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System Demonstrations

Preface

Following a well established tradition, ICAPS 2005 involves a System Demonstra-
tions (SD) session being rich of interesting presentations. This year’s SD program com-
prises eight demonstrations, mainly focusing on space and satellite applications, but
also covering training, crisis management, mixed-initiative planning, web service com-
position and new planning algorithms.

In particular, Daniel Tran and his colleagues present the Autonomous Sciencecraft
Experiment (ASE), currently flying onboard the Earth Observing-1 (EO-1) spacecraft.
They demonstrate the potential for future space missions to use onboard decision ma-
king to respond autonomously to capture short-lived science phenomena. Their de-
monstration will include a live ASE contact from EO-1, as well as a full autonomous
science scenario, during which ASE will command (a simulated) EO-1 to image science
targets, process and analyze data and re-plan operations based on science results.

John Jaap and Patrick Meyer present Nexus, a P&S system supporting comprehen-
sive modeling of tasks and resources, multi-user environment, remote/distributed ac-
cess and incremental scheduling. Nexus aims at being a new P&S paradigm used di-
rectly by the end-users to produce their own timelines, e.g. by astronauts in space to
schedule their own activities.

Ari Jonsson and his colleagues present MAPGEN, a mixed initiative activity plan
generation system that is used in the Mars Exploration Rover mission surface operations
to build activity plans for each of the rovers, each Martian day. The system supports
activity plan editing and resource modeling together with an advanced constraint-based
reasoning and planning module that supports building plans in an interactive fashion.
The demo will show how the system has been used for actual Mars rover operations.

Tania Bedrax-Weiss and her colleagues present EUROPA2, an expressive and reu-
sable platform that provides plan database services for building P&S systems. EURO-
PA2 treats planning as a dynamic constraint satisfaction problem, by incrementally ad-
ding constraints and variables as actions are selected to be in the plan. EUROPA2 has
been used in LORAX, an ASTEP project concerning microbial sampling in an Antarc-
tic Glacier, whereas it is currently used in another project concerning advanced robotic
capabilities in the field.

Froduald Kabanza and his colleagues present Roman Tutor, a system aiming at
teaching astronauts how to operate a robot manipulator deployed on the International
Space Station. Operators must rely on cameras mounted on the manipulator and at
strategic places of the environment where it operates. Roman Tutor uses a robot path-
planner to automatically check errors of a student learning to operate the manipulator
and to automatically produce illustrations of good and bad motions in training.

Marco Pistore and his colleagues present ASTRO, a set of tools that extend exis-
ting platforms for web service design and execution with automated composition and
execution monitoring functionalities. ASTRO extends the Active WebFlow platform, a
commercial tool for designing and developing BPEL4WS processes. The demo con-
sists of a set of steps corresponding to the execution of service compositions and a
monitor synthesis task.

Luis Castillio and his colleagues present SIADEX, an integrated framework to sup-
port decision making during crisis episodes, by providing realistic temporally annotated
plans. SIADEX implements a forward state-based HTN temporal planner and a know-
ledge base in Protégé format. It also makes intensive use of web services to implement
most of its capabilities, thus allowing accessing them from any device with internet con-
nectivity.



Finally, Yixin Chen and his colleagues demonstrate SGPlan, a PDDL2.2 planner
working by partitioning problem constraints by their subgoals into multiple subsets, sol-
ving each subproblem individually and resolving inconsistent global constraints across
subproblems based on a penalty formulation. SGPlan won the first prize in the subop-
timal metric track and a second prize in the suboptimal propositional track in the 4th
International Planning Competition, 2004.

Before closing this quick introduction to this year’s demonstrations, I have to thank all
presenters for the time they have invested to make this event successful. I hope that this
quick introduction has excited your interest in having a more thorough look at the short
papers that follow in this booklet, and, furthermore, in attending the live demonstrations
that promise to be fascinating. The presenters and I will wait you there!

Organizer

Ioannis Refanidis, University of Macedonia, GREECE
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Abstract 
The Autonomous Sciencecraft Experiment (ASE), currently 
flying onboard the Earth Observing-1 (EO-1) spacecraft, 
integrates several autonomy software technologies enabling 
autonomous science analysis and mission planning.  The 
experiment demonstrates the potential for future space 
missions to use onboard decision-making to respond 
autonomously to capture short-lived science phenomena.  
The software demonstration will consist of two sections: a 
real-time display of an ASE-commanded ground contact 
from the EO-1 spacecraft, and a simulation of the full ASE 
autonomous science-response scenario. 

Introduction   
The Autonomous Sciencecraft Experiment (ASE) [Chien et 
al., 2004] is currently flying onboard NASA’s Earth 
Observing-1 (EO-1) spacecraft.  Uploaded in the Fall of 
2003, ASE has successfully commanded EO-1 operations 
and enabled autonomous retargeting to capture dynamic 
science events.  ASE has currently collected over 1500 
scenes and executed over 150 ambitious science-response 
scenarios.  The ASE onboard flight software includes 
several autonomy components: 
 

1. Onboard science processing algorithms.  Science 
analysis algorithms process onboard image data to 
detect science events and suggest reactions to 
maximize science return. 

2. Onboard planning and scheduling software.  The 
Continuous Activity Scheduling Planning Execution 
and Replanning (CASPER) [Chien et al., 2000] 
system generates mission operations plans from 
goals uplinked by the EO-1 Science Team or 
inserted by the onboard science analysis module. 
The model-based planning algorithms enable rapid 
response to a wide range of operations scenarios 
based on models of spacecraft constraints. 

                                                 
 

3. Robust execution software.  The Spacecraft 
Command Language (SCL) expands the CASPER 
mission plans to low-level spacecraft commands.  
SCL monitors the execution of the plan and has the 
flexibility and knowledge to perform improvements 
in execution as well as local responses to anomalies. 

 
Building autonomy software for space missions presents a 
number of key challenges: 
 

1. Limited, intermittent communications.   EO-1 has 
eight ten-minute communications opportunities per 
day.  This means that the spacecraft must be able to 
operate for long periods of time without supervision. 

2. Complex subsystems and controls.  A typical 
spacecraft has thousands of components carefully 
engineered to survive the rigors of space.  

3. Limited observability.  Bandwidth and onboard 
processing constraints limit the availability of 
engineering telemetry.  Onboard software and 
ground operations teams must be able to operate the 
spacecraft on limited information. 

4. Limited computing resources.  An average 
spacecraft CPU offer 25 MIPS and 128 MB RAM – 
far less than a typical personal computer.  The EO-1 
team allocated 4 MIPS for all of the ASE software. 

5. High stakes.  A typical space mission costs hundreds 
of millions of dollars, any failure has significant 
economic impact. 

 
ASE on EO-1 demonstrates an integrated autonomous 
mission using onboard science analysis, replanning, and 
robust execution.  ASE performs intelligent science data 
processing, editing, and spacecraft retargeting, leading to a 
reduction in data downlinked and an increase in science 
return.  These capabilities enable radically different 
missions with significant onboard decision-making 
allowing novel science opportunities. The paradigm shift 
toward highly autonomous spacecraft will enable future 
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NASA missions to achieve significantly greater science 
returns with reduced risk and reduced operations cost. 
 
ASE has also teamed with NASA Ames Research Center to 
fly the Livingstone 2 Mode Identification and Diagnosis 
software in Fall 2004, which is used to monitor the health 
of EO-1 and detect fault conditions as they occur. By 
reconfiguring EO-1, ASE may recover functionality and 
continue on to meet its mission goals. 

Live ASE Contact from EO-1 
The first part of the demonstration will showcase a live 
contact from the EO-1 spacecraft commanded onboard by 
ASE.  Telemetry from the spacecraft will be displayed 
remotely from the EO-1 Mission Operations Center at 
Goddard Spaceflight Center.  The real-time telemetry 
stream will display the commands currently executing 
onboard EO-1 and the status of each ASE software 
component.  During the demonstration ASE will downlink 
engineering and science data by issuing spacecraft 
commands to achieve the following objectives: 
 

1. Point the X-Band phased-array antenna at the 
groundstation one minute prior to acquisition of 
signal (AOS). 

2. At AOS, power on both transceivers and configure S 
Band for a 2 Mbit downlink rate. 

3. Command the onboard solid state recorder to 
playback mode and begin streaming science data 
over the X-Band link. 

4. Initiate the dumping of engineering data over S-
Band. 

5. Initiate the playback of the spacecraft event log 
through S-Band. 

6. At loss of signal (LOS), turn off the S-Band 
transceiver, stop streaming science data, and begin 
streaming fill data. 

7. Ten seconds after LOS, power down the X-Band 
transceiver and return the solid state recorder to 
standard operations mode.  

 
A typical EO-1 contact lasts between 10 and 15 minutes. 

Full Autonomous Science Scenario 
The second part of the demonstration will simulate an ASE 
mission scenario.  During this demonstration ASE will 
command a software simulation of the EO-1 spacecraft to 
image science targets, process and analyze onboard image 
data, and re-plan operations based on science results. 
 
The demonstration will highlight the following capabilities 
of ASE: 
 

1. Autonomous Execution. CASPER will generate a 
mission plan using an uplinked set of high-level 

goals requesting science observations and data 
downlinks.  SCL will convert these plans to 
sequences of spacecraft commands and issue these 
commands to EO-1. 

2. Dynamic Event Tracking. The onboard science 
analysis algorithms will detect an erupting volcano 
in one of the requested observations, and as a result 
recommend a follow-on observation. 

3. Data Editing. During the analysis of another science 
observation, the analysis algorithms will determine 
an unacceptable percentage of cloud-obscured data.  
Based on this analysis the ASE software will 
recommend deleting this image and imaging an 
alternate target. 

4. Onboard Replanning.  CASPER will modify the 
onboard schedule to respond to the science analysis 
recommendations to insert new observations and 
delete low-value data from onboard storage. 

Acknowledgement 
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Laboratory, California Institute of Technology, under a contract 
with the National Aeronautics and Space Administration. 
 
We would like to acknowledge the important contributions of 
Nghia Tang and Michael Burl of JPL, Dan Mandl, Stuart Frye, 
and Stephen Ungar of GSFC, Jerry Hengemihle and Bruce Trout 
of Microtel LLC, Jeff D’Agostino of the Hammers Corp., Seth 
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Victor Baker and James Dohm of University of Arizona. 

References 
S. Chien, B. Cichy, S. Schaffer, D. Tran, G. Rabideau, R. Bote, Dan 
Mandl, S. Frye, S. Shulman, J. Van Gaasbeck, D. Boyer, “Validating the 
EO-1 Autonomous Science Agent”, Working notes of the Workshop on 
Safe Agents, AAMAS-2003. 
 
S. Chien, et al. “The EO-1 Autonomous Science Agent,” International 
Conference on Autonomous Agents and Multi-agent Systems (AAMAS 
2004). New York City, NY, July 2004. 
 
S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau, "Using 
Iterative Repair to Improve Responsiveness of Planning and Scheduling," 
Proceedings of the 5th Intl. Conference on AI Planning and Scheduling, 
Breckenridge, CO, April 2000. 
 
A.G. Davies, R. Greeley, K. Williams, V. Baker, J. Dohm, M. Burl, E. 
Mjolsness, R. Castano, T. Stough, J. Roden, S. Chien, R. Sherwood, 
"ASC Science Report," August 2001.  (available at ase.jpl.nasa.gov). 
 
J. Kurien and P. Nayak. “Back to the future for consistency-based 
trajectory tracking.” In Proceedings of the 7th National Conference on 
Artificial Intelligence (AAAI'2000), 2000.  
 

8 ICAPS 2005. System Demonstrations



Nexus:  Planning Tomorrow, Today
John Jaap & Patrick Meyer 

Missions Operations Laboratory 
Marshall Space Flight Center 

National Aeronautics and Space Administration 
John.Jaap@nasa.gov 

 
Abstract

To prepare for future human space flight programs, the 
Mission Operations Laboratory (MOL) at the Marshall 
Space Flight Center (MSFC) has been investigating new 
planning and scheduling paradigms.  To support and prove 
this investigation, MOL technologists have developed a 
working prototype of a scheduling system to support the 
new paradigms.  The new planning and scheduling system 
is called Nexus and has a web site at http://nexus.nasa.gov/.  
Nexus is based on a comprehensive modeling schema to 
capture all scheduling requirements typical to human space 
missions, an incremental scheduling engine tailored to the 
modeling schema, and remote access (including Personal 
Data Assistant (PDA) access) to the scheduling system.   
This paper describes the proposed paradigm shift and the 
enabling software.  It also describes a typical Nexus 
demonstration which emphasizes how it works, how it 
enables the paradigm shift, and possible applications.  
Demonstrations include access to the full functionality of 
Nexus from a personal computer and access to limited 
functionally via a PDA.

Demonstrations 
For demonstrations at the International Conference 
on Automatic Planning and Scheduling, the remote 
access configuration of Nexus is used; see Figure 1.  
A laptop PC and Pocket PCs (PDAs) use the internet 
to access the scheduling engine at MSFC.  

 
Several key features of Nexus are shown in the 
demonstrations: 

 Modeling Modal Resources, Tasks, & Sequences 
 Request Submittal and Automatic Scheduling 
 Multi-User Support 
 Remote/Distributed Access 
 Astronaut Autonomy Extrapolation 

The technical details of the features are discussed 
later in this paper. 

Comprehensive Modeling 

   
F  

Figure 1 - Configuration of Nexus fo
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Figure 2 is a screen shot of the canvas for building 
and editing a sequence.  The rounded rectangles are 
embedded sequences, the rectangle is a task, and the 
hexagon is a public service.  The lines connecting the 
nodes represent the temporal relationships.  Editing is 
done graphically and via dialog boxes.  The 
demonstration will also include modeling of tasks 
(which use resources) and implicit resource usage 
(modal resources). 
 

Request Submittal and Automatic Scheduling 
Figure 3 shows the screen 
for submitting a request 
from the PDA.  On a 
previous screen, the user 
chose a model to submit. 
Figure 4 shows the report 
that appears after the 
request is scheduled.  The 
depicted request had a 
hierarchy of embedded 
sequences and activities.  
The figure also shows the 
mouse-over popup which 
gives details of an activity 
(shown) or a sequence.  A 
tree control, shown on the 
left, is used to expand and 
collapse the results and a 

pan/zoom control is used to control the time axis. 

Multi-User Support 
Nexus uses an incremental scheduling engine so that 
multiple users can contribute concurrently to a 
timeline. During the demonstrations, two users will 
simultaneously build one timeline.  Each will see the 
results of the other’s contributions. 

Remote/Distributed Access 
The demonstration is accomplished by accessing the 
database and scheduling engine in Huntsville, 
Alabama, at NASA’s Marshall Space Flight Center.  

The backend software runs on a Windows OS 
running on Pentium III processors.  Nexus can also 
be configured to run locally on a single PC. 

Astronaut Autonomy Extrapolation 
As described later in this paper, Nexus can be 
extrapolated to allow the crew (on orbit, on the moon 
or on Mars) to schedule their own activities and the 
activities of their companion systems.  This usage of 
Nexus is demonstrated by assuming the Nexus is 
installed in situ.  Astronauts have local access and 
PDA access when they are nearby. The PDA 
functionality is designed around crew usage, 
particularly the “My Timeline” screen. 

A Paradigm Shift for Planning and 
Scheduling 

The current state-of-the-art in modeling methodolo-
gies and scheduling engines results in a linear 
paradigm with knowledge contributed by task 
experts, vehicle experts, and scheduling engine 
experts.  This paradigm requires significant effort and 
flow time.  The task experts often struggle to enter 
their requirements using a language that is limited – 
often resorting to notes to fully describe their 
requirements.  The vehicle and hardware experts then 
convert and augment this knowledge to further 
prepare the models for scheduling.  The scheduling 
team then feeds the models to the scheduling engine.  
Since the models are incomplete, the team often has 
to “steer” the scheduler to produce an acceptable 
schedule.   

Figure 3 - Submitting 
from a PDA 

Nexus enables a streamlined paradigm.  The vehicle 
experts enter the system and hardware constraints 
independently of the task knowledge.  The task 
experts enter the task requirements.  The 
comprehensive modeling schema would allow them 
to specify all of the task requirements without 
resorting to notes for the scheduling team; 
consequently, these models are ready for automatic 
scheduling.  Having models that express all the 
constraints allows the scheduling engine to operate 
automatically without human intervention.   Figure 4 - Scheduling Report on PC 

The Nexus Project 

Comprehensive Task Modeling 
The modeling schema of Nexus captures all the 
requirements so that its automatic scheduler can 
function, and modeling can easily be done by various 
users including ground controllers and astronauts.  
Some of the key features of the task modeling 
schema are given below (Jaap, Davis & Richardson, 
2004). 
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• Decomposition into salient components— 
Modeling is based on tasks and sequences. 

• Task models allow hierarchies of constraints to be 
represented using statements like “one of” and “all 
of” in an outline format.  

• Intuitive and rich expression of the relationships 
between components— Modeling employs 
common-sense modeling of temporal relationships 
using everyday concepts like sequential, during, 
and overlap.  Innovative modeling of the 
continuance of resource usage between tasks, the 
fragmentation of tasks, and minimal percent 
coverage are included.  

• Public Services— Modeling also includes the 
concept of public services, models that are 
scheduled at the request of another model.  

• Experiment flexibility— Variable timing can be 
modeled at all levels. Additionally, alternate 
resources and alternate sequences can be modeled.  

• Representation of nuances of the tasks— Even 
nuances, such as locking in alternate resources and 
one-to-one relationships are available.  

Implicit Resource Modeling 
Modal resources are the basic building blocks of a 
task model.  Tasks are normally accomplished by 
using multiple pieces of equipment which, in turn, 
use other resources.  Most types of equipment have 
various operating modes: e.g., a microwave oven has 
modes such as defrost, reheat, and cook.  The power 
requirements of each mode are predefined.  On a 
lunar or Martian base, the characteristics of each 
piece of equipment will be known to those building 
and integrating the equipment into the habitat.  The 
equipment and the equipment modes can be modeled 
independently with respect to the tasks that will use 
the equipment.  Mode models use an outline 
paradigm like that used by task models.   Using mode 
models as building blocks of task models means that 
the person doing the task modeling does not need to 
know how the equipment is integrated into the 
habitat/vehicle system and does not need to know the 
details of the resource requirements; for example, the 
task modeler only needs to know that the camera will 
downlink high-quality video, without knowing the 
bandwidth, data rate or power requirements.  This 
concept was proposed in a paper by Hagopian & 
Maxwell (1996). 

Scheduling Engine 
Nexus uses the Scheduling Algorithm for Temporal 
Relation Networks (SATRN) as an “incremental” 
scheduler.  SATRN processes a single request 
(adding one or more tasks to the timeline) and then 
waits for another request.  

SATRN converts the temporal relations of a sequence 
to time bounds on the sequence entities (embedded 
sequences or activities). As each entity is scheduled, 
the bounds on not-scheduled entities are shrunk.  An 
activity’s requirements are checked by a depth-first 
search.  Variable activity durations are utilized to stay 
within the time bounds.  When an entity cannot be 
scheduled, smart backtracking and reordering is used 
to unshrink the bounds on hard-to-schedule entities. 
Backtracking is also used to explore alternate 
requirements (“one-of” groups, scenarios, optional 
entities, and relationships to existing entities with 
multiple instances).  

Configurations 
• Multi-user— Multiple users can simultaneously 

build a single timeline through a centralized 
scheduling server.   Users only need a computer 
and an Internet connection – even astronauts on 
orbit.  This can enable those closest to the tasks 
being performed to enter their requirements and 
build the best schedule for themselves.   

• Personal Data Assistant (PDA)— Crew self-
planning is another configuration of Nexus. 
Astronauts could plan their own day rather than be 
tied to the traditional remote planning done today.  

• Standalone— One user, on a single computer, 
working on one schedule is the classical 
configuration for planning and scheduling systems.  
This configuration would be the simplest setup of 
Nexus. 

Applications of Nexus 

Cost-savings applications 
Nexus can allow the customers to produce their own 
timelines.  The customers have the best knowledge of 
their scheduling requirements and know when a 
timeline meets their needs.  Nexus enables them to 
perform their own scheduling because – 
• The use of an incremental scheduler prevents the 

action of one user from impacting another user. 
• The Nexus modeling schema captures all the 

requirements without resorting to artificial 
resources or difficult rule expressions. 

• By submitting incrementally and getting 
immediate feedback from the scheduling engine, 
the users become virtual experts on modeling and 
scheduling. 

Cost reduction is realized by reducing the size of the 
scheduling cadre and the flow time required to 
produce a schedule.  A paper by Jaap and Muery 
(2000) describes in detail how a Nexus-like system 
could reduce the cost of ISS operations. 
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Crew-autonomy application 
Nexus can allow the astronauts in space to schedule 
their own activities.  Crew autonomy is essential as 
we explore further from home.  The astronauts are 
aware of their situation and understand their needs 
and desires better than anyone.  The light-time delay 
(up to 20 minutes from Mars) makes normal 
conversations with the earth-based support team 
impossible.  The ground support team would build 
the baseline models and baseline schedule and upload 
it to the in-situ installation of Nexus.  The astronauts 
would add to or delete from the timeline as desired.   
Ground support would also be able to modify the 
timeline using the remote access capabilities of 
Nexus.  

 
For this application, Nexus is configured with the 
scheduling system, most current timeline, and other 
associated data located at the “extraterrestrial” site 
(e.g., exploration vehicle, lunar or Mars base) where 
the timeline is being executed; see Figure 5.  This 
configuration ensures that the astronauts will always 
have access to a complete set of up-to-date planning 
information, and that any changes they make are 
applied to the currently executing timeline. 
However, this operations concept does not imply that 
the astronauts will be tasked with performing the 
entire mission planning job.  Since crew time is 
extremely valuable, the prime task of developing and 
maintaining the baseline timeline will still fall on 
ground-based support personnel.  The level of 
astronaut participation in the planning process will be 
dictated by necessity (e.g., responding to real-time 
events) as well as by their personal preferences.  In 
effect, the configuration provides an infrastructure 
which allows multiple parties (crew, ground support, 
and even autonomous systems) to simultaneously 
contribute to the development/maintenance of a 
single timeline. 
In this application, Earth-based support will be 
responsible for collecting and entering into the 
scheduling system (i.e., “modeling”) the underlying 
information needed to build the timeline.  This 

information includes resource availability 
predictions, flight trajectory information, 
equipment/system status, and other planning 
constraints.  The earth-based planners will also work 
with other flight controllers, vehicle/systems experts, 
and payload providers to model the many “tasks” that 
must be scheduled on the timeline.  If appropriate, 
they may also create an initial timeline for a future 
period of time.  All this preliminary work can be 
performed on the ground and the results then 
uplinked to the extraterrestrial remote site, where the 
information becomes part of the data set associated 
with the currently active timeline.  
Once the planning information is within the 
scheduling system at the remote site, it will be 
available for use by the crew.  From a local console, 
the crew will be able to view/inspect their timelines, 
make timeline edits (e.g., move a task, delete a task), 
schedule additional tasks via an interface to the 
automatic scheduling engine, and even edit the 
modeled tasks (e.g., change a specified task 
duration).  A PDA-type interface to the scheduling 
system might also be available to the crew; however, 
capabilities at the PDA would necessarily be limited.  
Such an interface is depicted in Figure 6. 

 

Figure 5 - In-Situ Configuration 

Figure 6 - Lunar Astronauts 

Earth-based personnel can also remotely access the 
onboard scheduling system to inspect/verify the most 
current timeline information or to contribute timeline 
changes.  To preserve precious crew time, it is 
envisioned that most extensive re-planning efforts 
will be performed by the earth-based planners, except 
in those cases where communications outages or 
delays preclude a timely ground response to a real-
time event.  The earth-based planners may also 
perform simpler timeline edits at the crew’s request. 
Providing the astronauts with the ability to manage 
the schedule will enable more autonomous 
crew/vehicle operations.  Unlike today, the crew will 
be able to make a real-time schedule change and get 
immediate feedback that the change is feasible, thus 
supporting safe, reliable, and efficient crew 
operations. 
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Abstract
The Mixed Initiative Activity Plan Generation system,
MAPGEN, is one of the critical tools in the Mars
Exploration Rover mission surface operations.  The system
is used to build activity plans for each of the rovers, each
Martian day.
The MAPGEN system combines an existing tool for activity
plan editing and resource modeling, with an advanced
constraint-based reasoning and planning framework.  The
constraint-based planning component provides active
constraint and rule enforcement, automated planning
capabilities, and a variety of tools and functions that are
useful for building activity plans in an interactive fashion.
In this demonstration, we will show the capabilities of the
system and demonstrate how the system has been used for
actual Mars rover operations.  Since the demonstration of an
earlier version at ICAPS 03, significant improvements have
been made to the system.  These include various additional
capabilities that are based on automated reasoning and
planning techniques, as well as a new Constraint Editor
(CE) support tool.

Overview
In January 2004, two NASA rovers, named Spirit and
Opportunity, successfully landed on Mars, starting an
unprecedented exploration of the Martian surface.  Power
and thermal concerns constrained the expected duration of
this mission, leading to an aggressive plan for commanding
both rovers every day.
As part of the process for generating these command loads,
the MAPGEN tool provides engineers and scientists with
an intelligent activity planning tool that allows them to
more effectively generate complex plans that maximize the
science return each day.  The key to the effectiveness of the
MAPGEN tool is an underlying constraint-based planning
and reasoning engine.

Constraint-based Planning
The automated reasoning component of MAPGEN is based
on an advanced constraint-based planning system called
EUROPA (Jónsson, et al., 1999; Frank and Jónsson, 2003).
In constraint-based planning, activities and states are
described by predicate statements that hold over temporal
intervals.  The interval time-points and the predicate
parameters are represented by variables connected by
constraints.  This approach supports a variety of complex
planning constructs, including: activities with extended
temporal durations, states that expire, exogenous events,
complex constraints on parameters, temporal constraints
linking activities and states, and subgoaling rules with
conditions and disjunctions.
A constraint-based planning domain model defines a set of
predicates, each of which has a set of parameters with
possible values. The model also defines configuration
constraints on predicates appearing in a plan.  The notion
of these configuration constraints is quite general and
includes temporal and parametric constraints, as well as
requirements for other activities and states in the plan.  For
example, a configuration rule may specify that anyFigure 1: MER Rover
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Rover_Drive activity must be temporally contained by a
CPU_On state.
In constraint-based planning, a partial plan consists of a set
of activities and states, connected by constraints.  The
partial plan may be incomplete, in that rules are not
satisfied and pending choices have not been made.  The
planning process then involves modifying a partial plan
until it has been turned into a complete and valid plan.
Traditional search-based methods accomplish this by trying
different options for completing partial plans, and
backtracking when constraints or rules are found to be
violated.  Constraint reasoning methods, such as
propagation and consistency checks can be used to
eliminate options and identify dead-ends early.  In
constraint-based planning, arbitrary changes can be made
to a candidate plan, supporting user changes, random
exploration and a variety of other methods for building
plans.

Automated Reasoning in MAPGEN
The MAPGEN system combines the core capabilities of
APGEN (Maldague, et.al, 1998), an existing plan editing
tool, with the automated reasoning functionality of
EUROPA. The automated reasoning component adds three
key capabilities to the activity plan generation process.

The first is that constraints and rules are actively enforced.
Without active enforcement, constraint violations are only
identified after the violation has been created.  As an
example, consider a constraint specifying that a picture
must be taken between 10:10 and 10:30.  Without active
constraint enforcement, the user can schedule the activity
at any time.  If the chosen time is outside the allowed time
frame, the system notifies the user that the constraint is
violated.  With active constraint enforcement, the system
can continuously maintain that the picture is scheduled
within the given timeframe.  When the user attempts to
move the activity outside the interval, the system prevents
it from moving further than the end of the interval.
The second is a variety of automated search techniques,
such as completing partial plans, and fixing plans that
violate resources or constraints.  To complete a plan, or
part of a plan, a variation of a backtracking search engine is
used.  The key difference is that when it appears that
backtracking is thrashing, the search mechanism can
choose to eliminate a low priority activity from the plan.
This avoids the computational expense of exploring all
options before rejecting an activity that cannot fit into the
plan, but at the cost of completeness.
Finally, the automated reasoning capabilities are used to
provide a variety of tools that assist the users in building
activity plans.  For example, users can move activities
interactively, immediately seeing the impact of temporal

Figure 2.  MAPGEN interface showing a simple plan and the hopper
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constraints, while getting tactile feedback on the limits
posed by the constraints.

Constraint Editor
The model of rover activities, states and rules results in
constraints automatically being instantiated for partial
plans.  Such constraints specify general rules, such as any
occurrence of a Rover_Drive activity requiring that the on-
board CPU be turned on.  But each day there are other
constraints that apply only to specific instances.  For
example, there may be a constraint saying that the activity
instance Drive_To_Big_Rock must be completed before
13:30 local Mars time.  In order for the automated
reasoning system in MAPGEN to be sufficiently informed,
this information must be made available to it each day.
The MAPGEN interface, which uses an existing mission
activity plan editing tool, is only aimed at editing activity
instances, and does not provide a good interface for adding
and editing constraint instances.  To make up for this, a
Constraint Editor tool was developed.  This tool can read in
an activity plan, including activities and constraints, and
allows the user to add, change and edit constraints.  The
updated set of constraints is then passed on to MAPGEN,
which takes it into account in its automated reasoning.

MAPGEN in Operations
The MAPGEN tool is used in a complex and challenging
commanding process for the MER rovers.  Towards the

end of each Martian day, a rover will downlink data to
Earth.  The essence of the commanding process is then to
use this and other data to determine what the rover will do
the following day.  The process starts with analysis of the
data, both in terms of scientific information and
information about the state and health of the rover.  This
feeds into a process where scientists and engineers
construct sets of desired activities for the following day.
The challenge of the activity planning process is to select
an optimal set of requests, and then schedule them in such
a fashion that all flight rules are satisfied, all required
support activities are in place, and all resource limits are
respected.  This is where MAPGEN is used.  The resulting
activity plan is then used to construct the detailed set of
commands to be sent up to the rover.

MAPGEN and the activity planning process
To give an indication of how the system is used, we will
now provide an overview of how the activity planning
might proceed on a typical day. The inputs into the activity
planning process are:

•  An engineering skeleton plan, which specifies
communications activities and other engineering-
related activities.

•  A set of prioritized science observation requests,
each of which may consist of multiple activities,
some of which are linked by temporal constraints.

The first step is to codify the constraints scientists have
specified informally for their observation requests.  This is
done in the Constraint Editor, where temporal constraints
are specified using a mixture of graphical and fill-out

Figure 3.  Constraint Editor Interface
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interfaces.  Common constraints include:
•  Ordering relations between observations and

activities.  For example, an activity involving the
rover arm’s microscopic imager must be done prior
to the rover driving to a new location, whereas the
imaging activity to localize the rover at the new
location is to be done after the drive completes.

•  Temporal distance relations between activities.  For
example, an imaging activity should be at most
twenty minutes from the associated calibration
image.  Another example is that periodic thermal
spectroscopy activities of the sky should be spaced
at least half an hour apart but no more than an hour
apart.

•  Time-of-day constraints for activities.  The most
common examples are activities requiring daylight,
as is the case for most imaging activities.  Other
examples include more specific time bounds, so as
to achieve a certain level of illumination, or to avoid
shadows.

Next, the engineering skeleton plan, the science
observation requests and the now-codified constraints are
read into MAPGEN, and the core activity planning process
starts.  The goal of this process is to have a valid and safe
plan that satisfies all applicable rules and limitations, but at
the same time, achieves as many science requests as
possible, weighted by priorities.  This challenging problem
is further complicated by some of the flight rules not being
codified for the EUROPA planning system, and by there
being complex preferences that the mission operators may
have regarding the desired plan.
At the start of the planning process, the science
observations are kept in a hopper, which is a holding area
for activities that are currently not in the plan.  The
MAPGEN operator will then work on building the plan,
using a somewhat iterative process inter-leaving plan
extension operations with plan modification operations.
To add to the plan, the operator will add activities from the
hopper to the plan.  This can be done in a number of
different ways:

•  Fully automated planning where as many activities
as possible weighted by priorities, are fit into the
plan, such that codified flight rules and constraints
are satisfied.

•  Selective planning, where selected activities are fit
into the plan, if possible, such that flight rules and
constraints are satisfied.

•  Placement planning, where selected activities are fit
into the plan, as close as possible to a time specified
by the user.

In order to ensure the plans also satisfy non-codified rules
and preferences, the MAPGEN operators often need to
make adjustments to the plans.  The most common ones are
changes in start times, and removal of activities, but
sometimes the operator may also add new activities or
modify the specifics of given activities.
The process of making manual modifications is made
easier in MAPGEN by the continuous automatic

enforcement of constraint and flight rules.  This means the
operator can concentrate on the desired changes and not
worry about introducing violations by accident.  Consider,
for example, moving an activity to a different time.  The
user does this by dragging the activity in the interface, but
the MAPGEN system will limit the range of this move to
within where the activity placement will satisfy applicable
rules and constraints.  For another example, consider the
addition, modification or removal of activities in the plan.
The MAPGEN system will automatically ensure that new
and modified activities do not overlap incompatible
activities, and will also automatically update necessary
support activities, such as making sure the on-board
computer is turned on when needed.
The final activity plan is presented at a plan approval
meeting where scientists, mission managers, and rover
system experts go over the plan and approve it.

Conclusion
The MAPGEN tool is one of only a handful of AI-based
planning and scheduling tools to be used to build plans for
operating spacecraft, and is the first to be used for
operating a rover on another planet.   The tool has
performed well in the MER mission, and has been used for
every nominal command uplink since surface operations
started in January 2004.  More importantly, MAPGEN has
made a notable positive impact on the mission operations.
By actively enforcing flight rules and providing significant
assistance with plan generation, the tool has allowed
engineers to build more complex plans that achieve more
science in less time than they otherwise could have.

References
Bresina, J, Jónsson, A., Morris, P., and Rajan, K. 2005.
Activity Planning for Mars Exploration Rovers. In
Proceedings of 15th International Conference on
Automated Planning and Scheduling  (ICAPS 2005).
Frank, J., and Jónsson, A., 2003. "Constraint-based
Attribute and Interval Planning".  In Constraints, 8(4),
p 339-364.
Jónsson, A., Morris, P., Muscettola, N., and Rajan, K.
1999. Next generation Remote Agent planner. In
Proceedings of the Fifth International Symposium on
Artificial Intelligence, Robotics and Automation in Space
(iSAIRAS99).
Maldague, P., Ko, A., Page, D., and Starbird, T., 1998.
APGEN: A multi-mission semi-automated planning tool.
In First International NASA Workshop on Planning and
Scheduling, Oxnard, CA.

ICAPS 2005. System Demonstrations 17



EUROPA 2: Plan Database Services for Planning and Scheduling Applications

Tania Bedrax-Weiss and Conor McGann and Michael Iatauro
QSS Group, Inc.

Intelligent Systems Division
NASA Ames Research Center

Mailstop 269-4
Moffett Field, CA 94035-1000

{tania,cmcgann,miatauro}@email.arc.nasa.gov

Abstract
Introduction NASA missions require solving a wide va-
riety of planning and scheduling problems with concurrent
operations and temporal dependencies; simple resources
such as robotic arms, communications antennae and cam-
eras; complex replenishable resources such as memory,
power and fuel; and complex constraints on geometry, heat
and lighting angles. Planners and schedulers that solve these
problems are used in ground tools as well as onboard sys-
tems. The planners are usually embedded in larger appli-
cations such as multi-agent systems, execution systems, or
mixed-initiative systems. The diversity of planning prob-
lems and applications of planners and schedulers precludes
a ”one-size fits all” solution. However, as different as
these applications may seem, the underlying technologies
are common across planning domains and applications. The
difference lies in the specific configuration of technologies.
For example, one application may require intensive resource
calculations while another may not deal with resources at
all. One application may require temporal reasoning while
another may not. Providing a common platform for building
planners and schedulers is essential for the success of these
applications because it encourages reusability, reduces cost,
and leverages state-of-the-art technologies across applica-
tions. EUROPA2 is a more expressive and powerful system
than EUROPA (Frank & Jónsson 2003) that provides plan
database services for building planning and scheduling sys-
tems.

Planning Capabilities In order to solve the wide range
of NASA problems we’ve built a planning and scheduling
system that can: 1) reason with flexible temporal intervals;
2) reason about finitely quantified propositions; 3) do lim-
ited reasoning with infinite and dynamic domains; 4) reason
with procedural constraints in addition to declarative con-
straints; 5) do conditional subgoaling; 6) reason with ob-
jects that have structure which can be inherited; 7) reason
about the existence of propositions with properties; 8) rea-
son about properties that must be true of sets of propositions;
and 9) reason about resource production and consumption.

Flexible temporal intervals are necessary for execution
systems where large part of the uncertainty lies in the du-

Copyright c© 2005, American Association for Artificial Intelli-
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ration of states. Allowing domains to be dynamic is neces-
sary when dealing with objects that are “discovered” during
the planning process, such as paths and acquisition targets.
Being able to reason about the existence of propositions is
important when requesting for instance that in order to move
between acquisition targets there must be a path between
them. Furthermore, reasoning about sets of propositions or
objects is important when requesting that they have proper-
ties in common. All of these features add tremendous power
to the reasoning and allows users to build complex NASA
applications.
Planning with EUROPA 2 EUROPA2 takes the approach
to solve planning as a dynamic constraint satisfaction prob-
lem, by incrementally adding constraints and variables as ac-
tions are selected to be in the plan. A planner uses a problem
description to initialize the plan database via transactions.
The plan database consults the domain model to infer con-
straints and variables that must be added as a consequence
of the transactions. The planner consults the plan database
for conditions that need to be satisfied and commits to ei-
ther adding a new state or specifying a variable. The plan
database again consults the domain model and propagates if
a new state has been added or just propagates if a variable is
specified. The cycle continues until a plan is found.

Planning domain descriptions for EUROPA2 are written
in the New Domain Description Language (NDDL). NDDL
provides an object-oriented syntax and semantics that makes
it convenient to express sophisticated relationships among
elements of a partial plan. NDDL expressivity includes:
static objects (useful for describing composite entities that
don’t change over time), temporally scoped predicates, re-
sources, object composition, object inheritance, conditional
subgoaling, inifinite domains (limited capability), existen-
tial quantification, universal quantification (over finite do-
mains), reference own constraints, define own base types.

A plan in EUROPA2 is represented by a network of to-
kens (representing states) linked by constraints. A token im-
plements a predicate and is a flexible time interval that has
flexible start, end, and duration, as well as parameter vari-
ables. Temporal variables from a token are related to each
other via temporal constrains. EUROPA2 framework pro-
vides implementations for all of the Allen relations (Allen
1984) which are handled by a temporal reasoning compo-
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nent. Internally the component is implemented as a sim-
ple temporal network (Dechter, Meiri, & Pearl 1991). Vari-
ables represent event times with domains that are temporal
intervals and constraints specify distance bounds on vari-
able pairs. The advantage of simple temporal networks is
that consistency can be determined in polynomial time. The
EUROPA2 framework allows a user to exchange this compo-
nent with another one that provides the services of temporal
propagation.

Parameter variables of tokens are related to each other via
constrataints that can be declarative or procedural in nature.
The EUROPA2 framework also exploits constraint reasoning
inefficiencies present in many computations such as those
using comparison, arithmetic and differential operators by
providing procedural constraint propagation services. Pro-
cedures replace some of the declarative constraints. These
also allow reasoning over variables with open domains and
support real-valued reasoning. EUROPA2 provides a frame-
work for implementing and registering domain-dependent
constraints.

Resource reasoning is another special case of propaga-
tion services. It works by bounding resource usage as ac-
tions are placed in the plan. Calculating tight bounds helps
identify resource conflicts early and provide guidance to the
planner. In EUROPA2 resource calculations are made by a
simulation providing earliest start time and latest end time
resource profile. It creates a critical path and applies mutual
exclusion reasoning to propagate integrated resource bounds
and detect conflicts. We plan to provide an alternative imple-
mentation that uses maximal flow analysis to compute tight
bounds as in (Muscettola 2002).

Constraints are managed by Propagators which aggregate
constraints of specific types and processes them internally.
A propagator is registered with a Constraint Engine that
is responsible for managing variable changes and invoking
propagators in reaction to these changes. Propagators can
contain scheduling policies but we have not experimented
with that yet. We also provide the ability to disable and en-
able constraints which improves efficiency in networks with
many redundant constraints. The constraint engine triggers
propagation in each of the propagators to quiescence.

A Rules Engine manages the model subgoaling rules and
is tasked with invoking the rules that apply as a consequence
of planning decisions. EUROPA2 supports rules with mul-
tiple subgoals, arbitrary relationships among subgoals via
constraints, existential and universal quantification over sets
of subgoals or objects, and conditional rules. Users can also
create their own rules to suit their specific applications.
Architecture The design of EUROPA2 prioritized 1) Ex-
tendibility - making it easy to integrate new functionality
and straightforward to customize existing capabilities; 2)
Configurability - making it easy to selectively combine sys-
tem components to meet the particular application needs;
3) Efficiency - providing fast access to key operations, and
ensuring information can easily flow between collaborating
elements. This was achieved by providing a kernel API
that identifies the fundamental primitives of our underlying
constraint-based planning paradigm: Objects, Tokens, Con-

straints and Variables. A large number of component imple-
mentations may be placed as specializations of this frame-
work. We allow flexible connections to be made between
components through standardized interfaces with accessible
attachment points. For example, if temporal constraints are
not important in a problem, the temporal propagator may be
removed and/or replaced with a default propagator. Since
subgoaling has been encapsulated in a rules engine the be-
havior can be replaced, customized or omitted if necessary.
Selection and composition is useful as it allows systems to
avoid incurring costs for components that are not required.

EUROPA2 provides several points of extension for appli-
cation builders: 1) constraints; 2) propagators; 3) object
model; 4) subgoaling rules; 5) specialized domains.

Applications LORAX (Life Observing Remote Antarctic
Explorer) is a recent ASTEP funded project to conduct mi-
crobial sampling around a 100 km perimeter of an Antarctic
Glacier. The mission requires long duration autonomous op-
eration using renewable energy sources (i.e. solar and wind).
The autonomy architecture includes an on-board planner and
executive implemented on EUROPA 2. The application re-
quires managing a thermal reservoir with complicated con-
straints that relate temperature to energy levels which are
best implemented as a custom resource type. In the early
phase of the project, the planner and executive are being
used as a simulator to evaluate robot design trade-offs.

EUROPA2 is currently being used by the Collaborative
Decision Systems Program to demonstrate advanced robotic
capabilities in the field. The field test is using EUROPA2 for
planning target selection, instrument placement, navigation,
and execution. The executive is encapsulated by an IDEA
agent (Muscettola et al. 2002) which communicates with
the hardware.1
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Abstract

This demonstration will be aboutRoman Tutor, a system
that we are developing to teach astronauts how to operate a
robot manipulator deployed on the International Space Sta-
tion (ISS). Operators do not have a direct view of the scene
of operation on the ISS and must rely on cameras mounted
on the manipulator and at strategic places of the environment
where it operates.Roman Tutoruses a robot path-planner, not
to control the manipulator, but to automatically check errors
of a student learning to operate the manipulator, and to au-
tomatically produce illustrations of good and bad motions in
training.

Introduction
Designing software that teaches requires, in advanced cases,
the implementation of “intelligence” capabilities. After all,
best human teachers are those mastering the subject they
teach, having communication skills and understanding the
student’s solving process in order to help him. However, as
we still do not understand well how to model human cogni-
tion, efforts in the design of intelligent software-based edu-
cation systems remain experimental. In this line of inquiry,
we have been developing an intelligent tutoring software,
Roman Tutor, to support astronauts in learning how to op-
erate the Space Station Remote Manipulator System (SS-
RMS), an articulated robot arm mounted on the international
space station (ISS). Figure 1 illustrates a snapshot of the ISS
with the SSRMS.

The SSRMS is operated from a robotic workstation lo-
cated inside one of the ISS modules, and equipped with
three video monitors, each displaying a view from one of
the14 cameras mounted on the ISS exterior and the SSRMS.
Crewmembers operating the SSRMS have no direct view of
the ISS exterior other than the three monitors. In fact, choos-
ing the right camera views to display is part of the tasks for
operating the manipulator.

Even though they are supported by on-ground operators
and have precise safety protocols to follow during their oper-
ations, training provides crewmembers with (1) manipulator

Copyright c© 2005, American Association for Artificial Intelli-
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teleoperation skills, (2) the ability to carry out operations in-
dependently (i.e., without ground support) and (3) detailed
knowledge of SSRMS design that is required for the tasks
scheduled for their mission and SSRMS operation. Con-
sequently the associated training is challenging due to the
limited direct view of the ISS exterior, unpredictable light-
ing conditions, the complexity of the SSRMS (seven degrees
of freedom), high masses, costly payloads, and vulnerable
robot mechanics requiring very slow speeds to avoid over-
runs and to reduce risks of oscillations, collisions or singu-
larities.

Figure 1 ISS with the SSRMS

Roman Tutoris still under development; at ICAPS, we
would like to demonstrate its current features that include a
path-planner called FADPRM and used to provide tutoring
feedback to the student. To illustrate, when an astronaut is
learning to move a payload,Roman Tutorinvokes the FAD-
PRM path-planner periodically to check whether there is a
path from the current configuration to the target, and pro-
vides feedback accordingly.

FADPRM path-planner not only computes collision free
paths among obstacles, as is normal for a classic path-
planner, but is also capable of taking into account the lim-
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Figure 2 Roman Tutor Student Interface

ited direct view of the ISS, the lighting conditions and other
safety constraints about operating the SSRMS. We devel-
oped such a robot-path planner by extending the probabilis-
tic roadmap method (Sanchez & Latombe 2001) with con-
straints on safe and unsafe corridors of operation. In addi-
tion this planner proves useful in the automatic generation
of movies that illustrate good and bad operations.

In the next section we describeRoman Tutor’s archi-
tecture, outline its basic functionalities and discuss details
about its main components, mainly the FADPRM path-
planner. We, then, conclude with a discussion on related
work.

Architecture and Basic Functionalities
Main Components
One challenge in developing a good training simulator is of
course to have the simulator in the first place. Then we need
to integrate useful training strategies, in particular a model
for tracing the student to assess his progress on a task and a
process to provide really useful, intelligent feedback.

Roman Tutorworks with any robot manipulator provided
a 3D model of the robot and its workspace are specified.
The system includes the following components among oth-
ers (Figure 3): a graphic user interface, a feedback generator,
a path planner, a movie generator, and third-party libraries:
Proximity Query Package (PQP) (Larsenet al. 2000), Open
Inventor from Silicon Graphics, and Motion Planning Kit

(MPK) (Sanchez & Latombe 2001).

A snapshot of the user interface is shown on Figure 2.
It emulates the ISS robotic workstation using three screens
(for the three monitors). The keyboard is used to operate the
robot (the SSRMS in our case). Incommand mode, one con-
trols the joints directly; inautomatic mode, one moves the
end-effector, small increments at a time, relying on inverse
kinematics to calculate the joint rotations.

Figure 3 Roman Tutor Architecture
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In Figure 2, different cameras are selected, displaying the
same robot configuration with different views. The perspec-
tive camera (on the left) can inspect the entire ISS 3D model.
It is used in training tasks aimed at helping a student to de-
velop a mental 3D model of the ISS, but it’s not physically
available on the ISS. Normal training uses replica models of
the ISS for the same purpose.

The robot free workspace is segmented into zones with
each zone having an associated degree of desirability, that
is, a real number in the interval [0 1], depending on the task,
visual cue positions, camera positions, and lighting condi-
tions. The closer thedd is to 1, the more the zone is desired.
Safe corridors are zones withdd near to 1, whereas unsafe
corridors are those withdd in the neighborhood of 0.

The state reflectorperiodically updates the student’s ac-
tions (i.e, keyboard inputs) and their effects on the ISS envi-
ronment (robot configuration, cameras mapped to the mon-
itors, their view angles, and the operation mode). It also
monitors lighting conditions.

The feedback generatorperiodically checks the current
state to trigger feedback to the student, using rules that are
preconditioned on the current state information and the cur-
rent goal. These are ”teaching” expert rules and can be as ef-
ficient as the available teaching expertise allows. Thefeed-
back generatoralso changes the lighting conditions based
upon specification rules in the current state.

Training Tasks

Students could carry out onRoman Tutorseveral kinds of
training tasks, which can be classified as open, recognition,
localization, or robot manipulation. Open tasks are those
in which the learner interacts with the simulator, without
any formally set goal, with minimal assistance configured in
the system’s preferences (e.g., collision warning and avoid-
ance).

Recognition tasks train to recognize the different elements
in the workspace. An example is to show a picture of an el-
ement of the ISS and ask the student to name it and describe
its function.

Localization tasks train to locate visual cue or ISS ele-
ments and to relate them spatially to each others. An exam-
ple is to show a picture of a visual cue and ask the student to
make it visible on the screen using an appropriate selection
of cameras; or we can ask to name elements that are above
another element shown on the screen.

Robot operation tasks deal with moving the manipulator
(avoiding collision and singularities, using the appropriate
speed, switching cameras as appropriate, and using the right
operation mode at different stages), berthing, or mating. An
illustration is to move the arm from one position to another,
with or without a payload. Another example is to inspect
an indicated component of the ISS using a camera on the
end-effector. These tasks require the student to be able to
define a corridor in a free workspace for a safe operation
of the robot and follow it. The student must do this based
on the task, the location of cameras and visual cues, and
the current lighting conditions. Therefore localization and
navigation are important in robot operations.

Tasks are made more or less unpredictable by dynamically
changing the lighting conditions, thus requiring the revalida-
tion of safe corridors. Feedback rules can take into account
how long the student has been trying on a subtask and how
good or bad he is progressing on it.

As most complex tasks deal in one way or another with
moving the SSRMS, for the simulator to be able to under-
stand students’ operations in order to provide feedback, it
must be aware of the space constraints and be able to move
the arm by itself. A path-planner insideRoman Tutorthat
calculates arm’s moves without collision and consistent with
best available cameras views is then the key training re-
source on which other resources and abstract tutoring pro-
cesses hinge. Figure 4 illustrates a solution path computed
by the FADPRM path-planner given to the student on the
Roman Tutoruser interface to help him carry on his task.

Figure 4 A Path from FADPRM

The FADPRM path-planner

For efficient path planning, we pre-process the robot
workspace into a roadmap of collision-free robot motions
in regions with highest desirability degree. More precisely,
the roadmap is a graph such that every node n in the graph
is labeled with its corresponding robot configuration n.q and
its degree of desirabilityn.dd, which is the average ofdd of
zones overlapping withn.q. An edge(n,n’) connecting two
nodes is also assigned addequal to the average ofddof con-
figurations in the path-segment(n.q,n’.q). Thedd of a path
(i.e., a sequence of nodes) is an average ofdd of its edges.

The calculation of a configurationdd and a pathdd is a
straightforward extension of collision checking for configu-
rations and path segments. For this, we customized the Prox-
imity Query Package (PQP) (Larsenet al. 2000). The 3D
models for the ISS, the SSRMS and zones are implemented
using a customization of Silicon Graphics’ Open Inventor.
The robot is modeled using Motion Planning Kit (MPK),
that is, an implementation of Sanchez and Latombe’s PRM
planner (Sanchez & Latombe 2001).

Following probabilistic roadmap methods (PRM)
(Sanchez & Latombe 2001), we build the roadmap by
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picking robot configurations probabilistically, with a prob-
ability that is biased by the density of obstacles. A path
is then a sequence of collision free edges in the roadmap,
connecting the initial and goal configuration. Following the
Anytime Dynamic A* (AD*) approach (Likhachevet al.
2005), to get new paths when the conditions defining safe
zones have dynamically changed, we can quickly re-plan
by exploiting the previous roadmap. On the other hand,
paths are computed through incremental improvements
so the planner can be stopped at anytime to provide a
collision-free path and the more time it is given, the better
the path optimizes moves through desirable zones.

Therefore, our planner is a combination of the tradi-
tional PRM approach (Sanchez & Latombe 2001) and AD*
(Likhachevet al. 2005) and it is flexible in that it can into
account zones with degrees of desirability. We call it Flex-
ible Anytime Dynamic PRM (FADPRM). More precisely,
FADPRM works as follows. The input is: an initial config-
uration, a goal configuration, a 3D model of obstacles in the
workspace, a 3D specification of zones with corresponding
dd , and a 3D model of the robot. Given this input:

• To find a path connecting the input and goal configuration,
we search backward from the goal towards the initial (cur-
rent) robot configuration. Backward instead of forward
search is done because the robot moves, hence its current
configuration, is not necessarily the initial configuration;
we want to re-compute a path to the same goal when the
environment changes before the goal is reached.

• A probabilistic queueOPENcontains nodes of the fron-
tier of the current roadmap (i.e., nodes are expanded be-
cause they are new or because they have previously been
expanded but are no longer up to date w.r.t. to the desired
path) and a listCLOSEDcontains non frontier nodes (i.e.,
nodes already expanded).

• Search consists of repeatedly picking a node from
OPEN,generating its predecessors and putting the new
ones or out of date ones in OPEN.

• The density of a node is the number of nodes in the
roadmap with configurations that are a short distance
away (proximity being an empirically set parameter, tak-
ing into account the obstacles in an application domain).
The distance estimate to the goal takes into account the
node’sdd and the Euclidean distance to the goal. A node
n in OPEN is selected for expansion with probability pro-
portional to :

(1−β)/density(n)+β∗goal−distance−estimate(n)

with 0 ≤ β ≤ 1.

This equation implements a balance between fast-solution
search and best-solution search by choosing different val-
ues forβ. With β near to 0, the choice of a node to be ex-
panded fromOPEN depends only on the density around
it. That is, nodes with lower density will be chosen first,
which is the heuristic used in traditional PRM approaches
to guaranty the diffusion of nodes and to accelerate the
search for a path (Sanchez & Latombe 2001). Asβ ap-
proaches 1, the choice of a node to be expanded from

OPENwill rather depend on its estimated distance to the
goal. In this case, we are seeking optimality rather than
speed.

• To increase the resolution of the roadmap, a new prede-
cessor is randomly generated within a small neighborhood
radius (that is, the radius is fixed empirically based on the
density of obstacles in the workspace) and added to the
list of successors in the roadmap generated so far. The
entire list predecessors is returned.

• Collision is delayed: detection of collisions on the edges
between the current node and its predecessors is delayed
until a candidate solution is found; if there is a collision,
we backtrack. Collisions that have already been detected
are stored in the roadmap to avoid doing them again.

• The robot may start executing the first path found.

• Concurrently, the path continues being improved by re-
planning with an increased value ofβ.

• Changes in the environment (moving obstacles or changes
in dd for zones) cause updates of the roadmap and replan-
ning.

Conclusion
The current prototype ofRoman Tutorincludes a new path-
planner called FADPRM to handle workspaces with desir-
able and undesirable zones, and basic tutoring feedbacks.
When completed, potential benefits to future organizational
training strategies are (1) the simulation of complex tasks at
a low cost (e.g., using inexpensive simulation equipment and
with no risk of injuries or equipment damage) and (2) the
installation anywhere and anytime to provide ”just in time”
training. Crewmembers will be able to use it onboard of the
ISS to comprehend a workaround for a repair. For very long
missions, they will use it to train regularly in order to main-
tain their skills. We also believe that ideas behindRoman
Tutor could inspire training systems for other applications
of robot manipulators.
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Abstract

Web services are rapidly emerging as the reference
paradigm for the interaction and coordination of dis-
tributed business processes. In several research pa-
pers we have shown how advanced automated planning
techniques can be exploited to automatically compose
web services, and to synthesize monitoring components
that control their execution. In this demo we show how
these techniques have been implemented in the ASTRO
toolset (http://www.astroproject.org), a set of tools that
extend existing platforms for web service design and
execution with automated composition and execution
monitoring functionalities.

Introduction

Web services are rapidly emerging as the reference
paradigm for the interaction and coordination of dis-
tributed business processes. The ability to automati-
cally plan the composition of web services, and to mon-
itor their execution, is therefore an essential step toward
the real usage of web services.

In previous works (1; 2; 3), we have shown how au-
tomated planning techniques based on the “Planning
via Model Checking” paradigm can effectively support
these functionalities. More precisely, the algorithms
proposed in (1; 2; 3) are based on web service specifica-
tions described in BPEL4WS, a standard language that
can be used both for describing existing web services in
terms of their interfaces (i.e., of the operations that are
needed to interact with them) and for defining the ex-
ecutable code that implements composite services.

Automated web service composition starts from the
description of a number of protocols defining avail-
able external services (expressed as BPEL4WS specifi-
cations), and a “business requirement” for a new com-
posed process (i.e., the goal that should be satisfied by
the new service, expressed in a proper goal language).
Given this, the planner must synthesize automatically
the code that implements the internal process that, ex-
ploiting the services of the external partners, achieves

∗This work is partially funded by the MIUR-FIRB
project RBNE0195K5, “Knowledge Level Automated Soft-
ware Engineering”, and by the MIUR-PRIN 2004 project
“Advanced Artificial Intelligence Systems for Web Services”.

the business requirement. This code is then emitted as
executable BPEL4WS code.

The automated synthesis techniques provided by the
“Planning via Model Checking” framework can be also
exploited to generate process monitors, i.e., pieces of
code that detect and signal whether the external part-
ners behave consistently with the specified protocols.
This is vital to detect unpredictable run-time misbehav-
iors (such as those that may originate by dynamic mod-
ifications of the partners’ protocols), or other events in
the executions of the web services that need to be re-
ported and analyzed.

Notice that these problems require to deal with non-
determinism (since the behavior of external services
cannot be foreseen a priori), partial observability (since
their status is opaque to the composed service), and ex-
tended goals (since realistic business requirements spec-
ify complex expected behaviors rather than just final
states). By tackling the problem of composing and
monitoring web services, we have shown the capabili-
ties of the “Planning via Model Checking” approach in
realizing such a complex planning task.

In this demo we show how these techniques can
extend existing commercial platforms for web service
design and execution. More precisely, we describe
the ASTRO toolset (http://www.astroproject.org),
which implements automated composition and
monitor generation functionalities as extensions of
the Active WebFlow platform. Active WebFlow
(http://www.activebpel.org/) is a commercial tool for
designing and developing BPEL4WS processes which
is based on the Eclipse platform. It also provides an
open-source BPEL4WS execution engine, called Active
BPEL. By implementing automated composition and
monitoring within Active WebFlow, these advanced
functionalities can be combined with the other “stan-
dard” functionalities provided by the platform (such
as inspecting BPEL4WS code, writing or modifying
business processes, deploying these processes and
executing them) and become integral part of the life
cycle of business process design and execution.

The rest of the paper is structured as follows. We
start with the description of a service composition sce-
nario which is used to illustrate the proposed approach.
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Then we describe the architecture and the function-
alities of the ASTRO toolset. Finally, we present a
demonstration of the application of this toolset to the
reference composition scenario.

A service composition scenario

The demo is based on a classical web service composi-
tion problem, namely that of the Virtual Travel Agency
(VTA). It consists in providing a combined flight and
hotel booking service by composing two separate, inde-
pendent existing services: a Flight booking service, and
a Hotel booking service.

The Hotel booking service becomes active upon a re-
quest for a room in a given location (e.g., Paris) for a
given period of time. In the case the booking is not pos-
sible (i.e., there are no available rooms), this is signaled
to the request applicant, and the protocol terminates
with failure. Otherwise, the applicant is notified with
information about the hotel (e.g., Hilton), cost of the
room, etc. and the protocol stops waiting for either a
positive or negative acknowledgment. In the first case,
an agreement has been reached and the room is booked.
In the latter case, the interaction terminates with fail-
ure.

The protocol provided by the Flight booking service
is similar. It starts upon a request for flights that guar-
antee to stay in a given location (e.g., Paris) for a given
period of time. This might not be possible, in which
case the applicant is notified, and the protocol termi-
nates failing. Otherwise, information on the flights (car-
rier, cost, schedule...) are computed and returned to the
applicant. The protocol suspends for either a positive
or negative acknowledgment, terminating (with success
or failure resp.) upon its reception.

The expected protocol that the user will execute
when interacting with the VTA goes as follows. The
user sends a request to stay in a given location during a
given period of time, and expects either a negative an-
swer if this is not possible (in which case the protocol
terminates, failing), or an offer indicating hotel, flights
and cost of the trip. At this time, the user may either
accept or refuse the offer, terminating its interaction in
both cases.

Of course several different interaction sequences are
possible with these services; e.g., in a nominal scenario,
none of the services answers negatively to a request; in
non-nominal scenarios, unavailability of suitable flights
or rooms, as well as user refusals, may make it impossi-
ble to reach an agreement for the trip. Taking this into
account, the business requirement for the composed ser-
vice is composed of two subgoals. The “nominal” sub-
goal consists in reaching the agreement on flights and
room. This includes enforcing that the data communi-
cated to the various processes are mutually consistent;
e.g., the number of nights booked in the hotel depends
on the schedule of the selected flights. The “recov-
ery” subgoal consists in ensuring that every partner has
rolled back from previous pending requests, and must

be only pursued when the nominal subgoal cannot be
achieved anymore.

By automated composition of the VTA process, we
mean the automated generation of the code that has
to be executed on the VTA server, so that requests
from the user are answered combining the Flight and
Hotel services in a suitable way. This composition has
to implement the two sub-goals described above.

After the VTA process has been generated, its execu-
tions must be monitored, in order to detect problems in
the interactions with the other partners participating to
the scenario. Properties to be monitored include “cor-
rectness” checks (e.g., the partners obey the declared
protocols; the flight schedules are compatible with the
requests...). It is also possible to monitor “business”
properties, such as the fact that, when an offer for a
trip is sent to the user, this offer gets accepted or not.

The ASTRO toolset

This section presents a general overview of the ASTRO
toolset. At the current stage, it consists of the following
tools: WS-gen, WS-mon, WS-console and WS-animator.

WS-gen is responsible for generating the automated
composition. It consists in a back-end layer and a
front-end layer. The back-end layer takes as input the
BPEL4WS specifications of the interaction protocols
that the composite service has to implement, a “chore-
ographic” file describing the connections between the
composition’s partners, and a goal file defining the com-
position requirement. It consists of two applications
(see Fig.1): BPELTranslator converts the BPEL4WS
specification files and the choreography file in an inter-
mediate (.smv) file which is adequate for representing
“Planning via Model Checking” problems; WSYNTH
takes as input the problem domain, computes the plan
which fulfills the requirements, and emits the plan in
BPEL4WS format. The front-end (see Fig.2) is re-

Fig. 1: WS-gen architecture

sponsible for controlling the composition process and
for managing the generated BPEL4WS specification; it
has been implemented as an Eclipse plugin, and is hence
integrated in the Active WebFlow environment.

WS-mon is responsible for generats the Java code im-
plements the monitors for the composed process and
deploying them to the monitor framework. Similar to
WS-gen, it consists in a back-end layer and a front-end
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Fig. 2: WS-gen front end

layer. The back-end takes as input BPEL4WS specifi-
cations and a “choreographic” file, while the goal file is
replaced by a file specifying the properties to by moni-
tored. The back-end layer consists in three applications
(see Fig.3): BPELTranslator, which is in common with
WS-gen, converts the BPEL4WS specification files and
the choreography file in a .smv file which describes the
problem domain; WMON takes as input the problem
domain, computes the plan which fulfills the monitor-
ing requirements, and emits this plan in Java format;
and the DEPLOYER compiles the Java class and deploy
them to the monitor framework. The front-end (see

Fig. 3: WS-mon architecture

Fig.4), which is responsible for controlling the monitor
generation process, has been implemented as an Eclipse
plugin, and is hence integrated in the Active WebFlow
environment.

The run-time monitor framework is responsible for
executing the monitors associated to a given process
every time an instance of that process is executed. It is
also responsible for reporting the status of these mon-
itors to the user in a convenient way. It consists of a
back-end layer and a front-end layer (see Fig.5). The
back-end layer has been implemented as an extension
of the Active BPEL execution engine; the main goal is
to sniff the input/output messages directed to the pro-
cess that has to be monitored and to forward them to
the Java monitors instances. The front-end implemen-
tation, WS-console, extends the Active BPEL admin-
istration console in order to present the status of the

Fig. 4: WS-mon front end

Fig. 5: Monitor framework architecture

monitors associated with each process instance. In this
way, violations of the monitored properties are easy to
be checked by the user (see Fig.6).

Fig. 6: WS-console

Finally, WS-animator (see Fig.7) is another Eclipse
plugin, which gives the user the possibility to “execute”
the composite process (in our case, the VTA). More
precisely, it allows the user to play the roles of the actors
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interacting with the composite process, while the Active
WebFlow engine executes it.

Fig. 7: WS-animator

The DEMO

In this section we describe a demonstration of the ca-
pabilities of the ASTRO toolset. The demo consists of
a set of steps corresponding to the execution of service
composition and a monitor synthesis task (see Fig.8).

Step 1. Within Active WebFlow, the user selects
the projects (Flight, Hotel, VTA) which are part of
the composition scenario. These projects contain the
WSDL and the abstract BPEL4WS files describing the
interfaces of the existing web services (and the protocol
that the VTA has to expose to the end user). Moreover,
the VTA project contains the .goal, .mon and .chor con-
figuration files; those files define the requirements and
choreography for the process and monitor composition.

Step 2. WS-gen is invoked. After the generation is
terminated, the left panel gives a glimpse of the gener-
ated files; in particular, the composed process VTA.bpel
is ready to be deployed to the BPEL4WS execution en-
gine.

Step 3. The composed process is deployed into the
Active BPEL execution engine via the Active WebFlow
console; now the composed process is ready to receive
the client requests.

Step 4. After the composition and deployment of
the BPEL4WS process, WS-mon is used to generate
the associated monitors. The left panel gives a glimpse
of the generated files, and in particular the Java files
implementing the monitor processes.

Step 5. To test the generated service, User, Flight
and Hotel processes are executed in WS-animator, while
the composed process is executed in Active BPEL ex-
ecution engine. This configuration gives the possibility
to test the composed process controlling the execution
of the partner processes.

Step 6. After the execution of a nominal scenario
within WS-animator, all the services end in a SUCCESS
state. In this scenario, the user has request an offer to

the composite service for a flight and a hotel specify-
ing a date and a location. The Flight has received the
flight request from the composite service, checked for its
availability and sent back the flight number and date.
The Hotel has received the request for an hotel reser-
vation for a date (the one sent by the Flight) from the
composite service, checked for its availability and sent
back the hotel. The user has received the offer from the
composite service and has accepted it.

Step 7. WS-console presents the states of the moni-
tors for the instance of the VTA service corresponding
to the nominal scenario presented above. All the mon-
itor instances are valid.

Step 8. After the execution of a scenario where the
User refuses a travel offer, WS-animator shows all the
services terminated in a FAIL state. In this scenario,
the user has requested an offer to the composite service
for a flight and a hotel specifying a date and a location.
The Flight has received the flight request from the com-
posite service, checked for its availability and sent back
the flight number and date. The Hotel has received the
request for an hotel reservation for a date (the one sent
by the Flight) from the composite service, checked for
its availability and sent back the hotel. The user has
received the offer from the composite service and has
denied it. The denial has been forwarded to Flight and
Hotel.

Step 9. WS-console presents the states of the moni-
tors for the instance of the VTA service of the scenario
where the user refuses the travel offer. This scenario vi-
olates one of the monitored properties, namely “if both
Flight and Hotel make an offer, the user will accept it”.
This violation is reported in WS-console.
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Abstract

SIADEX is an integrated framework to support deci-
sion making during crisis episodes by providing real-
istic temporally annotated plans of action. The main
component of SIADEX is a forward state-based HTN
temporal planner.

Introduction
The design of plans of activity for crisis situations is a
very sensitive field of application for mature AI planning
and scheduling techniques (Allenet al. 1995; Myers 1999;
Biundo & Schattenberg 2001; Avesani, Perini, & Ricci
2000). However, a successful approach requires a subtle in-
tegration of several research and development issues like

• Integration of several technologies. These systems are not
usually a monolithic approach, but a composition of tech-
nologies that integrate with each other with different func-
tionalities like planning (to determine the appropriate set
of activities), scheduling (to handle time and resources),
pathfinding (to find optimal movement plans in complex
networks), etc.

• Enhancing the role of end-users. End users of these sys-
tems are not expected to have a background knowledge on
AI, therefore the system must use user-friendly interfaces
in order for end-users to establish goals, to understand
what the system does and what the system is demanding
without having to use a technical language like a planning
domain description language or a constraint programming
language.

• Flexible knowledge representation. The system must rep-
resent a large amount of data coming from heterogenous
sources of information like GPS locations of resources,
facilities, legal issues that constraint the activities (for ex-
ample, contracting conditions or durations of shifts), ex-
ogenous events (i.e., meteo conditions, day and night pe-
riods), and many more. Even more, although this might
seem simple it is a very important issue, the system must
access to all this information on-line, that is, extracting
it from legacy databases and translating them into known
planning and scheduling domain description languages.
∗This work is being funded by the Andalusian Regional Min-

istry of the Environment, under research contract NET033957

• Support of distributed and concurrent access of end-users.
Usually, these systems are operated in hostile environ-
ments like a forest fire, natural disasters scenarios, etc,
and most of the inputs come from (and most of the outputs
are directed to) end-users located at these places. These
systems are too complex as to be installed and run on
small devices with limited computation capability like a
laptop or a PDA, therefore providing a centralized high-
capability computing facility with full connectivity and
accessibility to end users is a valuable feature.

• Integration with legacy software. Not only the income but
also the outcome must be redirected to legacy software
so that end users may painlessly understand, process and
deliver activity plans. In this case a user-friendly output
to GIS or project management and monitoring is strongly
required.

• Quick response. Last, but not least, the system must be
very efficient so that it obtains a response in an acceptable
time with respect to the own latency time of the crisis sit-
uation (that may range from minutes to hours).

The architecture of SIADEX
SIADEX is an open problem solving architecture based on
the intensive use of web services to implement most of its
capabilities (Figure 1). Its main components are the knowl-
edge base (named BACAREX), that stores in Protege ((Na-
tional Library of Medicine )) all the knowledge that would
be useful for the planning engine, and the planning module
(named SIADEX), the core of the architecture in charge of
building fire fighting plans.

The planning algorithm and its knowledge representation
are built as two independent modules, which are accessi-
ble from any device with internet connectivity (a desktop
computer, a laptop or a PDA). This allow users to query or
modify the state of the world by using almost any existing
web browser or by using a well known GIS software (ESRI
), recall that during a crisis episode most of the objects and
resources are associated have geographical properties (see
Figure 2). In the same way, temporal plans designed by
SIADEX may be downloaded into some project manage-
ment software in the form of Gantt charts (see Figure 3) or
any other software commonly used by technical staff. The
basic process is as follows.
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Figure 1: Architecture of SIADEX

Describing the problem The fire fighting scenario is intro-
duced by the technical staff consisting of the targets ar-
eas, the general attack procedures and an estimation of
the number of resources to be used. This may be done
by the web browsing utility or, much more easily, by the
ArcView GIS software plugin (ESRI ).

Storing the scenario The fire fighting scenario is stored
in Protege format in BACAREX. Therefore, knowledge
about resources and fire scenario share the same repre-
sentation. All this information is visible to other users
by means of the web browsing facility, although only
the knowledge about the problem may be accessed (the
knowledge about the domain, tasks and actions, is only
visibile for the development team).

Requesting a plan The planning engine is not able to read
the domain and the problem stored in Protege, therefore
a PDDL Gateway has been implemented that translate
problem and domain into PDDL 2.2 level 3 (Edelkamp &
Hoffmann 2004). After that, the planning engine is called
and a plan is obtained (or not).

Displaying the plan The plan obtained may be displayed
in a number of “user-friendly” alternatives like Microsoft
Excel, in the form of a chronogram, or Microsoft Project
in the form of a Gantt chart (see Figure 3).

Plan execution and monitoring (in development) The
plan may be launched for execution, distributed amognst
all the technical staff with some resposibility in the fire
fighting episode, and concurrently monitored.

Domain knowledge
The knowledge about the planning objects (places, facili-
ties, task forces, resources, etc) is stored in an ontology of
the problem represented in Protéǵe, an ontology editor and

Figure 2: The ArcView plugin

Figure 3: Gantt chart output

knowledge acquisition tool (National Library of Medicine ).
A web browsing tool has been designed so that end users
may easily access to the hierarchy of objects, to query or
modify their properties, without having to know anything
related to knowledge representation1. This hierarchy of ob-
jects also supports the definition of the goal scenario (geo-
graphical targets, goal tasks, etc) either from a web browser
or from a GIS software. Once a plan is requested by the user,
the knowledge stored in this knowledge base is then trans-
lated into PDDL 2.2 level 3 (Edelkamp & Hoffmann 2004),
with support for timed initial literals and derived predicates,
following the next outline:

• Classes of the ontology are translated into a hierarchy of
PDDL types.

• Instances are translated as typed planning objects (only
the slots relevant for the planning process are translated).

• The domain is stored directly in the form of tasks, meth-

1The development team may also use the standard Protéǵe shell
to run knowledge consistency checking and validation.

30 ICAPS 2005. System Demonstrations



ods and actions compliant with PDDL 2.2 level 3, so it
does not need to be translated.

• Other constraints of the problems are also translated ac-
cordingly like maximun legal duration of shifts (fluent),
day/night events (timed initial literals), activity windows
over the scenario (deadline goals), etc.

The planner
The planning module is a forward state-based HTN planning
algorithm with the following features:

• Primitive actions are fully compliant with PDDL 2.2 with
durative actions and numeric capabilities (Figure 4).

• It makes use of an extension of PDDL to represent timed
HTN tasks and methods.

• SIADEX’s domains also embed some functionalities to
control and prune the search in order to make the planning
process more efficient.

• SIADEX also supports the use of external functions calls
by embedding Python scripts in the domain definition, to
access external sources of information or perform com-
plex computations during the planning process (Figure 5).

(:durative-action Refuel_Plane

:parameters (?a - Aircraft ?p - Refueling_Point)

:prettyprint "?start > Aircraft ?a starts refueling

at ?p. Finishing at ?end"

:duration (= ?duration (refueling_time ?a))

:condition (and

(in_fire ?a ?fire)

(over all (daylight ?fire))

(GIS ?p ?gis)

(current_position ?a ?gis))

:effect (and

(state ?a refuelling)

(at end (assign (current_autonomy ?a)

(max_autonomy ?a))))

)

Figure 4: PDDL 2.2 level 3 primitive actions

Temporal and resource reasoning
One of the most important features of SIADEX is that
it allows a powerful handling of temporal knowledge.
SIADEX’s plans are built on top of a temporal constraint
network (Dechter, Meiri, & Pearl 1991) that records tem-
poral and causal dependencies between actions so that, al-
though it is a state based process, plans may have a partial
order structure with temporal references either qualitative or
numeric. This allows SIADEX to obtain very flexible sched-
ules (N. Policella 2004) that might be redesigned during the
execution of the plan to adapt to unforeseen delays without
the need to replan. In addition to this, SIADEX also sup-
ports the definition of constraints on the makespan of the
plan and deadline goals over primitive and compound tasks

(:functions

(distance ?x1 ?y1 ?x2 ?y2)

{

import math

return math.sqrt ( (?x2 - ?x1) *

(?x2 -?x1) +

(?y2 - ?y1) *

(?y2 - ?y1))

}

...

Figure 5: Embedded python in the domain

(in the case of compound tasks, deadline goals are inherited
by its component tasks).

Since SIADEX handles numerical objects like PDDL flu-
ents (that can also be dynamically linked to external Python
calls) it achieves a basic handling of numeric resources.

References
Allen, J.; Schubert, L.; Ferguson, G.; Heeman, P.; Hwang,
C.; Kato, T.; Light, M.; Martin, N.; Miller, B.; Poesio, M.;
and Traum, B. 1995. The TRAINS project: a case study
in building a conversational planning agent.Experimental
and Theoretical Artificial Intelligence7:7–48.
Avesani, P.; Perini, A.; and Ricci, F. 2000. Interactive
case-based planning for forest fire management.Applied
Intelligence13(1):41–57.
Biundo, S., and Schattenberg, B. 2001. From abstract crisis
to concrete relief - a preliminary report on combining state
abstraction and htn planning. In6th European Conference
on Planning (ECP-01).
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks.Artificial Intelligence49:61–95.
Edelkamp, S., and Hoffmann, J. 2004. The language
for the 2004 international planning competition. http://ls5-
www.cs.uni-dortmund.de/ edelkamp/ipc-4/pddl.html.
ESRI. http://www.esri.com.
Myers, K. L. 1999. CPEF: A continuous planning and
execution framework.AI Magazine20(4):63–69.
N. Policella, S. Smith, A. C. A. O. 2004. Generating ro-
bust schedules through temporal flexibility. In14th Inter-
national Conference on Automated Planning and Schedul-
ing, ICAPS.
National Library of Medicine. http://protege.stanford.edu/.

ICAPS 2005. System Demonstrations 31



Subgoal Partitioning and Resolution in SGPlan∗

Yixin Chen, Chih-Wei Hsu, Benjamin W. Wah
Department of Electrical and Computer Engineering

and the Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
URL: http://manip.crhc.uiuc.edu/programs/SGPlan
Email: {chen, chsu, wah}@manip.crhc.uiuc.edu

Introduction
In this demo, we illustrate the idea and operations of
SGPlan (Chen, Hsu, & Wah 2004; Wah & Chen 2005),
a PDDL2.2 planner that won the first prize in the sub-
optimal temporal metric track and a second prize in the
suboptimal propositional track in the Fourth Interna-
tional Planning Competition (IPC4), 2004. SGPlan is
the only planner that won in two tracks of the compe-
tition. Since SGPlan is a suboptimal planner, it did not
participate in the optimal track.

SGPlan was designed based on the key observation
that many planning applications have a clustered struc-
ture of their constraints. Specifically, we have found
that constraints are highly localized by their subgoals.
Based on this observation, we have proposed to par-
tition problem constraints by their subgoals into mul-
tiple subsets, solve each subproblem individually, and
resolve inconsistent global constraints across subprob-
lems based on a penalty formulation.

In this demo, we illustrate the key observation of con-
straint locality in some application domains, the con-
straint partitioning approach we have used in SGPlan,
and the process of resolving inconsistent global con-
straints across partitioned subproblems.

The intended audience of this demonstration in-
cludes all researchers and practitioners in planning and
scheduling, especially those who are interested in de-
terministic PDDL2.2 planning and scheduling. We will
present the slides in the demonstration, discuss the tech-
nology with interested audience, and answer questions
regarding the SGPlan system.

The executable of SGPlan is downloadable from our
website (http://manip.crhc.uiuc.edu/programs/SGPlan).
The system has been evaluated on all the test problems
from IPC3 and IPC4. Complete evaluation results can
be found in our website and a paper submitted to the
Journal of Artificial Intelligence Research (Chen, Hsu,
& Wah 2005).

∗Research supported by National Science Foundation
Grant IIS 03-12084 and National Aeronautics and Space Ad-
ministration Grant NCC 2-1230.
Copyright c© 2005, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

Slide 1: The AIRPORT-4 Planning Instance.

Observations on Constraint Locality
Our approach is based on the observations that the con-
straints in many planning applications are not purely
random but highly structured, and that these constraints
can be clustered by their subgoals.

For example, in AIRPORT, an airport scheduling do-
main, each subgoal is a destination in an airport. Most
mutual-exclusion constraints are localized within a sub-
goal relating two actions from the same subgoal, and
only a small fraction of global constraints relate multi-
ple subgoals. We illustrate this observation as follows.

Slide 1 illustrates the topology an airport in the
AIRPORT-4 instance. The example involves a planning
task for moving three airplanes from their starting po-
sitions to some destination gates. To apply a PDDL2.2
planning system to solve the problem, we first model
this problem in the PDDL2.2 language. The PDDL2.2
model specifies the facts, actions, initial state, and goals
of the planning problem. Note that in the goals include
multiple subgoals, one for each airplane. A solution
plan, shown in the right bottom part of Slide 1, is a tem-
poral plan where actions have durations, and can have
overlapping execution times.

Slide 2 illustrates the constraints in a temporal plan-
ning problem whose actions have durations. Constraints
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Slide 2: Mutual-Exclusion Constrains in Temporal
Planning.

in PDDL2.2 temporal planning problems are mutual-
exclusion constraints proposed in Graphplan (Blum &
Furst 1997). We show examples of violated mutual-
exclusion constraints in the AIRPORT-4 instance. For
example, in the diagram in Slide 2, the two actions
move(A1,g1,g2) and move(A1,g7,g3) are mutual exclu-
sive and cannot be scheduled simultaneously in the plan
as shown in the diagram. This is obviously true because
that an airplane cannot be at different gates at the same
time. A plan is a solution plan if there are no violated
mutual-exclusion constraints.

Slide 3 plots the structure of the mutual-exclusion
constraints in three solution plans generated by LPG on
the AIRPORT-4 instance. These plans correspond to,
respectively, one, two, and three airplanes (subgoals).
We plot actions in boxes and a line between two actions
if they are related by a mutual-exclusion constraint. We
see that the number of actions and the number of con-
straints grow in proportion to the number of subgoals,
which lead to an exponential growth in search complex-
ity.

Slide 4 shows that the seemingly random constraints
in the solution plans generated by LPG are in fact highly
structured and can be clustered by their subgoals. To
see this, we generate a plan for each of the three sub-
goals in the AIRPORT-4 instance, compose the plans
together, and plot all the actions and constraints. We
show that most constraints are local constraints relating
two actions from the same subproblem, and that only
a few global constraints (shown in red lines) relate two
actions from different subproblems. This observation is
intuitively sound because the movements of airplanes
are largely independent. Two airplanes interact with
each other only when they are at the same position and
can be scheduled independently most of the time.

We also show in the demo that the constraint-locality
property is observed in other IPC4 domains. Slide 5
plots the ratio of global constraints to all constraints un-
der subgoal partitioning in four other IPC4 domains. It

Slide 3: Mutual-Exclusion Constrains in AIRPORT-4
Instance.

Slide 4: Key Observation: Constraint Locality.

shows that the fraction of global constraints with respect
to the total number of constraints is consistently low.

Although not shown in the slides, we have also
observed similar constraint locality in some planning
systems modelled by languages other than PDDL2.2,
where there is no such notion as subgoals. For exam-
ple, in the ASPEN system for space-rover planning for
the Jet Propulsion Laboratory of NASA, the planning
problem is modelled by a specific language that only
defines actions and their temporal features, and the task
is to find a conflict-free plan that optimizes a prefer-
ence score while satisfying all the temporal constraints
among actions. We have found that for ASPEN plan-
ning problems, constraints demonstrate temporal local-
ity, i.e. the constraints are clustered by their active
times. We therefore have proposed to partition the con-
straints by time.

Constraint Partitioning in SGPlan
In SGPlan, we use a planning algorithm based on con-
straint partitioning. The approach partitions a planning
problem into multiple subproblems by its subgoals, and
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Slide 5: Constraint Locality in Four IPC4 Domains.

Slide 6: Constraint Partitioning: A
Partition-and-Resolve Approach.

solves each subproblem individually before composing
the solutions. As there are global constraints relating
multiple subproblems, the main technical problem ad-
dressed in the design of SGPlan is the resolution of in-
consistent global constraints.

Resolving global constraints for temporal planning is
particularly difficult than some previous partitioning ap-
proach for several reasons. First, we are interested in
fully-automated planning and do not have any domain-
specific knowledge about the application problems. Ef-
ficient partitioning algorithms, such as HTN planning,
do exist when there are domain knowledge about how
to partition a task into multiple subtasks. Second, ex-
isting efficient decomposition methods for linear and
convex optimization cannot be used because the con-
straint functions are symbolic, nonlinear, and do not
have linearity or convexity properties. Separable pro-
gramming for constrained search usually requires the
functions to have separable structures and be linear or
convex. Third, mathematical conditions requiring con-

Slide 7: Architecture of the SGPlan Planner in IPC4.

tinuity and differentiability cannot be derived because
the constraints may be discrete and not in closed form.
Due to these difficulties, previous constraint program-
ming methods, such as penalty and Lagrangian meth-
ods, cannot be applied for resolving inconsistent global
constraints.

To overcome these difficulties, Slide 6 presents our
proposed Extended Saddle Point Condition (ESPC)
based on a newℓm

1
-penalty function (Wah & Chen

2005). Our theory provides a necessary and suffi-
cient condition for characterizing constrained local op-
timal solutions without continuity and differentiability
assumptions on constraints. Moreover, the condition
can be decomposed into a partitioned form, where each
subproblem is associated with a necessary local con-
dition. The partitioned condition greatly reduces the
search space of each subproblem by pruning candidate
subplans that do not satisfy the ESPC condition. We can
then view the planning problem as a constrained non-
linear optimization problem, partition their constraints,
and apply the ESPC condition to resolve the global con-
straints efficiently.

Slide 7 illustrates the architecture of our SGPlan
planner based on constraint partitioning. In SGPlan, a
planning problem is partitioned into multiple subprob-
lems by its subgoals, and may be further partitioned
using Landmark analysis (Porteous, Sebastia, & Hoff-
mann 2001). Landmark analysis detects some interme-
diate facts that have to be made true before achieving
certain subgoals. Therefore, a subproblem may be fur-
ther partitioned into a series of smaller problems, each
trying to achieve a subset of landmark facts. SGPlan
then uses a modified version of the FF planner (Hoff-
mann & Nebel 2001) to find a solution plan for each
subproblem that satisfies all local constraints and that
minimizes a modified objective function. In order to
bias the search towards resolving global inconsisten-
cies, our modified objective function includes the origi-
nal objective function and the penalty terms for violated
global constraints. In each iteration, the penalty values
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are updated after solving all the subproblems and eval-
uating the global constraints.

Resolution of Inconsistent Global
Constraints

Next, we illustrate the rapid reduction of violated global
constraints in SGPlan. In addition, we show the effec-
tiveness on using ESPC in SGPlan by comparing it with
a greedy search without ESPC.

Slide 8 demonstrates the solution process of SGPlan
on the AIRPORT-4 instance with three subgoals. In
the first iteration, we generate a plan for each subgoal.
We see that there are some violated global constraints
(shown in arrows) at the start of the second iteration.
In the second iteration, SGPlan solves each subprob-
lem individually, using theℓm

1
-penalty function to bias

the search towards resolving the violated global con-
straints. It is clear that the number of global constraints
is reduced quickly, and a solution plan is found after the
second iteration.

Slide 8: Solution Process of SGPlan on the
AIRPORT-4 Instance.

Slide 9 demonstrates the effectiveness of using ESPC
on four example instances in four application domains.
In each case, we plot the number of violated global
constraints with respect to the number of subproblems
solved by SGPlan. As a comparison, we also tested
a greedy search algorithm without using ESPC and a
penalty function to bias the search. In each instance,
we generated three alternative plans and accepted the
one with the minimum number of violated global con-
straints. Clearly, SGPlan using ESPC can resolve in-
consistent global constraints much more efficiently than
the greedy algorithm.

Slide 10 summarizes the evaluation results of SG-
Plan on the seven IPC4 domains. For each domain,
we show the total number of instances and the corre-
sponding number of instances solved by SGPlan and
five other leading IPC4 planners within the 30-minute
CPU-time and 1-GB memory limits. The results show

Slide 9: Reduction of Number of Violated Global
Constraints.

Slide 10: A Comparison of Six IPC4 Planners

that SGPlan is consistently better than other planners in
most IPC4 domains.
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