with the goal of gathering data
from different locations with various instruments. Concur-
rent actions are essential to effective execution, since instru-
ments can be turned on, warmed up and calibrated, while the
rover is moving. Similarly, uncertainty must be explicitly
confronted as the rover’s movement, arm control and other
actions cannot be accurately predicted.

The framework ofMarkov decision processes(MDPs) is
the dominant model for formulating probabilistic planning
problems. In the traditional case, a single action is allowed
per decision epoch. However, allowing multiple concurrent

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

actions at a time point inflicts an exponential blowup on all
MDP techniques. Our previous work on concurrent MDPs
(Mausam & Weld 2004) introduced several methods to man-
age this blowup. However, in their current form concur-
rent MDPs (CoMDPs) do not handle explicit action dura-
tions. The actions are supposed to be instantaneous (or unit
length). Moreover, the agent must wait for all the recently-
started actions to finish before new action(s) can be started.
This may lead to sub-optimal policies. For e.g., in order to
save execution time, the Mars rover might wish to execute
sequential set up actions (e.g., turning on the camera, focus-
ing, etc..) concurrentwith navigation to the next location.

In this paper, we defineconcurrent probabilistic temporal
planning- in short,CPTP. This model extends our previous
CoMDP framework by incorporating explicit action dura-
tions. Specifically, we extend the technique ofSampled real-
time dynamic programming(Sampled RTDP) (Mausam &
Weld 2004) to generate high-quality CPTP policies. We
present effective heuristics to speed up the convergence to
sampled RTDP. We also propose the novel idea ofhybridiza-
tion, i.e. of combining two policy creation algorithms to
yield a single, fast, approximation algorithm, which has the
best of both worlds. Our hybrid algorithm for CPTP com-
bines partial CPTP and CoMDP policies to focus its opti-
mization efforts on the most frequent branches.

2. Background
A Markov decision processis a tuple〈S,A,Pr, C,G, s0〉 in
which S is a finite set of discrete states,A is a finite set of
actions1, Pr : S × A × S → [0, 1] is the state transition
function,C : S × A → <+ is the cost model,G ⊆ S is the
set of absorbing goal states, ands0 is the start state.

Assuming full observability, we seek to find an optimal,
stationary policy,π: S → A, which minimizes the expected
cost (over an indefinite horizon) incurred to reach a goal
state. Note that avalue function, J : S → <, mapping states
to the expected cost of reaching a goal state defines a policy.
Thus we need to find theoptimalvalue function,J∗.

Value Iterationis one method to obtain this. It is a dy-
namic programming approach in which the optimal value
function is calculated as the limit of a series of approxima-
tions. RTDP(Barto, Bradtke, & Singh 1995), is a lazy ver-

1An applicability function,Ap : S → P(A), denotes the set of
actions that can be applied in a given state.
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sion of value iteration in which the states are updated in pro-
portion to the frequency with which they are visited by the
repeated execution of the greedy policy.Labeled RTDPim-
proves the efficiency of RTDP by a clever labeling scheme
that focuses attention on states where the value function has
not yet converged (Bonet & Geffner 2003).

Concurrent Markov Decision Processes (CoMDP) In
the previous work (Mausam & Weld 2004), we extended tra-
ditional MDPs to allow concurrent actions. Since some ac-
tions interfere with each other, we ban certain combinations
adopting the classical planning notion of mutual exclusion
and apply it to afactoredaction representation. Thus the ef-
fects of executing the sequencea1; a2 equals those ofa2; a1.

An action combination, A, is a set of one or more non-
mutex actions to be executed in parallel. The cost model for
a CoMDP returns the cost of concurrently executing several
actions in a state. For make-span minimization it is simply
the maximum duration of the constituent actions. Thus the
model assumes that a new set of actions may not be executed
until all members of the previous set have terminated.

The applicability function for CoMDPs now has range
P(P(A)); it is defined in terms of the applicability func-
tion for MDPs as { A⊆ A|∀a, a′ ∈ A, a, a′ ∈ Ap(s) ∧
¬mutex(a, a′)}

With A = {a1, a2, . . . , ak} for non-interacting actions,
the transition function may be calculated as∑

. . .
∑

s1,s2,...sk∈S
Pr(s1|s, a1)Pr(s2|s1, a2) . . .Pr(s′|sk, ak)

Thus, a CoMDP is essentially a traditional MDP with a
very large set of actions. To solve a CoMDP, we can simply
adapt the traditional algorithms. However, since the number
of action combinations is exponential in|A|, efficiently solv-
ing a CoMDP requires specific techniques. Sampled RTDP
is one of those techniques where instead of using all combi-
nations of actions in the backup an intelligent sampling of a
few is used (Mausam & Weld 2004).

3. Extending to Durative Actions
To incorporate action durations in concurrent probabilistic
planning problems, we consider the input model similar to
that of concurrent MDPs except that action costs (C(a)) are
replaced by their durations (∆(a)). The objective is to min-
imize the expected time (make-span) of reaching a goal. We
make some assumptions for ease of modeling and planning.
We require the actions to have deterministic integer-valued
durations. Also for simplicity, we adopt the temporal action
model of (Smith & Weld 1999), rather than the more com-
plex PDDL2.1.

This restriction is consistent with our previous defini-
tion of concurrency. Specifically, the mutex definitions (of
CoMDPs) hold and are required under this action model.
Moreover, in this model, it is sufficient to consider a new
decision epoch only at a time-point when one or more ac-
tions complete. Thus we infer that these decision epochs
will be discrete (integer).

Aligned Epoch Search Space A simple way to model
CPTP is as a standard CoMDP, in which action costs are set

to their durations. This formulation is distinct from an ac-
tual CPTP in an important way: In the aligned-epoch policy
execution, once a combination of actions is started at a state,
the next decision can be taken only when the effects of all ac-
tions have been observed (hence the namealigned-epochs).
In contrast, at a decision epoch in the optimal execution for
a CPTP problem, many actions may be midway in their exe-
cution. We have to explicitly take into account these actions
and their remaining execution times when making a subse-
quent decision. Thus, the state space of CPTP is substan-
tially different from that of the simple aligned-epoch model.

Interwoven Epoch Search Space We adapt the search
space representation of (Haslum & Geffner 2001). Our
original state spaceS in section 2 is augmented by includ-
ing the set of actions currently executing and the times re-
maining for each. Formally, let the new augmented state2

s ∈ S -– be an ordered pair〈X, Y 〉 where X ∈ S and
Y = {(a, δ)|a ∈ A, 0 < δ ≤ ∆(a)}. HereX represents
the values of the state variables (i.e.X is a state in the origi-
nal state space) andY denotes the set of ongoing actions “a”
and their remaining times until completion “δ”.

To allow the possibility of simply waiting for some action
to complete execution, that is, not executing any action at
some decision epochs, we augment the setA with a no-op
action. We allow no-op to be applicable in all statess =
〈X, Y 〉 whereY 6= ∅ (i.e. states in which some action is
still being executed). The new applicablity set ofs would
include combinations that are originally applicable inX and
non-mutex with any action inY .

We define the probability transition functionPr -– for
the new state space such that we move forward in time to
our next decision epoch - which is the smallest time after
which any executing action completes. For formal defini-
tion, please refer to (Mausam & Weld 2005).

Thus we model a CPTP problem as a CoMDP in this new
state space. The main bottleneck in inheriting our previ-
ous methods (e.g.Sampled RTDP) naively is the huge size
of the new state space. In the worst case (when all actions
can be executed concurrently) the size of the state space is
|S| ×

(∏
a∈A ∆(a)

)
. Thus we need to reduce, abstract or

aggregate our state space to make the problem tractable. We
now present several heuristics which can be used to speed
the search.

4. Heuristics
We present three heuristics that can be used as the initial cost
function for our Sampled RTDP algorithm.

Maximum Concurrency Heuristic We prove that the op-
timal expected cost in a traditional (serial) MDP divided
by themaximum concurrency(maximum number of actions
that can be executed in parallel) is a lower bound for the
expected make-span of reaching a goal in a CPTP problem.
This bound can be used as an admissible (MC) heuristic.

Let J(X) denote the value of a stateX ∈ S in a tradi-

2We use the subscript-– to denote theinterwovenstate space
(S -–), value function(J -–), etc..
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tional MDP with costs of an action equal to its duration. Let
concurrencyof a state be the maximum number of actions
that could be executed in the state concurrently. We define
maximum concurrency of a domain(c) as the maximum con-
currency of any state in the domain.
Theorem 1 Lets = 〈X, Y 〉,

J∗-–(s) ≥ J∗(X)
c

for Y = ∅

J∗-–(s) ≥ Q∗(X, As)
c

for Y 6= ∅

Proof Sketch: Consider any trajectory of make-spanL
(from a states = 〈X, ∅〉 to a goal state) in a CPTP prob-
lem using its optimal policy. We can make all concurrent
actions sequential by executing them in the chronological
order of being started. As all concurrent actions are non-
interacting, the outcomes at each stage will have similar
probabilities. The maximum make-span of this sequential
trajectory will becL (assumingc actions executing at all
points in the semi-MDP trajectory). HenceJ(X) using this
(possibly non-stationary) policy would be at mostcJ∗-–(s).
Thus J∗(X) ≤ cJ∗-–(s). The second inequality can be
proven in a similar way.

Following this theorem, the maximum concurrency (MC)
heuristic for a states = 〈X, Y 〉 is defined as follows:

if Y = ∅ HMC(s) =
J∗(X)

c
elseHMC(s) =

Q∗(X, As)
c

The time for computing the heuristic is the time required
for solving the underlying MDP that is comparitively fast.

Average Concurrency Heuristic Instead of using maxi-
mum concurrencyc in the above heuristic we use the aver-
age concurrency in the domain to get the average concur-
rency (AC) heuristic. TheACheuristic is not admissible, but
in our experiments it is typically a more informed heuristic.

Eager Effects Heuristic Given the CPTP problem, we can
generate a relaxed CoMDP by making the effects of ac-
tions, which would otherwise be visible only in the future,
be known right away — thus the name eager effects (EE). A
state for this relaxed CoMDP is〈X, δ〉 whereX is an MDP
state andδ is an integer. Intuitively,〈X, δ〉 signifies that the
agent will reachstateX after timeδ units. Thus, we have
discarded the information about which actions are execut-
ing and when they will individually end; we only record that
all of them will have ended after timeδ units and that the
agent will reach the stateX (possibly with some probabil-
ity). Solving such a CoMDP yields an admissible heuristic.
For details, please refer to (Mausam & Weld 2005).
Theorem 2 Neither of the two heuristics (eager effects or
maximum concurrency) dominates the other.

In practiceEE is consistently more informative thanMC
on the domains we tried. The computation times ofMC are
quite small. Whereas,EE requires the computation of a
problem which has a larger search space than even the un-
derlying CoMDP. Thus it can take a long time, at times to the
extent that the advantage of the more informative heuristic
is lost in the complex heuristic computation.

Algorithm Hybrid(r, k, m) {
∀s ∈ S -– initialize J -–(s) with an admissible heuristic;
Repeat {

Performm RTDP trials;
Compute Hybrid policy (π) using interwoven-epoch policy

for states visited more thank times
and aligned-epoch policy otherwise;

Cleanπ by removing all dead-ends and cycles;
Jπ-–〈s0, ∅〉 ← Evaluation ofπ from the start state;

} Until

(
Jπ-–

(〈s0,∅〉)−J -–(〈s0,∅〉)

J -–(〈s0,∅〉) < r

)
Return hybrid policyπ;

} Figure 1:Pseudo-code for the hybrid algorithm

5. Hybrid Algorithm
Our approximate algorithm exploits the intuition that it is
best to focus computation on the most probable branches in
the current policy’s reachable space. The danger of this ap-
proach is that, during execution, the agent might end up in
an unlikely branch, which has been poorly explored; indeed
it might blunder into a dead-end in such a case. This is unde-
sirable, as such an apparently attractive policy might have a
true expected make-span of infinity. Since we wish to avoid
this case, we define a desirablecompletenessproperty:
Completeness:A policy is completeat a state if it is guar-

anteed to lead, eventually, to the goal state (i.e., it avoids
all dead ends and cycles). A planning algorithm iscom-
pleteif it always produces a complete policy for the initial
state, when one exists.
Our algorithm generates a complete policy and is created

by hybridizingtwo other policy creation algorithms. Indeed,
our novel notion of hybridization is both general and power-
ful, applying to many MDP-like problems3.

For the case of CPTP, our algorithm hybridizes the RTDP
algorithms for interwoven-epoch and aligned-epoch models.
With aligned-epochs, RTDP converges relatively quickly,
but to a suboptimal policy. Whereas, RTDP for interwoven-
epochs is optimal, but takes a long time. Our hybrid algo-
rithm will run RTDP on the interwoven space long enough
to generate a policy which is good on the common states,
but stop well before it converges in every state. Then, to
ensure that the rarely explored states have a complete pol-
icy, it will substitute the aligned policy, returning thishybrid
policy. The high level algorithm is described in Figure 1.

Use of RTDP helps us in defining a very simple termina-
tion condition with a parameter that can be varied to achieve
the desiredclosenessto optimality as well. The intuition is
very simple. Optimal Labeled RTDP starts with an admissi-
ble heuristic and guarantees that the value of the start state,
J -–(〈s0, ∅〉), remains admissible (thus less than or equal to
optimal). In contrast, the hybrid policy’s make-span is al-
ways longer than or equal to optimal. Thus, whenever the
two values are within anoptimality ratio (r), we know that
the algorithm has found a solution, which is close to the op-

3For e.g., one could create a complete, anytime approximation
algorithm for CoMDPs by hybridizing one of the RTDP algorithms
of (Mausam & Weld 2004) with a traditional MDP algorithm.
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timal. Finally, cycle detection and evaluation of the hybrid
policy’s make-span both are done using simulation.

6. Experiments
We briefly compare the computation time and solution qual-
ity of six methods: interwoven Sampled RTDP with no
heuristic (0), with the maximum concurrency (MC), average
concurrency (AC), and eager effects (EE) heuristics, the hy-
brid (H) algorithm and Sampled RTDP on the aligned-epoch
(AE) model.

Experimental Setup We tested our algorithms on prob-
lems in three domains - Rovers, Machineshop and Artificial.
The details of the domains are omitted due to lack of space.

Comparison of Running Times We find thatAE solves
the problems extremely quickly; this is natural since the
aligned-epoch space is smaller. Use of bothHMC and
HAC always speeds search in theS -– model. UsingHEE

speeds up the solutions for most problems, but sometimes
the heuristic computation takes a huge amount of time and
the overall running time is not competitive. Comparing the
heuristics amongst themselves, we find thatHAC mostly
performs faster thanHMC — presumably becauseHAC is a
more informed heuristic in practice, although at the cost of
being inadmissible. We find a couple of cases in whichHAC

doesn’t perform better; this could be because it is focusing
the search in the incorrect region, given its inadmissible na-
ture. The hybrid algorithm performs fastest. In fact, the
speedups are dramatic compared to other methods. Averag-
ing over all domains (results not shown), the hybrid algo-
rithm produces a 10x speedup andAEproduces more than a
100x speedup.

Comparison of Solution Quality We measure solution
quality by simulating the generated policy across multiple
trials, and reporting the average time taken to reach the goal.
We note that the aligned-epoch (AE) policies usually yield
significantly longer makespans (e.g.,25% longer); thus one
must make a quality sacrifice for their speedy policy con-
struction. In contrast, the hybrid algorithm extorts only a
small sacrifice in quality in exchange for its speed.

7. Conclusions and Future Work
This paper summarizes our techniques for incorporating
concurrency with durative actions in MDPs. We formally
define the concurrent probabilistic temporal planning prob-
lem, and develop two modified state spaces (aligned-epoch
(S‖) and interwoven-epoch (S -–)), which allow us search for
an optimal policy Our experiments show that, while we can
search the aligned space faster, the interwoven model usu-
ally yields a much better policy, one which generates a much
lower make-span. We develop three new heuristics to speed
up the convergence in the interwoven model.

We also develop the general technique of hybridizing
two MDP algorithms. Hybridizing interwoven-epoch and
aligned-epoch policy creation yields a much more efficient
algorithm, one which is still complete (i.e., its policies guar-
antee that the goal will be reached whenever possible). Also,
our hybrid algorithm has a parameter, which can be varied

to trade-off speed against optimality. In our experiments, the
hybrid algorithm quickly produces near-optimal solutions.
For larger problems, the speedups over other algorithms are
quite significant. The hybrid algorithm can also be used in
an anytime fashion thus producing good qualitycomplete
policies within a desired time. Thus, we expect that the al-
gorithm would be very effective in solving large problems.

Future Work Scaling to significantly larger problems will
require new techniques for reducing the huge search space.
We are currently looking into approximate search space
compression and aggregation techniques.

In order to model actions that temporarily provide re-
sources, we plan to extend our action representation to a
probabilistic version of PDDL2.1; this shouldn’t be difficult,
but will require revisions in our mutex rules.

We also wish to extend our algorithms to richer models
like rewards, non-absorbing goals, mixed costs, stochastic
action durationsetc.Our techniques are general enough to
be applicable in all these scenarios. For example consider
the mixed cost optimization problem, in which the objec-
tive function is the sum (or a linear combination) of time
and resource costs. Here, an equivalentMC heuristic can
be computed by solving another MDP, which minimizes re-
source costs, and then adding the converged value to the
MC heuristic reported herein. A hybrid algorithm can be
easily developed in the same manner.

More generally, we believe that our hybridization tech-
nique is very general and applicable to a wide range of
problems. For instance, we could create a proper, anytime
approximation algorithm for Concurrent MDPs (CoMDPs)
by hybridizing one of the RTDP algorithms of (Mausam &
Weld 2004) with a traditional MDP algorithm. Similarly, a
hybrid POMDP algorithm can be constructed by hybridizing
RTDP for POMDPs with the policy for the equivalent MDP.
We wish to explore these further.
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Abstract

Over the past years, formal methods for the ver-
ification of software have become a popular field
of research. The systematic enumeration of a pro-
gram’s states allows to find subtle program errors,
which pass unnoticed by manual code inspection
or testing. In the following, we present the author’s
research based on the development of an assembly-
level c++ model checker called StEAM. We sketch
the internal architecture of the tool and discuss var-
ious techniques to counter the state explosion prob-
lem. We also emphasize the versatility of the tool
by using it as a planner in multi agent systems.

1 Introduction

The author’s research targets the area of directed model
checking, with a focus on the verification of software. Model
checking addresses the automatic verification of systems. Ap-
plications for this range from hardware design over manu-
facturing processes to verification of c++ and Java-programs.
The starting point is always a model M of the system under
investigation, as well as a formal description p of a property
which should hold for the system. The goal of model check-
ing is to prove M |= P (M models p) by a systematic enu-
meration of all reachable states of M. If during exploration
a state e violating p is found, the user must be given a se-
quence of states i, s0, s1, .., e (the error trail or error path)
which leads from initial state i to the error state e. The er-
ror trail is meant to help the system designer to find the error
which leads to the violation of p.
From all branches of model checking one of the most es-
tablished is software verification. In the annual international
workshop ”Model Checking Software” (SPIN), the latest ad-
vances in the area of software verification using model check-
ing are discussed. A central issue in this event is the most es-
tablished model checker SPIN [9], whose development from
Gerard Holzmann ranges back to the year 1980. Since the
turn of the millennium, the tool JPF [17] (Java PathFinder),
developed by the NASA researchers Klaus Havelund and
Willem Visser has caught the attention of the model check-
ing community. JPF is a model checker for concurrent Java

programs, which differed from all other software verification
tools at that time. Based on a virtual machine for Java byte-
code, JPF constitutes the first software model checker which
does not rely on a formal model of the investigated program.
Instead, it directly explores the bytecode of the compiled pro-
gram.

2 Initial Studies

The author’s research in model checking started in 2002 with
his masters thesis about Directed Java Program Verification
[13] Freiburg. Here, he intensively studied the tools HSF-
Spin [2] and JPF. HSF-Spin constitutes an extension of the
SPIN model checker, developed by Alberto Lluch-Lafuente
in the course of his dissertation. The tool provides a set of
heuristics, which accelerate the search for certain error types.
For instance, the search for a deadlock can be significantly
shortened , if the exploration favors paths with a maximum
of blocked processes. In the course of his masters thesis,
the author first created an HSF-Spin interface for the Ban-
dera toolset of the Kansas-State University. Bandera trans-
lates Java source code in the input language of various model
checkers - including Promela, the language of SPIN and HSF-
Spin. Through these efforts it was for the first time possi-
ble, to use HSF-Spin’s heuristics for the verification of Java
programs. Furthermore, the heuristics hamming distance and
FSM-distance where implemented in JPF and experimentally
evaluated. The two heuristics belong to the class of trail-
directed heuristics, which help to shorten a suboptimal error
path. The essential results of this work has been published
at the international workshop Model Checking and Artificial
Intelligence (MoChArt’03) in Acapulco [4].
The insights gained from his master thesis have guided the
author in his work as a research assistant. First of all he be-
lieves in the superiority of the JPF approach, since it bypasses
the need for a formal model. The problem with these model is
that the expressiveness of the underlying modeling languages
often fall short of the formal semantics of actual program-
ming languages, such as Java or c++. As a consequence, the
models reflect a heavily abstracted form of the original pro-
gram, which may lack just those details that lead to errors in
practice. Furthermore, the model based approaches often re-
quire, that the user is familiar with the modeling languages
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Figure 1: StEAM’s state description

, which makes it difficult for the approach to establish itself
in practice. Another important insights lies in the need for
heuristics to cope with the state explosion problem. This com-
binatorial problem arises from the fact, that the size of a state
space grows exponentially with the number of involved pro-
cesses. As a result, uninformed search is often unable to find
errors, since a lack of resources prevents a sufficiently deep
exploration. On the other hand, experiments show, that the
length of an error trail often grows only linear in the number
of processes. For example with the most-blocked heuristic it
is possible to find an error in programs involving up to 90
processes with optimal path length, while uninformed search
already fails for 5 processes [12]. This places the design of
powerful heuristics on top of the list of options to counter the
state explosion problem.

3 Previous Research and Results

The Model Checker StEAM

The fist goal was the creation of an own model checker, which
should serve as a platform for fundamental research. Further-
more, that tool should obey the author’s principles, i.e. it
should not require a formal model, allow the use of heuristics
and give independence from other model checkers. Under
these premises the c++ model checker StEAM [14] was devel-
oped. The tool uses a virtual machine IVM, with an instruc-
tion set of approximately 64.000 instructions. In the course
of StEAM’s development, fist IVM was extended with the
capability to run programs with several concurrent processes.
Using a state description, a program can be explored with AI
search algorithms. Figure 1 depicts StEAM’s state descrip-
tion. It is essentially composed from the the stacks and CPU-
registers of the running threads, the data- and bss-sections
holding the contents of global variables, a memory-pool for
storing information about dynamically allocated memory and
a lock-pool which memorizes locked resources. StEAM sup-
ports incremental storing of sates such that components are
explicitly stored, only if they differ from the corresponding

component of the predecessor state.

Compared to JPF, StEAM provides some new aspects. First
of all, the tools builds on an existing virtual machine. This
option was explicitly refused by the developers of JPF, since
they thought that embedding a model checker in existing in-
frastructure would be too much effort [18]. However by
building StEAM on IVM the work intensive task of design-
ing an custom virtual machine was avoided. The latter is also
one of the greatest potential error sources: If the virtual ma-
chine contains errors, this may falsify subsequent verification
processes, resulting in the report of non-existent errors or in
the missing of actual errors. In its current state of develop-
ment, IVM is already capable of correctly running complex
programs including commercial games. This is a strong em-
pirical evidence for the correct design of the virtual machine.
Furthermore, the development of a c++ model checker im-
poses a greater challenge than that of a respective tool for
Java. This is already evident through the fact, that Java only
allows allocation of typed memory, which greatly simplifies
the description and handling of a system state. Also for pro-
gram model checking, the search for concurrency errors is of
particular interest. Java offers the possibility to write concur-
rent programs as a standard through the Thread class. Such
a standardized interface does not exist for c++. The exten-
sion of IVM provides a simple an platform-independent way
to write concurrent programs in c++.

Another proof for the easier handling of Java is the fact
that the NASA researchers decided to develop a Java model
checker, although the investigated software was mainly writ-
ten in c++ and had to be manually translated prior to verifica-
tion [18].

Heuristics

Besides the uninformed algorithms depth-first and breadth-
first search, StEAM also offers the heuristic search algorithms
best-first, A* and IDA*. Using the heuristic search meth-
ods and a set of heuristics, we can significantly accelerate the
search for errors. The current version of StEAM supports the
well-knows heuristics most-blocked [2; 8; 7] and interleav-
ing [8; 7] as well as some new ones, namely lockNblock (a
refinement of the most blocked heuristic) and read/write - a
novel kind of heuristic, which maximizes the number of con-
secutive read and write operations. This way we are already
able to find errors in simple programs, including implemen-
tations of classical protocols such as the dining philosophers
as well as in some simplified real world applications like the
controller for a bank automaton. In particular, in most cases
the new heuristics expose a far better performance than the
old ones. A fist presentation of StEAM and the experimental
results was given at the 2004 SPIN workshop in Barcelona
[12].

State Reconstruction

An apparent problem of unabstracted software model check-
ing as done by StEAM lies in the large state description.
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Since - in the worst case - we need to explicitly store the
entire program state, including stacks, variable sections, and
the contents of all allocated memory blocks, the search
may quickly exceed the available memory. To counter this
problem, we make use of the speed of IVM to devise a
time/memory-tradeoff called state reconstruction. Instead of
representing each generate state explicitly in memory, we re-
place a state s by a constant-sized mini state, which merely
holds a pointer to its immediate predecessor p and the tran-
sition, which leads from p to s. Now, the explicit state de-
scription of s can be obtained by following the predecessor
pointers starting from s up to the initial state i, which is the
only state whose explicit representation is kept in memory all
the time. Given the sequence t1, .., tn of transitions, which
occurred in the path from s to i, we apply tn, .., t1 to i. This
is fast, as we only need to execute the corresponding machine
instructions. Experimental results show, that state reconstruc-
tion allows us to find errors in programs where explicit state
representation fails due to the given memory limit. The re-
sults are currently under review.

Planning by Model Checking

With StEAM, a powerful and versatile tool was created,
whose application is not limited to the verification of soft-
ware. The tool was also successfully used as a planner for
multi agent systems. Here, it is exploited, that StEAM allows
the simulation of a program as well as their exploration. The
approach is based on a formal description of a multi agent
manufacturing problem (MAMP [15]), which constitutes a
more complex version of job-shop problems [1]. Through a
sequence of consecutive planning and simulation phases, (cf.
2) we get a learning effect that allows us to solve MAMPs sig-
nificantly better than through a purely autonomous behaviour
of the agents. The respective paper was published at the 2004
German conference on artificial intelligence (KI-2004) [15].
Despite the multi agent discourse, upcoming research interest
will focus on the verification of Software. On the one hand
this includes the further development of StEAM, to be capa-
ble of verifying even more complex programs. To cope with
the very large state spaces, the iterated search algorithms iter-

ative deepening and IDA* have recently been implemented.

Incremental Hashing

Since the exploration of a program exposes a large set of du-
plicate states, the use of a hash table is essential. By default,
StEAM stores fully expanded states explicitly. In this context,
the use of iterated search algorithms does not make sense,
since at a backtracking step the corresponding state remains
in the hash table and no memory is freed. One solution to this
problems lies in the use of compacting hash functions like
bitstate-bashing. Here, a set of n hash functions f1, . . . , fn

map a state s to positions within a bit vector. A state s is re-
garded as a duplicate only if bits f1(s), . . . , fn(s) are already
set in the bitvector. In some cases, it is possible that a state is
wrongly seen as a duplicate, leaving parts of the search tree
unexplored. Experimental results however showed, that the
possibility for this is very low [10]. In the case of StEAM, the
size of the state description becomes a problem: If the hash
function takes all components of the state description into
account, the exploration is slowed down significantly, while
hashing only part of the state results in a much higher number
of hash collisions. Hence, for the effective use of compacting
hash functions we must first find an effective hash function,
which also minimizes the number of hash collisions. Here,
we can exploit the fact, that state transitions will only change
a small part of the state description. For example, we can use
an enhanced version of the algorithm of Karp and Rabin [11]
to calculate a hash address in O(k), where k is the number
of sate components that are changed by the transitions. In
recent fundamental research we devised an incremental hash-
ing scheme for state space exploration. Some first results with
the Atomix solver Atomixer have been presented at the 2004
workshop on planning scheduling and design (PUK’04) [5].
In a subsequent work, the incremental hashing scheme has
also been implemented for the sliding-tile puzzle [16] and the
for propositional action planning with pattern databases [6].

As the most recent contribution, incremental hashing was im-
plemented for the stacks in StEAM. Some first experimen-
tal results show a speedup of the exploration by factor 10
and more if incremental hashing is used. We can expect an
even higher gain, if the hashing scheme is extended to the full
state description (including the data- and bss-sections and the
pools).

4 Future Goals

Pattern Data Bases

Besides the technical improvement of StEAM, a main focus
of research will lie on the development of new and more pow-
erful heuristics. Here, the use of pattern data bases PDBs
will be of particular interest. PDBs use an abstraction func-
tion φ which maps a state s = (s1, . . . , sn) to a pattern
φ(s) = (φ(s1), . . . , φ(sn)). In a subsequent complete ex-
ploration of the abstract state space induced by φ, a table is
constructed storing with each abstract state φ(s) its distance
to the abstract error state φ(e). These distances serve as a
heuristics estimate for the distance of an actual state s to the
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actual goal state g.

Temporal Logics

In its current form, StEAM can detect deadlocks and asser-
tion violations. In the future it should also be possible to ver-
ify properties described in formulae of temporal logics, such
as LTL [3]. Temporal logics allow to express more complex
properties than assertions. For example, temporal formulae
may include quantification over paths such as: EG p (there is
a path, on which proposition p is always true) and p ⇒ AF q
(if p holds, then on each path q will eventually hold=. As an
example we may want to verify for an elevator control pro-
gram: if a button is pressed at a certain floor, the elevator will
eventually arrive there.

Practical Studies

The thesis will equally cover practical and theoretical aspects.
The practical part will describe the engineering effort which
tailors the model checking engine to the virtual machine. Fur-
thermore the search algorithms, heuristics, hash functions etc.
will be evaluated with a carefully chosen set of test programs.
The theoretical part will consist of a formal discussion of
the same methods with respect to time and space complexity.
Furthermore the theory will cover problems that arise directly
from the practical part. This includes in particular universal
and specific solution to problems that arise out of the extraor-
dinarily large state description. A fist contribution to this is
given by the incremental hash functions, whose essence has
already been theoretically discussed and experimentally eval-
uated [5].

The Vision

The ultimate goal of the thesis will be to give a clear perspec-
tive of unabstracted software model checking. (in particular
for c++ programs). To achieve this, StEAM will be brought
to a state of development, which allows it to reliably verify at
least a couple real world applications. To cope with the state
explosion problem, the tool should posses a set of powerful
heuristics, which either target the detection of certain error
classes (such as deadlocks) or which exploit structural prop-
erties of the underlying programming language (as it is the
case e.g. for the read/write) heuristic.
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Abstract

My doctoral work focuses on the application of a mixed-
initiative planning approach to a HRI system for a robotic
system (DORO) in a rescue domain. The system’s control
architecture allows human-planner interaction during rescue
mission. NIST test scenarios have been used in order to ver-
ify the system performances and we are currently working
in order to use our architecture in the next RoboCup Rescue
contest.

Introduction and Motivation
Urban search and rescue (USAR) deals with response ca-
pabilities for facing urban emergencies, and it involves the
location and rescue of people trapped because of a structural
collapse. Starting in 2000, the National Institute of Standard
Technology (NIST) has initiated the USAR robot competi-
tions (Tadokoroet al. 2000; Maxwellet al. 2004). NIST,
in particular, features future standards of robotics infrastruc-
tures, pioneering robotics participation to rescue missions.
RoboCup Rescue contests are a test-bed of the technology
development of NIST project, and are becoming a real chal-
lenge for the robotics community. Rescue robots uphold hu-
man operators exploring dangerous and hazardous environ-
ments and searching for survivors.

During the mission (20 min.), the operator-robot has to
coordinate several activities: exploring and map the environ-
ment, avoiding obstacles, localizing itself, searching for vic-
tims, correctly locating them on the map, identifying them,
and finally describing their status and conditions. In this
kind of contest, human-robot interaction has a direct impact
on the effectiveness of the rescue team performance.

A crucial aspect of rescue environments, discussed in
(Murphy 2004) concerns the operator’s situation awareness
and human-robot interaction. The difficulties in forming a
mental model of the ’robot eye’ are endorsed, pointing out
the role of the team. In this sense the overall control frame-
work has to capture the operator attention towards “what is
important”, so as to make the correct choices: following a
path, enter a covert way, turn around an unvisited corner,
check whether a visible victim is really reachable, accord-
ing to some specific knowledge acquired during the explo-
ration. In this setting, a fully manual control over a robot

Copyright c© 2005, American Association for Artificial Intelli-
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rescue is not effective (Bruemmeret al. 2003): the oper-
ator attention has to be focused over a wide range of ac-
tivities, losing concentration on the real rescue mission ob-
jective: i.e, locating victims. Moreover a significant level
of training is needed to teleoperate a rescue rover. On
the other hand, fully autonomous control systems are not
feasible in a rescue domain where too many capabilities
are needed. Therefore, the integration of automonous and
teleoperated activities is a central issue in rescue scenarios
and has been widely investigated (Kiesler & Hinds 2004;
Yanco & Drury 2002; Drury, Scholtz, & Yanco 2003;
Michael Baker & Yanco 2004; Yanco & Drury 2002).

In this work we describe a mixed-initiative planning ap-
proach (Ai-Changet al. 2004; Myerset al. 2003; Allen
& Ferguson 2002; Burstein & McDermott 1996) to Human-
Robot Interaction (HRI) in a rescue domain and illustrate
the main functionalities of a rescue robot system1. We de-
ploy a model-based executive monitoring system to interface
the operators’ activities and the concurrent functional pro-
cesses. In this setting the user’s and the robot’s activities are
coordinated by a continous reactive planning process which
consists of: (i) checking the execution status with respect
to a declarative model of the overall system; (ii) providing
proactive activity while mediating among conflicting initia-
tives. In particular, we show that this approach is enhance
both the operator’s situation awareness and human-robot in-
teraction for the execution and control of the several activi-
ties needed during a complex mission such as the rescue one.
Moreover, the humans’ overall mission can take advantage
of the model, that keeps track of the robot/operator execution
history, goals, and subgoals, as in fact the proposed control
system can provide the operator with a better perception of
the mission status.

We implemented our architecture on our robotic platform
(DORO) and tested it in a NIST yellow arena. The main
modules involved are:Map, managing the algorithm of map
construction and localization;Navigation, guiding the robot
through the arena with exploration behaviour and obstacle’s
avoidance procedures;Vision, used in order to automatically
locate victims around the arena. (Murphy 2004) propose a
high level sequence tasks cycle as a reference for the res-

1Doro is the third award winner in RoboCup Rescue contest
(2004)
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cue system behaviour: Localize, Observe general surround-
ings, look specially for Victims, Report (LOVR). Our in-
terpretation of the cycle corresponds to the following tasks
sequence: map construction, visual observation, vision pro-
cess execution and victim’s presence report.
Control Architecture & Model Based Monitor
Following the approach in (Muscettolaet al. 2002) we intro-
duce a two-layered system where decision processes (inclu-
cing declarative activities and operator’s interventions) are
tightly coupled with functional processes through a model-
based executive engine.

The physical layer devices are controlled by three func-
tional modules associated to the main robots activities (map-
ping and localization, visual processing, and navigation).
Thestate managerandtask dispatcherin the figure are de-
signed to manage communication between the executive and
functional layers.
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Figure 1: Control architecture

Thestate managergets from each single module its current
status so that any module can query the state manager about
the status of any another module. The task dispatcher sends
tasks activation signals to the modules upon receiving re-
quests from the planner or the human operator. The overall
computational cycle works as follows: the planner gets the
modules status querying the state manager. Once the state
manager provides the execution context, the planner pro-
duces a plan of actions and yields the first set of commands
to the task dispatcher. In the execution phase, each module
read the signals and start its task modifying its state. At the
next cycle start, the planner reads the updated status through
the state manager and can check whether the tasks were cor-
rectly delivered. If the status is not updated as expected a
failure is detected, the current plan is aborted and a suitable
recovery procedure is called.

As mentioned above, the functional layer is endowed with
three main modules:Mapping and Localization, Naviga-
tion, andVision. These modules provide different tasks that
can be activated or stopped according to thestart or endac-
tions communicated by the task dispatcher.

A functional module is a reactive component that changes
its internal status with respect to the action received from
the task dispatcher. Nevertheless, it can also provide some
proactiveness, by suggesting the planner/operator an action
to be executed. For instance, theSlammodule assumes a
particular mode in order to communicate to the system that
a map’s construction cycle is ended, and then the control
system can decide an action to stop the mapping phase. Mo-
rover, some modules can directly interact among them by
communicating some low-level information bypassing the
state manager (and the executive layer), e.g.Slamdevises to
Navigationthe coordinates of the nearest unexplored point
during the exploration phases.

The human operator can interact with the control loop
both during the plan and the act phase. In the planning
phase, the operator can interact with the control system by:
(i) posting some goals which are to be integrated in the par-
tial plan already generated; (ii) modifying the generated plan
through the user interface; (iii) on-line changing some plan-
ning parameters, like the planning horizon, the lenght of the
planning cycle, etc.. In the executive phase, the user can di-
rectly control some functional modules (e.g., deciding where
the rover is to go, or when some activities are to stop). In this
case, the human actions are assimilated to exogenous events
the monitoring system is to manage and check. Finally, the
operator’s actions can be accessed by the state manager, and,
analogously to the functional modules, can be monitored by
the model-based control system.

The role of a model-based monitoring system is to en-
hance both the system safeness and the operator’s situation
awareness. Given a declarative representation of the sys-
tem causal and temporal properties, the flexible executive
control is provided by a reactive planning engine which har-
monizes the operator activity (commands, tasks, etc.) with
the mission goals and the reactive activity of the functional
modules. Since the execution state of the robot is contin-
uously compared with a declarative model of the system,
all the main parallel activities are integrated into a global
view and subtle resources and time constraints violations
can be detected. In this case the planner can also start or
suggest recovery procedures the operator can modify, ne-
glect, or respect. Such features are implemented by deploy-
ing high-level agent programmingin Temporal Concurrent
Golog (Reiter 2001) which provides both a declarative lan-
guage (i.e. Temporal Concurrent Situation Calculus (Pinto
& Reiter 1995; Reiter 1996; Pirri & Reiter 2000)) to repre-
sent the system properties and the planning engine to gener-
ate control sequences.

The main processes and states of DORO are explicitly
represented by a declarative dynamic-temporal model spec-
ified in the Temporal Concurrent Situation Calculus (TCSC)
. This model represents cause-effect relationships and tem-
poral constraints among the activities: the system is mod-
eled as a set ofcomponentswhose state changes over time.
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Each component (including the operator’s operations) is a
concurrent thread, describing its history over time as a se-
quence of states and activities. For example, in the rescue
domain some components are:pant-tilt, slam, navigation,
visualPerception, etc. Each of these is associated with a set
of processes, e.g.navigationcan benvWand, nvGoTo,
or nvStop; pan-tilt can be:ptIdle(x) (idling in positionx),
ptPoint(x) (moving towardx ), orptScan(x) (scanningx).
The history of states for a component over a period of time
is atimeline. Hard time constraints among activities can be
defined by a temporal model using Allen-like temporal re-
lations, e.g.:ptPoint(x) precedesptScan(x), ptScan(x)
duringnvStop, etc..

Our monitoring system is based on a library of Temporal
Concurrent Golog scripts representing a set of flexible be-
haviour fragments. Each of these is associated to a task and
can be selected if it is compatible with the execution context.
For example, a timeoutd can be associated to a task in order
to constraint its execution w.r.t.d.

As illustrated before, for each execution cycle, once the
status is updated (sensing phase), the Golog interpreter
(planning phase) is called to extend the current control se-
quence up to the planning horizon. When some task ends or
fails, new tasks are selected from the task library and com-
piled into flexible temporal plans filling up the timelines.

Any system malfunctioning or bad behaviour can be de-
tected by the reactive planner (i.e. the Golog interpreter)
when world inconsistencies have to be handled. In this case,
after an idle cycle a recovery task has to be selected and
compiled w.r.t the new execution status. For each compo-
nent we have classified a set of relevant failures and appro-
priate flexible (high-level) recovery behaviours.

The planner/Golog interpreter can fail in its plan genera-
tion task, whenplanner timeoutis raised. Since the reactive
planner is the engine of our control architecture, this failure
is critical. We identified three classes of recoveries depend-
ing on the priority level of the execution. If the priority is
high, a safe mode has to be immediately reached by means
of fast reactive procedures. In medium priority, some extra
time for planning can be obtained by interleaving planning
and execution: a greedy action is executed so that the inter-
preter can use the next time-slot to end its work. In the case
of low priority, the failure is handled by replanning: a new
task is selected and compiled. In medium and low level pri-
ority the operator can be explicitly involved in the decision
process in a syncronous way. During a high-priority recov-
ery we have no mixed initiative, unless the operator wants to
take care of it, and the monitoring system is bypassed.

Mixed-Initiative Planning
The control architecture introduced before allows us to de-
fine some hybrid operative modalities lying between au-
tonomous and teleoperated modes and presenting some ca-
pabilities that are crucial in a collaborative planning setting
(Allen & Ferguson 2002).

The high-level agent programming paradigm, associated
with the short-range planning/interpretation activity, permits
an incrementalgeneration of plans. In this way, the user at-
tention can be focused on small parts of the problem and

the operator can consider possible options on them, with-
out loosing the overall problem constraints.Plan stabilityis
guarenteed by flexible behaviours and plan recovery proce-
dures which can harmonize the modification of plans, due to
the operator’s interventions or exogenous events. Minimal
changes to plans lead to short replanning phases minimizing
misalignments. Concerning theopen to innovationissue, the
model-based monitoring activity allows one to build novel
plans, under human direction, and to validate and reason
about them. Depending on the operator-system interaction
these features are emphasized or obscured. We distinguish
among three different mixed-initiative operational modes.

Planning-based interaction.In this setting, the planning
system generates a cyclic LOVR sequences and the opera-
tor follows this sequence providing with few modifications,
e.g. extending or reducing process durations. Here task’s
dispatching is handled in an automated way and the opera-
tor can supervise the decisions’ consistency minimizing the
interventions. The human-operator can also act as an execu-
tor and manually control some functional activities sched-
uled by the planner. For example he can decide to suspend
automated navigations tools and take the control of mobile
activities, in this way he can decide to explore an interesting
location or escape from difficult environments. In this kind
of interaction the operator initiative minimally interfere with
the planning activity andplan stabilityis emphasized.

Cooperation-based interaction.In this modality, the op-
erator modifies the control sequence produced by the plan-
ner by skipping some tasks or inserting new actions. The
operator’s interventions can determine a misalignment be-
tween the monitoring system expectations (i.e. the control
plan) and the state of the system; this is captured at begin-
ning of the next execution cycle when the state monitor pro-
vides the current state of the modules. In order to recover
the monitor-system adherence, the planner has to start some
recovery operations which are presented to the operator. Ob-
viously, these activities are to be executed in real-time by
verifying the satisfiability of the underlaying temporal and
causal constraints. This modality permits maximal flexibil-
ity for the planner and operator interactive initiatives. In-
deed, they can dialogue and work in a concurrent way con-
tributing to the mission completion (incremental planning):
while the operator tries to modify the plan in order to make
it more effective (i.e. the system isopen to innovation), the
monitoring system can validate the operator’s choices warn
in the case of safety constraints violations and/or suggest
suitable corrections.

Operator-based interaction. This modality is similar to
teleoperation, the system activities are directly managed by
the operator (some autonomy can be always deployed when
the operator attention is to be focused on some particular
task, e.g. looking for victims). The operator-based interac-
tion is reached when the operators’ interventions are very
frequent, the planner keeps replanning and cannot support
the user with a meaningful proactive activity. In this opera-
tive scenario, the planner just follows the operators’ choices
playing in the role of a consistency checker. The monitor-
ing system can notify the user only safety problems and, in
this case, recovery procedures can be suggested (incremen-
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tal planningcan be used only to generate non-critical plan-
ning procedures).

Mixed-initiative approach at work
We tested the control architecture and the effectiveness of
the mixed-initiative approach in our domestic arenas com-
paring three possible settings: (i)fully teleoperated: naviga-
tion, slam, and vision disabled; (ii)mixed-initiative control:
the monitoring system was enabled and the operator could
supervise the rover status and take the control whenever this
was needed; (iii)autonomous control.
Following the analysis schema in (Scholtzet al. 2004) here
we briefly discuss some interesting aspects. Concerning
global navigation, the performance of the mixed-initiative
setting are quite stable while the autonomous system per-
forms poorly in small arenas because narrow environments
challenge the navigation system which is to find how to es-
cape from them. In greater and more complex arenas the
functional navigation processes start to be effective while the
fully teleoperated behaviour degrades: the operator gets dis-
oriented and often happens that already visited locations and
victims are considered as new one, instead, we never experi-
enced this in the mixed-initiative and autonomous modes.
The effectiveness of the control system forlocal naviga-
tion andvehicle stateawareness can be read on thebumps
row; indeed the bumps are significantly reduced enabling the
monitoring system. In particular, we experienced the recov-
ery procedures effectiveness in warning the operator about
the vehicle attitude. E.g. a typical source of bumping in
teleoperation is the following: the visual scanning process is
interrupted (timeout) and the operator decides to go in one
direction forgetting the pan-tilt in a non-idle position. En-
abling the monitor, a recovery procedure interacts with the
operator suggesting to reset the pan-tilt position. The victim
identification effectiveness can be assessed considering the
victims found in the autonomous mode, considering that vi-
sual processing was deployed without any supervision, these
results seem quite good (we experienced some rare false-
positive).

Our experimental results show that the system perfor-
mances are enhanced with the presence of an operator super-
vising the mission. It seems that the autonomous activities
are safely performed, but the operator can choose more ef-
fective solutions in critical situations. Thus, we can trade off
high performances and low risks by exploiting both human
supervision and machine control.
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Abstract

This work can be seen as a first approach to a new plan-
ning model that takes into account the possibility to ex-
press actions and fluents with non-boolean values. Ac-
cording to this model, a planning problem is defined us-
ing both graded (multi-valued) and classical (boolean)
fluents. Moreover, actions that can have different appli-
cation degrees can be defined. In this work a PDDL
extension allowing to describe such new problems is
proposed and a planning algorithm for such problems
is presented.

Introduction
In the last years, extensions of the classical planning model
have been investigated, such as temporal models, condi-
tional and contingent models, probabilistic models and other
mixed models (for example (Hoffmann 2002; Petrick &
Bacchus 2002; Bonet & Geffner 2003; Chien & al. 2000)).
But, to the best of our knowledge, a feature of the classical
model has never been modified: the use of boolean expres-
sions to describe fluents and actions in the domains. This is
often too restrictive in order to represent realistic domains
because the world is not black and white (i.e. true or false)
but it has a lot of colors (i.e. intermediate truth-values, or
“degrees of truth”). A different approach to planning that
takes into account a numerical “state” associated to an action
or fluent is proposed in the probabilistic planning model, but,
in this case, “numbers” represent our knowledge or uncer-
tainty about the state or the success of an action, while the
real world is always two-valued.

This work can be seen as a first approach to a new plan-
ning model that takes into account the possibility to express
both actions and fluents with non-boolean values. Accord-
ing to this model, a planning problem is defined using both
graded (multi-valued) and classical (boolean) fluents; more-
over actions having different application degrees can be de-
fined (i.e. actions having adjustable intensity and that can
affect fluents proportionally to how much they are applied).
In such a way, also the efficiency of actions can be easily
represented. For example, to dry a pavement an action with
only the proper amount of power can be chosen; if the pave-
ment is partially dry, less power can be used. If we have a
defective machine we can express the result (i.e. the action

Copyright c© 2005, American Association for Artificial Intelli-
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effect) proportionally to its efficiency. Moreover we provide
the possibility to define an objective function in the action
application degrees that can be maximized or minimized.

The work defines an extension of the planning language
PDDL that allows us to define planning domains and plan-
ning problems having graded fluents and graded actions, and
a solving algorithm for such problems, where first a candi-
date plan with partially instantiated actions is constructed,
then the plan applicability and correctness is verified by
means of a translation into a MIP (Mixed Integer Program-
ming) problem and finally, if a solution of the MIP problem
exists, a complete instantiation is made and the solution plan
is found.

The Planning Language
The planning language proposed is based on standard
PDDL. It provides two kinds of actions and fluents, rep-
resenting both classical boolean fluents and actions, and
graded fluents and actions. Both actions and fluents have
an additional argument denoting their “degree of truth”: in
a fluent it means “how much” the predicate is true (0 means
that it is false, 1 that it is true) and in an action it means “how
much” the action is applied (0 means that it is not applied at
all, 1 means that it is applied with the maximum efficiency).

The type of such terms is declared as a new type degree
in the PDDL domain definition.

Fluents
If the fluent is boolean then its truth-value is a natural num-
ber in {0, 1} (as in the classical model), otherwise, if the flu-
ent is graded, its truth-value is a real number in [0, 1]. There
are different declaration sections for boolean and graded
predicates. For example:
(define(domain example)
(:types block degree )
(:boolean_predicates

(holding ?b- block ?a- arm ?x- degree))
(:graded_predicates

(gripper_dry ?a- arm ?x- degree))
... )

Actions
The additional parameter in an action denotes the degree of
application of the action. Again, the value of this parameter
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in boolean actions belongs to {0, 1}, while it ranges in [0, 1]
in graded actions.

Actions may also have other additional parameters re-
ferring to fluent degrees. A specific section in action dec-
laration allows one to associate fluents to degree parame-
ters. Such variables maybe used both in preconditions and
effects: action preconditions may contain inequality con-
straints over fluent degrees and effects can be described by
means of expressions that define the new “degree of truth”
of a fluent as a linear combination of previous fluent values
and the application degree of the action.

The choice to include the degrees among the action pa-
rameters does not increase the complexity of the oper-
ators because, as explained below, such parameters are
not instantiated during the solution search phase. Pre-
conditions contain inequality constraints over fluent de-
grees. They have the form (cond type var value),
where cond type is one of {<,≤, =,≥, >}, var is a
variable of type degree and value is either a real or
an integer number (according to the fluent type); the ef-
fect standard form contains linear combination in the ac-
tion and fluent degrees. We can use a syntax PDDL-
style (op var k Expr(x,var 1,...,var n)) were op
is a PDDl operator for numerical expressions (assign,
increase or decrease), var k is a variable of type
degree referring to the fluent we are modifying, and
Expr(x,var 1,...,var n) is a linear combination in the
action and fluent degrees.

The objective function
The definition of a graded planning problem may contain
an objective function, that is a linear function of the action
application degrees that must be minimized or maximized
when looking for action degree values satisfying a given
partially instantiated plan. For example, it can be used in
order to minimize the cost of the extracted candidate plan
giving different operator costs. It is defined in a new sec-
tion :objective function(...) in the problem descrip-
tion. It is defined by (:objective function(opt type
function)), where opt type defines the kind of opti-
mization problem (min or max) and function is a linear
expression of operator names. The declaration
(:objective function min c1*op1 + . . . +ck*opk)
has the following meaning: let acti1,...,actini

be
all the instantiations of the operator opi, and xil the
variable associated to the application degree of ac-
tion actil, then the optimization problem is defined by
min

∑
k

i=1
ci · (

∑
ni

l=1
xil) .

If no objective function is defined in the problem defi-
nition we minimize the sum of all operators defined in the
domain assuming that they have the same unitary cost, i.e.
we minimize the sum of application degrees of all actions in
the candidate plan.

The planning model
A graded ground atom is an expression of the form
p(t1, ..., tn, v), where p is a fluent, t 1, ..., tn are constants
and v is
• a real number in [0, 1] if p is a graded fluent

Figure 1: The system architecture

• an integer in {0, 1} if p is a boolean fluent
A state is a set of graded ground atoms.

Definition 1 (Graded Planning Problem)
A Graded Planning Problem is a tuple (I, G, f,O) where I is
the initial state, G is the goal, f is the objective function and
O is the operator set. A goal is a set of conditions having
the same form as action preconditions.

Definition 2 (Graded Solution Plan)
A graded plan P = (A1, . . . , Am) is a sequence of actions
(i.e. fully instantiated operators; in particular their applica-
tion degrees are constants); a graded plan is a graded opti-
mal solution plan of the problem (I, G, f,O) if A1, . . . , Am

are executable starting from I , the final state satisfies the
conditions in G and the action application degrees optimize
the objective function f .

Note that, in order for a solution plan to be optimal, the f -
value is only required to be minimal/maximal with respect
to possible degree values of the actions A1, . . . , Am: a plan
P = (A1(g1), . . . , Am(gm)) – where the displayed gi are
the degrees of the actions Ai – is optimal if there are no fea-
sible solutions plans P ′ of the form (A1(g

′

1
), . . . , Am(g′

m
))

having a smaller/greater f -value. The objective function al-
lows one to assign different costs to operators.

System Architecture
The system takes as input a graded planning problem
(I, G, f,O) and if a solution exists it returns a graded solu-
tion plan P , otherwise, if it terminates, it returns a NoSolu-
tion message. The system architecture is presented in Fig.1:
it is composed by three modules, the plan extractor, the sys-
tem constructor, the MIP solver.

The plan extractor synthesizes a “candidate plan” where
actions are partially instantiated. Then the system con-
structor computes the world evolution using these actions
(the resulting states depend on the action application de-
grees) and reduces the verification and full instantiation of
the plan to a MIP problem; it builds the MIP problem cor-
responding to a candidate plan and passes it to the MIP
solver. During the system construction phase some condi-
tions in the action preconditions are directly checked and if
they are not satisfied the module fails and another candidate
plan must be extracted. In this case the information about
which action causes failure is used and another candidate
plan is constructed replanning from this point. Finally the
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MIP solver computes a solution of the generated problem;
if a solution exists it is a set of real and/or integer values
~g = (g1, . . . , gm) and the plan P = (A1(g1), . . . , Am(gm))
is the graded solution plan of the given problem, otherwise
a new candidate plan is extracted and a new MIP problem is
generated.

MAIN (I,G,O, f ) :

1. CYCLE (1, I,G,O, f, [ ], [ ])

CYCLE (n, I, Goal,O, f, plan) :

1. cand plan = PLAN EXTRACTOR(n,I,Goal,O, plan)
2. if cand plan = Null then return NoSolution

/* (I,G,O) has no solution*/
3. else

. (sys, k) = SYSTEM CONSTRUCTOR(cand plan, I,O)

. if sys = Null then
. (new plan, new goal) = recover(cand plan, k)

/* The good partial solution (from the first to the (k−1)-th
action) is recovered.*/

. return CYCLE (k, I, new goal,O, f, new plan)
. else

. solution = MIP SOLVER(sys, f )

. if solution = Null then
. return CYCLE (1, I, Goal,O, f, [ ])

. else return (plan, solution)

Figure 2: The main algorithm

The plan extractor module

This module takes as input an integer index n, a graded plan-
ning sub-problem (I, Goal,O) (i.e. without the objective
function) and and the partial plan plan. It returns a se-
quence of partially instantiated actions, i.e. a candidate so-
lution plan. In principle, any algorithm can be chosen for
plan extraction, provided it is complete and backtrackable.

The technique presently adopted is very naive, and de-
serves further investigation. It implements a simple back-
ward algorithm with heuristic functions that solves relaxed
problems. As a classical backward algorithm at each step an
operator is chosen according to the heuristic values defined
below, a partial instantiation (i.e. not involving parameters
of type degree) is performed and the goal is updated consid-
ering both the action preconditions and the action effects in
order to construct the goal for the following step.

Here follow some preliminary definitions.

Definition 3

1. Let effi(o) be an effect of the operator o ∈ O. Then
capi(o) is the coefficient of the application degree of the
operator o in effi(o), i.e. if effi(o) has the form
(assign ?v E+k*x), where x is the application de-
gree of o, then capi(o) = k.

2. Let g =(cond type var value) be a goal and effi(o)
be an effect of the operator o ∈ O. We say that effi(o)
agrees with g if and only if one of the following conditions

holds:

cond type is ≥ or > and capi(o) ≥ 0
cond type is = and value = 1 and capi(o) ≥ 0
cond type is ≤ or < and capi(o) ≤ 0
cond type is = and value = 0 and capi(o) ≤ 0

3. (Heuristic function) Let {eff
1
(o), . . . , eff

k
(o)} be the ef-

fects of the operator o ∈ O. The value of the heuristic for
o with respect to a goal G = (g1, . . . , gm) is defined by

h(o, G) =
∑

eff
i
(o)∈C+(o)

|capi(o)|−
∑

eff
i
(o)∈C−(o)

|capi(o)|

where C+(o) (C−(o)) is the set of the effects of o that
agree (do not agree) with some gj ∈ G.

The heuristic function takes into account both positive
contributions, i.e. those that could help to approach the goal,
and negative ones, which would move away from the goal.
At each step, the action with the greatest heuristic value is
chosen (backtracking point) and the partial goal G is updated
taking into account the preconditions and the effects of the
chosen action. Let Goal(i) be the set of fluents represent-
ing the goal at the i-th step where the action act is chosen,
then Goal(i+1) = (Goal(i) ∪ pre(act)) \ C+(op), where
pre(act) is the set of preconditions of act.

The algorithm stops when either there are no goals to sat-
isfy (a plan is found) or there are no actions to try (the prob-
lem has no solution). The sequence of the chosen actions is
the candidate plan.

The solution returned can be inconsistent because we do
not check possible conflicts generated by the choice of ac-
tions modifying a fluent that we have previously resolved
with another action. The check is in fact delegated to the
system constructor and the MIP solver modules.

If a plan is extracted it is passed to the system construc-
tor that returns either the system of inequalities representing
the action executability and the goal satisfiability conditions,
or failure with an index k representing the index of the ac-
tion having a failing precondition; if the algorithm fails the
partial solution from the first to the (k − 1)-th action cho-
sen is recovered, together with the partial goal, and a new
candidate plan starting from the k-th action is extracted. In
this case the algorithm searches for a solution starting from
the k-th choice with a different heuristic that gives a greater
weight to actions that modify the preconditions of the action
that has caused failure; if there is no solution the algorithm
further backtracks, in a standard way, and calls the proce-
dure starting from the (k − 1) step.

At the end of the procedure a virtual boolean action rep-
resenting the goal is added to the candidate plan, so that in
the following step its preconditions (the goal) are checked.

The system constructor module
This module takes as input the initial state I ,
the operator set O and the candidate plan P =
(A1(x1), A2(x2), . . . , Am(xm)) – where only the variables
xi standing for the degree of application of Ai are in
evidence and the goal is represented by the action Am.
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It returns the pair (sys, k) where sys is the system of
inequalities that will be solved if the procedure ends with
success, and k is the index of the action that generates
failure because some of its preconditions are not satisfied if
the procedure fails.

Let F1(y1), ..., Fn(yn) be an enumeration of all the atoms
in the language where all arguments are instantiated except
for their degree value yi. The world evolution is represented
by a matrix S of size m × n, where m is the number of ac-
tions in P and n the length of the above enumeration. Each
element sij in the matrix represents the degree of Fj at the
i-th state.

First of all, the first row is filled in with the numerical
values defined by the description I of the initial state.

Then, for each step i, starting with i = 1, the precondi-
tions of the action Ai are checked in the i-th state (i.e. the
i-th row of S): let Fk(v) and C(v) occur in the precondi-
tions of Ai, where C(v) is an inequality constraint on v.
If sik is a constant, C(sik) is immediately checked; if it is
false, the algorithm fails and returns i, otherwise the condi-
tion is ignored. On the contrary, if sik is a linear expression
depending on some xj , the inequality C(sik) is added to the
system sys.

Then the row i + 1 is filled in, using the effects of
Ai: for each Fk(v) such that v = Expr(xi , ....) is an ef-
fect of Ai, let Expr′(xi) be the expression obtained from
Expr(xi, ....) by replacing each degree variable referring to
fluent F j with the expression occurring in sij . Then s(i+1)k

is set equal to Expr′(xi). For every Fk(v) that is not af-
fected by Ai, s(i+1)k = sik.

The MIP solver module
This module takes as input the MIP problem (sys, f) and
returns a solution, if it exists; otherwise it calls the pro-
cedure CYCLE with CYCLE(1, I, Goal,O, f, [ ]) , so that
a new plan is generated. Given the input made up of the
graded planning problem P = (I, G, f,O) and the plan
(A1(x1), . . . , Am(xm)) returned by the plan constructor
module, if the MIP solver returns ~g = (g1, . . . , gm), then
the plan P = (A1(g1), . . . , Am(gm)) is a graded optimal
solution plan.

The prototype implementation developed uses the soft-
ware Lingo, distributed by Lindo System Inc. 1 in a free
download-able version for students, that can solve problems
having up to 150 constraints and 300 variables.

Conclusions and related works
In this work a language and a model of planning with graded
fluents and actions are presented. A prototype of the system
has been developed.

To the best of our knowledge this is the first system able
to manage non boolean actions. Recent works have pro-
posed languages (Fox & Long 2003; Giunchiglia et al. 2004;
Lee & Lifschitz 2003) and systems (for example (Koehler
1998; Baioletti, Milani, & Poggioni 2003; Hoffmann 2002;
Haslum & Geffner 2000)) that can handle numerical values.
Graded fluents could be represented in PDDL 2.1 by means

1Available at http://www.lindo.com

of numerical fluents (functions) but respecting some more
restriction w.r.t. what is done in this work. Is more dif-
ficult to have a good representation of graded action sim-
ply using numerical parameters because it is possible only
if the parameters have finite domains. As we have chosen
the graded/boolean style for the actions we have decided to
maintain the same style for fluents.

At the moment we are working in two main directions.
From a practical point of view we have to fix some lacks
and improve some parts; an algorithm for intelligent back-
tracking when the MIP solver fails, an improvement of the
backtracking phase when the system constructor fails, more
informed heuristics for the plan extractor module and an
optimization of the objective function over all feasible plan
and not only over one skeleton plan are under investigation.
Moreover a set of graded domains and graded problems is
under construction in order to carry out a wide set of ex-
periments. The second research direction is theoretical: an
extension of the algorithm to planning under uncertainty on
the initial state is straightforward, introducing variables for
fluent degrees in the world construction. Moreover, we are
investigating the possibility of representing and reasoning
about vague (fuzzy) fluents, using intervals or sets to repre-
sent fluent degrees.
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Abstract 

In this thesis work, a complete framework for multi-robot 
coordination in which robots collectively execute inter-
dependent tasks of an overall complex mission requiring 
diverse capabilities is proposed. Given a heterogeneous 
team of robots and task dependencies, the proposed 
framework provides a distributed, robust mechanism for 
assigning robots to tasks in an order that efficiently 
completes the mission. The approach is robust to 
unreliable communication and robot failures. The 
framework is based on the market-based approach, and 
therefore scalable. In order to obtain optimum allocations 
in noisy environments, a coalition maintenance scheme 
ensuring dynamic reconfiguration is introduced. Additional 
routines, called precautions are added in the framework for 
addressing different types of failures common in robot 
systems and solving conflicts in cases of these failures. 
The final solutions are close to optimal with the available 
resources at hand by using appropriate cost functions. The 
framework has been tested in simulations that include 
variable message loss rates and robot failures.  The 
experiments illustrate the effectiveness of the proposed 
system in realistic scenarios. 

Introduction 
In this thesis work, a coordination framework for multi-
robot teams implementing complex missions of tasks 
having ordering constraints, requiring diverse capabilities 
and collective work is proposed. The main objective of 
this framework is dynamically allocating inter-dependent 
tasks to multi robots in a cost optimal manner without 
violating the constraints under uncertainties on dynamic 
environments. The approach used in this framework is a 
market based scheme supporting scalability. However the 
optimality of the generated schedules is not addressed in 
this scheme for changing situations. Robot failures or 
unreliable communication are such situations common in 
real world domains. The proposed framework presents 
different kind of recovery solutions to obtain optimum 
solutions for dynamic environments.  
 Recently proposed works somehow address the 
dynamic task allocation issue against robot failures 
(malfunction or death) or environmental changes. In these 
works, the selected test domain missions have usually 
independent sub-tasks. Closest works to the proposed 

framework, Zlot’s (Zlot and Stentz 2005), Lemarie’s 
(Lemarie, Alami and Lacroix 2004) and Kalra and 
Stentz’s (Kalra, Ferguson, and Stentz 2005) works 
address task dependency issue for tightly coupled 
missions. In Kalra and Stentz’s work, the implemented 
system was tested for the collective perimeter sweeping 
mission. The task dependencies are considered in keeping 
a formation while obeying some rules. The tasks do not 
require different capabilities. In Lemarie’s work, the main 
goal is keeping the architecture distributed among the 
robots so as to gain scalability, robustness and reactivity. 
However the solution's optimality is not guaranteed. They 
also inspire from market based approach. Using a token-
ring network approach, only one auctioneer is allowed to 
initiate an auction at a time step. Zlot’s recently proposed 
task allocation scheme (Zlot and Stentz 2005) deals with 
task tree auctions to obtain globally optimum solutions. 
Complexity of the task tree auctions increases drastically 
for more complex task trees. This scheme generates a 
reconfiguration on the allocations from each robot’s point 
of view. However when there are inter-dependencies 
among tasks, additional considerations should be taken 
into. In these approaches, performance for combined tests 
of failures is not measured. 
 In the proposed framework, a mechanism for 
reconfiguration by considering dependencies is provided. 
The framework relies on a set of task dependencies that 
are compiled a priori by a mission commander, or a 
planner before the mission. The task dependencies, 
specifications of the mission, and the robot teams’ 
capabilities are distributed (reliably) to the robots before 
mission execution begins. At that point, negotiation of 
task assignments and execution of the mission begins. 
The proposed framework strives to provide optimal 
solutions while responding effectively to communication 
and robot failures. This is the first coordination scheme to 
address such a broad range of failures for heterogeneous 
teams executing tightly coupled tasks requiring collective 
work (Sariel and Balch 2005).  

Proposed Framework 
The proposed framework is for a multi-robot team (rj∈R, 
0≤ j<||R||) that must coordinate to complete a complex 
mission (M) including tasks Ti s (0≤ i<||M||) that have 
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Routine Duties 
if rj ∈ A 

AuctionNegotitationProcess 

if rj is a CMi  
if the “synchronization message” has been arrived 

Set coalition count down 
else if the coalition count down is 0 

 Cancel execution of the task  
 Send leave message to the CLi ; break 

else  
if the last communication with CLi is more than τ (threshold) 

Send “coalition leader query” message   
Decrease coalition count down 

Send updated cost/bid value to the CLi 

if rj is a CLi and ||C||>1  
if each CMi has already sent the execution/updated cost message  

 Send “synchronization message” to all CMis 
 Set coalition count down 

else if the coalition count down is 0 
 Terminate the coalition; break 

else  
Decrease coalition count down 

Broadcast max cost (CMi) 
Begin CoalitionMaintenanceProcess 

if the robot is not executing a task || the task under execution is released 
Begin SelectAction 

Send query messages for the tasks which are free 
If there is a task selected, execute the own portion 

ordering constraints and require diverse capabilities and 
collective work. The overall objective is completing M in 
a cost optimal manner. The framework combines 
auctions, coalition maintenance and recovery routines 
called precautions to provide an overall system that finds 
near optimal solutions in the face of noisy communication 
and robot failures. The precaution routines enable the 
system to dynamically respond to these failures at run 
time and complete the mission with valid plans at 
minimum cost.  

Task Representation 
A simple but effective task representation is used to 
generate valid plans. The generated plans without a 
general planner are always valid in the framework by 
means of the selected task representation. Information on 
the task definition, required capabilities, hard and soft 
ordering constraints, and required number of robots is 
embedded in the representation of each task. After the 
task dependencies are given initially, the framework 
generates optimal and valid allocations.   

Roles 
After being informed about the tasks and dependencies, 
robots are allowed to be in different roles during runtime 
to execute the tasks in coordination as required. The 
framework is designed for missions consisting of sub-
tasks having dependencies and requiring either one or 
more than one robot to execute. Therefore the tasks may 
be executed by a group of robots. Coalition organizational 
paradigm (Bryan and Lesser 2004) is selected for teams 
of robots executing a task. The coalitions (Ci) can contain 
one or more robots numbers of which are defined in the 
task representation to execute a task Ti of overall mission 
M. The capabilities (capj) of robots rj in a coalition should 
be a superset of the required capability set for Ti (reqcapi). 
A robot (rj) may be in different roles for task Ti such as 
auctioneer, bidder (Bij), coalition leader (CLi) and 
coalition member (CMi) in different time steps. 
• An Auctioneer robot manages auction negotiation 
steps and selects reqnoi suitable members of a coalition. 
• A Bidder robot is a candidate robot to become a 
member of a coalition executing a task. 
• A Coalition Leader maintains the coalition and 
provides synchronization. It executes a portion of the task. 
• A Coalition Member is one of the members of the 
coalition, and it executes a portion of the task. 
 A is the auctioneer set, Bij is the bidder robot rj  for task 
Ti. A robot rj may be in more than one Bij roles for 
different tasks. However it is not allowed that a robot rj is  
in more than one of roles Ai, CMi, or CLi. The coalition 
members are selected by auctions. 

Precautions 
For dealing uncertainties because of the message losses, 
each robot keeps track of the models of known system 

tasks and other robots in their world knowledge. When 
there is reliable communication, the robots update their 
world knowledge accordingly. Whenever there are 
message losses in the system, the world knowledge of 
each robot may be inconsistent. Such inconsistencies 
occur when robots are not informed about the tasks that 
are completed, under execution or under auction. 
Precaution routines discover conflicts and resolve them. 
When inconsistent messages are received, both 
corrections are made and warnings are released.  

Figure 1.  Routine Duties of a Robot 

Action Selection 
Each robot initially updates its world knowledge based on 
the incoming messages. Then considering the new 
updated world knowledge and the current states of the 
processes for different roles, it selects the action. The 
action may be joining a coalition executing a task or 
becoming an auctioneer auctioning for a task. Before 
selection of the action, the robot should perform its 
routine duties for different roles. These duties are given in 
Figure 1. If it is leading an auction, it performs the 
negotiation process. Duties of roles CMi and CLi are 
performed for ensuring synchronization while 
coordinating in a coalition. If the robot is a CLi, it checks 
the current coalition members’ situations and can decide 
to reconfigure the coalition when new robots join or some 
members are not reachable.  

While selecting the action, the robot considers the tasks 
awarded by an auctioneer, tasks under execution but with 
a higher value of cost than the robot has, the soft 
dependencies of the current task, and the free tasks which 
are not executed or under auction. The robot should be 
capable of executing all the tasks under consideration. 
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SelectAction for rj 
For each known task Ti  

if the capj ⊆  reqcapi   ∧   hard dep. of Ti are completed 
if the task is not in one of the following types skip 

The tasks for which the robot is accepted for joining (with higher max cost value 
than the robots)  
Awarded tasks by the auctioneers 
Free tasks which are not under consideration 

  else add the task in a priority queue ordered by cost with the priorities in given order 
Select the minimum cost task in the priority queue 
 
if rj is in a coalition 

cancel executing the task, send “leave” message to the CLi 

if the selected task is a free task  
begin AuctionNegotitationProcess 

else  
set the selected task as the current task 
if it is an awarded task  

send “accept become a member” message 
 

That means the hard dependencies of them should be 
completed, and the robot should be able to execute these 
tasks with its capabilities. Before the robot decides on one 
of these tasks, it ranks these tasks based on the costs for 
them and then selects the minimum cost task. This 
ranking procedure ensures optimum cost selection of the 
tasks for the given situation. The tasks awarded by an 
auctioneer have higher priority than free tasks, and the 
tasks of coalitions with higher maximum cost value than 
the robot’s cost have the highest priority of all.  

The selection of the task is performed by considering 
both the costs and priorities. The task with the minimum 
cost is selected. If the costs are the same for different 
tasks, the priorities are used for selection. Another 
ranking mechanism is used for the selection of a free task, 
if there are more than one free task having the minimum 
cost of all, the robot selects the one with the lowest 
number of soft dependencies and lowest number of robot 
requirements for executing. Therefore if the costs of the 
tasks are the same, initially the tasks requiring low 
coordination is selected. The algorithmic description of 
action selection process is given in Figure 2. 

Figure 2. Action Selection 

Auction Negotiation Process 
Each robot offers an auction for a free task if it is selected 
in the action selection step. When a robot becomes an 
auctioneer, it manages the auction negotiation process in 
which the coalition members and the leader are selected 
for the task to be executed.  
 Initially the auctioneer offers the auction. The robots 
can get the necessary task details from the auctions. After 
receiving an offer, the validity of the auction is checked. 
If the auction is invalid, a warning message is sent to the 
auctioneer. This invalidity may occur if the auctioneer has 
incomplete knowledge about the mission status. Possible 
situations may be that the task is completed or it has 
already been executing. If the auction passes the validity 
check, the candidate robot becomes a bidder of the task 
(Bij), calculates the cost and sends the cost value as a bid. 
The other candidate robots behave as so. The auctioneer 

robot is also a bidder and generates a bid for the task at 
hand. It waits until the end of the deadline. If the 
auctioneer cannot get the necessary number of bids from 
the other robots until the deadline, it cancels the auction. 
Otherwise it ranks all the bids. It selects the robot with the 
minimum cost as the CLi of the coalition. The remaining 
robots are selected among the other bidders in the 
ranking. If the necessary number of robots to execute the 
task is one, the selected leader is the only member of the 
coalition. In this ranking process, the auctioneer may also 
select itself either as a CLi or a CMi. A bidder robot may 
be awarded by different auctioneers. However in the 
action selection step, it selects the optimum cost task for 
it. Finally it sends a message to become a CMi to only one 
of these auctioneers. In the current implementation, each 
robot involves in only one coalition executing one task. 
  

Coalition Maintenance Process 
In the proposed framework, coalition reconfiguration is 
ensured for obtaining optimal results for changing 
situations. The coalition leader is responsible to broadcast 
the maximum cost value of the coalition members in each 
execution step. If a robot out of coalition has a lower cost 
value than the maximum cost value for the corresponding 
task and selects this task in action selection step, it sends a 
join request message to the coalition leader. The leader 
getting join request message, directly adds the robot to the 
coalition. If the coalition leader detects that the size of the 
coalition is more than required, it can release redundant 
number of coalition members having the maximum cost 
value. A releasing and locking mechanism is added to 
prevent the coalition members leave the coalition until a 
new more suitable robot joined to the coalition. If a robot 
gets released message, it can select another more suitable 
task after then. When the coalition leader considers the 
size of the current coalition, it also checks the failures. 
Since each robot in the coalition broadcasts under 
execution and updated cost messages, their failure can be 
detected by the coalition leader. The failed robots are also 
released if there is enough number of members. If there is 
not enough number of members to execute the task for a 
period of time, the coalition leader terminates the 
execution of the task.  

Experimental Design 
The proposed framework is tested for collective building 
construction domain. In the designed experiment, there 
are different types of objects. The overall mission for the 
robots contains tasks of finding the necessary objects and 
making the construction while obeying the specified 
ordering restrictions. Nine robots with different 
capabilities are used in the experiments. The pushing 
requirements of these objects are also different. This 
mission both contains dependent tasks and requires 
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cooperative work of the robots. In this domain, 
experiments are conducted in terms of time to complete 
the overall mission and active execution time of the 
robots. The performance is measured against message 
losses and robot failures. The conducted experiments are 
run on a simulator simulating the message exchange and 
execution of the missions. The results are from 100 
independent runs with random seeds.  

 
Figure 3. Number of Steps to Complete the Mission Analysis 

 
Figure 4. Total Active Execution Time Analysis 

Experimental Results 
Experiments illustrate that even for 50% message loss rate 
the robots can complete the mission for the given time 
period. Since the synchronization is highly required for 
some of the tasks, the message losses cause the 
synchronization be lost and also the auction negotiation 
steps not be completed reliably. If there is enough number 
of robots having required capabilities after failures, the 
system can also recover itself and complete the mission 
with an additional cost of recovery against robot failures. 
The mission completion time increases for increasing 
message loss rates logarithmically as in Figure 3. It can 
also be seen that the framework can easily handle robot 
failures. In Figure 4, the total execution time analysis can 
be seen. Combined experiments for robot failures and 
message losses illustrate that although there is a decrease 

in performance for the failure cases, the system can 
recover itself to a great extent while always generating 
valid plans. 

Conclusion and Discussion 
The proposed framework is a generic framework for multi 
robot teams. The generated plans are always valid by 
means of the selected task representation. The recovery 
solutions provided by precaution routines for different 
kind of failures ensure the approach is complete. In this 
framework, close to optimal solutions are generated with 
available resources at hand. Experiments to validate the 
approach were conducted in a construction domain.  
 Analysis of the effects of the cost function selection 
and proofs of optimality for different domains are part of 
the current research ongoing. Appropriate cost functions 
should be applied to obtain optimal results for different 
domains. This cost function may be defined based on 
some constraints.  Currently the performance is being 
tested for different domains with different cost functions. 
One of the possible domains is NP-hard multi robot 
exploration problem also known as MTSP (Multi TSP). 
Performance of the proposed framework as a distributed 
approach for allocating targets to multi robots is being 
tested for this problem.  
 The framework is planned to handle online tasks and 
deadline constraints on the tasks. After observing 
performance results in simulations for different domains, 
it is expected to propose a general framework for a multi 
robot team capable of executing complex missions 
containing inter-dependent tasks requiring heterogeneity 
and coordination under uncertainties on dynamic 
environments.  
 The final evaluations are going to be implemented on 
real robots for a complex mission having tasks with 
ordering constraints. 
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Introduction   
Temporal reasoning has many applications and has been 
studied in the Artificial Intelligence community for many 
years (Allen 1983, Dechter, Meiri, and Pearl 1991).  A 
number of different formalisms for temporal reasoning 
problems exist; one particularly expressive formalism is the 
Disjunctive Temporal Problem (DTP) (Stergiou and 
Koubarakis 2000).   While DTPs allow one to represent a 
wide variety of temporal constraints, this expressive power 
comes at a computational cost.  Finding a solution to a 
DTP is an NP-complete problem; hence significant prior 
research has been focused on finding efficient heuristic 
approaches to DTP solving (Stergiou and Koubarakis 
2000, Tsamardinos and Pollack 2003, Armando et al. 
2004).  This prior work has focused on solving a single, 
static DTP.  For many applications, however, it may be 
necessary to solve a sequence of DTPs in which each 
problem is very similar to the one before. 
 For example, the Autominder system (Pollack et al. 
2003) is a schedule maintenance and execution monitoring 
system that issues reminders to keep a user on schedule.  
Autominder represents a user’s schedule as a DTP, and 
each time the DTP changes, Autominder invokes Epilitis 
(Tsamardinos and Pollack 2003) to check the DTP for 
inconsistencies.  A user’s schedule is modified over time 
rather than thrown away and completely rewritten, so each 
DTP is similar to the one before.  Epilitis, however, is a 
static DTP solver, so it does not exploit problem similarity. 
 The problem encountered by Autominder is that of a 
dynamic DTP—that is, a sequence of DTPs in which each 
one is a modification of the one before.  Other types of 
systems may encounter dynamic DTPs as well, including 
temporal planning systems, mixed-initiative planning and 
scheduling systems, and DTP optimization systems.  In my 
work, I will explore the problem of improving efficiency 
and stability (the extent to which one solution is similar to 
the next) while solving dynamic DTPs. 
                                                 
Copyright © 2005, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved. 
 

The Disjunctive Temporal Problem 
A DTP is a CSP in which each variable represents a time 
point, the domain of each variable is the set of all real 
numbers, and the constraints are disjunctions of difference 
constraints.  Each difference constraint has the form x – y � 
b, and is interpreted as “x follows y by no more than b units 
of time.”  A disjunctive temporal constraint is satisfied if 
the time points are assigned times such that at least one of 
the constraint’s disjuncts (i.e., difference constraints) is 
satisfied.  A solution to a DTP is an assignment of times to 
all time points such that each disjunctive temporal 
constraint is satisfied. 
 There are two predominant methods for solving a static 
DTP.  The first is to convert the DTP into a Satisfiability 
(SAT) problem.  This method is used in TSAT++ 
(Armando et al. 2004), which is currently the fastest DTP 
solver.  The second is to convert the DTP into a finite-
domain CSP, called a meta-CSP.  This method is used in 
Epilitis, which was the fastest when it was developed 
several years ago (Tsamardinos and Pollack 2003).  Very 
little research has considered dynamic SAT problems 
(Hoos and O’Neill 2000), whereas much research has 
already explored dynamic CSPs (van Hentenryck and 
Provost 1991, Verfaillie and Schiex 1994a, Verfaillie and 
Schiex 1994b).  For this reason, most of my work will build 
on the CSP method for solving DTPs, even though the SAT 
method is currently faster. 
 We can transform any given DTP into a finite-domain 
meta-CSP.  In the meta-CSP, each variable represents a 
disjunctive temporal constraint of the DTP, and the domain 
of each variable is the set of difference constraints in the 
disjunction.  The meta-CSP constraints are implicit—any 
combination of difference constraints that is chosen as an 
assignment must be satisfiable.  After this transformation, 
the DTP can be solved with any number of standard CSP 
techniques. 
 Epilitis, currently the fastest DTP solver that uses this 
meta-CSP transformation, uses five different techniques to 
improve efficiency.  Three of these techniques—forward 
checking, conflict-directed backjumping, and nogood 
recording—come from the CSP literature.  The other two 
techniques—removal of subsumed variables and semantic 
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branching—are made possible by the fact that the temporal 
constraints are linear inequalities.  Even though these 
techniques greatly improve the efficiency of DTP-solving, 
Epilitis is only designed to solve static problems, not 
dynamic ones. 

The Dynamic DTP 
My research will address the problem of the dynamic DTP.  
A dynamic DTP is a sequence of static DTPs in which each 
DTP is a modification of the one before.  We can represent 
a dynamic DTP as a tuple <P0, C>, where P0 is the initial 
DTP in the sequence, and C = {c1, c2, …, cn} is a sequence 
of changes that describes how the DTP is modified.  The 
system solving a dynamic DTP is initially given only P0, 
followed by each change of C once it has solved the 
previous problem in the sequence.  A solution to a dynamic 
DTP is a sequence S = {s0, s1, …, sn}, where si is the 
solution to DTP Pi, and Pi is created by applying change ci 
to Pi-1. 
 The types changes that are possible in a dynamic DTP 
can be grouped into restrictions and relaxations.  
Restrictions can only remove assignments from the solution 
set of a DTP, and relaxations can only add assignments.  
The three types of restrictions are (1) tightening the bound 
b of one of the difference constraints x – y � b, (2) 
removing a difference constraint from a disjunctive 
temporal constraint (i.e., removing a value from a 
variable’s domain in the meta-CSP), and (3) adding a new 
disjunctive temporal constraint (i.e., adding a variable in 
the meta-CSP).  The relaxations are the opposites of these 
restrictions.  The three types of relaxations are (1) 
loosening the bound of one of the difference constraints, 
(2) adding a difference constraint to a disjunctive temporal 
constraint, and (3) removing a disjunctive temporal 
constraint.  I discuss some generalizations of this definition 
later in the section on Practical Extensions. 

Related Work 
As stated earlier, the majority of previous work that is 
related to dynamic DTPs comes from the literature on 
dynamic CSPs.  A dynamic CSP (Dechter and Dechter 
1988) is a sequence of CSPs in which each is a 
modification of the one before.  Dechter and Dechter point 
out that changes to the variables or domains of a dynamic 
CSP can be modeled as changes in the constraints, so the 
majority of dynamic CSP research has assumed that only 
the constraints can change.  The constraints of a meta-CSP 
of a DTP are implicit, so modeling variable and domain 
changes as constraint changes in a meta-CSP is not an 
option.  Although the following dynamic CSP techniques 
can, for the most part, be applied directly to the meta-CSPs 
of a dynamic DTP, it will be interesting to test their 
effectiveness when the changes can also affect variables 
and domains. 

 Nogood recording (NGR) has been shown to be an 
effective technique for improving both static and dynamic 
CSPs (Schiex and Verfaillie 1993).  Intuitively, a nogood is 
a partial assignment of variables that cannot be extended to 
a complete solution.  As a CSP solver searches for a 
solution, it records a nogood each time it finds a dead end.  
As search continues, the CSP solver checks each partial 
assignment against each nogood it has recorded.  If it finds 
a nogood that matches, then that partial assignment can be 
pruned immediately.  In dynamic problems, the nogoods 
recorded while solving one problem in the sequence can be 
applied to later problems, allowing for earlier pruning and 
improved efficiency.  Since NGR is already incorporated 
into Epilitis, it is straightforward to store the nogoods that 
are recorded while solving one DTP and apply then while 
solving the next. 
 Oracles have also been applied to dynamic finite-domain 
CSPs (van Hentenryck and Provost 1991).  During CSP 
backtracking search, all partial assignments that were tested 
before the first solution was found must have been pruned.  
An oracle records the path to the first solution so the next 
search can try to repeat it, bypassing the pruned portion of 
the search space.  Epilitis is, at its root, a meta-CSP 
backtracking search algorithm, so it is a simple task to 
record an oracle after solving one DTP and then use it to 
select values and variables while solving the next. 
 Dynamic backtracking (DBT) is an extension of conflict-
directed backjumping (CBJ).  With CBJ, a back-tracking 
algorithm maintains enough information that, when a dead 
end is encountered, it can backtrack through a series of 
variable assignments until it unassigns a variable that 
contributed the failure.  DBT is similar, except that it 
unassigns only the most recent variable that contributed to 
the failure, without affecting the assignments that were 
made later.  Verfaillie and Schiex (1994a) showed that 
DBT can improve both efficiency and stability when 
solving dynamic CSPs, and one would expect the same to 
be true when DBT is applied to the meta-CSPs of a 
dynamic DTP. 
 The local changes algorithm of Verfaillie & Schiex 
(1994b) strives to reuse as much of the solution to the 
previous CSP as possible.  If the problem has changed such 
that the previous solution cannot be reused in its entirety, 
the local changes algorithm isolates variables involved in 
the inconsistency and reassigns them until a solution is 
found.  This type of search is a complete departure from the 
backtracking search of other DTP solvers, so combining 
this technique with others will be non-trivial. 

Enhancements 
I have also developed several new techniques of my own 
that apply to dynamic DTPs, but have not appeared in any 
previous work. 
 Besides the techniques to enhance search that were 
described in the previous section, it is sometimes possible 
to avoid search entirely.  Schiex and Verfaillie (1993) point 
out that if a consistent problem is relaxed, it is still 
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consistent, and (conversely) if an inconsistent problem is 
restricted, it is still inconsistent.  Verfaillie and Schiex 
(1994a) extend this with the notion of an inconsistency 
explanation (also called a justification), which is a subset 
of constraints that are unsatisfiable.  Given an inconsistent 
problem P and its justification J, Verfaillie and Schiex 
point out that, if the P is relaxed, it can only be consistent if 
the relaxation affected one of the constraints of J. 
 I have built on these ideas with the introduction of 
justification testing (JT).  If we are given an inconsistent 
problem P and a justification J for its failure, then J (which 
is a subset of the constraints of P) and the variables 
involved in J (which is a subset of the variables of P) 
define a sub-problem, P’, which is also inconsistent.  If one 
of the constraints c in J is then relaxed, the resulting 
problem can be consistent iff P’ (with the relaxed version 
of c) is consistent.  In this situation, JT first attempts to 
solve the relaxed version of P’, which is smaller and easier 
to solve than the relaxed form of P.  It is only necessary to 
perform a search on the complete relaxed problem if the 
relaxed sub-problem is found to be consistent.  JT can 
improve efficiency when it finds that the relaxed sub-
problem is still inconsistent, but this extra check is a waste 
of time the sub-problem is consistent. 
 Even though the sub-problem that JT tests is smaller than 
the original problem, in the case of CSPs and DTPs, testing 
its consistency is still NP-complete.  One way to speed this 
up is to apply nogoods from the previous problem.  
Nogoods are generally recorded as a pair <A, J>, where A 
is a partial assignment and J is a justification (A cannot be 
extended to a solution because of the constraints in J).  If 
nogoods were recorded while searching for a solution to 
the previous (inconsistent) problem, then any nogood 
whose justification was not affected by the relaxation can 
be applied to the next problem.  Furthermore, of the set of 
unaffected nogoods, any nogood whose justification is a 
subset of the inconsistency explanation can be applied 
while testing the consistency of the sub-problem with JT.  
If the sub-problem is found to be consistent, and the 
complete relaxed problem must then be searched, any 
additional nogoods that were recorded while searching the 
sub-problem can then be applied when searching the 
complete problem. 
 Schiex and Verfaillie (1993) also point out that if an 
inconsistent CSP is relaxed by removing a constraint c, 
then ¬c is an induced constraint of the relaxed problem.  In 
a DTP, the negation of a disjunctive temporal constraint (x 
– y ≤ b) ∨ (w – z ≤ a) is (y – x ≤ -b – ε) ∧ (z – w ≤ -a – ε), 
where ε is a small positive number (this is the basis of 
semantic branching in Epilitis).  Hence, when an incon-
sistent DTP is relaxed by removing a disjunctive temporal 
constraint c, ¬c is an induced constraint of the relaxed 
problem and can be added to it before search begins.  
Likewise, when a disjunctive constraint c is relaxed by 
adding or loosening one of its difference constraints d, the 
relaxed problem induces the negation of every difference 
constraint of c other than d, so these negations can all be 
added to the relaxed problem prior to search. These 

additional constraints will improve efficiency by pruning 
values from the domains of other variables. 
 The idea of semantic branching can also be used to 
enhance nogood recording.  In Epilitis, when a value v 
(representing a difference constraint) in the domain of a 
variable x (representing a disjunctive constraint) is tested 
and fails, the constraint ¬v is added at that point in the 
search tree to prune values from the working domains of 
other variables.  This process is called semantic branching.  
Nogood recording can prune values without testing them, 
so if x�v would cause the current partial assignment to 
match a nogood, it would be pruned, but no semantic 
branch would be added.  Adding the semantic branch ¬v is 
perfectly valid, though, so enhancing nogood recording 
with semantic branching should make it a more powerful 
pruning technique. 
 When an oracle is used to select variables and values, it 
can often quickly lead to a solution that is very similar to 
the previous solution.  Occasionally, however, the variables 
and values the oracle selects are poor choices in the context 
of the new problem.  Specifically, if the new problem is a 
restriction of the old problem, the tighter constraints can 
cause more values to be pruned from their domains, leaving 
only one possible value.  If a variable has only one value 
left in its working domain, most heuristics are designed to 
select that variable next.  If an oracle is selecting variables, 
it might select one with multiple values in its domain 
because it is following the variable ordering from the 
previous search.  If the oracle does not lead to a solution, 
this poor choice of variables will cause unnecessary 
backtracking and hurt efficiency.  This can be overcome by 
first selecting any variable with only a single value left in 
its domain, and if no such variable exists, selecting the next 
variable according to the oracle. 

Practical Extensions 
The definition of a dynamic DTP given previously works 
well as a starting point, but many practical applications 
require a more general formalism.  I plan to research two 
generalizations in particular: sets of changes, and the 
addition and removal of time points. 
 The first limitation of the given definition of a dynamic 
DTP is that the consistency of the DTP must be checked 
after every atomic change.  It is often the case, however, 
that the schedule will change in such a way as to trigger a 
set of simultaneous changes to the DTP.  For example, if an 
event e is executed exactly t units of time after another 
event f, a system can represent this by adding two simple 
temporal constraints to the schedule: (e – f ≤ t) and (f – e ≤ 
-t).  Both might be added before the new DTP is solved.  
The definition can be modified easily enough to include a 
series of sets of changes, rather than a series of atomic 
changes.  The difficulty is in designing algorithms that can 
efficiently produce stable solutions after a set of changes 
has occurred. 
 The second limitation is that the set of time points must 
remain fixed.  In practice, new events will be added to and 
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removed from the schedule, requiring the addition and 
removal of time points in the DTP.  Although this does not 
present any particularly interesting theoretical problems, it 
is a critical part of any practical dynamic DTP solver. 

Progress and Research Plans 
I have begun my research by comparing the effectiveness 
of nogood recording and oracles in semi-dynamic DTPs in 
which the DTPs of the sequence are restricted, but never 
relaxed.  In a semi-dynamic DTP, we can safely assume 
that any partial assignment that is pruned from one DTP in 
the sequence can also be pruned from the next DTP.  I have 
performed experiments and found that, in semi-dynamic 
DTPs, nogood recording improves efficiency and hurts 
stability, but oracles improve efficiency even more while 
also improving stability.  The performance of the 
combination of oracles with nogood recording is roughly 
equivalent to the performance of oracles alone.  This work 
has been accepted to the ICAPS-05 Workshop on 
Constraint Programming for Planning and Scheduling. 
 I have also implemented a fully dynamic DTP solver that 
uses nogood recording, oracles, and justification testing.  
My experiments with this solver have shown that the 
performance of different combinations of these techniques 
depends on the most recent type of change.  I used this 
information to implement a mixed-strategy solver that uses 
the best combination of techniques for each situation.  The 
mixed-strategy algorithm was 5.8% faster than the second-
fastest algorithm.  This work has been submitted to the 
AAAI-05 Technical Program. 
 The next step in my research will be to compare my 
dynamic DTP solver, which is based on Epilitis, to one that 
is based on TSAT++.  TSAT++ is a faster static DTP 
solver than Epilitis, but Epilitis produces a justification 
when a DTP is found to be inconsistent and TSAT++ does 
not.  I will then compare the effectiveness of the other 
dynamic CSP techniques, as well as my own enhancements.  
Finally, I will address sets of simultaneous changes and the 
addition and removal of time points. 
 Once I have implemented and tested these various 
techniques on randomly generated problems, I will 
compare then using real world data.  I have collected data 
from a small set of users that tracks changes in their daily 
schedules.  I plan to either collect the same data from more 
users, or obtain additional data from scheduling systems 
already in use.  The combination of randomly generated 
data and real world data should be adequate to analyze and 
confidently compare these various techniques when applied 
to dynamic DTPs. 
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Introduction

The proposed research is in the areas of “Knowledge En-
gineering” and “Visualisation” to support domain specifica-
tion for “Automated Planning Systems”. Despite significant
success in developing more efficient automated planning al-
gorithms there is a need to enhance the scope of the technol-
ogy to bring it to a wider user community. In this research
I propose to bring together two strands of research both at-
tempting to address the problem of widening the take up of
planning technologies. The first strand of research tries to
widen the scope by increasing the expressiveness of the do-
main modelling languages to provide coverage of a poten-
tially larger number of real world problem areas. The second
tries to address the problem by enriching domain modelling
languages to support knowledge engineering and to provide
rich tool sets to support the creation of domain models. This
second strand aims to bring the technology within the po-
tential grasp and use of users from beyond the immediate
research community. The knowledge engineering aspects
of the project has two broad focuses of interest. The first,
focused on the goal of making planning domain specifica-
tion easier, requires the development of conceptualisations
and visual tools to assist in the task. The second, focuses
on the validation and re-use of planning domain knowledge
and requires that formalisms be either directly or indirectly
amenable to reasoning especially with a view to deriving
properties of the domain description.

Background

Automatic planning has been a subject studied from the
early years of the field of “Artificial Intelligence” with the
first significant system being built by Filkes and Nilson
(Fikes & Nilsson 1971). Though there has been extensive
work in the field since these early days the manner in which
planning applications are represented in many modern sys-
tems still have their roots in those early systems. Consider-
able success has been achieved in increasing the expressive-
ness of domain description languages and in improving the
success of planning engines in synthesising plans for large
and complex problems. But despite this success, given that
planning appears to be an activity undertaken in different

forms by all organisations and intelligent organisms, the suc-
cess falls very far short of the apparent potential for plan-
ning systems. There are clearly many reasons why “Plan-
ning Technology” has not fulfilled its potential. My work
only tries to address a small part of this problem by trying to
make the technology as it currently exists more accessible to
potential user groups.

Scope of Work

The focus of the this research is on providing support to sim-
plify the task of producing the formal domain specifications
necessary for planning. The work builds on the work done
for GIPO (Graphical Interface for Planning with Objects)
(Simpson et al. 2001; 2002; Simpson & McCluskey 2003).
In particular it builds on the work on using “Generic Types”
(Fox & Long 1997; Simpson et al. 2002). Generic types
are patterns that re-occur in many problem domain specifi-
cations. The primary focus of the new work will be to devise
a theoretical foundation for planning patterns and to develop
graphical tools to allow the creation of domain specifications
to be carried out in a manner achievable by non planning
experts. The theoretical foundation for the work will come
from building an abstract algebraic domain specification lan-
guage and link it to a foundation built on the formalisms of
“Description Logics”. Description logics should provide a
basis for a classificatory system for the objects playing the
primary roles within the generic types. Using “Description
Logics” as the basis for the underlying framework should
facilitate integrating the work done as part of this research
with wider research in the areas of knowledge management
and in particular help link with work done for the “Semantic
Web”.

At the most basic level the underlying theoretical founda-
tions and the graphical tools should exploit the structure of
state machines that can be used to describe the behaviour of
the objects within the planning domain that undergo change
during the execution of a plan. The new element of this work
which builds on previous work trying to exploit an “object
centric” view is the conception of “object life histories” and
the development of both an algebra and a graphic notation
with its accompanying editor to allow domains to be con-
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Figure 1: The Barista View of Coffee Making

structed from such conceptions. To briefly illustrate this I
present in figure 1 a part of a model of a coffee making sys-
tem where the states of the cup with its contents are shown.
This is clearly as presented a linear transition system, which
may be what is wanted but if the cups are to be re-used
“washing up” would have to be incorporated into the model.
My belief is that such simple state visualisations helps the
domain designer “see” the consequences of modelling deci-
sions.

The initial scope of the work will be limited to devising and
creating a system with the built in assumptions of “classical
planning”. This work will provide the facilities and mech-
anisms both to create domain specifications from primitives
and to build packaged components to be reused in multiple
domain models. This ability to create re-usable components
should demonstrate a major advance in the manner by which
domain specifications can be created. An important con-
straint on this work is that the resulting algebraic and graph-
ical formalisms should be translatable into current standard
planning languages such as PDDL. This constraint guaran-
tees that tools produced to support the new methods of do-
main specification can be used in conjunction with existing
planning engines to create planning system environments.

The range of generic types, or patterns, currently described
in the literature needs to be extended to incorporate new pat-
terns. It is to be expected that many complex patterns will
be subject domain dependent and not fully general. Within
the constructed tools there must accordingly be an API to
allow problem centric patterns to be added by system users
to libraries of available patterns. The focus of this work will
be to provide means for defining new patterns and packag-
ing them up into re-usable components. Work on identify-
ing new patterns will only be done sufficiently to demon-
strate the potential for creating complete domain specifica-
tions from such re-usable packaged patterns.

The work will also extend the notions of modelling with
generic types to richer planning domain modelling lan-
guages such as PDDL2.1 and PDDL level 5 (Fox & Long
2001). In addition to the theoretical work necessary it is
intended to build prototype tools to enhance the GIPO sys-
tem and make them available to the larger planning commu-
nity. A parallel strand of research that will be followed is
to investigate the work of the SRI planning group and look
at their work on relaxing the commitment to formalism in

the construction of “plan authoring” tools. Ideally the work
would develop to allow a multi-viewed perspective on plan-
ning domains. The “object centric” view is not the only
possible view, “agent centric” and “process centric” views
should all be available as ways of conceiving of and under-
standing problem domains.

Evaluation of the work done will be both theoretical and by
peer assessment. The work proposes that planning domain
specification can be done at a higher conceptual level than
has traditionally been the case. This higher level should
be closer to the conceptions used by domain experts. The
success of the work could be established by showing how
a rational reconstruction of the primary domain specifica-
tions as used in the ICAPS planning competitions could be
recreated in the envisaged higher level form. The theoret-
ical evaluation will concentrate on the adequacy of the de-
veloped methods to represent a range of problem domains.
Peer assessment will be carried out by submitting the created
software to the international competition for knowledge en-
gineering tools in A.I. Planning. This competition is hosted
bi-annually by ICAPS (International Conference on Auto-
mated Planning and Scheduling). I will present early ver-
sions of this new work in that competition. Further peer
assessment will be sought by demonstrating the software at
conferences and organising workshops to demonstrate the
potential of the software. User testing will be done in part
by student use of the software as part of the Department’s
teaching in the area of Artificial Intelligence. One would
hope that evaluation could involve deployment in a “real”
application but the viability of that depends on the success
of developments in other areas of planning as well as that in
the knowledge management area.

Current Progress

The “Life History” editor is proposed to be the main editor
within GIPO to encapsulate the “object centric” perspective
on planning domains. Figure 2 shows a snapshot of the “Life
History” editor in use. The editor is being used to edit a ver-
sion of the “Dock Workers Robots” domain (Ghallab, Nau,
& Traverso 2004). The editor enables the creation of object
life histories and supports the automatic creation of the tex-
tual domain definitions from the developed diagrams. The
textual representation includes a translation to PDDL which
can be used to run integrated planners from within GIPO.
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Figure 2: Screen-shot of GIPO editing Dock Workers Domain

The editor supports both the creation of library patterns and
the use of patterns to construct new domains. To create a
library pattern the user must currently save an entire life his-
tory diagram as a library item and supply some html format-
ted text to describe the pattern. This has the consequence
that library items must be produced independently of their
initial domain of use. In the future we may support defin-
ing a fragment of a current domain as a library item. The
library viewer is shown in the snapshot in figure 3. The li-
brary item being viewed is a stack pattern derived from a
version of the classical “Blocks World” domain. Associated
with the library facility is the ability to package part of a
life history structure to hide the detail. The ability to hide
detail is important not only for library items but also in any
complex domain where the domain developer needs to con-
trol the amount of detail shown at any one point in time.
The use of the “stack” pattern is shown in the DWR life his-
tory diagram in figure 2. The single state rectangle labelled
“onStack” represents the private body of an instance of the
“stack” pattern the only visible actions from the stack pat-
tern are the “putOn” and “takeOff” transitions. Within the
DWR domain containers are stacked by cranes but otherwise

Figure 3: Library Browser View of a Stack

manipulated in a manner identical to that of the blocks in the
blocks world. The use of the “stack”structure derived from a
blocks world illustrates the potential for re-use within plan-
ning domains. It also illustrates the property of encapsula-
tion of re-usable components. In the DWR diagram the com-
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plexity of modelling the different states that the container
can be in while placed on a stack are hidden from view. The
full complexity of the stacking problem is shown in the li-
brary viewer but the bulk of that complexity is hidden in the
“onStack” node in the DWR diagram. In the DWR domain
we can think at the level of placing containers on a stack or
removing them but do not need to consider whether or not a
particular container is at the bottom of the stack or top of the
stack.

The DWR example also gives an indication of the complex-
ity of describing domains in terms of object life histories. It
is not just sufficient as illustrated earlier in the coffee cup ex-
ample to chart the transitions made by object instances from
state to state. The domain designer must also define how
the transitions of different objects must be coordinated. In
the “Life History” editor transitions are marked as coordi-
nated by the arrows connecting the state transitions of the
differing object types. The connections between the differ-
ing object state machines can indicate that transitions occur
together. In effect that the transitions are part of the same
action. They can also indicate where instances of one object
type must be in a marked state in order to facilitate objects
of a different type making a transition between states.

Non-Classical Planning Domains

I have not at this stage tried to fully develop the concepts
or software for such language extensions but believe that the
“life history model” should be readily adaptable. For ex-
ample to cope with the formalism of PDDL level 5 as de-
scribed by Fox and Long et al. (Fox & Long 2001) we need
to introduce events, processes and fluent properties of ob-
jects. The conceptions of objects changing state all continue
to apply but we would need to show how transitions between
object states can trigger, update or terminate processes and
that processes can trigger events, which are of course just
object transitions. A further consequence would be that ob-
jects would need more complex numeric properties which
are up-dateable when the objects make a state transition. A
simplified but possible diagrammatic version of the bath do-
main is shown in figure 4.

Relation to Previous Work

The proposed work is an extension to work done by the au-
thor over the last four years in developing the GIPO soft-
ware system. The previous work was done in collaboration
with others at the Universities of Durham (the Durham team
are now located at Strathclyde University) and Salford first
as part of the PLANFORM project and following that by
the planning team at Huddersfield University. The proposed
work will integrate with the earlier work done though that
integration will involve re-working substantial elements of
the earlier work. Though I am continuing this work I am
now doing the work solely as part of my PhD research and
not as part of any other funded project.

Plug

Tap

turnOn

turnOff

putIn

takeOut

Out In

Off On

Fill Process
Start

Terminate

prevail

Bath
Flood

OverflowingSafe Event

Update/Trigger

Figure 4: Bath Filling Domain
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Introduction
Our research is motivated by an application to exploration
or “search and rescue” autonomous aircraft within the
ReSSAC1 project at ONERA. We aim at controlling the op-
timization process, the solution quality and the optimiza-
tion time, through the enforcement of specific goals to be
achieved with maximum priority. An exploration mission

Figure 1: Navigation component of the problem

comprises a problem of navigation (see Figure 1) in a par-
tially known environment on the one hand, and a problem of
online information acquisition and replanning on the other
hand. Several final, alternative or intermediate goals may be
imposed on the agent. Some final goals, such as landing in
a safe area, must be achieved in all possible plans. Some
goals, such as exploring or searching a region, are the pre-
conditions to be achieved before seeking to realize further
goals. Some of the agent’s rewards and goals are historic
dependent, and there may exist ordering constraints between
the goals. Other state variables, such as the agent’s energy
autonomy level A, are clearly orthogonal to the navigation
components, yet not at all decoupled from it: each aircraft
motion consumes energy and an insufficient energy level can

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1http://www.cert.fr/dcsd/RESSAC

force the agent to Abort its mission and return to its base, or
to land on an emergency or security crash base. Last but not
least, it may be specified, as in our simple example, that re-
wards can only be obtained once: so that having achieved
goal O1 in region R1 nullifies the corresponding reward and
thus completely changes the optimal strategy in that region.
We want to avoid computing one strategy for each possible
combination of goals Oj being achieved or not.

Stochastic planning

Markov Decision Processes (MDPs) (Puterman 1994) are a
reference framework for sequential decision making under
uncertainty: in order to deal with the uncertain effects of the
agent’s actions, a policy is computed on the state space. It
is a function giving, for every enumerated possible state, the
action to be performed next. The optimal policy maximizes
the probability of success, or the mathematical expectation
of reward: the value function defined on every state. Classi-
cal stochastic dynamic programming algorithms are based
on an explicitly enumerated and unstructured state space.
The size of the state space is an exponential function of the
number of features that describe the problem. The state enu-
meration itself may rapidly become intractable for realistic
problems. More generally (Boutilier, Dean, & Hanks 1999)
provide an extensive discussion on complexity and model-
ing issues. (Boutilier, Dearden, & Goldszmidt 2000) show
the benefits of factored representations in order to avoid state
enumeration, to reason at a higher level of abstraction as in
(Dearden & Boutilier 1997) and to take into account non-
Markovian aspects of the problem, such as historic depen-
dent rewards or goals as shown in (Bacchus, Boutilier, &
Grove 1997). Other approaches, as in (Dean & Lin 1995),
introduce a state space hierarchical decomposition of navi-
gation gridworlds into regions. Local policies are then com-
puted in each region and become the macro-actions appli-
cable in the corresponding macro-state of a global abstract
and factored MDP. (Teichteil & Fabiani 2005) propose to
combine both decomposition and factorization techniques.
Other important contributions, such as the SPUDD library
(Hoey et al. 2000), have improved the efficiency of fac-
tored MDP solution algorithms, using decision diagrams,
borrowed from the Model Checking community.
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Figure 2: Abstract MDP resulting from the decomposition
of the navigation MDP of Figure 1

Compact transitions representation
with graphs

In the MDP community, sparse matrices are known to be
the natural model of data. MDPs are also often defined as
graphs, whose nodes are states and edges are non-zero tran-
sitions. For this reason, MDPs transition probabilities can
be equivalently represented by graphs or by sparse matrices.
Furthermore there exist either direct (Duff, I. S., Erisman,
A. M., & Reid, J. K. 1986) or iterative (Saad 2003) algo-
rithms for sparse matrices. For all of these algorithms, the
computation time required for a sparse matrix operation is
generally proportional to the number of arithmetic opera-
tions on non-zero quantities whereas it is proportional to the
product of matrices dimensions for a dense matrix operation.
Therefore, we should use sparse matrices when the number
of transitions is sufficiently smaller than the square of the
number of states.

Tests on the computation time and used memory for the
solution of grid-like exploration MDPs of varying size with
respectively dense and sparse matrices are shown in (Te-
ichteil & Fabiani 2005). The profit in used memory is quite
larger than the profit in computer time but the solution of
large realistic problems is especially limited by memory
constraints rather than by time constraints. On the other
hand, both memory and time constraints are important for
embedded applications. Therefore, we use a graph-like rep-
resentation for the navigation component of the state space,
as in (Teichteil & Fabiani 2005).

Altough the graph-like definition of MDPs is particularly
interesting when the density in non-zero probability transi-
tions is small, the entire enumeration of state space is simply
not possible in most realistic problems. We present in the
next section a hybrid technique that is well-fitted to stochas-
tic exploration problems over large state spaces.

Decomposition and factorization
The paper (Teichteil & Fabiani 2005) shows the gains that
can be achieved in terms of optimization time thanks to fac-
torization: a hierarchical MDP decomposition of the prob-
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lem results in an abstracted factored MDP as in (Dean & Lin
1995) (see Figure 2). Local policies are computed in each
region of the navigation component of the state space. It
is done by adapting the Linear Programming approach pro-
posed by (Parr 1998) in order to take into account the fact
that rewards can only be obtained once: the local policies
are optimized conditionally to the status of the goals in each
region. The direct benefits from the decomposition are that,
if there are k regions and one goal per region, only 2k lo-
cal policies are optimized, instead of 2k. Each region is a
macro-state of the resulting abstract MDP, the corresponding
macro-actions being given by the local policies. The abstract
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Figure 4: Optimal policy ADD of the abstract factored MDP
of Figure 1

MDP can be represented by Dynamic Bayes Nets (DBNs) as
in (Boutilier, Dearden, & Goldszmidt 2000). In DBNs, the
transition probabilities and rewards are represented by Con-
ditional Probability Tables, i.e. one large matrice for ev-
ery post-action variable. However, these matrices are sparse
in most problems and can generally be encoded using more
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efficient structures. Figure 3 shows instances of “decision
trees” as in (Boutilier, Dearden, & Goldszmidt 2000), which
represent instances of transition probability trees (vectors at
the leaves) and transition reward trees for the macro-actions
of our instance of abstract MDP. For simplicity, we assume
a binary level of energy autonomy in the example. The pre-
sented trees say that the reward of goal O1 can be obtained
from region R1 at time t by staying in region R1 until time
t + 1 and provided that O1 has not already been reached be-
fore; this can only be achieved with non-zero probability if
the autonomy level is 1 at time t. We decided to use “alge-
braic decision diagrams” (ADDs) as in (Hoey et al. 2000)
which are more efficient. ADDs offer the additional advan-
tage that nodes of a same value are merged, thus leading to
a graph instead of a tree, as shown in Figure 4.
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Figure 5: Concentric problems: 17 goals, 1 energy auton-
omy level, 17 regions

Symbolic heuristic policy iteration

Function HSDP(S,A, I,G : BDD T ,R : ADD) : Sk, Πk, Vk

H,Sk : BDD Vk : ADD Πk : list<BDD>

H← Reachable(I,A,G)

(Π0, P (I)← ShortestStochasticPath(H,I,G,T
|H

)

S0 ← FilterStates(S, P (I), ε)

k← 0

Repeat
Switch

SFDP : Sk+1 ← Reachable(I, Πk,G)

LAO* : Sk+1 ← Reachable(Sk, Πk, 1 step lookahead)
end Switch
(V, Π)k+1 ← DynamicProgramming

“

Sk+1, (T ,R)
|S

k+1

”

k ← k + 1

until (‖Vk+1 − Vk‖ < ε over Sk)

return (Sk, Vk, Πk)

End

Algorithm 1: Heuristic Search Dynamic Programming

A key idea is to apply dynamic programming only on a
subset of the state space which is computed through iterative
reachability analysis. Recently, heuristic search schemes
have been proposed such as LAO* (Hansen & Shlomo 2001),
or LRTDP (Bonet & Geffner 2003). We propose a Symbolic
Focused Dynamic Programming (SFDP) heuristic search
algorithm (see Algorithm 1), that is an original contribu-
tion to our knowledge. SFDP conforms, like LAO*, with

a two-phased scheme of planning space expansion-and-
optimization. (Teichteil & Fabiani 2005) presents Algorithm
1 and experimentations on it, that show the benefits of our
hybrid approach combining decomposition and factoriza-
tion techniques in large state spaces. Moreover, SFDP finds
quite quickly (sub-optimal) solutions, whereas LAO* can-
not give any answer after more than one hour. Nevertheless,
SFDP appears as much more sensitive to goal constraints
than LAO*. Figure 5 illustrates the family of problems that
we have tested, with different starting and ending points.

Faster solution, weaker value

*

Reachable state spaceReachable state space

Reachable state space Reachable state space

Whole state spaceWhole state space

Whole state space Whole state space
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IsfDP

Figure 6: Reachable state spaces of sLAO*, sRTDP, sfDP
and IsfDP

Function IsfDP( Lb : list<BDD> S,A, I : BDD T ,R : ADD) : Sk , Πk, Vk

S0 ← I

k ← 1

While (Lsg non empty) do
Ik ←− Sk−1

Gk ←− head of Lsg

Switch
IsfDP : (S, Π, V )k ← sfDP (S,A, Ik ,Gk ,T ,R)

IsfLAO : (S, Π, V )k ← sfLAO(S,A, Ik ,Gk ,T ,R)

end Switch
remove head of Lsg

k← k + 1

done
return (Sk , Πk, Vk)

End

Algorithm 2: IsfDP algorithm for on-line planning
Following the previous ideas, another version of the focused
dynamic programming scheme was developed by weak-
ening the stopping condition of the Reachable function,
that holds now as soon as at least one state is reached
where the required goal conditions are achieved. This
new stopping condition is obviously weaker and the new
algorithms, called sfDP and sfLAO still follow the scheme
presented in Algorithm 1. Nevertheless, the sfDP and
sfLAO algorithms are obviously not optimal but they solve
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problems with more than 8 × 105 enumerated states, that
are intractable for SPUDD (see Figure 7). Moreover, the
solution quality grows with the number of goal conditions
imposed up to the optimal solution (see Figure 8). Thus,
we developed Incremental versions of these algorithms,
respectively IsfDP and IsfLAO, that iteratively call
sfDP or sfLAO in order to incrementally – and possibly
on-line – improve the solution (see Algorithm 2 and Figure
6). Figure 8 shows on a small example that IsfDP
outperforms IsfLAO but remains sub-optimal. On that
example, SPUDD is still able to tackle the problem, and
sfDP finds an optimal solution.

Figure 7: sfDP and sfLAO compared with SPUDD on differ-
ent problems of increasing sizes (values are not comparable
between problems)

Conclusion
We have proposed a hybrid MDP modelling framework,
where some state components correspond to an explicitely
enumerated subspace that can be defined as a decomposable
graph and then integrated in an abstract factored MDP. We
have proposed an original algorithm SFDP for which the op-
timization time and the solution quality can be controlled
through the definition of planning goals constraints. Such
goals could be adapted off-line or on-line, thus opening in-
teresting directions for future work on decision under time
and ressources constraints. This is particularly interesting
in our application perspectives on autonomous aircraft. We
have developed sfDP, an even faster, but weaker, version
of SFDP. An incremental version of sfDP, named IsfDP,
was developed for on-line planning: it couples sfDP with
a higher level optimization controller in order to reuse the
sub-optimal solution obtained with sfDP in a higher level
optimization process. We will now develop an optimal ver-
sion of IsfDP, that could switch to LAO for the last iteration.
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Abstract

The focus of my research is on the formulation and
analysis of mathematical programming techniques in
AI planning. This extended abstract provides a brief
overview of the paper (Van den Briel, Vossen, & Kamb-
hampati 2005) that will be presented at ICAPS 2005.
In addition, it provides an overview of some of my fu-
ture research plans.

Introduction

The conventional wisdom in the AI planning commu-
nity is that integer programming-based (IP) systems
cannot compete with satisfiability-based (SAT) and
constraint satisfaction-based planners. We challenge
this current perception of IP-based systems by present-
ing novel formulations that (1) use multi-valued state
variables that are represented by networks, and that
(2) progressively generalize the notion of parallelism.
The resulting IP encodings are solved within a branch-
and-cut framework and outperform the most efficient
SAT-based planner.

The use of integer programming (IP) to solve AI
planning problems has an intuitive appeal, given its
remarkable successes in similar problem domains such
as scheduling, production planning and routing (John-
son, Nemhauser, & Savelsbergh 2000). In addition, one
potential advantage is that IP techniques can provide
a natural way to incorporate several important aspects
of real-world planning problems, including numeric con-
straints and objective functions.

Nevertheless, the application of IP techniques to AI
planning has only received limited attention. The first
appears to have been Bylander (1997), who proposed
a linear programming (LP) formulation that could be
used as a heuristic in partial order planning. Vossen
et al. (1999) discuss the importance of developing
“strong” IP formulations, by comparing two formula-
tions for classical planning. While a straightforward
translation of sat-based encodings yields mediocre re-
sults, a less intuitive formulation based on the rep-
resentation of state transitions results in considerable
performance improvements. Dimopoulos (2001) dis-
cusses a number of ideas that further improve this IP

formulation. A somewhat different approach that re-
lies on domain-specific knowledge is proposed by Bock-
mayr and Dimopoulos (1998; 1999). The use of LP
and IP has also been explored for non-classical plan-
ning. Dimopoulos and Gerevini (2002) describe an IP
formulation for temporal planning and Wolfman and
Weld (1999) use LP formulations in combination with
a satisfiability-based planner to solve resource planning
problems. Kautz and Walser (1999) use IP formula-
tions for resource planning problems that incorporate
action costs and complex objectives.

So far, none of these IP approaches have been able
to produce a planner whose performance compares
with today’s most advanced satisfiability and constraint
satisfaction-based planners. In this research we chal-
lenge this current perception by presenting novel IP
formulations that outperform the best SAT-based plan-
ners. The formulations we propose rely on two key in-
novations:

1. We model changes in individual state variables dur-
ing planning as flows in an appropriately defined net-
work. As a consequence, the resulting IP formula-
tions can be interpreted as a network flow problem
with additional side constraints. While this idea can
be used with any state variable representation, it is
particularly synergistic with multi-valued state vari-
ables. We thus adapt existing methods to automat-
ically convert PDDL domain encodings into multi-
valued domain encodings.

2. One difficulty in scaling IP encodings has been the
dependency between the size of the encoding and the
length of the solution plan. This dependency often
leads to encodings that are very large. To alleviate
this dependency, we separate causal considerations
from the action sequencing considerations to gener-
alize the common notion of parallelism based on plan-
ning graphs (Srivastava, Kambhampati, & Do 2001).
This concept suggest that it should be possible to ar-
range parallel actions in any order with exactly the
same outcome (Blum & Furst 1995). By relaxing this
condition, we develop new concepts of parallelism
that are similar yet strictly more general and pow-
erful than the relaxation proposed by Cayrol et al.
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(2001) for the LCGP planning system.

A naive encoding of this decoupling will not be effective
as the sequencing phase will add exponentially many or-
dering constraints. Instead, we propose and implement
a so-called Branch-and-Cut framework, in which certain
constraints are dynamically generated and added to the
formulation only when needed. This approach has been
extremely successful for a number of large-scale opti-
mization problems (Caprara & Fischetti 1997). We
show that the performance of the resulting planning
system is superior to Satplan04(Siege) (Kautz 2004),
which is currently the most efficient SAT-based ap-
proach to planning. This is a significant result in that it
forms the basis for other more advanced IP-based plan-
ning systems capable of handling numeric constraints
and non-uniform action costs.

The remainder of this extended abstract is organized
as follows. In the next section, the ideas of (1) using
multi-valued state variables and (2) progressively gen-
eralizing the notion of parallelism are discussed. Due
to size restriction, the actual IP formulations are not
presented, instead we refer the reader to Van den Briel,
Vossen, and Kambhampati (2005). Subsequently, con-
clusions and a discussion of avenues for future research
are described.

IP formulations

The IP formulations use (multi-valued) state variables
instead of the (binary-valued) propositional variables
that were used in the formulations by Vossen et al.
(1999). The use of multi-valued state variables is based
on the SAS+ planning formalism (Bäckström & Nebel
1995). SAS+ is planning formalism that uses multi-
valued state variables instead of propositional atoms,
and it uses a prevail condition on top of the regular
pre- and post-conditions (pre-, add-, and delete-lists).
A prevail is a condition imposed by an action that spec-
ifies for one or more state variables a specific value that
must hold before and during the execution of that ac-
tion. Another way to look at a prevail is that it implies
the persistence of a specific value. To obtain a state
variable description from a PDDL description of a plan-
ning problem we use the translator that is implemented
in the planner Fast (Diagonally) Downward (Helmert &
Richter 2004). This translator is a general purpose al-
gorithm that transforms a classical planning problem
into a multi-valued state variable description. It pro-
vides an efficient grounding that minimizes the state
description length and is based on the ideas presented
by Edelkamp and Helmert (1999).

In addition, the IP formulations are based on a more
general notion of parallelism. We propose a set of al-
ternative conditions for parallel actions. The basic idea
is to relax the condition that parallel actions can be ar-
ranged in any order. Instead we will require a weaker
condition, which states that there exists a valid order-
ing of the actions within a time step. More specifically,
within a time step a set of actions is feasible if (1) there

A
B
C A B C

Initial state Goal

BELOW(A): ON(A,B)
BELOW(B): ON(B,C)
BELOW(C): ON(C,T)
ONTOP(A): CL(A)
ONTOP(B): ON(A,B)
ONTOP(C): ON(B,C)

BELOW(A): ON(A,T)
BELOW(B): ON(B,T)
BELOW(C): ON(C,T)
ONTOP(A): CL(A)
ONTOP(B): CL(B)
ONTOP(C): CL(C)

Figure 1: Another Blocksworld instance

exists an ordering of the actions such that all precon-
ditions are satisfied, and (2) there is at most one state
change in each of the state variables.

To illustrate the basic concept, let us examine the
Blocksworld instance given in Figure 1. The obvious
solution is to first execute action MOV E(A,B, T ) and
then MOV E(B,C, T ). Clearly, this is not a solution
that would be allowed within a single step under Graph-
plan’s parallelism, since we cannot execute the actions
in an arbitrary order (that is, MOV E(B,C, T ) cannot
be executed unless MOV E(A,B, T ) is executed first).
Yet, the number of state changes within any state vari-
able is at most one, and while the two actions cannot be
arranged in any order with exactly the same outcome,
there does exists some ordering that is feasible. The
key idea behind this example should be clear: while it
may not be possible to find a set of actions that can
be linearized in any order, there may nevertheless be
an ordering of the actions that is viable. The question
is, of course, how to incorporate this idea into an IP
formulation.

This example illustrates that we are looking for a set
of conditions that allow, within each plan step, those
sets of actions for which:

• All the actions’ preconditions are met,

• There exists an ordering of actions at each plan step
that is feasible, and

• Within each state variable, the value is changed at
most once.

The incorporation of these two ideas are implemented
in IP formulations that yield impressive results on a set
of benchmark problems taken from the international
planning competitions.

Conclusions and Future Work

Despite the potential flexibility offered by IP encodings
for planning, in practice planners based on IP encodings
have not been competitive with those based on CSP and
SAT encodings. This state of affairs is more a reflec-
tion on the type of encodings that have been tried until
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now, rather than any inherent shortcomings of IP as a
combinatorial substrate for planning. In this research a
sequence of novel IP formulations are introduced whose
performance scale up and surpass that of state-of-the
art SAT-based approaches to planning. The success
of our encodings is based on three interleaved ideas:
(1) modeling state changes in individual (multi-valued)
state variables as flows in an appropriately defined net-
work, (2) generalizing the notion of action parallelism
to loosen the dependency between encoding length and
solution length, and (3) using a branch and cut frame-
work (rather than a branch and bound one), to allow for
incremental addition of constraints during the solving
phase.

In the future, I intend to exploit the competitive
foundation that this framework provides to explore
more complex classes of planning problems that have
natural affinity to IP encodings. These include, han-
dling of numeric variables and constraints, and gen-
eration of cost sensitive plans (in the context of non-
uniform action costs). I would also like to explore the
interface between planning and scheduling by coupling
IP-based schedulers to our planner (using the same gen-
eral branch-and-cut framework). In the near term, I
plan to (1) improve the engineering of the branch-and-
cut framework, (2) strengthen the IP formulations by
taking into account mutexes (these will be different
from Graphplan mutexes due to the different notion
of parallelism), (3) further analyze the impact of more
general notions of parallelism, and (4) increase the scale
of problems that can be solved using column generation
techniques.

References
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Abstract 
Scheduling of parallel computer workloads is an interesting 
online job scheduling problem. In this domain, typically the 
scheduler has more than one goals, including minimizing 
average job response time, maximizing system utilization, 
and achieving certain quality-of-service, fairness, and special 
priority. It is challenging to design the job scheduler as these 
objectives often conflict with each other. In this research, we 
attack the on-line parallel job scheduling problem using 
combinatorial search techniques. To deal with the often 
inaccurate estimates of job runtimes and unknown future job 
arrivals, we also plan to model and predict such information 
to improve the performance of the scheduler. This paper 
focuses on the search-based scheduling engine.   
 In our preliminary experiments, we formulate a complex 
objective that deals with two common goals. Our results 
demonstrate that systematic search can outperform priority 
backfilling methods in achieving the overall objective. Works 
need to be done on more complex objectives, improving the 
scheduling engine, and modeling component of the system. 

Introduction   
Online job scheduling is a challenging problem: in general it 
is NP-complete, yet it usually requires making scheduling 
decisions quickly. Further, decisions are often made on the 
basis of incomplete information. One interesting online job 
scheduling problem is the scheduling of parallel computer 
workloads. In this domain, the scheduler must consider 
objectives like minimizing average job response time, 
maximizing system utilization, and achieving certain quality-
of-service, fairness, and special priority. These objectives 
may conflict. In this research, we focus on the on-line non-
preemptive parallel job scheduling problem which is the 
most commonly used scheme in parallel computing centers. 
We apply combinatorial search techniques to the problem.   
 The solution to an online parallel job scheduling problem 
is a selection of jobs to be scheduled at the current 
decision point. In on-line non-preemptive parallel job 
scheduling, users submit a job and also supply its 
estimated number of processors, use of memory, and 
runtime. When resources become available and there are 
                                                 
Copyright © 2005, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved.  

jobs waiting to be selected, a scheduler is called to decide 
which jobs get the resources. Resources are partitioned, 
and the selected jobs are executed concurrently on their 
assigned partitions until they terminate. Selection is 
difficult even when there are no precedence dependencies 
between jobs. The current decision has consequences for 
later decisions: work deferred now must be performed later.  
 In practice, a complex combination of objectives is often 
desired. Components of this complex objective may 
conflict. For example, minimizing response time favors small 
and short  jobs while some longer and larger jobs may 
suffer. A complex objective makes designing an optimal job 
scheduler more difficult. Priority scheduling is the most 
popular method for job scheduling problems with a complex 
objective. In priority scheduling available jobs are sorted in 
priority order: the scheduler selects the highest-priority 
jobs currently executable. The priority function is usually a 
weighted function of the individual objective components. 
In practice, selecting a set of weights that will optimize for 
any given complex objective is hard.  
 Combinatorial search techniques allow a complex 
objective to be expressed in declarative format which is 
easier for human to understand. We also apply modeling 
techniques to reduce uncertainty of estimates.  Modeling 
techniques enable the scheduler to cope with uncertainty 
of job arrivals and inaccurate estimated runtime. However, 
this paper only focuses on the scheduling engine. 
Modeling techniques enables the scheduler to cope with 
uncertainty of job arrivals and inaccurate estimated runtime. 
Furthermore, separating the scheduling engine from the 
modeling enables each piece to be modified or changed 
more easily.  
 The rest of this paper proceeds as follows. First, 
background is given on our testbed domain: parallel 
supercomputer non-preemptive job scheduling, and on 
combinatorial search techniques. Next our proposed 
solution is described. Some preliminary results are reported. 
Finally, conclusions are drawn from this research   

Parallel Job Scheduling 
Job scheduling on parallel computer workloads has been an 
important research area in the past decade. An early 
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approach is simple strict pure space partitioning on a 
priority ordering such as First Come First Served (FCFS). 
Under this scheme, the jobs are ordered by their priority. 
While the highest priority job in the queue cannot be 
started, all remaining jobs are also delayed. This scheme 
guarantees freedom from starvation and is very simple to 
implement. However, this strict scheme fails to utilize 
processors efficiently.  
 Backfilling algorithm, which allows small jobs in the 
back of the queue to be scheduled as long as the highest 
priority job is not delayed, has been shown to improve 
utilization (e.g. (Skovira et al. 1996), (Mu'alem & Feitelson 
2001)). While Backfilling improves utilization, it is not 
sufficient to optimize for a complex objective. Thus, a 
weighted priority function computed at each decision point 
is commonly used instead of a static priority ordering 
(Jackson, Snell & Clement 2001; Talby & Feitelson 1999).  
 In practice, choosing weight settings to achieve a given 
complex objective using any of these schedulers is non-
trivial. The appropriate weight settings vary widely 
depending on the workload.  Several researches have 
shown that workload characteristic can affect the 
performance of scheduling policies (e.g. (Chiang & Vernon 
2001a), (Subhlok, Gross & Suzuoka 1996)). Therefore, a 
scheduler that is aware of changes in workload behavior 
can benefit from such knowledge. As demonstrated by 
Talby and Feitelson (2005), a simple change in one of the 
workload characteristics can identify a policy change for 
better performance. This work, however, only considered 
single-objective scheduling.  
 Workload modeling has been done and compared on 
various real-world workloads (Chiang & Vernon 2001b; 
Feitelson 2005). However, there is no generally-accepted 
best-practice method for modeling parallel job scheduling 
workloads. 

Combinatorial Search 
Combinatorial search techniques have been successfully 
applied to problems in various domains, e.g. (Crawford 
1993), (Korf 2004), and (Climer & Zhang 2004). In this work, 
we apply combinatorial search as a scheduling engine. The 
scheduling engine is used to evaluate alternative 
schedules, returning the expected best schedule for the 
current decision point.  
 Our initial search techniques include complete methods 
while local search methods are left for future works. 
Complete methods search in a space of partial schedules. 
Starting from an empty schedule, a complete method adds 
an assignment of a job to the schedule one-by-one until a 
total schedule is reached. This way an optimal solution is 
guaranteed to be found if one does exists. However, the 
search space of a complete method grow exponentially on 
the number of jobs thus searching all possible total 
schedules becomes infeasible. To cope with a large search 
space, a heuristic is introduced to guide the search to the 
most promising candidate solutions first.  

 With a limited search time, a simple complete search such 
as Depth First Search (DFS) can be stuck at a small portion 
of the search tree when heuristic makes early mistakes. 
Thus, alternative method such as Limited Discrepancy 
Search or LDS (Harvey & Ginsberg 1995), which searches in 
an increasing order of heuristic mistake count, can help 
avoid the early mistake problem.  
 To cut down the search time further, Branch-and-Bound 
(BnB) are used to prune search space and gets to the 
promising schedules fast. However, BnB requires a 
mechanism to evaluate a partial schedule and an admissible 
heuristic (Ginsberg 1993). Other techniques used in this 
paper to speed up the search include variable and value 
ordering heuristic (Purdom 1983) and forward checking 
(Wolfram 1989).  

Proposed Solution 
Our proposed scheduler consists of two main components: 
the scheduling engine and the modeling engine as shown 
in Figure 1. The scheduling engine selects a set of jobs to 
be scheduled at each decision point. The modeling engine 
collects information about the system and workload 
characteristic and performance of the scheduler. The 
modeling engine then provides useful information to the 
scheduling engine.  
 
 
 
 
 
 
 
 

Figure 1: Structure of the proposed scheduler 
 

 By employing combinatorial search techniques in the 
scheduling engine, we can replace the setting of priority 
weights with the direct description of a complex objective. 
Thus, the administrator of the system can directly describe 
exactly what the goal is  and he/she does not have to tune a 
set of weights in an attempt to achieve this goal. 
Furthermore, the scheduling engine can be modified and 
replaced without changing any underlying mechanism. 
 The modeling part uses domain knowledge to collect and 
provide useful information to the scheduling engine. This 
component can be seen as (1) a information provider unit to 
the scheduling engine, helping to give an accuracy of user 
runtime estimate and a prediction of future arrivals; (2) a 
feedback unit to the scheduling engine, helping to improve 
decision making. Approaches from both queuing theory 
and machine learning will be explored in this research to 
build the modeling engine. Both approaches have shown 
some promising results in the past research (Smith, Taylor, 
and Foster 1998).  
 Two simplifying assumptions are made in this research: i) 
the environment is not distributed: the data and resources 
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Modeling engine 

Jobs 
submitted 

requirements 
scheduler 

Jobs 
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to be used by the job are available locally; and ii) the 
resource requirements are fixed throughout the lifetime of 
the job. Even though our current research focuses on the 
pure space slicing approach for non-preemptive 
scheduling, a slight modification to the objective that take 
into account the effects of resource location should enable 
our scheduling framework to fit for the distributed 
environment as well.  

Preliminary Results 
Our current focus is on exploring search engine design. An 
event-driven simulator is implemented in JAVA . The 
simulator is capable of handling both synthetic and real 
world traces. Several static ordering, Backfilling and 
systematic search methods have been implemented in the 
simulator, and preliminary experiments have been 
performed. Preliminary results of experiments with an 
objective with two conflicting components are shown. 
 Two components of the objective in this experiment are 
minimizing maximum wait-time and average bounded 
slowdown. Slowdown of a job is defined as the ratio of its 
response time and its duration. However, we use bounded 
slowdown (BSD) instead of slowdown because slowdown 
of a very short job can be very large which is not fair to the 
large jobs. To reduce the effects of very short jobs, we set 
the lower bound of job durations to be 10 minutes. The 
BSD of a job is defined as the ratio of its response time and 
the maximum value between its duration and 10 minutes.  
 The objective is defined as follows: schedule Si is better 
than schedule Sj if it has a smaller total excessive-wait-time.  
Ties are broken by average BSD. The wait-time bound used 
was 50 hours. The 50-hour wait-time bound was selected 
based on the nature of this workload. Number of 
processors was relaxed for estimating the goodness of each 
partial schedule in order to perform Branch-n-Bound.  
 These experimentations were performed on 9-monthly-
traces of NCSA-IA64 (see (Chiang and Fu 2005) for more 
details ). The job actual runtime was used but the estimated 
future arrival was not known. The arrival time of jobs were 
manipulated to achieve the load level of 0.9 on all months. 
Limited job duration from July 2003 to November 2003 was 
12 hours and 24 hours during the remaining of the year 
2004.  
 We compare our LDSBnB results with FCFS-Backfill and 
LXF-Backfill. FCFS-Backfill has a potential to preserve the 
fairness thus it tends to provide a small maximum wait-time 
since jobs are backfilled in the order of their arrival time. 
LXF-Backfill has a potential to minimize the average BSD 
since jobs are backfilled in the order of their BSD.  
 Figure 2 shows the performance of LDSBnB with FCFS-
Backfill and LXF backfill. According to the total-excessive-
wait metric, LDSBnB showed improvement over Backfilling 
policy except in February and January. However under the 
average waittime metric, LDSBnB showed improvement 
over FCFS-Backfill in both January and February 
workloads. Even though LDSBnB showed a slightly higher 

average BSD in July, the improvement in total-excessive-
wait metric was dramatic. Since the LDSBnB objective was 
defined in a hierarchical fashion, the average BSD metric 
was not considered as long as the total-excessive-wait of 
the current schedule was no better than that of the best 
schedule.  Thus, the comparable performance of LDSBnB in 
average BSD is actually an impressive accomplishment. 
 

 

 

 
Figure 2: Performance of Backfilling vs LDSBnB 

 
In conclusion, LDSBnB produces a compromised schedule 
such that (a) the total-excessive-wait-time is comparable or 
better than that of FCFS-Backfill and (b) the average BSD is 
comparable or better than that of LXF-Backfill.  
 At this point, we search for the cause of LDSBnB bad 
performance in January and February workloads. First, we 
consider the average queue length because reducing the 
average queue length results in the decreasing of the job 
wait-time. Figure 3 shows the average queue length of each 
policy. Even though our search method results in smaller 
average queue length, the average queue length of January 
is still large.  
 Second, we consider the decision points where there are 
a lot of jobs in the waiting queue. Figure 4 shows the ratio 
of decision points where the search can cover less than one 
percent of the search space. Approximately 80 percents of 
the time in February and January our search method cover 
less than one percent of the search space. These results 
confirm our suspicion that the search space may be very 
large and our search method may not cover enough space. 

ICAPS 2005

Doctoral Consortium 91



 The immediate future works are (1) exploring the pruning 
technique to cover more search space in limited time since 
the above results shows that cover more space lead to 
better schedules; (2) studying the sensitivity of hour 
bound used in the objective; (3) studying the effect of 
estimated job runtime because such information in the real 
world is always inaccurate. 

Figure 3: Average queue length of each policy 

Figure 4: Ratio of decision points when LDSBnB covers 
less than one percent of the search space 

Conclusions 
While space limitations preclude full discussion of these 
results, they have been highly promising.  Experiments with 
an objective of two conflicting components have 
demonstrated that systematic search can outperform 
priority backfilling methods in achieving the overall 
objective. Works need to be done on more complex 
objectives involving Quality-of-Service, fairness and 
special priority. Then the experimentations on local search 
methods and the alternatives must be conducted. Finally, 
the modeling component of the system needs to be 
constructed. 
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Abstract

We show that the problems of planning and policy learning
can be addressed within a unified framework based on prob-
abilistic inference in graphical models. Planning is viewed as
probabilistic inference of an action sequence in a Dynamic
Bayesian Network (DBN), given an initial state and a de-
sired goal state. We describe how planning can be used to
bootstrap the learning of goal-dependent policies. In con-
trast to conventional planning and policy learning methods,
our approach does not require a reward or utility function,
although constraints such as shortest path to goal can be in-
corporated within the graphical model. More importantly, we
show that the approach extends easily to the challenging case
of partially observable states (e.g., POMDPs). The method’s
performance on a set of benchmark POMDP problems was
found to be comparable to or better than current state-of-the-
art POMDP algorithms.

1 Introduction
Two fundamental problems in AI are planning and policy
learning. Planning involves computing a sequence of ac-
tions that will take an agent from its current state to a desired
goal state. Classical planning techniques focused on deter-
ministic environments, allowing the problem to be formal-
ized as deduction (Green 1969). Satisfiability solvers can be
employed in such cases to efficiently compute the optimal
plan (Kautz and Selman 1992). However, in real-world do-
mains where the effects of actions are stochastic and noisy
(e.g., (Bonet and Geffner 2000)), agents need to be “reac-
tive” and choose actions based on current state. Consider-
able research has focused on learning “policies,” which pre-
scribe the optimal action to take in any given state so as to
maximize total future expected reward (Boutilier et al. 1999;
Sutton and Barto 1998). However, such algorithms do not
generalize easily to the case of partially observable MDPs
(POMDPs), where the state is not directly observable and
actions are computed based on probability distributions (or
“beliefs”) over states

In this paper, we show that the problems of planning and
policy learning can be solved in a unified manner using in-
ference in probabilistic graphical models. We demonstrate
the strength of the approach by applying it to the difficult

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

problem of planning in POMDPs. The main contributions
of this paper are: (1) An efficient method for planning under
uncertainty based on the most probable explanation (MPE)
of hidden variables in a graphical model (cf. (Attias 2003)),
(2) A planning-based method for learning optimal policies
that does not require an artificial reward structure to be im-
posed on the problem, (3) A new planning method for the
challenging case of partially observable MDPs (POMDPs)
Our approach opens the door to solving the problem of
planning in uncertain environments using powerful new al-
gorithms for exact and approximate inference in graphical
models, in much the same way as viewing the deterministic
planning problem as deduction paved the way for using sat-
isfiability solvers for efficient planning (Kautz and Selman
1992).

2 Graphical Models for Planning and Policy
Learning

Let ΩS be the set of states in the environment, ΩA the set of
all possible actions available to the agent, and ΩG the set of
possible goals (all finite). For the present paper, we assume
that goals represent states that the agent wants to reach, so
each goal g represents a target state Sg ∈ ΩS . At time t the
agent is in state St and executes action At. Gt represents the
current goal at time t. Executing the action At changes the
agent’s state in a stochastic manner given by the transition
probability P (St+1 | St, At), which is typically assumed to
be independent of t i.e., P (St+1 = s′ | St = s, At = a) =
τs′sa.

Starting from an initial state S1 = s and a desired goal
state G1 = g, the agent’s aim is to reach the goal state by
a series of actions A1:T , where T represents the maximum
number of time steps allowed (the “episode length”). Note
that we do not require T to be exactly equal to the shortest
path to the goal, just as an upper bound on the shortest path
length. We use capital letters (e.g., S, A) to denote variables
and lowercase letters (e.g., s, a) to denote specific instances.
Also, when obvious from context, we use s for St =s and a
for At =a, etc. The problem formulated above (for a given
goal) can be considered a special case of a Markov Decision
Process (MDP) (Boutilier et al. 1999) if we choose a suit-
able reward function. As in the case of MDPs, the strategy
to choose the optimal set of actions is critically dependent
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on the observability of the state. There exist three cases of
interest:

tF

tO

t+1G
tG

t+1F

t+1O

t+1A

t+1S

tA t+1A

t+1StS

tA

t+1A
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tA

tS

(c)

(b)(a)

Figure 1: Graphical Models: (a) The standard MDP (or
FOMDP) model. (b) The Non Observable MDP (NOMDP) model:
Dotted line represents a possible dependence between consecutive
actions. (c) The POMDP model (with goal and “finished” nodes)
used in this paper.

Fully Observable MDP (FOMDP or just MDP): The
state St is fully observed. The agent needs to compute a
stochastic policy π̂t(a | s, g) that maximizes the probability
P (ST+1 = Sg | St = s, Gt = g). The graphical model for
this case (ignoring goals) is shown in Fig. 1a.
Non Observable MDP (NOMDP): In this case, the state St

cannot be observed and the only information available to the
agent is the initial state. The agent thus needs to compute
an optimal plan, i.e.,a sequence of actions â1:T . We use the
algorithm in (Attias 2003) to compute the optimal plan for
NOMDPs.
Partially Observable MDP (POMDP): In this case, the
state St is hidden but it is possible to observe some aspects
of it where an (discrete) observation o is produced with the
probability P (Ot = o | St = s) = ζso. We extend the
POMDP model to include a goal variable Gt representing
the current goal and a boolean “reached” variable Ft, that
assumes the value 1 whenever the current state equals the
current goal state and 0 otherwise. These are used to infer
the shortest path to the goal state and demonstrate the poten-
tial extensibility using graphical models.
The Maze Domain: To illustrate the proposed approach, we
use the standard stochastic maze domain (Sutton and Barto
1998; Attias 2003) (Figure 2). There are five possible ac-
tions: up,down,left,right and stayput. Each ac-
tion takes the agent into the intended cell with a high proba-
bility and into the neighboring cells with probability η.

3 Planning and Plan Execution Strategies
In this section, we investigate solutions to the problem of
planning an action sequence given the general graphical
model in Fig. 1c. This is used to bootstrap policy learning.

For simplicity of exposition, we assume full observability
(ζso = δ(s, o)) in this section and generalize the solutions
for partial observability in section 5. We also assume that
the environment model τ is known (the problem of learning
τ is addressed in the next section). The problem of planning
can then be stated as follows: Given a goal state g, an initial
state s, and number of time steps T , what is the sequence
of actions â1:T that maximizes the probability of reaching
the goal state? The maximum a posteriori (MAP) action se-
quence is:

â1:T =argmax
a1:T

P (a1:T | S1 =s, ST+1 =Sg) (1)

Planning can thus be viewed as a probabilistic inference
problem over a Dynamic Bayesian Network (DBN) (Attias
2003). The exact solution to inference of a subset of hid-
den variables in a Bayesian Network is known to be NP-
complete (Cooper 1990). This problem is also a special case
of solving a NOMDP problem with a specific reward func-
tion, an NP-complete problem in its most general form (Pa-
padimitriou and Tsisiklis 1987). An efficient solution for
a specific case was proposed recently by (Attias 2003), but
the approach does not generalize easily to arbitrary graphi-
cal models.

We propose an alternate solution, namely, computing the
most probable explanation (MPE) for a graphical model,
given a set of known variables. This is a straightforward
inference problem computable using standard techniques
(such as the junction tree algorithm used for the results
in this paper) and generalizes easily to arbitrary dynamic
graphical models. When applied to the graphical model in
Fig. 1c, our proposal for planning amounts to computing:

ā1:T , s̄2:T+1, ḡ1:T , f̄1:T =

argmax P (a1:T , s2:T , g1:T , f1:T | s1, gT+1, FT+1 = 1) (2)
Note that there may exist cases where ā1:T 6= â1:T . How-
ever, the MPE-based plan is typically a very good approx-
imation to the MAP plan, is efficiently computable, and
provides flexibility by allowing arbitrary graphical models.
More importantly, the MPE-based plan can be used to learn
optimal policies whereas the MAP plan typically cannot.

The ”reached” variable Ft is used to compute the short-
est path to the goal. For P (a | g, s, r), we set the prior for
the stayput action to be very high when Ft = 1 and uni-
form otherwise.Thus, the stayput action is discouraged
unless the agent has reached the goal and hence MPE takes
the shortest path1. The success of a plan is very sensitive to
noise in the environment, A plan may fail when a single ac-
tion in the plan “fails” (results in an unexpected state). This
becomes more likely as plan length increases2 (see Fig. 2).

4 Policy Learning
As discussed above, in noisy environments, it is preferable
to execute actions based on the current state rather than only

1This can be used in any other domain also as one can always
add in a no-op action

2For a detailed comparison of MAP vs. MPE approach and
other action selection strategies (including greedy and why that
does not work) see (Verma and Rao 2005)
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Figure 2: Three Example Plans (Action Sequences) Computed
using the MPE Method. The plans are shown as colored lines
capturing the direction of actions. The numbers denote probability
of success of each plan.

the initial state. This requires a policy π̂(a | s, g), which
represents the probability for action a in state s when the
goal state to be reached is g. In this section, we describe
how the MPE-based plan-and-execute strategy can be used
to learn an optimal policy . We define optimality in terms
of reaching the goal using the shortest path. Note that the
optimal policy may differ from the prior P (a|s, g) which
would count all actions executed in state s for goal g, re-
gardless of whether the plan was successful.Also, the MAP
estimate (Eq. 1) of (Attias 2003) while providing the best
plan, would be unsuitable for learning policy. (See (Verma
and Rao 2005) for details.)

Algorithm 1 shows a planning-based method for learning
policies for an MDP (both τ and π are assumed unknown
and initialized to a prior distribution, e.g., uniform). To learn
an accurate τ , the algorithm is biased towards exploration of
the state space initially based on the parameter α (the “ex-
ploration probability”) decayed by γ.

Algorithm 1 Policy learning in an unknown environment
1: Initialize transition model τs′sa, policy π̂(a | s, g), α.
2: for iter = 1 to numTrials do
3: Choose random start location s1 based on prior P (s1).
4: Pick a goal g according to prior P (G1).
5: With probability α:
6: a1:T = Random action sequence.
7: Otherwise:
8: Compute MPE plan as in Eq.2 using τs′sa; a1:T = ā1:T

9: Execute a1:T and record observed states so

2:T+1.
10: Update τs′sa based on a1:T and so

1:T+1.
11: If the plan was successful, update policy π̂(a | s, g) using

a1:T and so

1:T+1.
12: α=α×γ
13: end for

Experiments and Results: We tested the above algorithm
in the maze domain with three goals and η = 0.02, α = 1
and γ = 0.98. Figure 3a shows the error in the learned
transition model and policy as a function of the number of
iterations of the algorithm. Error in τs′sa was defined as
the squared sum of differences between the learned and true
transition parameters. Error in the learned policy was de-
fined as the number of disagreements w.r.t. the optimal de-
terministic policy Both errors decrease to zero with increas-

ing number of iterations. The policy error decreases only
after the transition model error becomes significantly small
because without an accurate estimate of τ , the MPE plan is
typically incorrect . Fig. 3b shows the optimal policy learnt.
In separate experiments, we found the policies learned using
Algorithm 1 for different mazes and goal states to be identi-
cal to the optimal policies learned using Q-learning (Sutton
and Barto 1998) with a reward of +1 for the goal state and
-1 for other states.
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Figure 3: Learning Policies for an MDP and a POMDP: (a)
shows the error in the transition model and policy (b) The optimal
policy (c) and (d) show corresponding results for the policy in the
POMDP case.

5 Partial Observability
Algorithm 1 assumes that agent has access to the true state
of the environment. In case of partial observability problem
thus becomes a POMDP problem. We consider two cases:
Solving the Underlying MDP: In the case where the ob-
servations are strongly correlated , one can modify Al-
gorithm 1 as follows: (1) The MPE plan, ā1:T , is com-
puted based on observation O1 = o as evidence instead
of S1 = s in Eq.2. (2) The plan is executed to record
observations o2:T+1, which are then used to compute the
MPE estimate for the hidden states: s̄o

1:T+1
, ḡ1:T , f̄1:T+1 =

argmax P (s1:T+1, g1:T , f1:T+1 | o1:T+1, ā1:T , GT+1 = g).
The MPE estimate s̄o

1:T+1
is then used instead of so

1:T+1
to

update π̂ and τ . Note that it is the use of graphical models
that enables this relatively easy extension to POMDPs.
Experiments: We focused on learning π̂ for a POMDP ver-
sion of the maze task and assumed τ was given. We selected
P (ot | st) such that ot = st with probability 0.85 and one of
the nearby states otherwise. The results are shown in Fig. 3c
and d. The policy error decreases and reaches zero in spite
of perceptual ambiguity.
Planning in POMDPs using Beliefs: In case of heavy per-
ceptual aliasing, a plan based on an initial observation is
bound to fail in most cases. Also, the strategy of learning
the optimal policy for the underlying MDP does not work
well in many cases. Below, we propose a new algorithm for
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computing an optimal action at each time step based on the
current belief. To simplify the exposition, we do not include
the terms for Gt and Ft. As before, define:

ā1:T , ō1:T , s̄1:T =

argmax P (a1:T , o1:T , s1:T | o1:t, a1:t−1, ST+1 = Sg) (3)

Algorithm 2 A MPE-based POMDP Solution
1: Given: Initial obs o1 , desired goal state g and T .
2: Compute ā1:T , ō1:T+1 as in Eq.3 for t = 1
3: for t = 1 to T do
4: Execute āt to generate Ot+1 = ot+1.
5: if ot+1 6= ōt+1 then
6: Update ā1:T , ō1:T+1 as in Eq.3 for t + 1.
7: end if
8: end for

The algorithm above computes actions based on all cur-
rent and past observations and actions, and can handle non-
trivial perceptual aliasing. To evaluate our algorithm, we
ran it on a set of benchmarks maze problems introduced in
(Littman et al. 1995) which have been used to test POMDP
algorithms. The state spaces in these problems are reason-
ably large (57 and 89 respectively). The results3 are shown
in Table 1. As can be seen, our algorithm outperforms the
QMDP algorithm (Littman et al. 1995) and PBVI4 (Pineau
et al. 2003) which is an anytime algorithm for solving
POMDP using point-based value iteration. It matches the
performance of HSVI (Smith and Simmons 2004) which
solves the POMDP using heuristic search value iteration.

Domain Q-MDP PBVI HSVI MPE
Hallway 47.4 96 100 100

Hallway2 25.9 98 100 100

Table 1: Comparison with other POMDP algorithms on
Benchmarks: The numbers denote the percentage of times
goal was reached starting from a location chosen randomly.

6 Conclusions
This paper proposes the use of graphical models for address-
ing the problems of planning, policy learning, goal infer-
ence, and imitation within a single unified framework. A
major advantage of the proposed approach is its ability to
handle partial information, especially the challenging case
of POMDPs. We showed that the method achieves results
comparable to or better than some well-known algorithms
for POMDPs in a set of benchmark problems with reason-
ably large state spaces and perceptual aliasing.

Our approach builds on the proposals of several previous
researchers. It extends the approach of (Attias 2003) from

3We ran the experiments as 251 runs with T set to 251 as in
(Littman et al. 1995). The non-MPE results are taken from (Smith
and Simmons 2004).

4PBVI trades-off performance for speed.

planning in a traditional state-action Markov model to a full-
fledged graphical model involving states, actions, and goals
with edges for capturing conditional distributions denoting
policies. The indicator variable Ft used in our approach is
similar to the ones used in some hierarchical DBNs but these
these papers do not address the issue of action selection or
planning.

Although our initial results are encouraging, several im-
portant questions remain. First, how well does the proposed
approach scale to MDP and POMDP problems with larger
numbers of states and actions? For larger state spaces, we in-
tend to explore hierarchical extensions of the current model,
potentially allowing planning at multiple time scales and
policy learning at multiple levels of abstraction. Another
line of research actively being pursued is the investigation of
graphical models for continuous state and/or action spaces.
Clearly, applications such as controlling a robotic arm or
maintaining balance in a biped robot are better expressed in
the continuous domain. We expect the insights gained from
the current discrete state space model to be extremely help-
ful in formulating graphical models for planning and policy
learning in continuous state spaces.
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Quality is an important dimension of operational excel-
lence in many sectors, including news reporting, healthcare,
intelligence gathering, new product research and develop-
ment. Achieving high quality while controlling for costs
is a major challenge for managers. Traditional research
in scheduling and resource management tends to focus on
the time-based performance measure such as makespan or
weighted tardiness, while the objective of maximizing the
quality of the outputs (or products) of scheduled processes
is typically ignored. This is because quality is hard to de-
fine scientifically and quantitatively. Its definition highly
depends on the problem context.

Instead of dealing with quality in general, our research
focuses on duration-dependant quality, that is, quality is
an increasing function of task duration. The optimization
problem is solved by integrating artificial intelligence tech-
niques(specifically, heuristic-guided constraint-based meth-
ods) and operations research. The broad goal of our re-
search is to understand the connections and differences be-
tween this quality-based resource management and tradi-
tional time-based resource management.

In the sections below we summarize our work to date in
this area and the set of research issues we are currently pur-
suing.

Previous Work
Our previous work (Wang & Smith 2004; 2005) explores a
type of scheduling problem where each task is associated
with a duration-dependent quality profile. In that problem,
task durations must be determined to maximize overall qual-
ity while respecting process deadlines and resource capac-
ity constraints. We develop and empirically evaluate a new
precedence constraint posting (PCP) algorithm(as shown in
Fig. 1), along with a number of search control heuristics for
solving this class of problems. Our PCP algorithm incor-
porates linear optimization to set activity durations at each
step, and search control heuristics direct the search toward
resource feasibility. Overall, the experimental analysis in-
dicates that a good heuristic must strike the right balance
between minimizing quality loss at each step and retaining
flexibility for future duration reduction.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.
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Figure 1: The Precedence Constraint Posting Framework

Ongoing Work
From the above work, we have seen it is hard to balance
the quality loss in each constraint posting step and retaining
flexibility for achieving resource feasibility. An alternative
way to solve this scheduling problem is to separate the two
aspects of the problem: find a resource feasible solution first
and then achieve good quality.

To explore the potential advantages of this approach, we
extend the two-step procedure of generating robust schedule
(Cesta, Oddi, & Smith 1998; 2000; Policellaet al. 2004).
The solution framework is shown in Fig. 2. In the first step,
we use the Earliest Start Time Algorithm(ESTA) to find a
resource feasible solution assuming all activities have min-
imum durations. Then we take all the posted constraints
away and post chaining constraints to link activities com-
peting for the same resource into precedence chains. Fi-
nally, a linear programming solver is called to determine
the durations in order to maximize the quality. After this
last step, the resulting schedule is still resource feasible be-
cause chaining has established consistent sequences of ac-
tivities, no matter how their durations are changed. ESTA
is not a complete algorithm. If it can’t find a resource fea-
sible solution, the algorithm will return failure. We refer
to this extended two step approach as theSeparated Algo-
rithm. And we call the previous algorithm theIntegrated
Algorithm. The ongoing work includes:

Algorithm Performance Analysis and Comparison
Initial experimental results have shown that the Integrated
Algorithm achieves better quality when the resource capac-
ity is large while the Separated Algorithm achieves better
quality when resource capacity is small. The Separated Al-
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Figure 2: The Two Step Procedure

gorithm does a better job of finding feasible solutions. From
this, we can see the Integrated Algorithm suffers more from
the resource levelling process than the Separated Algorithm.

The explanation could be the Integrated Algorithm has the
pathological behavior of posting unnecessary levelling con-
straints. The negative effect on quality becomes more ob-
vious when it is applied to problems with smaller capacity.
One goal of our current research is to establish this hypoth-
esis, through both experimental and analytical results.

The Earliest Start Time Algorithm(ESTA) (Cesta, Oddi,
& Smith 1998)has been shown to perform very well in
make-span based scheduling problems. But it is somewhat
surprising that it works well in the quality-based schedul-
ing problems. From intuition, it shouldn’t because it doesn’t
consider quality-related information. What is the perfor-
mance of ESTA under quality-centered scheduling environ-
ment and how can we improve it? Those are the research
questions in our current work.

Search Control with the Realtime Network
Structural Information

Another focus of our work is the design of scheduling al-
gorithms based on the information of the current network
structure. We have already partially implemented this idea
(Wang & Smith 2005). The central concept in the heuristics
we define is use of a measure that combines an activity’s
reducible durationwith its quality profile as a basis for de-
termining how to resolve resource conflicts. This concept is
found to yield heuristics that exhibit superior performance.
Reducible durationis defined as the difference between cur-
rent duration and minimum duration, which is actually the
realtime network information. What if other more complex

network structural information is considered during search,
such as the path length, the size of an activity’s succes-
sor(predecessor) set?

In the meanwhile, we need to define new measures for
quality-centered networks. For example, how can we com-
pare one network with the other in terms of the potential
to achieve good quality? Some existing measures in robust
scheduling literature provide us with a good start point.

Incremental Algorithm for Dynamic Scheduling
Problems
The real world is dynamic. Many new tasks will arrive with
different resource requirements and different quality returns.
Acceptance decisions and duration decisions(if this activity
is accepted) must be made correctly and promptly. Under
such a fast-changing situation, incremental scheduling al-
gorithms become natural alternatives, both to speed up the
scheduling and rescheduling process and to hedge against
possibility of future higher quality tasks. The design of in-
cremental quality-based scheduling algorithms is another re-
search objective.

More Complex Quality-Centric Scheduling
Problems
A final goal of our current research is to extend our frame-
work to solve and analyze more complex quality-centric
scheduling problems. In our previous work, the only depen-
dencies among activities are precedence relationships. Qual-
ity dependencies, which imply that one activity’s output may
influence it’s successors’ quality profiles, are more realistic.
In that case, instead of a simple summation form, the objec-
tive will be a more complex function. We have assumed in
our previous work that the expected quality of activities can
be expressed by linear profiles. Actually, with little change,
our solution procedure can be applied to piece-wise linear
profiles, although the development of good heuristics for the
extended problem remains an important open question. Pro-
file information can also be associated with resources. This
latter extension allows for the possibility of differentiating
the skill level of different resources.
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Introduction 
Among population-based heuristics, Particle Swarm 
Optimization (PSO) algorithm (Kennedy and Eberhart 
1995; Shi and Eberhart 1998) receives more and more 
attentions for its efficient information flow efficiency and 
convergence performance. However, most applications of 
PSO algorithms aim at unconstrained optimization 
problems. For constrained engineering optimization, the 
generic approach simply combines it with penalty function 
strategy. However, it was investigated that simple penalty 
function strategy cannot be well integrated with PSO 
algorithms because it does not consider the historical 
memory information-an essential mechanism of PSO 
heuristic. A new generic constraints handling strategy that 
complies with the optimization mechanism of PSO is 
proposed. In addition, local search procedure is hybridized 
with PSO to intensify its search ability in specific 
promising regions and thus hybrid PSO model for 
constrained planning is put forward. To demonstrate its 
efficiency, a few applications have been reported on 
engineering problems such as cutting parameters selection, 
tolerance allocation, economic load dispatch and 
constrained layout planning. Experimental results validate 
the effectiveness of HPSO model for constrained planning 
problems. 

HPSO Model for Constrained Planning 
Real-world problems especially the engineering 
optimization problems contain many complex practical 
constraints and can be formulated as difficult nonlinear 
programming mathematical models. The methods for 
solving this kind of problems include traditional 
operational research methods (such as linear programming, 
quadratic programming, dynamic programming, gradient 
methods and Lagrangian relaxation approaches) and 
modern heuristic methods (such as artificial neural 
networks, simulated annealing and evolutionary 
algorithms). Some of these methods are successful in 
locating the optimal solution, but they are usually slow in 
convergence and require much computational cost. Some 
other methods may risk being trapped to a local optimum 
that is the problem of premature convergence. In view of 
the above analysis and the successful applications of PSO 
in nonlinear continuous optimization, maybe PSO is a 
potential remedy to these drawbacks. PSO is a novel 
optimization tool based on swarm intelligence, which 
utilizes the swarm intelligence generated by the 

cooperation and competition between the particles in a 
swarm. Compared with evolutionary algorithms (genetic 
algorithm, evolutionary programming, evolutionary 
strategy, and genetic programming), PSO maintains the 
population based global search strategy but adopts the 
velocity-displacement model with more efficient 
information flow and easier implementation procedures. 

However, the applications of PSO are mainly focused on 
unconstrained optimization problems. Some researchers 
attempt to solve the constrained problems using traditional 
penalty function strategy. Penalty function is an effective 
constraint-handling tool for constrained optimization 
problems. It is also the most popular strategy for its 
simplicity and ease of implementation. Nevertheless, since 
the penalty function approach is generic and applicable to 
any type of constraint, the performance of the 
corresponding algorithms depend much on the dedicated 
design of penalty parameters (Carlos 2002). Especially 
when the problems are difficult and the imposed 
constrained conditions become more complex, this method 
usually fails to generate the constrained optimum solution, 
sometimes even cannot achieve a feasible one. This paper 
analyzes the underlying limitations of simple combination 
of PSO and penalty function strategy. Unfair competition 
exists in the swarm population under dynamic and adaptive 
penalty coefficients. This problem is obvious in that PSO 
has an inherent mechanism based on memory information. 
This mechanism has contributed much to high efficiency 
and effectiveness of PSO algorithm, but also lead to low 
flexibility for constrained optimization. That is, the penalty 
parameters cannot be changed during the iteration. The 
effectiveness of this strategy has been validated 
(Kalyanmoy 2000). Thus, the most difficult aspect of 
finding appropriate penalty parameters to guide the search 
towards the constrained optimum can be avoided. It is 
desirable to design a new generic constraint-handling 
scheme suitable for PSO and maintain high convergence 
efficiency. Integrating the memory mechanism of PSO 
with the penalty strategy, the proposed constraint-handling 
scheme is presented in Figure 1.  

The core characteristics of the proposed strategy can be 
described as follows: 

1) Corresponding to the memory mechanism of PSO, a 
special notation-Particle has been Feasible (PF) is 
introduced, which is used to record whether the 
current particle has ever satisfied all the constraint 
conditions. This notation preserves historical 
constraint status for each particle.  
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2) Each particle updates its individual best and 
neighborhood best according to the historical 
constraint information PF, the current constrain 
status (Current particle is Feasible, CF) and the 
objective function with the penalty term.  

3) The algorithm selects the velocity updating strategy 
according to the historical information by PF.  

4) When updating the personal and neighborhood best, 
the algorithm adopts the static penalty strategy 
instead of dynamic and adaptive ones to guarantee 
the fairness. The detailed procedure for updating the 
personal and neighborhood best values based on the 
above constrain handling strategy is presented in 
Figure1. 

For Each Particle { 
  If PF＝true Then 
    If  and CF= true Then ( ) ( )f x f pi ≤ i
      ＝ip xi  
      If  Then ( ) ( )f p f li ≤ i
        ＝  i

      End if 
p il

    End if 
  Else if PF＝false Then 
    If CF＝ true Then 
      ＝ip xi  
      PF＝true 
      If  Then ( ) ( )f p f li ≤ i

i

        ＝  ip il
      End if 
    Else if  Then ( ) ( )f x f pi ≤

      ＝ip xi  
    End if 
  End if 

Figure 1: The constraint handling strategy for PSO. 

Special attention should be paid that the PSO algorithm 
based on the proposed constraint handling strategy does 
not have to guarantee the existence of feasible solutions in 
the initial population. With the randomized initial velocity, 
the PSO itself has the ability to explore the feasible space. 
In addition, the penalty function imposed on the violated 
particles also direct the search of PSO towards the feasible 
region. Therefore once feasible solutions emerge in the 
neighborhood population, the neighborhood best will be 
preserved in the subsequent iteration procedure. According 
to the velocity updating formula, each particle will obtain 
updating information from its neighborhood best particle, 
so the corresponding particle would return to the feasible 
solution space immediately. 

initialization

evaluate the particles

update pi and li of each particle
according to the constrain

handing strategy

update the velocity and
displacement of each particle

end

yes

no

begin

set paremeters

best solution

PSO

local serach

optimum satisfy the terminated
condition

 
Figure 2: Framework of the proposed Hybrid PSO model. 

Based on the constraint handling strategy presented in 
Figure 1, PSO can converge quickly to the optimal or near 
optimal region for constrained planning problems. 
However, despite its superior global search ability, PSO 
fails to meet the high expectation that theory predicts for 
the quality of the solution and search efficiency. As widely 
accepted that PSO is capable of identifying the region that 
contains possible optimum or near optimum solutions, but 
due to the lack of refined search in the local region, the 
convergence process is too slow to find the satisfactory 
solution with high precision within reasonable 
computational time. Considering the above limitation, a 
local search procedure such as direct search or simplex is 
introduced in the latter procedure to improve the 
convergence speed and the solution quality. That is, once 
the poetical region is identified by PSO, the hybrid PSO 
model will start a local search procedure. The 
corresponding procedure of hybrid PSO model can be 
summarized in Figure 2. 

Experimental results 
We use HPSO model based algorithms under proposed 
constraint handling strategy and local search procedure 
that includes direct search or simplex (Chun-Lung and 
Nanming 2001; Nelder and Mead 1965) to solve some 
constrained planning problems. Firstly, we choose some 
complex benchmarks to examine the efficiency of the 
proposed constraint handling method. It is supposed that 
the successful applications on benchmarking problems will 
reveal the potential in more complex problems with strong 
engineering background. Fortunately, the results on the 
benchmarks reached the positive conclusion. To further 
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investigate its performance, several engineering problems 
such as cutting parameters selection, tolerance allocation, 
economic load dispatch, and constrained layout planning 
are tested in the order of complexity level, with the number 
constraints from 2 to 980.  

Here we just took the constrained layout planning 
problem as an example to demonstrate the performance of 
HPSO. In this problem, the layout to be optimized is 
required to satisfy the following three constraints: (1) 
capacity constraints, (2) non-overlap constraints, (3) static 
non equilibrium constraints. The distance between the 
center of the baseboard and centroid of all the pieces 
should be minimized or the error of the whole system 
should not exceed a permissible value. A great deal of 
work devoted to the layout planning problems has been 
done for many years because of its great significance in 
both theory and economy. The mathematical model and the 
corresponding instances can be referred to (Tang and Teng 
1999). The objective is to minimize the radius of the circle 
whose origin coincides with the center of the vessel, and to 
minimize the circle that can encloses all the objects. The 
constraints have been listed in the above reference, the 
complexity of which significantly depends on the number 
of object. Here we referred two instances to demonstrate 
the efficiency of the proposed algorithm. In the instances, 
the radius of the round container equals to 50mm in the 7 
objects instance and 880mm in the 40 objects one 
respectively. 

Table 1: Computational results of case 1 (7 objects). 

Algorithms Maximum 
Radius (mm) 

Non 
Equilibrium  

(g.mm) 
CPU Time(s)

PSO+LS 32.230 7.04E-05 9.545 
PSO 32.308 8.95E-05 13.439 

Multiplier 32.559 7.87E-07 31.515 
GA 32.837 0.102 288.010 

HCIGA 32.662 0.029 166.332 
 

Table 2: Computational results of case 2 (40 objects). 

Algorithms Maximum 
Radius (mm) 

Non 
equilibrium  

(g.mm) 

CPU Time 
(s) 

PSO+LS 811.806 0.002 187.283 
PSO 812.311 0.005 267.694 

Multiplier 869.750 2.32E-05 304.422 
GA 874.830 11.395 274.896 

HCIGA 870.331 0.006 225.428 
 

 

(a) Planning results of HPSO for case 1. 

 

(b) Planning results of Multiplier for case 1. 

 
 

 

(c) Planning results of HPSO for case 2. 
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(d) Planning results of Multiplier for cases 2. 

Figure 3: Planning generated by HPSO and Multiplier. 

Table 1 lists the statistical results achieved by the 
representative approaches, that is HPSO, traditional PSO, 
Multiplier, Hybrid GA and a Human-Computer interactive 
GA. The above four figures depict the optimized layout 
planning status. From the data in the tables and the 
corresponding figures, the maximum radius obtained by 
HPSO is much smaller than by the other approaches, 
which leads to the significantly space saving for this 
problem and thus the computational expense saving for the 
algorithm. Due to its delicate process, the Multiplier is 
slightly better than HPSO in terms of non equilibrium, but 
the corresponding results achieved by HPSO are good 
enough. In addition, the computational expense of the 
HPSO is much lower, which will reveal significant 
advantages in the lager scale problems. 

Conclusion and future directions  
In view of the memory mechanism of PSO, a new generic 
constraints handling strategy suitable for PSO is presented 
in this paper for constrained planning problems. This new 
strategy can adequately utilize the historical information in 
PSO algorithm. 

To intensify the refined search ability, local search 
procedure is employed and hybridized with PSO model. 
Based on the constraints handling strategy proposed and 
local search procedure, the HPSO model is proposed for 
nonlinear constrained planning problems including 
standard benchmarks and several engineering problems. 
The computational results verify its effectiveness in terms 
of solution quality, computational cost as well as the 
convergence stability.  

However, when we attempt to extend the proposed 
approach to the constrained optimization with large 
number of complex equality constraints, subtle drawbacks 
emerged, as the constrained make the feasible regions so 
narrow that the equality constraints are hard to met with 
high standard. This problem reveals the research direction 

that is the effective equality constraint handling strategy 
desirable for PSO based heuristic. Furthermore, more 
powerful local search methods should be introduced to 
improve its refined search ability. In view of the successful 
applications in the constrained planning problems 
especially those engineering ones, PSO can be considered 
as a generic constraint planning method, and thus could be 
applied to any engineering planning problems that can be 
modeled as nonlinear programming problems. 
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The general framework of the thesis is a mission specified
in terms of objectives: agents are operated in order to carry
out the mission and they are hierarchically organised in a
team. This thesis aims at formalising the relationship be-
tween the team plan and individual agents’ plans and the re-
planning process through the use of Petri nets (PN) (Bonnet-
Torrès & Tessier 2005a; 2005b).

Related Work
In the wake ofHTN, Groszet al. (Grosz & Kraus 1996) base
theSharedPlanapproach on the hierarchical decomposition
of shared plans into a sequence of recipes to be applied by a
team of agents. Their work also inherits from the logics of
beliefs and intentions (Cohen & Levesque 1990). Tambeet
al. (Tambe 1997) have focused in STEAM on reactive team
behaviour based on rules. Van der Krogt (van der Krogt &
de Weerdt 2004) identifies two effects in the repair process:
removing actions from the plan and adding actions. More-
over the representation of the plan itself tends to make use of
the automata theory and the Petri net formalism (Chanthery,
Barbier, & Farges 2004).

Mission, Goals and Agenticity
The objectiveof the mission is decomposed into a hierar-
chy of goals to be carried out. The leaves in the hierarchy
areelementary goalsandrecipesgive courses of actions for
achieving them. Several recipes may be available for the
same elementary goal. Agents’ resources are modelled by
coloured Petri nets. The team plan is extracted by organis-
ing a subset of recipes using constraint programming. The
plan is attached a possible organisation of the team.

Since a group of closely interacting agents can be con-
sidered as an agent in itself, a team of agents is equivalent
to a composite agent. This agent bears anagenticity hierar-
chy, whose leaves are elementary agents and whose nodes
are subteams,i.e. composite agents. Each node has for chil-
dren nodes the agents that compose the subteam it repre-
sents. There is no requirement that an individual agent be
represented only once.

More formally the teamX is composed of hierarchi-
cally organised elementary agents{x1, x2, . . . , xn}. Let

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

A = {a1, a2, . . . , am} be the set of agents inX . The agen-
ticity of agentai with regards to any subteamaj , ai ⊂ aj

(includingX) is its depth in the hierarchyHaj
whose root

is the considered subteam (fig. 1).
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Figure 1: Hierarchy of agenticity

Team Plan
The team plan is designed in terms of a detailed sequence
of tasks, represented as a coloured Petri net (CPN) (Jensen
1997) (see fig. 2). The set of token colours is the set of ele-
mentary agents. Each reachable markingM represents the
allocation of the agents to the corresponding recipes. Petri
net analysis can be performed through the use of the inci-
dence matrixA (Murata 1989).A represents the relations
between places and transitions, namely the arcs. The team
plan bears some typical structures that can be identified as
modifications of the team organisation, which allow to hier-
archise the plan. The plan is then projected on the elemen-
tary agents.

Construction

During mission preparation a set of recipes that allow to
achieve – maybe in a number of fashions – each of the ele-
mentary goals is defined by the (human) mission manager.
A recipe is a piece of PN consisting in a single place. It is
associated to a subnet that organises primitive actions so as
to achieve one elementary goal. It specifies what resources
are needed, how to use them and what the predicted duration
for completion is. The other assumptions of the model are:
(1) the elementary goals may come along with a completion
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Figure 3. Execution control PN

α

β

γ
δ

ε

**
** *
***

ρ

µ
ν

λ

κ

η

*+2
+

*+2
+

*

4

4

+2
+2
+2

*+2
+2
+2

+

* +2*

+2*

+2*

+3*

3

3

*+3

*+3

+2

+   +2 *+   +2

*+2
+

*+2 *

*+3

*+2
+

*+2
+

Figure 5: An agent viewed as a collection of resources.(Each
type of symbol is a colour; greek letters designate the resources.)

time requirement or a mutual temporal precedence specifi-
cation;(2) the (heterogeneous) agents can be regarded as re-
source aggregates managed byCPNs (fig. 5). Each colour
represents a mutual exclusion constraint relation betweena
number of resources within the considered agent.

The team plan is a solution of a constrained problem:
knowing that resources may have mutual exclusion con-
straints within each agent and that several recipes are avail-
able to perform each elementary goal, the construction pro-
cess output is a team plan,i.e. a partial preorder on the goals
that respects their constraints. Each goal is performed ac-
cording to a recipe that is attached some agents so that both
agent-internal constraints (resource exclusion) and external
constraints (resource requirements for each recipe and time

specifications) are satisfied. The problem is currently under
investigation with two main leads:
• a resolution through constraint satisfaction/optimisation;
• a resolution with heuristics derived from theopen shop

scheduling framework.

Reduction
Representing a team plan as a hierarchical Petri net (HPN)
allows for more flexibility thanCPN and helps incorporat-
ing hierarchical information. The net is therefore abstracted
so as to represent the activities at each level of agenticity.
To build this information we extend the ordinary Petri net
reduction rules according to the semantics of basic team
management structures, namelyarrival or withdrawal of an
agent, createor merge two subteams, transfer agents be-
tween subteamsand choose a possible course of actions.
The CPN is decoloured and the agent information is trans-
ferred to the places. The reduction rules are iteratively ap-
plied until the net is reduced to a single place. The tokens
within the HPN only represent activities. The hierarchy is
born by the structure of theHPN (fig. 6). The algorithm is
traced back so that each reduction place is hierarchically un-
folded. The resulting plan then consists in aHPN whose lev-
els correspond to the levels of agenticity in the agent team.
Each place develops into a subnet of higher agenticity whose
places hold the agent(s) performing the activity correspond-
ing to the marking. Hence each reachable markingM cor-
responds to an agenticity hierarchyHX(M) of the whole
teamX . The Petri net in figure 2 in fact corresponds to the
detailed global planbuilt from the leaf-places of the hierar-
chical team plan of figure 6.

Projection
The hierarchical structure of the team plan allows the agents’
individual plans to be derived. In the detailed global plan,
the plan of agentai consists of the sequence of places where
ai appears and all levels above. The corresponding activities
all involve ai or its ancestors in the agenticity hierarchies.
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The projection of the team plan on an agentai consists in
isolating the places of the corresponding level of agentic-
ity in which ai is involved and extracting the hierarchies of
places and agenticity associated to the places (fig. 7). This
definition extends the projection operator in coloured Petri
nets to hierarchical nets. In the detailed global plan (fig. 2)
the projection onai prunes the branches of the Petri net that
are not labelled byai. It results in an individual plan forai.

Plan Execution
A General Overview
Another Petri net models the execution control (fig. 3). The
controller is the same for all agents at any level of agen-
ticity including for the team itself. An abstract instance of
the controller is considered during mission design and mon-
itoring. It is distributed on the team when the mission is
performed. Before the mission begins an initial planning
phase (first place in the PN on figure 3) is performed: the
plan is prepared out of the set of recipes, then reduced and
projected onto individual agents, as mentioned in the previ-
ous section. Then the plan is executed. At the occurrence of
an unexpected event a replanning step is triggered. At that
time a reaction is deployed in the form of a contingency plan
while the system goes under diagnosis. When the failure is
located the plan is repaired as locally as possible. Once the
new plan is elaborated an adjusting step is required to en-
sure a smooth switching between the contingency plan and
normal execution of the new plan.

More Details on Replanning
During plan execution an unexpected event may be detected.
Some of these events, usually the most probable or the most
critical, are foreseeable and hence taken care of thanks to
alternate plans. For the others they are not directly distin-
guishable: only their effects are detectable. For instanceno
answer (i.e. a timeout) to a communication request may de-
note either a malfunction of the sender’s or recipient’s com-
munication systems, on either the emit or the receive circuit.
It may as well correspond to the withdrawal of the unanswer-
ing agent from the team. A timeout for an expected action
may denote a failing communication link (that prevented a
synchronisation), a withdrawal from the team or an obstacle
to the realisation of the task. These events may therefore be
categorised according to their indirect characteristics.For
each category or foreseen event a generic adapted reaction
is stored: a contingency plan that has to be instantiated ac-
cording to the features of the situation,e.g. which agent(s)
is(are) in trouble and which is(are) impacted.

At the same time some agents or resources may not be
available any more. This results in some new constraints
on the remaining recipes. The plan is repaired by applying
the planning process locally. Locality is ensured in tryingto
solve the problem at the lowest possible level in the agentic-
ity hierarchy. The plan repair consists in replacing the failing
recipe by another recipe or subset of recipes that realise the
same goal. The subsequent activities may be modified so as
to respect the constraints. If this fails it is necessary to in-
volve other parts of the initial plan in the repair in ascending

the agenticity hierarchy. One can notice that, as far as some
subteams are concerned, there exists a discontinuity between
the already-executed part of the plan and the new plan at the
repaired level, but not at the above levels in the hierarchy.

When the repaired plan is constituted the current state of
the team may not correspond to the initial state of the re-
paired plan. An adjustment is then necessary. Two possi-
bilities have been identified: either the beginning of the new
plan is appended a dispatch phase that will be suited to the
expected end point of the reaction plan or the contingency
plan is interrupted and the dispatch is organised from that
point. In both cases the transition to standard mission exe-
cution is smooth.

Conclusion
In the context of teams of robots, this approach may aims
at dynamically responding to an unexpected event, such as
a failure or an external action, at a relevant level. Current
works concern the reallocation problem in the repair. An
identified difficulty is to avoid global repairs that involve
the whole team: the repair must be attempted at the low-
est agenticity level (recipe level) so as to ensure its locality;
if unsuccessful the next level is considered. The midterm
objective is the development of EΛAIA, a Petri net-based
decision architecture for local replanning within the team.
Experiments are prepared in order to validate the principles
with a team ofPeKeerobots at Supaero. The envisioned ap-
plications concern the implementation of cooperative robots
for missions ranging from search and rescue operations to
military UAV /robot team operation.
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