
Monterey, California
I C A P S 2 0 0 5

Tutorial on Temporal and

Resource Reasoning for

Planning, Scheduling and

Execution

Nicola Muscettola

Martha Pollack

NASA Ames Research Center, USA

University of Michigan, USA

IC
A

P
S

0
5

TU1

Tutorial on Temporal and

Resource Reasoning for

Planning, Scheduling and

Execution

Nicola Muscettola

Martha Pollack

NASA Ames Research Center, USA

University of Michigan, USA

ICAPS 2005
Monterey, California, USA
June 6-10, 2005

CONFERENCE CO-CHAIRS:
Susanne Biundo

Karen Myers

Kanna Rajan

University of Ulm, GERMANY

SRI International, USA

NASA Ames Research Center, USA

Cover design: L.Castillo@decsai.ugr.es

Tutorial on Temporal and Resource Reaso-
ning for Planning, Scheduling and Execu-
tion

Table of contents
Preface 3

Presentation 5
Nicola Muscettola, Martha E. Pollack

http://icaps05.icaps-conference.org/

Tutorial on Temporal and Resource Reaso-
ning for Planning, Scheduling and Execu-
tion

Preface

Planning and scheduling algorithms are increasingly guiding autonomous systems
that interact with the environment and with humans in the real world. Without effective
management of time and resources these autonomous systems cannot guarantee safe
and efficient operations over a long period of time. In this tutorial we review basic and
advanced topics in time and resource constraint reasoning and their applications to
planning, scheduling and execution. The emphasis on plan execution is increasingly
important as planning moves from the laboratory to real applications. Significant CPU
and memory limitations during plan execution provide a strong driver for the design of
efficient algorithms. Several such algorithms will be presented in this tutorial together
with their justification from applications such as space exploration, health care systems,
military systems and manufacturing. The tutorial will present a comprehensive review
of current temporal and resource constraint-based formalisms, their motivation, their
propagation algorithms and their use in planning, scheduling and execution systems.

Instructors

Nicola Muscettola, NASA Ames

Martha E. Pollack, University of Michigan

Temporal and
Resource Reasoning
for Planning, Scheduling,
and Execution

Nicola Muscettola, NASA Ames
Martha E. Pollack, Univ. of Michigan

ICAPS 2005 Tutorial:

Real-World
Planning and

Execution

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 5

Space Facility Crew Activity
Planning

•Activity schedule very tight
•Did not adapt to uncertainties in
execution
•Did not adapt to human needs for
more flexibility
•45 days into the mission they rebelled

They went on strike!

MAPGEN in Surface Operations

• MAPGEN: First Artificial Intelligence (AI)
based Decision-Support System to control
a spacecraft on the surface of another
planet

• Spirit:
– Nominal science operations from Sol 15 to

18
• All planned activities from 16/17

executed on board
– Return to nominal science operations

within 2-3 days
• Opportunity:

– Informal use begins Sol 4/5
• Commanded activities executed on

board nominally
– Nominal science operations tomorrow (Feb

6th)
• Dual rover support use of MAPGEN in full

swing
– Continues to be for MER Extended Ops

• Conservative ROI to NASA: 25% extra
science returned per Sol, over a manual
approach for plan synthesis

– Approx $1.4 Million/Sol

Surface Operations

(1 Sol = 1 Martian Day = 24hrs 37mins Earth time)

Oct’03-April’04Oct’02-Sept’03Oct ’01-Sept’02Oct ’00-Sept ‘01

ICAPS 2005

6 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

EO-1 Sensorweb

Re-tasking

Earth
Observer
One

Triggers so far: Wildfires, Floods, Volcanoes (thermal, ash), Ice/Snow, in-situ sensors,
modified by cloud cover

Courtesy of JPL

Robust Task Execution for Long
Traverse Rovers

• ASTEP LITA Atacama Field Campaign (Sep-Oct
2004)
– Zöe rover with life detecting instruments
– On-board planning and autonomous navigation over

long distances

• Rover executive results (preliminary, telemetry still
being analyzed)
– Total hours of operations (cumulative over several runs):

17 hours
– Total distance covered: 16 km
– Longest autonomous traverse: 3.3Km 2h 29m
– “Roughest traverse”: 1h 2m with 19 faults recovered
– Faults addressed:

• Navigator “confused”
• Internal processes failed
• Early and late arrival at waypoint

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 7

Autominder: Assistive
Technology for Cognition

To assist people with memory impairment:
•Model their daily activities, including temporal
constraints on their performance
•Monitor the execution of those activities
•Decide whether and when to issue reminders

Soccer!

ICAPS 2005

8 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Issues in Temporal Planning and
Execution

• Representation: What kinds of temporal
information can we represent?

• Planning
– Generation: How do we construct a temporal plan?

• Execution
– Dispatch: When should the steps in the plan be

executed? How do we maintain the state of the plan,
given that time is passing (and events are occurring)?

• Focus Today: Constraint-Based Models

Constraint Satisfaction
Problems

• <V,D,E>

– V = {v1, v2, . . . vn}: set of constrained variables

– D = {D1, D2, . . . , Dn}: domains for each variable

– E = relations on a subset of V: constraints,
representing the legal (partial) solutions

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 9

1-Minute Review of CSPs
V: {A,B,C}
DA: {R, B} DB: {R, B} DC : {R, Y}
E: EAB = {<R,B>, <B,R>}

EAC = {<R, Y>, <B,R>,<B,Y>}
EBC = {<R, Y>, <B,R>,<B,Y>}

•Solve with a combination of search
and propagation (forward checking,
arc consistency, etc.)

•Relations here are binary—may
have higher arity as well

A

B C

High Level Outline

1. Time representations in problem solving and
execution

2. Planning with time

3. Resource reasoning

ICAPS 2005

10 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Qualitative
Temporal
Models

Outline
1. Qualitative Temporal Models
2. Representing and Solving Simple Temporal

Problems
3. Dispatching Plans Modeled as STPs
4. Representing and Solving Disjunctive Temporal

Problems
5. Dispatching DTPs
6. Generating Temporal Plans
7. Adding Uncertainty: Temporal and Causal
Then on to resources. . .

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 11

Interval Algebra

X before Y

X equal Y

X meets Y

X overlaps Y

X during Y

X starts Y

X finishes Y

X Y

X
Y

X Y

X
Y

X
Y

Y
X

Y
X

• With inverses: 13 primitive
relations

• Complete (can describe all
possible relations between
intervals)

• Construct compound
relations:

• “Y ends sometime after X”:

X b Y ∨ X m Y ∨ X o Y
∨ X d Y ∨ X s Y

The Breakfast Plan

Prepare coffee, toast, and eggs. Have coffee ready no
later than the rest of the meal, and have toast and
eggs ready at the same time.

C

T E

{b,e,m,o,d,s,f,fi}

{e,f,fi}

{b,e,m,o,d,s,f,fi}

Assignments to pairs of
variables, e.g. C,E o

Ternary constraints rule
out some possibilities,
e.g.

T,E e

C,T b

C,E o

ICAPS 2005

12 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Reasoning with the Interval
Algebra

• Model the ternary constraints with a composition
table; use to check path-consistency

b m o . . .
b b b b
m b b b
o b b b,m,o
. . .

• Reasoning tasks
– Check consistency
– Find a solution

• Both tasks are NP hard
– Path consistency not sufficient

Point Algebra
P < Q

P = Q

P > A

• Now model intervals with 2 points (start and end)

• Construct 8 compound relations

“(Interval) Y ends no later than (interval) X”:

Ye > Xe ∨ Ye = Xe

• Can check consistency and find solutions in
polynomial time

• But loss of expressive power: Can’t represent all IA
relations

X {b,bi} Y ≡ Xe < Ys ∨ Ye < Xs Not binary!

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 13

Real Plans often have
Quantitative Constraints

• US NINDS Guidelines for Treatment of Potential
Stroke (Thrombolytic) Patient

3 hoursDepending on test results, admission
to monitored bed

60 minutesDepending on test results, door to
treatment

45 minutesDoor to CT scan interpretation

25 minutesDoor to CT scan completion

15 minutesDoor to neurological expert

10 minutesHospital door to doctor

TARGET
DURATION

ACTION

Real Plans often have
Quantitative Constraints

• Typical Plan for an Autominder User

At end of check pulseDepending on pulse, take meds

Between 11:00 and 1:00, and
between 3:00 and 5:00

Check pulse

At end of prepare lunchEat lunch

Between 11:45 and 12:15Prepare lunch

Within 20 minutes of dryer
ending

Fold clothes

Within 20 minutes of washer
ending

Put clothes in dryer

Before 10 a.m.Start laundry

TARGET TIMEACTION

ICAPS 2005

14 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Simple
Temporal
Problems

The Breakfast Plan (Version 2)

Prepare coffee and toast. Have them ready within 2
minutes of each other. Brew coffee for 3-5
minutes; toast bread for 2-4 minutes.

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 15

Temporal Constraint Problems

• Family of constraint-satisfaction problems (CSPs),
<V,E> where

V = events

E = interval-based constraints

• The domains D are left implicit: real numbers or
integers

• Members of the family are defined by the form of
the constraints

Simple Temporal Problems

• In a Simple Temporal Problem (STP) <V,E,>,
the constraints have the form y - x ≤ u,
where x, y ∈ V, and u ∈ ℜ.

• W.l.o.g. assume u ∈ Z.

ICAPS 2005

16 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

The Breakfast Plan as an STP

Prepare coffee and toast. Have them ready within 2
minutes of each other. Brew coffee for 3-5
minutes; toast bread for 2-4 minutes.

Variables: TR , CS , CE , TS , TE

Constraints:
3 ≤ CE - CS ≤ 5
2 ≤ TE - TS ≤ 4
-2 ≤ CE - TE ≤ 2
0 ≤ CS - TR ≤ ∞
0 ≤ TS - TR ≤ ∞

Graphical Representations of
STPs

TR

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2]
TR

TETS

CECS

0

5

4

2

0

2
-3

-2

Simple Temporal Network
(STN)

Distance Graph

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 17

Equivalences

X Z

[l,u]
X Z

u

-l
X Z

[-u,-l]

l z-x u z-x u ∧ x-z -l

The following are equivalent:

Be careful—the following are not:

X Z
b

X Z
-b

Solving STPs

• A solution to an STP <V,E> is an assignment of a
time point to each variable in V s.t. all the
constraints in E are satisfied.

• An STP is consistent (has a solution) iff its
distance graph contains no negative cycles.

X

Y

Z

1

-1 -1

Not consistent

ICAPS 2005

18 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Negative Cycles
Given cycle X = i0, ii, . . . In = X
Constraints : i1 – X bi0,i1

i2 – ii bi1,i2

.. . .
X – in-1 bin-1,in

Sum up the inequalities:
X – X = 0 dXX, i.e., dxx 0

So if dxx < 0, have a contradiction

} XX

n

j

ii db jj =
=

−

1

,1

Computing Consistency

• Can thus check the consistency of an STP this in
polynomial time, using an all-pairs shortest path
algorithms (e.g., Floyd-Warshall)

• Consistent iff 0’s along the main diagonal

• The value of the shortest path from X to Y is called
the distance from X to Y, written dXY

• Graphical form of the APSP matrix is called the d-
graph

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 19

Floyd-Warshall Algorithm
Given a graph G,

W = adjacency-matrix(G), n = size(G)

D(0) = W

For k = 1 to n

For i = 1 to n

For j = 1 to n

D(k)
i,j = min(D(k-1)

i,j, D(k-1)
i,k + D(k-1)

k,j)

Return D(n)

Paths from i to j with intermediate nodes from 1 to k-1

Paths from i to j with intermediate nodes from 1 to k

An Example

0-10Z

40-1Y

120X

ZYXX

Y

Z
[0, 1]

[1,2] [1, 4]

X

Y

Z

1

0
2

-1 4
-1

D(0)

ICAPS 2005

20 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

An Example

0-10Z

40-1Y

120X

ZYX

0-10Z

00-1Y

120X

ZYXX

Y

Z
[0, 1]

[1,2] [1, 4]

X

Y

Z

1

0
2

-1 4
-1

D(1), paths through X

An Example

0-10Z

40-1Y

120X

ZYX

0-1-2Z

00-1Y

120X

ZYXX

Y

Z
[0, 1]

[1,2] [1, 4]

X

Y

Z

1

0
2

-1 4
-1

0-10Z

00-1Y

120X

ZYX

D(2), paths through X,Y

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 21

An Example

0-10Z

40-1Y

120X

ZYX

Z

Y

-1X

ZYXX

Y

Z
[0, 1]

[1,2] [1, 4]

X

Y

Z

1

0
2

-1 4
-1

0-10Z

00-1Y

120X

ZYX

D(3), paths through X,Y,Z

0-1-2Z

00-1Y

120X

ZYX

Another Example

X

Y

Z
[0, 5]

[1,2] [1, 4]

X

Y

Z

5

0
2

-1 4
-1

0-1-2Z

40-1Y

520X

ZYX

ICAPS 2005

22 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

D-Graph for the Breakfast Plan

4

-2

0

TR

TS

CECS

0

5

2

0

2

-3

7
-1

6

5

3

∞

-3

-2∞

TE

∞

∞
0-22-1-2TE

40630TS

200-3-3CE

75500CS

∞∞∞∞0TR

TETSCECSTR

APSP Matrix

d-graph

TR’s and TW’s

• Use a Temporal Reference Point (TR) to specify
absolute clock times

• Compute the Time Window (TW) for every event e
– Minimal distance to/from TR (dTR,X,dX,TR)

X

Y

Z
[0, 5]

[1,2] [1, 4]

TR [6,8]
<6,8>

<7,10>

<8,13>

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 23

Decomposability
• An STP is decomposable if every locally consistent

assignment can be extended to a solution.

X

Y

Z
[0, 5]

[1,2] [1, 4]

X 0, satisfying Constraints({X})

Z 0, satisfying Constraints({X,Z})

No way to extend with an
assignment to Y –

not decomposable

• The all-pairs, shortest path graph (the d-graph) for
any STP is decomposable.

Generating STP Solutions

• Can “read off” solutions from the d-graph

X

Y

Z

5

0
2

-1 4
-1

0-1-2Z

40-1Y

520X

ZYX Immediate Solutions:
{x = 0,y = 2, z = 5}
{x = -1, y = 0, z = 4}
{x = -2, y = -1, z = 0}

ICAPS 2005

24 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

More generally…
• Construct the d-graph and order the nodes, v0, . . .

vn (usually v0 = TR)

• Select a value x0 ∈ TW(v0)

• Solution = {v0 x0}

• For k = 2 to n
– Propagate: TW(vk) = ∩i=1 (xi + [-dk,i , di,k])

– Select xk ∈ TW(vk)

– Solution = Solution ∪ {vk xk}

k-1

Exploit decomposability

Solving the Breakfast STP I

[-4,-2]

TR←0

TS

CECS

[3,5]

[-2,2]

[1,7]

[-6,0]

[-3,5]

[3,∞]

[2,∞]

TE

[0,∞]

[0,∞]

TR 0

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 25

Solving the Breakfast STP II

[-4,-2]

TR←0

TS

CECS

[3,5]

[-2,2]

[1,7]

[-6,0]

[-3,5]

[3,∞]

[2,∞]

TE

0+[0,∞]

[0,∞]

TR 0
CS 5

Solving the Breakfast STP III

[-4,-2]

TR←0

TS

CECS

5+[3,5]

[-2,2]

[1,7]

[-6,0]

[-3,5]

0+[3,∞]

[2,∞]

TE

0+[0,∞]

[0,∞]

TR 0
CS 5
CE 8

0+[3,∞]∩
5+[3,5] =
[8,10]

ICAPS 2005

26 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Solving the Breakfast STP IV

[-4,-2]

TR←0

TS

CECS

5+[3,5]

8+ [-2,2]

5+[1,7]

[-6,0]

[-3,5]

0+[3,∞]

0 +[2,∞]

TE

0+[0,∞]

[0,∞]

TR 0
CS 5
CE 8
TE 9

0+[3,∞]∩
5+[3,5] =
[8,10]

5+[1,7] ∩
8+ [-2,2] ∩
0 +[2,∞] =
[6,10]

Solving the Breakfast STP V

9 +[-4,-2]

TR←0

TS

CECS

5+[3,5]

8+ [-2,2]

5+[1,7]

8+[-6,0]

5+[-3,5]

0+[3,∞]

0 +[2,∞]

TE

0+[0,∞]

0+[0,∞]

TR 0
CS 5
CE 8
TE 9
TS 6

0+[3,∞]∩
5+[3,5] =
[8,10]

5+[1,7] ∩ 8+
[-2,2] ∩ 0
+[2,∞] =
[6,10]

8+[-6,0] ∩
5+[-3,5] ∩
9+[-4,-2] ∩
0+[0,∞] = [5,7]

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 27

Plan Dispatch
With STPs

The Dispatch Problem

• Given a (set of) plan(s) with temporal constraints,
decide when to execute each action so as to ensure
that the constraints are satisfied.

ICAPS 2005

28 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Naïve Dispatch Algorithm

• Use the STP solution algorithm to assign a value to
a variable.

• Wait until that time occurs.

• Dispatch the event associated with that variable.

Solving the Breakfast STP

9 +[-4,-2]

TR←0

TS

CECS

5+[3,5]

8+ [-2,2]

5+[1,7]

8+[-6,0]

5+[-3,5]

0+[3,∞]

0 +[2,∞]

TE

0+[0,∞]

0+[0,∞]

TR 0
CS 5
CE 8
TE 9
TS 6

0+[3,∞]∩
5+[3,5] =
[8,10]

5+[1,7] ∩ 8+
[-2,2] ∩ 0
+[2,∞] =
[6,10]

8+[-6,0] ∩
5+[-3,5] ∩
9+[-4,-2] ∩
0+[0,∞] = [5,7]

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 29

Naïve Dispatch Algorithm

TR 0
Start at 8am

CS 5
Next, start coffee at 8:05

CE 8
Pour the coffee at 8:08

TE 9
Pop the toast at 8:09

TS 6
Start the toast at 8:06

Off-Line Dispatch

• Find a solution to the STP off-line

• Sort the variables in increasing temporal order

• Dispatch as each event as it “comes due”

Find solution TR 0, CS 5, CE 8, TE 9, TS 6
Sort: <TR, CS, TS, CE, TE>
Then dispatch in order

ICAPS 2005

30 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

On-Line Dispatch

• Off-line dispatch is inflexible; can’t handle
“uncontrollable” events

• Key idea for on-line dispatch: only dispatch events
that are
– Live (it’s currently within their time window), and

– Enabled (all events that are constrained to occur earlier
have already been dispatched)

• Easy to recognize when Y must precede X: DXY < 0,
i.e., there’s a negative edge starting at X

On-Line Dispatch Algorithm
1. Compute the d-graph for the given STP
2. A {x | x has no outgoing negative edges} [x is initially

enabled]
3. Pick and remove an event e from A such that now ∈ TW(E)
4. S ← S ∪ {e}
5. Dispatch e and set execution-time(e) ← now
6. Propagate this assignment to the neighbors of e
7. A ← A ∪ {x | all negative edges starting at x have

destinations already in S} [x is enabled.]
8. Wait until now has advanced to some time between the

minimum lower bound of a time window for a member of A
and the minimum upper bound of a time window for a
member of A.

9. Loop to (2) until every event is in S.

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 31

On-Line Dispatch of Breakfast
TR 0
Start at 8am

CS 5
Next, start coffee at
8:05

CE 8
Pour the coffee at 8:08

Can’t dispatch TE

next, since it isn’t
enabled!

9 +[-4,-2]

TR←0

TS

CECS

5+[3,5]

8+ [-2,2]

5+[1,7]

8+[-6,0]

5+[-3,5]

0+[3,∞]

0 +[2,∞]

TE

0+[0,∞]

0+[0,∞]

0+[3,∞]∩
5+[3,5] =
[8,10]

5+[1,7] ∩
8+ [-2,2] ∩
0 +[2,∞] =
[6,10]

8+[-6,0] ∩
5+[-3,5] ∩
9+[-4,-2] ∩
0+[0,∞] =
[5,7]

Improving Efficiency
• Some edges in the d-graph are dominated, and can

be removed
• Triangle Rule: Edge AC is dominated if there is

another node B such that:
{ |AB| + |BC| = |AC| }∧ { |AB| < 0 ∨ |BC| ≥ 0 }

ICAPS 2005

32 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

A Dominated Edge

4

-2

0

TR

TS

CECS

0

5

2

0

2

-3

7
-1

6

5

3

-3

-2

TE

Edge CSTS is
dominated by
CSCE and CETS

Increasing Efficiency

• Can remove all the dominated edges off-line in
O(n3) time, to create the minimal equivalent
dispatchable (MED) network

• Dispatch is still O(n2) since in the worst case no
edges may be removed

• But in practice may obtain significant speedup:
NASA Remote Agent domain, 40-60% of original
edges pruned

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 33

Disjunctive
Temporal
Problems

Real Plans often have Disjunctive
Constraints

• Typical Plan for an Autominder User

At end of check pulseDepending on pulse,
take meds

Between 11:00 and 12:00, and
between 3:00 and 4:00

Check pulse

At end of prepare lunchEat lunch

Between 11:45 and 12:15Prepare lunch

Within 20 minutes of dryer
ending

Fold clothes

Within 20 minutes of washer
ending

Put clothes in dryer

Before 10 a.m.Start laundry

TARGET TIMEACTION

Non-overlap:
LE – PS 0 ∨
ME – LS 0

Activity disjunct:
Watch the news
at 10pm or 11pm

ICAPS 2005

34 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

The Breakfast Plan (Version 3)

Prepare coffee and toast. Have them ready within 2
minutes of each other. Brew coffee for 3-5
minutes; toast bread for 2-4 minutes. Also take a
shower for 5-8 minutes, and get dressed, which
takes 5 minutes. Be ready to go by 8:20.

Morning

The Morning Plan

SS SE

DS DE

[5,8]

[5,5]

[0,∞]

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2]

[0,∞]

TR

[0,20]

[0,20]

[0,20]

Prepare coffee and toast. Shower and dress.

[(TE SS) ∧ (CE SS)] ∨ [(DE CS) ∧ (DE TS)]

Dress first.Eat first.

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 35

The Morning Plan

SS SE

DS DE

[5,8]

[5,5]

[0,∞]BS

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2] BE

[0,∞]

[0,∞]

TR

[0,∞]

[0,20]

[0,20]

[0,20]

[0,∞]

BE – SS 0 ∨ DE – BS 0 disjunctive, not binary

Disjunctive Constraints

• Represent non-overlaps (as in our example)

• Can also represent other forms of disjunction
– E.g., take a shower for 5 minutes or a bath for 10

minutes

ICAPS 2005

36 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Disjunctive Temporal
Problems

• A set of time points (variables) V and a set of
constraints C of the form:

lbji ≤ Xi – Xj ≤ ubji ∨ … ∨ lbmk ≤ Xk – Xm ≤ ubmk

• Benefit: Additional expressive power
• Cost: Additional computational expense—

reasoning is NP-Hard
– True even for binary problems, i.e., constraints have the

form

lbji ≤ X – Y ≤ ubji ∨ … ∨ lbmk ≤ X – Y ≤ ubmk

DTPs as CSPs
• One-Level Approach

– Direct assignment of times to DTP variables.

– Limitations: difficult to deal with infinite domains;
produces overconstrained solution

• Two-Level Approach
– Construct a meta-level CSP

– Variables: DTP constraints

– Domains: Disjuncts from DTP constraints.

– Constraints: Implicit, assignment must lead to a
consistent component STP

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 37

DTP Solving Example
C1 : {c11 : y – x ≤ 5}

C2 : {c21 : w – y ≤ 5} ∨ {c22 : x – y ≤ -10} ∨
{c23 : z – y ≤ 5}

C3 : {c31 : y – w ≤ -10}

Component STP:
C1 ← c11, C2 ← c23 ,

C3 ← c31

One exact solution:
{x = 0, y = 1, z = 2,

w = 12}

C1 c11

C2 c21

C3 c31

C2 c22 C2 c23

C3 c31

Strategies for Efficiency

• Forward checking / incremental forward checking

• Conflict-directed backjumping

• Removal of subsumed variables

• Semantic branching

• No-good learning

• Use efficient SAT solvers for meta-level

ICAPS 2005

38 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Removal of Subsumed Variables

Ci cij Ci cik Ci cil

If this assignment to
Ci is implied by the
partial assignment
above it, prune the
other values for Ci

Removal of Subsumed Variables

C1 : {c11 : y – x ≤ 5}

C2 : {c21 : x – z ≤ 5} ∨ {c22 : w – y ≤ -10}

C3 : {c31 : y – z ≤ 15} ∨ {c32 : z – v ≤ 10} ∨ . . .

C4, C5, etc.

C1 c11

C3 c31

C2 c21

c11 and c21 imply c31, so no need
to try other values for C3 along
this branch

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 39

Semantic Branching

A ≤ B C ≤ D

Also impose B < A
(I.e. ¬ A ≤ B)

X ≤ Y

Semantic Branching
C1 : {c11 : x – y ≤ 5}

C2 : {c21 : x – z ≤ 3} ∨ {c22 : w – z ≤ -6}

C3 : {c31 : y – w ≤ 2} ∨ {c32 : w – y ≤ 0} ∨ . . .

C4, C5, . . .

C1 c11

C2 c21

fail

C2 c22
Add ¬c21: x-z > 3

C3 c31
Fail immediately:
c11, c22, c31, ¬c21 inconsistent

ICAPS 2005

40 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

So, how fast?

• Current fastest solver, TSAT++, reports:
– ~10 seconds to solve problems with

• 35 variables

• ~210 disjunctive constraints (critical region)

• Each with 2 disjuncts

DTP Solving and OR Scheduling
Formalisms

DTPs OR
Formalisms

DTPs designed for the needs of
planning with temporal constraints

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 41

DTP Solving and OR Scheduling
Formalisms

DTPs OR
Formalisms

Example: Job Shop Scheduling
Temporal precedence constraints: easy to model with DTPs
Resource constraints: more cumbersome with DTPs

DTP Solving and OR Scheduling
Formalisms

DTPs OR
Formalisms

Example: Preemption

ICAPS 2005

42 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

DTP Solving and OR Scheduling
Formalisms

DTPs OR
Formalisms

Example: Arbitrary Disjunction
JSS & DTP can both express non-overlap constraints

A < B ∨ B < A (binary with intervals (tasks), non-
binary with time points)

DTP Solving and OR Scheduling
Formalisms

DTPs OR
Formalisms

But only DTPs can express general constraints
“If treatment A doesn’t last long enough, perform

treatment B for a given duration.”
~((AE – AS) > d) (BE – BS) > e
≡ (AS – AE) < -d ∨ (BS – BE) < -e

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 43

DTP Solving and OR Scheduling
Formalisms

DTPs OR
Formalisms

Some DTP solvers provide justifications of failure (e.g.,
minimal sets of inconsistent input constraints)
Useful in plan generation

DTP Solving and OR Scheduling
Formalisms

DTPs OR
Formalisms

Decision problems:
Often hard to satisfy

Optimization problems:
Often easy to satisfy, but
hard to optimize

ICAPS 2005

44 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Dispatch
with DTPs

DTP Dispatch Method #1

• With total control of the execution process:

• Given a DTP, find a consistent component STP S

• Dispatch S using STP dispatch algorithm

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 45

DTP Dispatch Method #2
• With partial control of the execution process (e.g.,

in execution monitoring)

• Given a DTP, find a consistent component STP S
• While no events inconsistent with S occur

– Dispatch S using STP dispatch algorithm

• Otherwise, if event e occurs at time t that is
inconsistent with S
– Add an execution constraint, t ≤ e – TR ≤ t
– Find a new consistent component STP S

The Morning Plan

SS SE

DS DE

[5,8]

[5,5]

[0,∞]BS

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2] BE

[0,∞]

[0,∞]

TR

[0,∞]

[0,20]

[0,20]

[0,20]

[0,∞]

BE – SS 0 ∨ DE – BS 0

[0,∞]

Detect Ss at 8:03

Add: 3 Ss – TR 3

ICAPS 2005

46 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

A Problem

• Might “miss” a solution

• X = 2 ∨ X = 1

• Y = 3 ∨ Y = 2

• Y > X

• Don’t see anything at 1

• See Y at 2
All remaining consistent
component STPs are eliminated

DTP Dispatch Method #3
• Produce information about what can be done

– Execution Table
• Specifies what actions are live and enabled (what can

be done)
• An event e in a DTP is live iff now is in its time

window
• An event e in a DTP is enabled iff it is enabled in at

least one consistent component STP

• And what must be done
– Deadline Formula

• Specifies what deadline must be satisfied next (what
must be done)

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 47

Example

C1: {c11: 5 ≤ x – TR ≤ 10} ∨ {c12: 15 ≤ x – TR ≤ 20}

C2: {c21: 5 ≤ y – TR ≤ 10} ∨ {c22: 15 ≤ y – TR ≤ 20}

C3: {c31: 6 ≤ x – y ≤ ∞} ∨ {c32: 6 ≤ y – x ≤ ∞}

C4: {c41: 11 ≤ z – TR ≤ 12} ∨ {c42: 21 ≤ z – TR ≤ 22}

Consistent Component STPs:

1. STP1: c11, c22, c32, c41 x before y, z early

2. STP2: c11, c22, c32, c42 x before y, z late

3. STP3: c12, c21, c31, c41 y before x, z early

4. STP4: c12, c21, c31, c42 y before x, z late

Example

C1: {c11: 5 ≤ x – TR ≤ 10} ∨ {c12: 15 ≤ x – TR ≤ 20}

C2: {c21: 5 ≤ y – TR ≤ 10} ∨ {c22: 15 ≤ y – TR ≤ 20}

C3: {c31: 6 ≤ x – y ≤ ∞} ∨ {c32: 6 ≤ y – x ≤ ∞}

C4: {c41: 11 ≤ z – TR ≤ 12} ∨ {c42: 21 ≤ z – TR ≤ 22}

Execution Table: Deadline Formula:

<x, {[5,10], [15,20]}> <x ∨ y, 10>

<y, {[5,10], [15,20]}>

Enabled events and their CNF formula that must be
time windows satisfied “next”

ICAPS 2005

48 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Dispatch Method

• Computing the Execution Table:
– Find all enabled events

– Compute their time windows in every consistent
component STP

• Computing the Deadline Formula:
– Find the next time at which some event must occur

– Find all events that might have to occur by that time
point

– Compute the minimal event sets that would ensure that
not all remaining consistent component STPs are
eliminated

Generating the Deadline Formula
Generate-DF (Solutions: STP [i])

Let U = the set of upper bounds on time windows, U(x,i) for
each still unexecuted action x and each STP i.

Let NC, the next critical time point, be the value of the minimum
bound in U.

Let UMIN = {U(x, i)| U(x,i) = NC}.

For each x such that U(x,i) ∈UMIN, let Sx = {i | U(x,i) ∈ UMIN}

Initialize F = true;

For each minimal solution MinCover of the set-cover problem
(Solutions , ∪Sx), let F = F ∧ (∨ x | Sx ∈ MinCover x).

Output DF = <F, NC>.

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 49

Generating the Deadline Formula
Generate-DF (Solutions: STP [i])

Let U = the set of upper bounds on time windows, U(x,i) for
each still unexecuted action x and each STP i.

Let NC, the next critical time point, be the value of the minimum
upper bound in U.

Let UMIN = {U(x, i)| U(x,i) = NC}.

For each x such that U(x,i) ∈UMIN, let Sx = {i | U(x,i) ∈ UMIN}

Initialize F = true;

For each minimal solution MinCover of the set-cover problem
(Solutions , ∪Sx), let F = F ∧ (∨ x | Sx ∈ MinCover x).

Output DF = <F, NC>.

Example
C1: {c11: 5 ≤ x – TR ≤ 10} ∨ {c12: 15 ≤ x – TR ≤ 20}

C2: {c21: 5 ≤ y – TR ≤ 10} ∨ {c22: 15 ≤ y – TR ≤ 20}

C3: {c31: 6 ≤ x – y ≤ ∞} ∨ {c32: 6 ≤ y – x ≤ ∞}

C4: {c41: 11 ≤ z – TR ≤ 12} ∨ {c42: 21 ≤ z – TR ≤ 22}

Consistent Component STPs:

STP1: c11, c22, c32, c41

STP2: c11, c22, c32, c42

STP3: c12, c21, c31, c41

STP4: c12, c21, c31, c42

U(x,1) = U(x,2) = 10
U(x,3) = U(x,4) = 20
U(y,1) = U(y,2) = 20
U(y,3) = U(y,4) = 10
U(z,1) = U(z,3) = 12
U(z,2) = U(z,4) = 22

ICAPS 2005

50 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Generating the Deadline Formula
Generate-DF (Solutions: STP [i])

Let U = the set of upper bounds on time windows, U(x,i) for
each still unexecuted action x and each STP i.

Let NC, the next critical time point, be the value of the minimum
upper bound in U.

Let UMIN = {U(x, i)| U(x,i) = NC}.

For each x such that U(x,i) ∈UMIN, let Sx = {i | U(x,i) ∈ UMIN}

Initialize F = true;

For each minimal solution MinCover of the set-cover problem
(Solutions , ∪Sx), let F = F ∧ (∨ x | Sx ∈ MinCover x).

Output DF = <F, NC>.

Example
C1: {c11: 5 ≤ x – TR ≤ 10} ∨ {c12: 15 ≤ x – TR ≤ 20}

C2: {c21: 5 ≤ y – TR ≤ 10} ∨ {c22: 15 ≤ y – TR ≤ 20}

C3: {c31: 6 ≤ x – y ≤ ∞} ∨ {c32: 6 ≤ y – x ≤ ∞}

C4: {c41: 11 ≤ z – TR ≤ 12} ∨ {c42: 21 ≤ z – TR ≤ 22}

Consistent Component STPs:

STP1: c11, c22, c32, c41

STP2: c11, c22, c32, c42

STP3: c12, c21, c31, c41

STP4: c12, c21, c31, c42

U(x,1) = U(x,2) = 10
U(x,3) = U(x,4) = 20
U(y,1) = U(y, 2) = 20
U(y,3) = U(y, 4) = 10
U(z,1) = U(z,3) = 12
U(z,2) = U(z,4) = 22
NC = 10
UMIN = {(x,1), (x,2),(y,3),(y,4)}

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 51

Generating the Deadline Formula
Generate-DF (Solutions: STP [i])

Let U = the set of upper bounds on time windows, U(x,i) for
each still unexecuted action x and each STP i.

Let NC, the next critical time point, be the value of the minimum
upper bound in U.

Let UMIN = {U(x, i)| U(x,i) = NC}.

For each x such that U(x,i) ∈UMIN, let Sx = {i | U(x,i) ∈ UMIN}

Initialize F = true;

For each minimal solution MinCover of the set-cover problem
(Solutions , ∪Sx), let F = F ∧ (∨ x | Sx ∈ MinCover x).

Output DF = <F, NC>.

Example
C1: {c11: 5 ≤ x – TR ≤ 10} ∨ {c12: 15 ≤ x – TR ≤ 20}

C2: {c21: 5 ≤ y – TR ≤ 10} ∨ {c22: 15 ≤ y – TR ≤ 20}

C3: {c31: 6 ≤ x – y ≤ ∞} ∨ {c32: 6 ≤ y – x ≤ ∞}

C4: {c41: 11 ≤ z – TR ≤ 12} ∨ {c42: 21 ≤ z – TR ≤ 22}

Consistent Component STPs:

STP1: c11, c22, c32, c41

STP2: c11, c22, c32, c42

STP3: c12, c21, c31, c41

STP4: c12, c21, c31, c42

NC = 10
UMIN = {(x,1), (x,2),(y,3),(y,4)}
Sx = {1,2}
Sy = {3,4}

ICAPS 2005

52 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Generating the Deadline Formula
Generate-DF (Solutions: STP [i])

Let U = the set of upper bounds on time windows, U(x,i) for
each still unexecuted action x and each STP i.

Let NC, the next critical time point, be the value of the minimum
upper bound in U.

Let UMIN = {U(x, i)| U(x,i) = NC}.

For each x such that U(x,i) ∈UMIN, let Sx = {i | U(x,i) ∈ UMIN}

Initialize F = true;

For each minimal solution MinCover of the set-cover problem
(Solutions , ∪Sx), let F = F ∧ (∨ x | Sx ∈ MinCover x).

Output DF = <F, NC>.

Example
C1: {c11: 5 ≤ x – TR ≤ 10} ∨ {c12: 15 ≤ x – TR ≤ 20}

C2: {c21: 5 ≤ y – TR ≤ 10} ∨ {c22: 15 ≤ y – TR ≤ 20}

C3: {c31: 6 ≤ x – y ≤ ∞} ∨ {c32: 6 ≤ y – x ≤ ∞}

C4: {c41: 11 ≤ z – TR ≤ 12} ∨ {c42: 21 ≤ z – TR ≤ 22}

Consistent Component STPs:

STP1: c11, c22, c32, c41

STP2: c11, c22, c32, c42

STP3: c12, c21, c31, c41

STP4: c12, c21, c31, c42

Sx = {1,2}
Sy = {3,4}

MSC({1,2,3,4},{Sx, Sy}) =
{Sx, Sy}

F = x ∨ y

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 53

Larger Deadline Formula

• Suppose
– 4 consistent component STPs

– NC = 10

– U (x, 1) = U (x, 2) = U (y, 3) = U (y, 4) = U (z, 4) = U
(w, 3) = 10

• The minimal set covers are
– {Sx, Sy} and {Sx, Sw, Sz}

• So the deadline formula is
– (x ∨ y) ∧ (x ∨ z ∨ w)

The Dispatch Bottleneck

• Requires computation of all component STPs

• May be exponentially many of them

• Open Research Question: Can we identify
“representative” sets of component STPs?

ICAPS 2005

54 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Uncontrollability
and

unobservability

Breakfast Again

• You don’t really get to control how long the coffee
brews (but you can pop the toast at any time).

TR

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2]

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 55

Handling Temporal
Uncertainty

• TP-u (e.g., STP-u)

• Distinguish between two kinds of events:
– Controllable: the executing agent controls the time of

occurrence

– Uncontrollable: “nature” controls the time of occurrence

X

X

Controllable edge (Y controllable event)

Uncontrollable edge (Y uncontrollable event)

Y

Y

Three Notions of “Solution”

• Strongly Controllable: There is an assignment of
time points to the controllable events such that the
constraints will be satisfied regardless of when the
uncontrollables occur.

• One (or more) solutions that work no matter what!

ICAPS 2005

56 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Three Notions of “Solution”

• Weakly Controllable: For each outcome of the
uncontrollables, there is an assignment of time
points to the controllables such that the constraints
are satisfied.

• One (or more) solutions that work for each outcome.

Three Notions of “Solution”

• Dynamically Controllable: As time progresses and
uncontrollables occur, assignments can be made to
the controllables such that the constraints are
satisfied.

• Solutions that are guaranteed to work can be created
conditionally to observations.

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 57

Controllability in STP-u’s

X

Y Z

[0,10]

[1,5]

[2,4]

Strongly Controllable
{X=0, Z = 5}

X

Y Z

[0,10]

[1,1]

[2,4]

X

Y Z

[0,10]

[1,1]

[2,4]

Dynamically Controllable
{X=0, Z = Y + 1}

Weakly Controllable
{X=0, Z = Y – 1}

Strong => Dynamic => Weak

Breakfast Again

• You don’t really get to control how long the coffee
brews (but you can pop the toast at any time).

TR

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2]

Is it controllable?

Yes, strongly controllable:
CS = 0
Ts = 0
TE = 3 (but not 2)

ICAPS 2005

58 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Controllability and Observability

• Different notions of controllability make different
assumptions about what can be observed

• Strong Controllability: uncontrollable events
cannot be observed and consistency must be
guaranteed

• Dynamic Controllability: uncontrollable events can
be observed and consistency must be guaranteed

• Weak Controllability: “I’m feeling lucky”… and
luck will always be in a position to help achieve
consistency

Controllability and Dispatchability

• Controllability: defines policies to determine times
for controllable events depending on knowledge of
uncontrollable events occurrence

• Dispatchability: identifies effective propagation
paths such that knowledge on the execution of an
event constrains the possible execution times for
other events

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 59

Execution Policies

• Controllability definition emphasizes existence of
solutions

• At execution time we need policies to make
decision as a function of our knowledge
– Clock time

– Observation of event occurrence (if possible)

• Like in the case of STPs, provide ways to
determine bounds and repropagation methods to
create solutions on the fly

Strongly controllable policies

X

Y Z

[0,10]

[1,5]

[2,4]

Strongly Controllable

X

Y Z5

-2 4
10

0

-1

YZ ≤ YX + XZ

Step 1: tighten
XZ = YZ – YX

Step 2: delete YZ

7
-5

X

Y Z

[5,7]
[2,4]

•We need to come up with policies assuming no knowledge
about the uncontrollable event
•Solution: disconnect any dispatchable link from the event

ICAPS 2005

60 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Strongly controllable policies

X

Y Z

[0,4]

[1,5]

[2,4]

X

Y Z5

-2 4
4

0

-1

7

-5

X

Y Z

[5,4]
[2,4]

Inconsistent

Pseudo-Controllability
• The upper and lower bounds of an uncontrollable

event are not necessarily propagated outside of the
uncontrollable link (no necessary tightening of
uncontrollable links)

• Bound propagation can originate from an
uncontrollable event because we can have
knowledge of its occurrence…

• … but during execution there can be executions
that propagate into the uncontrollable event tighter
bounds than the uncontrollable link (possible
tightening of the uncontrollable links)

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 61

Pseudo-controllable policies

X

Y Z

[0,10]

[1,1]

[2,4]

Dynamically Controllable

X

Y Z1

-2 4
10

0

-1

Propagates LB
Y Z

Propagates UB
Y Z

OK!

Pseudo-controllable policies

X

Y Z

[2,4]

[-1,1]

[2,4]

X

Y Z1

-2 4
4

-2

1

Propagates UB
Z Y

Propagates UB
Y Z

ICAPS 2005

62 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

<Y∨-3>

Tightening of controllable links

X

Y Z

[2,4]

[-1,1]

[2,4]

X

Y Z1

-2 4

4

-2

1
Step 1: tighten
ZX = ZY – XY

(no knowledge of Y occurrence)

-3

Step 2: Add conditional stop
If Y has occurred, then Z can

Computing Dynamic
Controllability of an STPU

• Use triangular reductions

• Case 1: v < 0
– B follows C, so d.c.

• Case 2: u 0
– B precedes C: tighten AB to [y-v,

x-u] to make d.c.

• Case 3: u < 0 and v 0
– B is unordered w.r.t C: tighten

lower bound of AB to (C or y-v) to
make d.c.

• Iterate on the entire network

A

C B

[p,q]

[u,v]

[x,y]

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 63

Wait Propagation Rules
• “Wait links” are a new type of “partially uncontrollable” link
• If they are present, they cause execution to be contingent on the

occurrence of events
• Unlike uncontrollable links, they can be eliminated through

tightening

Wait Propagation over
Controllable Edges

X

Y Z

[<Y∨-3> ,4]

[-∞,1]

[2,4]

W

[0,1]

X

Z

<Y∨-3>

W
-1

1

{1}

{2}

Y?=F

[1, +∞]

ICAPS 2005

64 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

<Y∨-2>

Wait Propagation over
Controllable Edges

X

Y Z

[<Y∨-3> ,4]

[-∞,1]

[2,4]

W
[1, +∞]

[0,1]

X

Z

<Y∨-3>

W
-1

1

<Y∨-2>

Wait Propagation over
Uncontrollable Edges

X

Y Z

[<Y∨-3> ,4]
[2,4]

W
[1, +∞]

[1,2]

X

Z

W
-1

-1<Y∨-3>

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 65

Full Dynamic Controllability
Algorithm

Loop
{

Compute pseudo-controllability of network;
if (network is inconsistent or not-pseudo controllable)

return “NON DYNAMICALLY CONTROLLABLE”
if (network is pseudo-controllable)

For all ABC triangles in the temporal network
perform all applicable tightenings (triangular
reductions and wait regressions)

if no tightening were performed
return “DYNAMICALLY CONTROLLABLE”

}

Termination Condition

• Without further analysis, the algorithm is pseudo-
polynomial
– Pseudo-controllability: O(NE + N2log N)

– Tightening: O(N3)

– Number of repetition of cycle: U, number of time units
in widest time bound

• Complexity: O(U N3)

• U could be very large

ICAPS 2005

66 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Cutoff bound

• Since the number of edges is finite, indefinite
tightening is due to the existence of propagation
cycles

• Cycle traversal must repeat after a maximum
number of propagation (as in the Bellman-Ford
algorithm for shortest paths

• Cutoff bound for dynamic controllability:
– O(NK) with K = number of non-controllable links

• Cutoff on the number of cycles gives O(KN4)
complexity bound.

Handling Causal Uncertainty

• CTP (e.g., CSTP)

• Label each node—events are executed only if their
associated label is true (at a specified observation
time)

Obs (A)

X

Y

A

~A

Conditional Plan

Obs(A)

X

Y

A

~A

[5,10]

[8,12]

CTP

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 67

Conditional Plan as CTP
Travel from Home to S, but if the road is

blocked from B to S, go to P.
If you go to S, arrive after 1p.m. (to take

advantage of the discounts).
If you go to P, arrive at C by 11 a.m.

(because traffic gets heavy).

Strong Consistency

• Not strongly consistent: Must not be at B before 12
(if A is true); must be at B by 10 (if A is false)—
and can’t observe A until you’re at B.

ICAPS 2005

68 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Weak Consistency

• Weakly consistent: When A is true, leave home
after 10 (and all other assignments directly follow).
When A is false, leave home by 9.

Dynamic Consistency

• Not dynamically consistent: Can’t tell when you
need to leave home until it’s too late.

• Variant that is is dynamically consistent: Add a
parking lot at B where you can wait.

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 69

Generating
Temporal
Plans

Generating Temporal Plans

• Various models have been developed, dating back
to the early 1980’s (DEVISER)

• Beginning to see a convergence in the Constraint-
Based Interval approach

• Model the world with
– Attributes (features): e.g., coffee

– Values that hold over intervals: e.g., brewing

– Times points that bound the intervals: e.g., bt, be

– Axioms that relate the values

ICAPS 2005

70 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Features and Values
Feature Domain of Values
Coffee none, brewing, ready, stale
Bread untoasted, toasting, toast
Toaster-Status on, off
Toaster-Contents empty, full
Showering yes, no
Bathing yes, no
Clean yes, no
Dressed no, dressing, yes
Location at(X), going(X,Y)

Temporally Quantified Assertions

• Each feature takes a single value at a time, i.e. formally
there are a set of functions fi(featurei, timej) valuei,j

where valuei,j ∈ domain(featurei)

• Temporally qualified assertions (tqa’s or just “assertions”):
holds (coffee, 8:03, 8:05, brewing)
holds (toaster-content, X, Y, empty)

• Uniqueness Constraints:
holds(F,s,e,P) ∧ holds(F,s’,e’,Q)

[e < s’ ∨ e’ < s ∨ P = Q]

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 71

Planning Axioms
• Used to model actions
• Basic form

Effect
(Action 1 ∧ Preconditions1 ∧ Constraints1) ∨
(Action 2 ∧ Preconditions2 ∧ Constraints2) ∨
. . .
(Action n ∧ Preconditionsn ∧ Constraintsn)

• Can also partition the knowledge differently
• And can also use axioms to model other types of

constraints (e.g., mutual exclusion)

Example 1

holds(coffee, rs, re, ready)

holds(coffee, bs, be, brewing) ∧
(be = rs) ∧ (3 be – bs 5)

holds(coffee, ns, ne, none) ∧
ne = bs

Can also split out into two axioms

Effect Action

Action Preconditions

Effect

Action

Preconditions

Add’l. Constraints

Add’l. Constraints

ICAPS 2005

72 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Example 2

holds(clean, cs, ce, yes)

[holds(showering, hs, he, yes) ∧
he = cs ∧ ce – cs 120] ∨
[holds(bathing, bs, be, yes) ∧
be = cs ∧ ce – cs 120]

Effect

Alternative
Actions

Example 3

holds(bread, rs, re, toasting)

holds(toaster-status, ts, te, on) ∧
ts = r s ∧ te = re

holds(toaster-contents, cs, ce, full) ∧
cs rs ∧ re ce ∧

More
“interesting”
temporal
constraints

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 73

Example 4

“Don’t blow a fuse!”

[holds(coffee, bs, be, brewing) ∧
holds(toaster-status, ts, te, on)]

be < ts ∨ te < bs

• Additional mutual exclusion constraints are
implicit in uniqueness constraints

Mutual
exclusion

Planning Axioms

General Form:

Assertion ∧ Assertion ∧ . . . Assertion

(Assertions ∧ Constraints) ∨
(Assertions ∧ Constraints) ∨
. . .

(Assertions ∧ Constraints)

Head

Alternatives

ICAPS 2005

74 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

The Planning Problem

• Given a set of features and their domain, a (partial)
plan is
– a set of assertions on those features and

– a set of constraints on the time points of the assertions

• A solution is
– a complete assignment of values to features

– such that all of the constraints are satisfied

The Initial Partial Morning Plan

Coffee

Bread

Toaster-status

Toaster-contents

Clean

Showering

Bathing

Dressed

ready(rs,re)

toast(ts,te)

yes(ds,de)

-2 re-te 2
re – TR 500
te – TR 500
de – TR 500

assertions constraints

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 75

Expanding a Plan

• Select an assertion

• Find all the axioms that apply to it

• For each of those axioms

– Choose an alternative (one disjunct in the tail of
the axiom)

– Ensure that the assertions and constraints in the
chosen disjunct are in the plan, either by adding
them or unifying them with assertions and
constraints already present

Applicable Axioms
• Given

– plan P
– assertion A and
– axiom M: X1 ∧ . . . Xn r.h.s.

• M applies to A if
– For some i, unify (Xi ,M) = , and
– For all j = 1. . . n s.t. j ≠i, unify(Xj,B) = ’ where

(i) ’ is an extension of , and

(ii) B is an assertion in P

ICAPS 2005

76 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Expanding the Initial Plan I

Coffee

Bread

Toaster-status

Toaster-contents

Clean

Showering

Bathing

Dressed

ready(rs,re)

toast(ts,te)

yes(ds,de)

-2 re-te 2
re – TR 500
te – TR 500
de-TR 500

be = rs

3 be – bs 5
ne = bs

holds(coffee, rs, re, ready)
holds(coffee, bs, be, brewing) ∧

(be = rs) ∧ (3 be – bs 5)
holds(coffee, ns, ne, none) ∧

ne = bs

brewing(bs,be)none(ns,ne)

Expanding the Initial Plan II

Coffee

Bread

Toaster-status

Toaster-contents

Clean

Showering

Bathing

Dressed

ready(rs,re)

toast(ts,te)

yes(ds,de)

-2 re-te 2
re – TR 500
te – TR 500
de-TR 500

be = rs

3 be – bs 5
ne = bs

oe = t s

ge = ds

gs ce

he = cs

ce – cs 120

brew(bs,be)none(ns,ne)

toasting(os,oe)

yes(cs,ce)

yes(hs,he)

dressing(gs,ge)

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 77

Causal Links and Uniqueness
Conditions

Showering

Clean

Exercise

Dressed

yes(hs,he)

dressing(gs,ge)

yes(xs,xe)

yes(cs,ce)

no(ns,ne)

Uniqueness Constraint: ce ns ∨ ne cs

Step Reuse

Coffee

Bread

Location

ready(rs,re)

toast(ts,te)

brewing(bs,be)

at(kitchen,ls,le)

toasting(os,oe)

none(ns,ne) ls bs

bs le

ls os

os le

ICAPS 2005

78 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Underlying Constraint Network

• The temporal constraints form a DTP

• Technically, a dynamic DTP, since time points are
added incrementally

• Use DTP techniques to check consistency
efficiently

CBI Planning Algorithm
Unchecked, Assertions initial assertions
Expand (Unchecked, Assertions, Constraints, Axioms)

If Constraints are inconsistent, fail.
If Unchecked = ∅, return <Assertions, Constraints>.
Select u ∈ Unchecked

For every axiom X ∈Axioms that applies to u
Choose an alternative d from X {d is the result of the

unification that causes X to be applicable}
For each assertion s ∈ d
Choose:

Reuse: Unify s with an assertion in Assertions
New: Add s to Assertions and Unchecked

Add constraints c ∈ d to Constraints
Expand(Unchecked, Assertions, Constraints, Axioms)

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 79

Resource Constraint
Reasoning: Scheduling

Breakfast at Yosemite

• You are backpacking so you cook the toast on a
pan…

• …and you have a stove with just one burner.

TR

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2]

on(cpot,stove)

on(pan,stove)

ICAPS 2005

80 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Operating the stove
The Planning Perspective

pre
add

del

on (?x, stove)

clear (stove)

clear(stove) putOn (?x, stove)

pre
add

del

clear (stove)

on (?x, stove)

on (?x, stove) takeOff (?x, stove)

?x ∈{cpot, pan}

From Planning to Scheduling

pre
add

del

on (?x, stove)

clear (stove)

clear(stove) putOn (?x, stove)

pre
add

del

clear (stove)

on (?x, stove)

on (?x, stove) takeOff (?x, stove)

stove = 1

stove = 0

stove = 1

stove =0

stove = 1

stove = 0

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 81

From Planning to Scheduling

pre
add

del

putOn (?x, stove)

pre
add

del

takeOff (?x, stove)

stove = 1

stove = 0

stove = 1

stove =0

stove = 1

stove = 0

0 ≤ stove ≤ 1

stove −= 1

stove += 1

From Planning to Scheduling

putOn (?x, stove)

takeOff (?x, stove)

0 ≤ stove ≤ 1

stove −= 1

stove += 1

S

E

?y: cooking (?x, stove)

<?y, ?x> ∈{<coffe, cpot>, <toast, pan>}

ICAPS 2005

82 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Breakfast as Scheduling

stove

stove −= 1

stove += 1

S

E

?y: cooking (?x, stove)

<?y, ?x> ∈{<coffe, cpot>, <toast, pan>}

0

1

Initial state: holds
irrespective of plan

Plan resource profile: it
depends on subgoaling

status

A View of Planning and
Scheduling

• Planning primarily focuses on constructing a
consistent evolution of the world (states and
transitions)

• Scheduling almost entirely focuses on handling
mutual exclusion and deadlines

• …but since the beginning planning was also
addressing scheduling – flaws can be often seen as
scheduling conflicts

• Graphplan and mutual exclusions implicitly
brought this concept to the forefront

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 83

Remote Agent Planning
Max_ThrustIdle Idle

Poke

Timer

Attitude

Accum

SEP Action

SEP_Segment

Th_Seg

Start_Up Start_Up
Shut_Down Shut_Down

Thr_Boundary

Thrust ThrustThrustThrustStandby Standby Standby

Th_Sega Th_Seg Th_SegIdle_Seg Idle_Seg

Accum_NO_Thr Accum_ThrAccum_Thr Accum_ThrThr_Boundary

CP(Ips_Tvc) CP(Ips_Tvc) CP(Ips_Tvc)

Th_Seg

ti ∈min(ti) max(ti)

Resource Models

gasFlow

gasFlow −= 20.0

gasFlow += 20.0

S

E

?y: cooking (?x, gasFlow)

0

100.0

•Discrete/continuous capacity
•Example: solar panels power

ICAPS 2005

84 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Resource Models

gasFlow

gasFlow += 100.0

gasFlow −= 100.0

S

E

?friend: AtCamp (hasStove)

0

100.0

•Resource producers

holds (Me, Plans ,Plane, AtCamp(hasStove)

Resource Models

gasAmount

gasAmount −= 20.0S

E

?y: cooking (?x, gasAmount)

0

100.0

•Permanent consumption/production

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 85

Insufficiency of Stepwise-
Constant Resource Model

gasAmount

gasAmount += gasFlow*dS

E

?y: cooking (?x, gasFlow)

0

100.0

[d,d]

Insufficiency of Stepwise-
Constant Resource Model

gasAmount

gasAmount −= gasFlow*dS

E

?y: cooking (?x, gasFlow)

0

100.0

[d,d]

ICAPS 2005

86 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Insufficiency of Stepwise-
Constant Resource Model

gasAmount

gasAmount −= 200.0S

E

?y: cooking (?x, 20.0)

0

100.0

[10,10]

Cannot cook Texan barbeque in a California backcountry camp
with limits on amount of storable fuel!

Insufficiency of Stepwise-
Constant Resource Model

gasAmount
0

100.0

S

E

?y: cooking (?x, 20.0) d ∈[10,10],
0 < t ≤ d, gasAmount (t) −= 20.0*t

What counts is how the
consumption rate accumulates over

time

Start cooking Friend arrives End cooking

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 87

Flexibility in Plans/Schedules
• After a plan is executed, all variables (time, parameters)

will be set to specific values
• Potential execution strategy: select the fixed values in

advance and simply send them to the controlled device at
the appropriate time.

• Worked reasonably well for spacecraft like Voyager.
• Not a lot is happening in the vacuum of space, though…
• Fundamental obstacles in the real world

– Uncontrollability
– Unobservability

• Two possible strategies
– Flexible policies
– “Fix values and repair”

How to Build a Flexible Breakfast
Schedule

TR

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2]

on(cpot,stove)

on(pan,stove)

ICAPS 2005

88 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

How to build a flexible schedule

TR

TETS

CECS

5

2

-3

2

4

-2

0

0

0

0

Can we start making the toast after the coffee is brewed? YES

How to build a flexible schedule

TR

TETS

CECS

5

2

-3

2

4

-2

0

0

Can we start brewing the coffee after the toast is ready?

0
-1

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 89

One interpretation of precedence
links

A B

r += 1 r −= 1

0

[0, +∞]
precedence

anti-precedence

C

r −= 1

0

• B A anti-precedence creates a consumer/produced “coupling”
• B can rely on A to produce the resource it needs. Therefore, B will

never cause a resource oversubscription
• With the addition of C A, C and B compete to “match” with A
• Introducing “coupling” links and managing actual “matches” is what a

flexible scheduling algorithm really does

PCP scheduling
• [Cheung and Smith, 1997] use scratch propagation for unary capacity

makespan optimization job-shop scheduling
• Scratch propagation can be done using Dijkstra algorithm from each

end time to the start times on the same resource
• Scratch propagation cost: O(N2logN) but can terminate early when all

starts on same resource have been reached
• Incremental propagation achieves better speed
• Three cases for each pair of activities:

– Inconsistency: no ordering is possible
– Pruning: only one ordering is possible
– Heuristic selection: if both orders are possible, select one according to a

heuristic (e.g., maximum slack)
• Heuristic selection pair to resolve next is determined by a heuristic

(e.g., minimum average slack)
• Search methods

– Iterative Sampling with randomization

ICAPS 2005

90 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Fixed Time Scheduling and
Execution Policies

[Chien et al. 2005] Automated Sciencecraft Experiment

{PowerUp (Imager)} before
{s ∈ [10:00, 13:30], Image(lat, long, Mt.Etna)}

dataBuffer −= 100

Fixed-time scheduling and
execution policies

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 91

Conflict Repair Methods
• Use a repair method to eliminate a conflict
• ASE uses a planner, not just a scheduler.
• Hence it is possible to generate new activities or

select different task decompositions
• Repair methods

– move an activity
– delete an activity
– add a new activity
– detailing an activity
– abstracting an activity
– etc.

Add producer of
resource. Not

handled in classical
scheduling

Chose different activity
decomposition

From Planning to Execution
The ideal situation

Planner Executive

OKFAIL

Repair plan using same
method to generate it

ICAPS 2005

92 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Comparison of Flexible and Fixed
Policies (1)

• Fixed policies
– Pros

• Simple and intuitive to implement
– It is easier to think of heuristics based on resource profiles

• More compact data structures
• Less costly propagation

– Cons
• Plan does not give “declarative” measure of

robustness
– Execution repair is fundamental to robustness

• A full plan repair process may be too expensive at
execution time

– ASE has only 4 MIPS available

Comparison of Flexible and Fixed
Policies (2)

• Flexible policies
– Pros

• Plan guarantees measure of robustness
– Flexible policies break less often

• Execution time adjustments are intrinsically fast (propagation
vs planning)

– Cons

• More complex
– But complexity and computational expenses mostly affect off-line

planning

• Actual value of flexibility is only as good as the semantics of
the representation

– … and this is why you are taking this tutorial!

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 93

From Planning to Execution
What actually happens on ASE

Planner Executive

• Planner’s detailed command expansion finds a “witness” to plan consistency
• If failures propagates at the highest activity level, this is a major problem
• Eliminating top-level failure requires careful tuning of “abstraction”
• Differences in internal planner/executive representations pushes toward

conservatism to avoid mismatches and inconsistencies (it happened in Remote
Agent…)

• Therefore, robustness is achieved at design time through careful modeling
• Flexible representations could help that design process

Building flexible policies from
fixed time schedules

• Simple strategy for single capacity resources: simply keep
the ordering constraints and uncommit the times from the
fixed values

• Continuous/discrete capacity resources require the
introduction of anti-precedence couplings between
consumers and producers

• [Policella et al, 2004] Transform fixed schedule into
“chaining form” partial order

• Decompose multiple capacity resource into “virtual” single
capacity resources and add couplings on chains

4

ICAPS 2005

94 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Probabilistic measures
of resource contention

Contentious Breakfast

TR

TETS

CECS
[0, 20]

[0, 20]

[3,5]

[3,5]

[-3,3]

on(cpot,stove)

on(pan,stove)

-11

-11

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 95

Time bounds and resource
conflicts

• Without further coordination, C and T are free to
collide for the use of the stove

• The inclusion of anti-precedence links
(“couplings” of producers to consumers) reduce
and eventually eliminate the possibility of conflict

C

T

Time bounds and resource
conflicts

• Without further coordination, C and T are free to
collide for the use of the stove

• The inclusion of anti-precedence links
(“couplings” of producers to consumers) reduce
and eventually eliminate the possibility of conflict

C

T

ICAPS 2005

96 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Temporal Information for
Contention Analysis

• Partial temporal information (e.g., time bounds for events)
is insufficient to determine informative contention
measures.

• More (full) temporal information is expensive to acquire
and maintain

• There needs to be a balance between cost and utility of
temporal/research inferences. Eventual value is in search
improvement

C

T

C

Tor ?

Probabilistic Resource Contention
• Use probabilistic assumptions to generate time

assignments given a temporal network
• Combine probabilistic assignments into contention

statistics
• Use contention statistics as the basis for search

heuristics
• Heuristic factors in probabilistic analysis:

– Selection of problem sub-structure at the basis of
statistics

– Probabilistic assumptions on how activities request
resource capacity

– Variable/value ordering rules that use statistics

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 97

Probabilistic contention based on
time windows

• [Beck & Fox 2000] Assumptions:
– Fixed durations, consumption at start, same production

at end

– Uniform distribution of start times

– Time bounds only

• Individual action demand inside the time bound:
– di(t) = max(est, t-dur)≤ ≤min(lft, t+dur) ri/(lft – est)

−ri +ri

• Aggregate demand = sum demand curves =
expected value of instantaneous resource requests

• How to use it
– Find maximum over all curves maximum contention

– Find pair with maximum demand at contention point
that are not already ordered

Probabilistic contention based
on time windows

ICAPS 2005

98 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Another way to characterize
conflicts

• Minimum Conflict Sets (MCS) [Laborie & Ghallab 1995]
• Minimum size sets of potentially conflicting activities with

capacity request exceeding availability
• Order any activity pair in an MCS and eliminate one or more

MCS
• No conflicts when there are no more MCSs
• Potentially an exponential number MCS but we only really

care about ordering pairs of activities (O(N2)) so there are very
strong dominance rules

2

3
4

1
1

5.0

MCS

MCS

¬MCS

Probabilistic contention using
precedence information

• Monte Carlo resource contention [Muscettola 1994]
• Consider all known temporal constraints
• Simulate a sample of executions ignoring resource contention
• Then compare expected resource request to resource limit to identify

conflict areas
• Monte Carlo methods are also used in analysis of plan executions

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 99

Comparison of statistical
contention measures

• Monte Carlo simulation is more informed
• Time-window method is less computationally

expensive
– Time windows: O(N) in time and space
– Monte Carlo: with sample size S

• O(S E) in time (if network is dispatchable)
• O(S N) in space

• Monte Carlo method also biases sample depending
on stochastic rule used to simulate the network
– … but the rule can increase realism if it accurately

describes execution conditions

Resource Usage
Bounds

ICAPS 2005

100 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

From breakfast to infinity and
beyond

TR

TETS

CECS
[0, 20]

[0, 20]

[3,5]

[3,5]

[-3,3]

-11

-11

<t2e, 2>

A1

A2

A3

A4

<t1s, 2> <t1e, -2>

<t2s, -1>

<t4s, 4>

<t4e, -4>

<t3s,-6> <t3e, 3>

Ts Te[30, 30]

[0, 6]

time

Resource
Usage

C

Search Guidance

• The ability of detecting early that the flexible plan
is resource/time inconsistent can save exponential
amount of work

• Same for early detection of a solution

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 101

Need for exact resource bounds

• Statistical methods of resource contention give
sufficient conditions to determine that a solution
has not been achieved

• They cannot guarantee either inconsistency or
achievement of a solution

• Exact resource bounds can

Resource Bounds

time

Resource
Usage

s1

s2

s3

s4

Lupper

Llower

• Case 1: bounds always within limits solution

• Case 2: bounds at least once outside the limit inconsistency

• Case 3: otherwise search

ICAPS 2005

102 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Bounds are costly

• In summary, bounds try to summarize the status of
an exponential number of schedules

• As in the case of probabilistic measures, we can
obtain different bounds depending of how much
structural information on producer/consumer
coupling we use

• The more information, the tighter the bound

• The more information, the more costly the bound

Least informative bounds

• Same situation as for statistical measures
• Bounds have to become non-overlapping to eliminate

contention
• This cannot be done by the addition of precedence

constraints alone if the schedule is very flexible
• Produced schedules are “flexible fixed time” schedules

(i.e., constraint earliest and latest event times)

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 103

Temporal Information in Flexible
Plans

[1, 10]

<e2e, 2>

A1

A2

A3

A4

<e1s, 4> <e1e, -4>

<e2s, 3>

<e4s, 4>

<e4e,- 4>

<e3s, -5> <e3e, 3>

Ts Te[30, 30]

[1, 4]

[2, 5]

[-2, 3]

[1, 5]

[2, 3]

[0, 4]

[-1, 4]

[0, +∞]

[0, +∞]

[1, 1]

[0, 6] e1s e1e

e2s e2e

e3s e3e

e4s

e4e-1 10
5

-2
-1

1

3

-2

0

4 1

0
4

5

-1

0

6

Ts Te30

-30

-1

4 0

<[5, 17], -4>

<[6, 13], 2>

<[1, 4], 4>
<[3,9], -4>

<[4, 10], 3>

<[3, 15], 4>

<[2, 11], -5> <[3, 15], 3>

e1s e1e

e2s e2e

e3s e3e

e4s

e4e

Anti-Precedence Graph

[et(e), lt(e)] ⇔ et(e) = -|e Ts|
∧ lt(e) = |Ts e|
|e1e2| ≤ 0 ⇔ e1→… → e2

Balance Constraint Bounds

• Event centered: measure contention from the point
of view of an event, not an absolute time reference

• Fundamental idea:
– Make exact measures of consumption/production for

predecessors and successors

– Make worst case assumptions for all other events

…

A21 A22 A2n

[1, 1]

[2, 2]

-1 1A11 A12 A1n

…

A23

Lmin, ≤ = − n −1 Lmin, ≥ = − n

ICAPS 2005

104 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Cost of balance constraint bound

• Non incremental cost (compute the bound from
scratch)
– Find the anti-precedence network: O(NE) / O(NE +

N2log N)
– Compute bounds from each event: O(NE) / O(N2)

• Total cost (time propagation + bounds): O(NE) /
O(NE + N2 logN)

• Incremental propagation can reduce cost per each
iteration

• Used succesfully for optimal scheduling in
[Laborie 2001]

Looseness of Balance Constraint
Bound

• If the two chains in the example operate on a resource with
capacity 2, no constraint need to be added

• The Balance Constraint Bound however needs the addition
of quite tight precedence constraints to detect a consistent
solution

• The cause is the lack of consideration of the structure of the
network not necessarily ordered with the event

[0, +∞]
[0, +∞]

…

A21 A22 A2n

[1, 1]

[2, 2]

-1 1A11 A12 A1n

…

A23

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 105

Resource
Envelopes

Resource Envelope

time

Resource
Usage

Lupper

Llower

Lmin

Lmax

• Manager: “I am tired of half measures. How about giving
me the tightest possible bounds?”

• Computer Scientist A: “Hmmm…I don’t know. It looks
difficult. Remember the exponential number of schedules?

• Rocket Scientist B: “Aw, no problem. I’ll give you a fast
polynomial algorithm for it …”

ICAPS 2005

106 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

“WHAT?”

• ∃s∈St | s ∈Sr Scheduling problem NP-hard

St

Sr

• ∀s∈St | s ∈Sr Resource envelope looks hard(er)

Resource Envelope Method
Intuitive Description

e1s

0

1

10

r1= 1

-1

3 5

r1= -1

A1

<[0, 3], r1> <[5, 10], -r1>

e1e

<[8, 14], − r2><[5, 11], r2><[0, 3], r1> <[4, 10], − r1>

[1, 1]

0 14

r1= 1; r2 = 2

5

1

2

0 14

r1= 2; r2 = 1

10

1

2

A3A2e2s e2e e3s e3e

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 107

Building a full envelope

t = 3

t = 4

t = 1 t = 2

<[5, 17], -4>

<[6, 13], 2>

<[1, 4], 4>
<[3,9], -4>

<[4, 10], 3>

<[3, 15], 4>

<[2, 11], -5> <[3, 15], 3>

e1s e1e

e2s e2e

e3s e3e

e4s

e4e

0 1 2 3 4

Lmax

t = 5

5

t = 6

t = 17

6 17

Pending Events

Ct
Rt

Ot

<[5, 17], -4>

<[6, 13], 2>

<[1, 4], 4>
<[3,9], -4>

<[4, 10], 3>

<[3, 15], 4>

<[2, 11], -5> <[3, 15], 3>

e1s e1e

e2s e2e

e3s e3e

e4s

e4e

PX = predecessor set of event set X

P{e2s, e3e} = {e2s, e3e, e3s, e1e, e1s}

Pmax = predecessor set of maximum total weight

t

ICAPS 2005

108 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Key algorithm step
• “Find predecessor set within events that are pending at t

that causes the maximum envelope increment”

• If we consider all “couplings” (due to anti-precedence links
posted by the scheduler or due to original requirements),
we can find sets of events that match. These will balance
each other and cause no effect of the envelope level

• Events that do not match create a surplus or a deficit

• The amount of surplus (if any) represents the increase in
resource envelope level.

• KEY PROBLEM: how do we compute the maximum
match?

Maximum flows
f(e1, e2) = − f(e2, e1) skew symmetry
f(e1, e2) ≤ c(e1, e2) capacity constraint
f({σ}, A) = f(A, {τ}) + f(A, Ac) flow conservation

σ
τ A

Ac

f({σ}, A) = value of flow.
Maximize it .

Augmenting path = path from σ to τ with positive residual
No augmenting path = flow is maximum

Residual network
For each pair of nodes: rf(e1, e2) = c(e1, e2) – f(e1, e2)

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 109

Maximum Flow Algorithms

Distance labelO(N3)FIFO Preflow-push

Distance labelO(N2E)Generic Preflow-push

Shortest
distance to τ

O(N2E)Successive shortest
paths

Total pushable
flow

O(NE logU)Capacity scaling

Total pushable
flow

O(N E U)Labeling

Complexity
Key

Time
Complexity

Algorithm

Resource Increment Flow
Network

e2e

e4e
e4s

e3e

e2s

e1s e1e

e3s
+∞

+∞

+∞

+∞

+∞
+∞

+∞
+∞

+∞

+∞

Internal flow edges(precedence constraints)

2

3

4

3
4

Incoming flow edges (producer events)

4

5

4

Outgoing flow edges (consumer events)

<[5, 17], -4>

<[6, 13], 2>

<[1, 4], 4>
<[3,9], -4>

<[4, 10], 3>

<[3, 15], 4>

<[2, 11], -5> <[3, 15], 3>

e1s e1e

e2s e2e

e3s e3e

e4s

e4e στ

ICAPS 2005

110 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

A simple Pmax selection problem

-

-

-

-

-

+

+

+

+

Maximum Resource-Level
Increment Predecessor Set

Theorem 1 : Pmax = set of events that is reachable
from σ in the residual network of a fmax

Theorem 2 : Pmax is unique and has the minimal
number of events

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 111

Separation Schedule and
Separation Time

We know how to
compute a Pmax but …

… given a Pmax is there a temporally consistent
schedule and a time tx such that all
events in CH and Pmax are schedule at or before tx and
all events in Pc

max and OH are
scheduled after tx?

Theorem
3: Yes!

Maximum Resource Level and
Resource Envelope

• Complete envelope profile [Muscettola, CP 2002]
– Lmax(t) = Δ(Ct) + Δ(Pmax(Rt))

– Pmax(Rt) and Ct change only at et(e) and lt(e).

– Complexity: O(n O(maxflow(n, m, U)) + nm)

• Can we do better?

ICAPS 2005

112 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Building a full envelope

t = 3

t = 1 t = 2

<[5, 17], -4>

<[6, 13], 2>

<[1, 4], 4>
<[3,9], -4>

<[4, 10], 3>

<[3, 15], 4>

<[2, 11], -5> <[3, 15], 3>

e1s e1e

e2s e2e

e3s e3e

e4s

e4e

0 1 2 3 4

Lmax

5 6 17

Staged Resource Envelope

• Do not repeat flow operations on portion of the
network that has already been used to compute
envelope levels

• Deletion of flow due to elimination of consumers
at time out do not cause perturbation to
incremental flow

• We can reuse much (all?) of the flow computation
at previous stages, increasing performance

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 113

How does it work?

<[5, 17], -4>

<[6, 13], 2>

<[1, 4], −4>
<[3,9], -4>

<[4, 10], 3>

<[3, 15], 4>

<[2, 11], -2> <[3, 15], 3>

e1s e1e

e2s e2e

e3s e3e

e4s

e4e

<[1, 4], −4>
<[3,9], -4>

<[3, 15], 4>

<[2, 11], -2> <[3, 15], 3>

e1s e1e

e3s e3e

e4s

t = 3

4 units of flow

3

1

4

2

22

Flow Reduction

1

Flow Contraction
t = 4

<[1, 4], −4>
<[3,9], -4>

<[3, 15], 4>

<[2, 11], -2> <[3, 15], 3>

e1s e1e

e3s e3e

e4s 4

3
1

4

This event must go!
It enters C4
Push back the flow

Flow Shift

2

0 1

ICAPS 2005

114 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Flow Expansion

Flow Expansion
t = 4

<[3,9], -4>

<[3, 15], 4>

<[2, 11], -2> <[3, 15], 3>

e1e

e3s e3e

e4s 3

3
2

4 e4s

<[4, 10], 3>

e2s

New event!
Add flow

0

Pmax(4)

Recursive Equation

Lmax(ti) = Lmax(ti-1) +

Δ(E1 = events in Pc
max(ti-1) closed at time ti) +

Δ(E2 = events in Pmax after Flow Contraction on
remainder of E1 elimination) +

Δ(E3 = events in Pmax after Flow Expansion on
remainder of E2 elimination)

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 115

Complexity Analysis
• Look at all known Maximum Flow algorithms

• Identify complexity key
– Total pushable flow (Labeling methods)

– Shortest distance to τ (Successive Shortest Paths)

– Distance label (Preflow-push methods)

• Show that complexity keys have same monotonic
properties across multiple envelope stages that over a
computation of maximum flow over entire network.

• Hence, complexity is O(Maxflow(n, m, U))

Summarized excerpt from
helpful comments of friendly

ICAPS 2004 reviewers

“Sure, nice theory. But theory
ain’t much. Where are the

empirical results, eh?”

ICAPS 2005

116 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

Average run-time for the calculation of one envelope during search
(minimum and maximum level)

Te s t s e t s fro m We g la rz, J. (e d.): P ro je c t S c he dulin g - Re c e nt Mo de ls , Alg o rithms a nd Applic a t io n s . Kluwe r, Bo s to n, 19 9 9 , p . 19 7 -
2 12

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

[number of events]

[se
co

nd
s]

INCREMENTAL 0.00080 0.00369 0.01924

NON-INCRMENTAL 0.00143 0.01736 0.14873

20 40 60SPEED-UP 7.54.51.8

Empirical speedup of staged
algorithm

Envelope scheduling so far
• [Policella et al. 2004]

• Non-backtrack, non-randomized commitment procedure
– either it finds a schedule at the first trial or it never will

• Two kinds of contention profiles tested
– Resource envelopes

– Earliest start profiles – profiles obtained by schedule executing all
activities as early as possible

• Methods using earliest start profiles perform better on
tested benchmark

• Open problem: is there other structural information in the
envelopes that can be useful outside of contention
identification?

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 117

One More Breakfast

TR

TETS

CECS
[0, 20]

[0, 20]

[3,5]

[3,5]

[-3,3]

-11

-11

THE END

References I
The literature on temporal reasoning and planning is extensive. Here we list only some initial sources for ideas and, where

avaiable, survey papers that provide detail and additional references; these survey papers are in boldface and color.

Constraint-Satisfaction Processing:
• R. Dechter, Constraint Processing, Morgan Kaufmann, 2003.
Qualitative Models of Time:
• J. Allen, “A General Model of Action and Time,” Artificial Intelligence 23(2), 1984.
• M. Vilain and H. Kautz, “Constraint Propogation Algorithms for Temporal Reasoning,” Proc. Of the 5th National

Conference on Artificial Intelligence (AAAI), 1986.
• Chapter 12 of Dechter, Constraint Processing, (see above).
Simple and Disjunctive Temporal Problems:
• R. Dechter, I. Meiri, and J. Pearl, “Temporal Constraint Networks,” Artificial Intelligence, 49(1-3), 1991.
• E. Schwalb and R. Dechter, “Processing Temporal Constraint Networks,” Artificial Intelligence 93(1-2), 1997.
• K. Stergiou and M. Kourbarakis, “Backtracking Algorithms for Disjunctions of Temporal Constraints,” Artificial

Intelligence 120(1), 2000.
• A. Oddi and A. Cesta, “Incremental Forward Checking for the Disjunctive Temporal Problem,” Proc. Of the 14th

European Conference on Artificial Intelligence (ECAI), 2000.
• I. Tsamardinos and M. E. Pollack, “Efficient Solution Techniques for Disjunctive Temporal Reasoning Problems,”

Artificial Intelligence, 2003.
• A. Armando, C. Castellini, E. Giunchiglia, and M. Maratea, “A SAT-Based Decision Procedure for the Boolean

Combination of Difference Constraints,” Proc. Of the 7th International Conference on Theory and Applications of
Satisfiability Testing, 2004.

Dispatch of Simple Temporal Problems:
• N. Muscettola, P. Morris, and I. Tsamardinos, “Reformulating Temporal Plans for Efficient Execution,” Prof. of the 6th

Conference on Principles of Knowledge Representation and Reasoning (KR), 1998.
• I. Tsamardinos, P. Morris, and N. Muscettola, “Fast Transformation of Temporal Plans for Efficient Execution,” Prof. of

the 15th National Conference on Artificial Intellience (AAAI), 1998.
• M. E. Pollack and I. Tsamardinos, “Efficiently Dispatching Plans Encoded as Simple Temporal Problems,” in I.

Vlahavas and D. Vrakas, eds., Intelligent Techniques for Planning, Idea Group Publishing, 2005.

ICAPS 2005

118 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution

References II
Dispatch of Disjunctive Temporal Problems:

• I. Tsamardinos, M. E. Pollack, and P. Ganchev, “Flexible Dispatch of Disjunctive Temporal Problems,” Proc. Of the 6th
European Conference on Planning (ECP), 2001.

Unobservability and Uncontrollability:

• T. Vidal and H. Fargier. “Handling contingency in temporal constraint networks: from consistency to controllabilities”
Journal of Experimental and Theoretical Artificial Intelligence, 11(1):23-45, 1999.

• P. Morris, N. Muscettola, and T. Vidal, “Dynamic Control of Plans with Temporal Uncertainty,” Proc. Of the 7th
International Joint Conference on Artificial Intelligence, 2001.

• I. Tsamardinos and M. E. Pollack, “CTP: A New Constraint-Based Formalism for Conditional, Temporal Planning,”
Constraints 8, 2003.

Planning with Temporal Constraints:

• M. Ghallab and H. Laruelle, “Representation and Control in IxTeT, a Temporal Planner,” Proc. 2nd Intl. Conference on
AI Planning Systems (AIPS), 1994.

• N. Muscettola, “HSTS: Integrating Planning and Scheduling,” in Intelligent Scheduling, Monte Zweben & Mark Fox
eds., Morgan Kaufmann, 1994.

• Chapter 12 of Dechter, Constraint Processing, (see above).
• Chapters 13 and 14 of M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and Practice, Elsevier,

2004
• D. E. Smith, J. Frank, and A. Jonsson, “Bridging the Gap between Planning and Scheduling,” The Knowledge

Engineering Review, 15, 2000.
• J. Frank and A. Jonsson, “Constraint-Based Attribute and Interval Planning,” Constraints 8, 2003.

References III
Resource Constraint Reasoning: Scheduling:

• Nicola Muscettola, P. Pandurang Nayak, Barney Pell, and Brian C. Williams. Remote agent: To boldly go where no AI
system has gone before. Artificial Intelligence, 103(1/2), August 1998

• Cheng, C. and S.F. Smith, Applying Constraint Satisfaction Techniques to Job-Shop Scheduling (The Long Version),
Robotics Institute Technical Report CMU-RI-TR-95-03, January, 1995. [Published in Annals of Operations Research,
Vol. 70, Special Issue on Scheduling: Theory and Practice, 1997.]

• S. Chien, R. Sherwood, D. Tran, B. Cichy, G. Rabideau, R. Castano, A. Davies, D. Mandel, S. Frye, B. Trout, S.
Shulman, D. Boyer. “Using Autonomy Flight Software to Improve Science Return on Earth Observing One”, Journal of
Aerospace Computing, Information, and Communication . April 2005 + PDF

• N. Policella, A. Oddi, S.F. Smith and A. Cesta. “Generating Robust Partial Order Schedules” In Proc of CP 2004,
Lecture Notes on Computer Science (LNCS) Vol. 3258, pp. 496-511, M. Wallace (Ed.), Springer, 2004.

Probabilistic Measures of Resource Contention:

• Beck, J.C. & Fox, M.S., Constraint Directed Techniques for Scheduling with Alternative Activities, Artificial
Intelligence, 121(1-2), 211-250, 2000.

• Nicola Muscettola: On the Utility of Bottleneck Reasoning for Scheduling. AAAI 1994: 1105-1110

Resource Usage Bounds:

• Philippe Laborie “Algorithms for propagating resource constraints in AI planning and scheduling: Existing
approaches and new results”, Artificial Intelligence, 143(2), pp. 151-188, 2003

Resource Envelopes:

• R.K.Ahuja, T.L.Magnanti, J.B.Orlin. Network Flows, Prentice Hall, 1993.
• N. Muscettola “Computing the envelope of Stepwise-Constant Resource Allocations”, Proc. of CP 2002, Ithaca, NY,

2002.

• N. Muscettola “Incremental Maximum Flows for Fast Envelope Computation”, Proceedings of the 14th International
Conference on Automated Planning & Scheduling, ICAPS04, Whistler, British Columbia, Canada, 2004.

• N. Policella, S.F. Smith, A. Cesta and A. Oddi (2004). “Generating Robust Schedules through Temporal Flexibility” In ,
Proceedings of the 14th International Conference on Automated Planning & Scheduling, ICAPS04, Whistler, British
Columbia, Canada, 2004.

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 119

