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tion

Preface

Planning and scheduling algorithms are increasingly guiding autonomous systems
that interact with the environment and with humans in the real world. Without effective
management of time and resources these autonomous systems cannot guarantee safe
and efficient operations over a long period of time. In this tutorial we review basic and
advanced topics in time and resource constraint reasoning and their applications to
planning, scheduling and execution. The emphasis on plan execution is increasingly
important as planning moves from the laboratory to real applications. Significant CPU
and memory limitations during plan execution provide a strong driver for the design of
efficient algorithms. Several such algorithms will be presented in this tutorial together
with their justification from applications such as space exploration, health care systems,
military systems and manufacturing. The tutorial will present a comprehensive review
of current temporal and resource constraint-based formalisms, their motivation, their
propagation algorithms and their use in planning, scheduling and execution systems.

Instructors

Nicola Muscettola, NASA Ames

Martha E. Pollack, University of Michigan
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and Execution
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Space Facility Crew Activity 
Planning

•Activity schedule very tight
•Did not adapt to uncertainties in 
execution
•Did not adapt to human needs for 
more flexibility
•45 days into the mission they rebelled

They went on strike!

MAPGEN in Surface Operations

• MAPGEN: First Artificial Intelligence (AI) 
based Decision-Support System to control 
a spacecraft on the surface of another 
planet

• Spirit:
– Nominal science operations from Sol 15 to 

18
• All planned activities from 16/17 

executed on board
– Return to nominal science operations 

within 2-3 days
• Opportunity:

– Informal use begins Sol 4/5
• Commanded activities executed on 

board nominally
– Nominal science operations tomorrow (Feb 

6th)
• Dual rover support use of MAPGEN in full 

swing
– Continues to be for MER Extended Ops

• Conservative ROI to NASA: 25% extra 
science returned per Sol, over a manual 
approach for plan synthesis

– Approx $1.4 Million/Sol

Surface Operations

(1 Sol = 1 Martian Day = 24hrs 37mins Earth time)

Oct’03-April’04Oct’02-Sept’03Oct ’01-Sept’02Oct ’00-Sept ‘01

ICAPS 2005
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EO-1 Sensorweb

Re-tasking

Earth 
Observer 
One

Triggers so far: Wildfires, Floods, Volcanoes (thermal, ash), Ice/Snow,  in-situ sensors,
modified by cloud cover

Courtesy of JPL

Robust Task Execution for Long 
Traverse Rovers

• ASTEP LITA Atacama Field Campaign (Sep-Oct 
2004)
– Zöe rover with life detecting instruments
– On-board planning and autonomous navigation over 

long distances

• Rover executive results (preliminary, telemetry still 
being analyzed)
– Total hours of operations (cumulative over several runs): 

17 hours
– Total distance covered: 16 km
– Longest autonomous traverse: 3.3Km 2h 29m
– “Roughest traverse”: 1h 2m with 19 faults recovered
– Faults addressed:

• Navigator “confused”
• Internal processes failed
• Early and late arrival at waypoint

ICAPS 2005
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Autominder:  Assistive 
Technology for Cognition

To assist people with memory impairment:
•Model their daily activities, including temporal 
constraints on their performance
•Monitor the execution of those activities
•Decide whether and when to issue reminders

Soccer!

ICAPS 2005
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Issues in Temporal Planning and 
Execution

• Representation:  What kinds of temporal 
information can we represent?

• Planning
– Generation:  How do we construct a temporal plan?

• Execution 
– Dispatch:  When should the steps in the plan be 

executed?    How do we maintain the state of the plan, 
given that time is passing (and events are occurring)?

• Focus Today:  Constraint-Based Models

Constraint Satisfaction 
Problems

• <V,D,E>

– V = {v1, v2, . . . vn}:  set of constrained variables

– D = {D1, D2, . . . , Dn}: domains for each variable

– E = relations on a subset of V:  constraints, 
representing the legal (partial) solutions

ICAPS 2005
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1-Minute Review of CSPs
V:   {A,B,C}
DA:  {R, B}     DB: {R, B}    DC : {R, Y}
E:  EAB = {<R,B>, <B,R>}

EAC = {<R, Y>, <B,R>,<B,Y>}
EBC = {<R, Y>, <B,R>,<B,Y>}

•Solve with a combination of search 
and propagation (forward checking, 
arc consistency, etc.)

•Relations here are binary—may 
have higher arity as well

A

B C

High Level Outline

1. Time representations in problem solving and 
execution

2. Planning with time

3. Resource reasoning

ICAPS 2005
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Qualitative 
Temporal
Models 

Outline
1. Qualitative Temporal Models
2. Representing and Solving Simple Temporal 

Problems
3. Dispatching Plans Modeled as STPs
4. Representing and Solving Disjunctive Temporal 

Problems
5. Dispatching DTPs
6. Generating Temporal Plans
7. Adding Uncertainty:  Temporal and Causal
Then on to resources. . .

ICAPS 2005
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Interval Algebra

X before Y

X equal Y

X meets Y

X overlaps Y

X during Y

X starts Y

X finishes Y

X Y

X
Y

X Y

X
Y

X
Y

Y
X

Y
X

• With inverses:  13 primitive 
relations

• Complete (can describe all 
possible relations between 
intervals)

• Construct compound 
relations: 

• “Y ends sometime after X”:

X  b Y ∨ X m Y ∨ X o Y  
∨ X d Y ∨ X s Y

The Breakfast Plan

Prepare coffee, toast, and eggs.  Have coffee ready no 
later than the rest of the meal, and have toast and 
eggs ready at the same time.

C

T E

{b,e,m,o,d,s,f,fi}

{e,f,fi}

{b,e,m,o,d,s,f,fi}

Assignments to pairs of
variables, e.g. C,E o

Ternary constraints rule 
out some possibilities, 
e.g.

T,E e

C,T b

C,E o

ICAPS 2005
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Reasoning with the Interval 
Algebra

• Model the ternary constraints with a composition 
table; use to check path-consistency

b     m     o         . . . 
b     b      b      b
m    b      b      b
o    b      b     b,m,o
. . .

• Reasoning tasks
– Check consistency
– Find a solution

• Both tasks are NP hard
– Path consistency not sufficient 

Point Algebra
P < Q

P = Q

P > A

• Now model intervals with 2 points (start and end) 

• Construct 8 compound relations

“(Interval) Y ends no later than (interval) X”:

Ye > Xe ∨ Ye = Xe

• Can check consistency and find solutions in 
polynomial time

• But loss of expressive power: Can’t represent all IA 
relations

X {b,bi} Y ≡ Xe < Ys ∨ Ye < Xs          Not binary!

ICAPS 2005
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Real Plans often have 
Quantitative Constraints

• US NINDS Guidelines for Treatment of Potential 
Stroke (Thrombolytic) Patient

3 hoursDepending on test results, admission
to monitored bed

60 minutesDepending on test results, door to 
treatment

45 minutesDoor to CT scan interpretation

25 minutesDoor to CT scan completion

15 minutesDoor to neurological expert

10 minutesHospital door to doctor

TARGET
DURATION

ACTION

Real Plans often have 
Quantitative Constraints

• Typical Plan for an Autominder User

At end of check pulseDepending on pulse, take meds

Between 11:00 and 1:00, and 
between 3:00 and 5:00

Check pulse

At end of prepare lunchEat lunch

Between 11:45 and 12:15Prepare lunch

Within 20 minutes of dryer 
ending

Fold clothes

Within 20 minutes of washer 
ending

Put clothes in dryer

Before 10 a.m.Start laundry

TARGET TIMEACTION

ICAPS 2005
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Simple
Temporal 
Problems

The Breakfast Plan (Version 2)

Prepare coffee and toast.  Have them ready within 2 
minutes of each other.  Brew coffee for 3-5 
minutes; toast bread for 2-4 minutes.

ICAPS 2005
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Temporal Constraint Problems

• Family of constraint-satisfaction problems (CSPs), 
<V,E> where

V = events 

E = interval-based constraints

• The domains D are left implicit:  real numbers or 
integers

• Members of the family are defined by the form of 
the constraints

Simple Temporal Problems

• In a Simple Temporal Problem (STP)  <V,E,>,   
the constraints have the form y - x ≤ u,           
where x, y ∈ V, and u ∈ ℜ.

• W.l.o.g. assume u ∈ Z.

ICAPS 2005
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The Breakfast Plan as an STP

Prepare coffee and toast.  Have them ready within 2 
minutes of each other.  Brew coffee for 3-5 
minutes; toast bread for 2-4 minutes.

Variables:   TR , CS ,  CE , TS , TE

Constraints:
3 ≤ CE - CS ≤ 5
2 ≤ TE - TS ≤ 4
-2 ≤ CE - TE ≤ 2
0 ≤ CS - TR ≤ ∞
0 ≤ TS - TR ≤ ∞

Graphical Representations of 
STPs

TR

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2]
TR

TETS

CECS

0

5

4

2

0

2
-3

-2

Simple Temporal Network 
(STN)

Distance Graph

ICAPS 2005
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Equivalences

X Z

[l,u]
X Z

u

-l
X Z

[-u,-l]

l z-x  u z-x  u ∧ x-z  -l

The following are equivalent:

Be careful—the following are not:

X Z
b

X Z
-b

Solving STPs

• A solution to an STP <V,E> is an assignment of a 
time point to each variable in V s.t. all the 
constraints in E are satisfied.

• An STP is consistent (has a solution) iff its 
distance graph contains no negative cycles.

X

Y

Z

1

-1 -1

Not consistent

ICAPS 2005
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Negative Cycles
Given cycle X = i0, ii, . . . In = X
Constraints : i1 – X bi0,i1

i2 – ii bi1,i2

.. . .
X – in-1 bin-1,in

Sum up the inequalities:   
X – X = 0  dXX, i.e., dxx 0

So if dxx < 0, have a contradiction

} XX

n

j

ii db jj =
=

−

1

,1

Computing Consistency

• Can thus check the consistency of an STP this in 
polynomial time, using an all-pairs shortest path 
algorithms (e.g., Floyd-Warshall)

• Consistent iff 0’s along the main diagonal

• The value of the shortest path from X to Y is called 
the distance from X to Y, written dXY

• Graphical form of the APSP matrix is called the d-
graph

ICAPS 2005
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Floyd-Warshall Algorithm
Given a graph G,

W = adjacency-matrix(G), n = size(G)

D(0) = W

For k = 1 to n

For i = 1 to n

For j = 1 to n

D(k)
i,j = min(D(k-1)

i,j,  D(k-1)
i,k + D(k-1)

k,j)

Return D(n)

Paths from i to j with intermediate nodes from 1 to k-1

Paths from i to j with intermediate nodes from 1 to k

An Example

0-10Z

40-1Y

120X

ZYXX

Y

Z
[0, 1]

[1,2] [1, 4]

X

Y

Z

1

0
2

-1 4
-1

D(0)

ICAPS 2005
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An Example

0-10Z

40-1Y

120X

ZYX

0-10Z

00-1Y

120X

ZYXX

Y

Z
[0, 1]

[1,2] [1, 4]

X

Y

Z

1

0
2

-1 4
-1

D(1), paths through X

An Example

0-10Z

40-1Y

120X

ZYX

0-1-2Z

00-1Y

120X

ZYXX

Y

Z
[0, 1]

[1,2] [1, 4]

X

Y

Z

1

0
2

-1 4
-1

0-10Z

00-1Y

120X

ZYX

D(2), paths through X,Y

ICAPS 2005
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An Example

0-10Z

40-1Y

120X

ZYX

Z

Y

-1X

ZYXX

Y

Z
[0, 1]

[1,2] [1, 4]

X

Y

Z

1

0
2

-1 4
-1

0-10Z

00-1Y

120X

ZYX

D(3), paths through X,Y,Z

0-1-2Z

00-1Y

120X

ZYX

Another Example

X

Y

Z
[0, 5]

[1,2] [1, 4]

X

Y

Z

5

0
2

-1 4
-1

0-1-2Z

40-1Y

520X

ZYX

ICAPS 2005
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D-Graph for the Breakfast Plan

4

-2

0

TR

TS

CECS

0

5

2

0

2

-3

7
-1

6

5

3

∞

-3

-2∞

TE

∞

∞
0-22-1-2TE

40630TS

200-3-3CE

75500CS

∞∞∞∞0TR

TETSCECSTR

APSP Matrix

d-graph

TR’s and TW’s

• Use a Temporal Reference Point (TR) to specify 
absolute clock times

• Compute the Time Window (TW) for every event e
– Minimal distance to/from TR (dTR,X,dX,TR)

X

Y

Z
[0, 5]

[1,2] [1, 4]

TR [6,8]
<6,8>

<7,10>

<8,13>

ICAPS 2005
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Decomposability
• An STP is decomposable if every locally consistent 

assignment can be extended to a solution.

X

Y

Z
[0, 5]

[1,2] [1, 4]

X 0, satisfying Constraints({X})

Z 0, satisfying Constraints({X,Z})

No way to extend with an 
assignment to Y –

not decomposable

• The all-pairs, shortest path graph (the d-graph) for   
any STP is decomposable.

Generating STP Solutions

• Can “read off” solutions from the d-graph

X

Y

Z

5

0
2

-1 4
-1

0-1-2Z

40-1Y

520X

ZYX Immediate Solutions:
{x = 0,y = 2, z = 5}
{x = -1, y = 0, z = 4}
{x = -2, y = -1, z = 0}

ICAPS 2005
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More generally…
• Construct the d-graph and order the nodes, v0, . . . 

vn (usually v0 = TR)

• Select a value x0 ∈ TW(v0)

• Solution = {v0 x0}

• For k = 2 to n
– Propagate:  TW(vk) = ∩i=1 (xi + [-dk,i , di,k])

– Select xk ∈ TW(vk)

– Solution = Solution ∪ {vk xk}

k-1

Exploit decomposability

Solving the Breakfast STP I

[-4,-2]

TR←0

TS

CECS

[3,5]

[-2,2]

[1,7]

[-6,0]

[-3,5]

[3,∞]

[2,∞]

TE

[0,∞]

[0,∞]

TR 0

ICAPS 2005
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Solving the Breakfast STP II

[-4,-2]

TR←0

TS

CECS

[3,5]

[-2,2]

[1,7]

[-6,0]

[-3,5]

[3,∞]

[2,∞]

TE

0+[0,∞]

[0,∞]

TR 0
CS 5

Solving the Breakfast STP III

[-4,-2]

TR←0

TS

CECS

5+[3,5]

[-2,2]

[1,7]

[-6,0]

[-3,5]

0+[3,∞]

[2,∞]

TE

0+[0,∞]

[0,∞]

TR 0
CS 5
CE 8

0+[3,∞]∩
5+[3,5] = 
[8,10]

ICAPS 2005
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Solving the Breakfast STP IV

[-4,-2]

TR←0

TS

CECS

5+[3,5]

8+ [-2,2]

5+[1,7]

[-6,0]

[-3,5]

0+[3,∞]

0 +[2,∞]

TE

0+[0,∞]

[0,∞]

TR 0
CS 5
CE 8
TE 9

0+[3,∞]∩
5+[3,5] = 
[8,10]

5+[1,7] ∩
8+ [-2,2] ∩
0 +[2,∞] = 
[6,10]

Solving the Breakfast STP V

9 +[-4,-2]

TR←0

TS

CECS

5+[3,5]

8+ [-2,2]

5+[1,7]

8+[-6,0]

5+[-3,5]

0+[3,∞]

0 +[2,∞]

TE

0+[0,∞]

0+[0,∞]

TR 0
CS 5
CE 8
TE 9
TS 6

0+[3,∞]∩
5+[3,5] = 
[8,10]

5+[1,7] ∩ 8+
[-2,2] ∩ 0
+[2,∞] = 
[6,10]

8+[-6,0] ∩
5+[-3,5] ∩
9+[-4,-2] ∩
0+[0,∞] = [5,7]

ICAPS 2005
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Plan Dispatch 
With STPs

The Dispatch Problem

• Given a (set of) plan(s) with temporal constraints, 
decide when to execute each action so as to ensure 
that the constraints are satisfied.

ICAPS 2005
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Naïve Dispatch Algorithm

• Use the STP solution algorithm to assign a value to 
a variable.

• Wait until that time occurs.

• Dispatch the event associated with that variable.

Solving the Breakfast STP

9 +[-4,-2]

TR←0

TS

CECS

5+[3,5]

8+ [-2,2]

5+[1,7]

8+[-6,0]

5+[-3,5]

0+[3,∞]

0 +[2,∞]

TE

0+[0,∞]

0+[0,∞]

TR 0
CS 5
CE 8
TE 9
TS 6

0+[3,∞]∩
5+[3,5] = 
[8,10]

5+[1,7] ∩ 8+
[-2,2] ∩ 0
+[2,∞] = 
[6,10]

8+[-6,0] ∩
5+[-3,5] ∩
9+[-4,-2] ∩
0+[0,∞] = [5,7]

ICAPS 2005
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Naïve Dispatch Algorithm

TR 0
Start at 8am 

CS 5
Next, start coffee at 8:05

CE 8
Pour the coffee at 8:08

TE 9
Pop the toast at 8:09

TS 6
Start the toast at 8:06

Off-Line Dispatch

• Find a solution to the STP off-line 

• Sort the variables in increasing temporal order

• Dispatch as each event as it “comes due”

Find solution TR 0, CS 5, CE 8, TE 9, TS 6
Sort:  <TR, CS, TS, CE, TE>
Then dispatch in order

ICAPS 2005
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On-Line Dispatch

• Off-line dispatch is inflexible; can’t handle 
“uncontrollable” events

• Key idea for on-line dispatch:  only dispatch events 
that are
– Live (it’s currently within their time window), and

– Enabled (all events that are constrained to occur earlier 
have already been dispatched)

• Easy to recognize when Y must precede X:  DXY < 0, 
i.e., there’s a negative edge starting at X

On-Line Dispatch Algorithm 
1. Compute the d-graph for the given STP
2. A {x | x has no outgoing negative edges}  [x is initially 

enabled]
3. Pick and remove an event e from A such that now ∈ TW(E)
4. S ← S ∪ {e}
5. Dispatch e and set execution-time(e) ← now
6. Propagate this assignment to the neighbors of e
7. A ← A ∪ {x | all negative edges starting at x have 

destinations already in S}   [ x is enabled.]
8. Wait until now has advanced to some time between the 

minimum lower bound of a time window for a member of A 
and the minimum upper bound of a time window for a 
member of A.

9. Loop to (2) until every event is in S.

ICAPS 2005
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On-Line Dispatch of Breakfast
TR 0
Start at 8am

CS 5
Next, start coffee at 
8:05

CE 8
Pour the coffee at 8:08

Can’t dispatch TE

next, since it isn’t 
enabled!

9 +[-4,-2]

TR←0

TS

CECS

5+[3,5]

8+ [-2,2]

5+[1,7]

8+[-6,0]

5+[-3,5]

0+[3,∞]

0 +[2,∞]

TE

0+[0,∞]

0+[0,∞]

0+[3,∞]∩
5+[3,5] = 
[8,10]

5+[1,7] ∩
8+ [-2,2] ∩
0 +[2,∞] = 
[6,10]

8+[-6,0] ∩
5+[-3,5] ∩
9+[-4,-2] ∩
0+[0,∞] = 
[5,7]

Improving Efficiency
• Some edges in the d-graph are dominated, and can 

be removed
• Triangle Rule:  Edge AC is dominated if there is 

another node B such that:
{ |AB| + |BC| = |AC| }∧ { |AB| < 0   ∨ |BC| ≥ 0 }

ICAPS 2005
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A Dominated Edge

4

-2

0

TR

TS

CECS

0

5

2

0

2

-3

7
-1

6

5

3

-3

-2

TE

Edge CSTS is
dominated by 
CSCE and CETS

Increasing Efficiency

• Can remove all the dominated edges off-line in 
O(n3) time, to create the minimal equivalent 
dispatchable (MED) network

• Dispatch is still O(n2) since in the worst case no 
edges may be removed

• But in practice may obtain significant speedup: 
NASA Remote Agent domain, 40-60% of original 
edges pruned

ICAPS 2005
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Disjunctive 
Temporal 
Problems

Real Plans often have Disjunctive 
Constraints

• Typical Plan for an Autominder User

At end of check pulseDepending on pulse, 
take meds

Between 11:00 and 12:00, and 
between 3:00 and 4:00

Check pulse

At end of prepare lunchEat lunch

Between 11:45 and 12:15Prepare lunch

Within 20 minutes of dryer 
ending

Fold clothes

Within 20 minutes of washer 
ending

Put clothes in dryer

Before 10 a.m.Start laundry

TARGET TIMEACTION

Non-overlap:
LE – PS 0 ∨
ME – LS  0 

Activity disjunct:
Watch the news 
at 10pm or 11pm

ICAPS 2005
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The Breakfast Plan (Version 3)

Prepare coffee and toast.  Have them ready within 2 
minutes of each other.  Brew coffee for 3-5 
minutes; toast bread for 2-4 minutes.  Also take a 
shower for 5-8 minutes, and get dressed, which 
takes 5 minutes.  Be ready to go by 8:20.

Morning

The Morning Plan

SS SE

DS DE

[5,8]

[5,5]

[0,∞]

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2]

[0,∞]

TR

[0,20]

[0,20]

[0,20]

Prepare coffee and toast. Shower and dress.

[(TE SS) ∧ (CE  SS)] ∨ [(DE  CS) ∧ (DE  TS)]

Dress first.Eat first.

ICAPS 2005
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The Morning Plan

SS SE

DS DE

[5,8]

[5,5]

[0,∞]BS

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2] BE

[0,∞]

[0,∞]

TR

[0,∞]

[0,20]

[0,20]

[0,20]

[0,∞]

BE – SS 0 ∨ DE – BS  0 disjunctive, not binary

Disjunctive Constraints

• Represent non-overlaps (as in our example)

• Can also represent other forms of disjunction
– E.g., take a shower for 5 minutes or a bath for 10 

minutes

ICAPS 2005

36 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution



Disjunctive Temporal 
Problems

• A set of time points (variables) V and a set of 
constraints C of the form: 

lbji ≤ Xi – Xj ≤ ubji ∨ … ∨ lbmk ≤ Xk – Xm ≤ ubmk

• Benefit:  Additional expressive power
• Cost:  Additional computational expense—

reasoning is NP-Hard
– True even for binary problems, i.e., constraints have the 

form

lbji ≤ X – Y ≤ ubji ∨ … ∨ lbmk ≤ X – Y ≤ ubmk

DTPs as CSPs
• One-Level Approach

– Direct assignment of times to DTP variables.

– Limitations:  difficult to deal with infinite domains; 
produces overconstrained solution

• Two-Level Approach
– Construct a meta-level CSP

– Variables:   DTP constraints

– Domains:  Disjuncts from DTP constraints.

– Constraints:  Implicit, assignment must lead to a 
consistent component STP
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DTP Solving Example
C1 : {c11 : y – x ≤ 5}

C2 : {c21 : w – y ≤ 5} ∨ {c22 : x – y ≤ -10} ∨
{c23 : z – y ≤ 5}

C3 : {c31 : y – w ≤ -10}

Component STP:  
C1 ← c11, C2 ← c23 ,

C3 ← c31 

One exact solution:  
{x = 0, y = 1, z = 2,   

w = 12}

C1 c11

C2 c21

C3 c31

C2 c22 C2 c23

C3 c31

Strategies for Efficiency

• Forward checking / incremental forward checking

• Conflict-directed backjumping

• Removal of subsumed variables

• Semantic branching 

• No-good learning

• Use efficient SAT solvers for meta-level
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Removal of Subsumed Variables

Ci cij Ci cik Ci cil

If this assignment to 
Ci is implied by the 
partial assignment 
above it,  prune the 
other values for Ci

Removal of Subsumed Variables

C1 : {c11 : y – x ≤ 5}

C2 : {c21 : x – z ≤ 5} ∨ {c22 : w – y ≤ -10} 

C3 : {c31 : y – z ≤ 15} ∨ {c32 : z – v ≤ 10} ∨ . . . 

C4, C5, etc.

C1 c11

C3 c31

C2 c21

c11 and c21 imply c31, so no need
to try other values for C3 along 
this branch
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Semantic Branching

A ≤ B C ≤ D

Also impose B < A 
(I.e. ¬ A ≤ B)

X ≤ Y

Semantic Branching
C1 : {c11 : x – y ≤ 5}

C2 : {c21 : x – z ≤ 3} ∨ {c22 : w – z ≤ -6}

C3 : {c31 : y – w ≤ 2} ∨ {c32 : w – y ≤ 0} ∨ . . . 

C4, C5, . . .

C1 c11

C2 c21

fail

C2 c22
Add ¬c21:  x-z > 3

C3 c31
Fail immediately:
c11, c22, c31, ¬c21 inconsistent
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So, how fast?

• Current fastest solver, TSAT++, reports:
– ~10 seconds to solve problems with

• 35 variables

• ~210 disjunctive constraints (critical region)

• Each with 2 disjuncts

DTP Solving and OR Scheduling 
Formalisms

DTPs OR
Formalisms

DTPs designed for the needs of 
planning with temporal constraints
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DTP Solving and OR Scheduling 
Formalisms

DTPs OR
Formalisms

Example: Job Shop Scheduling
Temporal precedence constraints:  easy to model with DTPs
Resource constraints:  more cumbersome with DTPs

DTP Solving and OR Scheduling 
Formalisms

DTPs OR
Formalisms

Example: Preemption
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DTP Solving and OR Scheduling 
Formalisms

DTPs OR
Formalisms

Example: Arbitrary Disjunction
JSS & DTP can both express non-overlap constraints

A < B ∨ B < A (binary with intervals (tasks), non-
binary with time points)

DTP Solving and OR Scheduling 
Formalisms

DTPs OR
Formalisms

But only DTPs can express general constraints
“If treatment A doesn’t last long enough, perform 

treatment B for a given duration.”
~((AE – AS) > d) (BE – BS) > e
≡ (AS – AE) < -d ∨ (BS – BE) < -e
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DTP Solving and OR Scheduling 
Formalisms

DTPs OR
Formalisms

Some DTP solvers provide justifications of failure (e.g., 
minimal sets of inconsistent input constraints)
Useful in plan generation

DTP Solving and OR Scheduling 
Formalisms

DTPs OR
Formalisms

Decision problems:
Often hard to satisfy

Optimization problems:
Often easy to satisfy, but 
hard to optimize
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Dispatch
with DTPs

DTP Dispatch Method #1

• With total control of the execution process:

• Given a DTP, find a consistent component STP S

• Dispatch S using STP dispatch algorithm
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DTP Dispatch Method #2
• With partial control of the execution process (e.g., 

in execution monitoring)

• Given a DTP, find a consistent component STP S
• While no events inconsistent with S occur

– Dispatch S using STP dispatch algorithm

• Otherwise, if event e occurs at time t that is 
inconsistent with S
– Add an execution constraint, t ≤ e – TR ≤ t
– Find a new consistent component STP S

The Morning Plan

SS SE

DS DE

[5,8]

[5,5]

[0,∞]BS

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2] BE

[0,∞]

[0,∞]

TR

[0,∞]

[0,20]

[0,20]

[0,20]

[0,∞]

BE – SS 0 ∨ DE – BS  0

[0,∞]

Detect Ss at 8:03

Add: 3  Ss – TR  3
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A Problem

• Might “miss” a solution

• X = 2 ∨ X = 1

• Y = 3 ∨ Y = 2

• Y > X

• Don’t see anything at 1

• See Y at 2
All remaining consistent 
component STPs are eliminated

DTP Dispatch Method #3
• Produce information about what can be done

– Execution Table 
• Specifies what actions are live and enabled (what can 

be done)
• An event e in a DTP is live iff now is in its time 

window
• An event e in a DTP is enabled iff it is enabled in at 

least one consistent component STP

• And what must be done
– Deadline Formula

• Specifies what deadline must be satisfied next (what 
must be done)
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Example

C1:  {c11:  5 ≤ x – TR ≤ 10} ∨ {c12:  15 ≤ x – TR ≤ 20}

C2:  {c21:  5 ≤ y – TR ≤ 10} ∨ {c22:  15 ≤ y – TR ≤ 20}

C3:  {c31:  6 ≤ x – y ≤ ∞} ∨ {c32:  6 ≤ y – x ≤ ∞}

C4:  {c41: 11 ≤ z – TR ≤ 12} ∨ {c42:  21 ≤ z – TR ≤ 22}

Consistent Component STPs:

1. STP1: c11, c22, c32, c41 x before y, z early

2. STP2: c11, c22, c32, c42 x before y, z late

3. STP3: c12, c21, c31, c41 y before x, z early

4. STP4: c12, c21, c31, c42 y before x, z late

Example

C1:  {c11:  5 ≤ x – TR ≤ 10} ∨ {c12:  15 ≤ x – TR ≤ 20}

C2:  {c21:  5 ≤ y – TR ≤ 10} ∨ {c22:  15 ≤ y – TR ≤ 20}

C3:  {c31:  6 ≤ x – y ≤ ∞} ∨ {c32:  6 ≤ y – x ≤ ∞}

C4:  {c41: 11 ≤ z – TR ≤ 12} ∨ {c42:  21 ≤ z – TR ≤ 22}

Execution Table: Deadline Formula:

<x, {[5,10], [15,20]}> <x ∨ y, 10>

<y, {[5,10], [15,20]}>

Enabled events and their CNF formula that must be 
time windows satisfied “next”
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Dispatch Method

• Computing the Execution Table:
– Find all enabled events

– Compute their time windows in every consistent 
component STP

• Computing the Deadline Formula:
– Find the next time at which some event must occur

– Find all events that might have to occur by that time 
point

– Compute the minimal event sets that would ensure that 
not all remaining consistent component STPs are 
eliminated

Generating the Deadline Formula
Generate-DF (Solutions: STP [i])

Let U = the set of upper bounds on time windows, U(x,i) for 
each still unexecuted action x and each STP i.

Let NC, the next critical time point, be the value of the minimum 
bound in U.

Let UMIN = {U(x, i)| U(x,i) = NC}.

For each x such that U(x,i) ∈UMIN, let Sx = {i | U(x,i) ∈ UMIN}

Initialize F = true;

For each minimal solution MinCover of the set-cover problem 
(Solutions , ∪Sx), let F = F ∧ (∨ x |  Sx ∈ MinCover x).

Output DF = <F, NC>.
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Generating the Deadline Formula
Generate-DF (Solutions: STP [i])

Let U = the set of upper bounds on time windows, U(x,i) for 
each still unexecuted action x and each STP i.

Let NC, the next critical time point, be the value of the minimum 
upper bound in U.

Let UMIN = {U(x, i)| U(x,i) = NC}.

For each x such that U(x,i) ∈UMIN, let Sx = {i | U(x,i) ∈ UMIN}

Initialize F = true;

For each minimal solution MinCover of the set-cover problem 
(Solutions , ∪Sx), let F = F ∧ (∨ x |  Sx ∈ MinCover x).

Output DF = <F, NC>.

Example
C1:  {c11:  5 ≤ x – TR ≤ 10} ∨ {c12:  15 ≤ x – TR ≤ 20}

C2:  {c21:  5 ≤ y – TR ≤ 10} ∨ {c22:  15 ≤ y – TR ≤ 20}

C3:  {c31:  6 ≤ x – y ≤ ∞} ∨ {c32:  6 ≤ y – x ≤ ∞}

C4:  {c41: 11 ≤ z – TR ≤ 12} ∨ {c42:  21 ≤ z – TR ≤ 22}

Consistent Component STPs:

STP1: c11, c22, c32, c41

STP2: c11, c22, c32, c42

STP3: c12, c21, c31, c41

STP4: c12, c21, c31, c42

U(x,1) = U(x,2) = 10
U(x,3) = U(x,4) = 20
U(y,1) = U(y,2) = 20
U(y,3) = U(y,4) = 10
U(z,1) = U(z,3) = 12
U(z,2) = U(z,4) = 22
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Generating the Deadline Formula
Generate-DF (Solutions: STP [i])

Let U = the set of upper bounds on time windows, U(x,i) for 
each still unexecuted action x and each STP i.

Let NC, the next critical time point, be the value of the minimum 
upper bound in U.

Let UMIN = {U(x, i)| U(x,i) = NC}.

For each x such that U(x,i) ∈UMIN, let Sx = {i | U(x,i) ∈ UMIN}

Initialize F = true;

For each minimal solution MinCover of the set-cover problem 
(Solutions , ∪Sx), let F = F ∧ (∨ x |  Sx ∈ MinCover x).

Output DF = <F, NC>.

Example
C1:  {c11:  5 ≤ x – TR ≤ 10} ∨ {c12:  15 ≤ x – TR ≤ 20}

C2:  {c21:  5 ≤ y – TR ≤ 10} ∨ {c22:  15 ≤ y – TR ≤ 20}

C3:  {c31:  6 ≤ x – y ≤ ∞} ∨ {c32:  6 ≤ y – x ≤ ∞}

C4:  {c41: 11 ≤ z – TR ≤ 12} ∨ {c42:  21 ≤ z – TR ≤ 22}

Consistent Component STPs:

STP1: c11, c22, c32, c41

STP2: c11, c22, c32, c42

STP3: c12, c21, c31, c41

STP4: c12, c21, c31, c42

U(x,1) = U(x,2) = 10
U(x,3) = U(x,4) = 20
U(y,1) = U(y, 2) = 20
U(y,3) = U(y, 4) = 10
U(z,1) = U(z,3) = 12
U(z,2) = U(z,4) = 22
NC = 10
UMIN = {(x,1), (x,2),(y,3),(y,4)}
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Generating the Deadline Formula
Generate-DF (Solutions: STP [i])

Let U = the set of upper bounds on time windows, U(x,i) for 
each still unexecuted action x and each STP i.

Let NC, the next critical time point, be the value of the minimum 
upper bound in U.

Let UMIN = {U(x, i)| U(x,i) = NC}.

For each x such that U(x,i) ∈UMIN, let Sx = {i | U(x,i) ∈ UMIN}

Initialize F = true;

For each minimal solution MinCover of the set-cover problem 
(Solutions , ∪Sx), let F = F ∧ (∨ x |  Sx ∈ MinCover x).

Output DF = <F, NC>.

Example
C1:  {c11:  5 ≤ x – TR ≤ 10} ∨ {c12:  15 ≤ x – TR ≤ 20}

C2:  {c21:  5 ≤ y – TR ≤ 10} ∨ {c22:  15 ≤ y – TR ≤ 20}

C3:  {c31:  6 ≤ x – y ≤ ∞} ∨ {c32:  6 ≤ y – x ≤ ∞}

C4:  {c41: 11 ≤ z – TR ≤ 12} ∨ {c42:  21 ≤ z – TR ≤ 22}

Consistent Component STPs:

STP1: c11, c22, c32, c41

STP2: c11, c22, c32, c42

STP3: c12, c21, c31, c41

STP4: c12, c21, c31, c42

NC = 10
UMIN = {(x,1), (x,2),(y,3),(y,4)}
Sx = {1,2}
Sy = {3,4}
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Generating the Deadline Formula
Generate-DF (Solutions: STP [i])

Let U = the set of upper bounds on time windows, U(x,i) for 
each still unexecuted action x and each STP i.

Let NC, the next critical time point, be the value of the minimum 
upper bound in U.

Let UMIN = {U(x, i)| U(x,i) = NC}.

For each x such that U(x,i) ∈UMIN, let Sx = {i | U(x,i) ∈ UMIN}

Initialize F = true;

For each minimal solution MinCover of the set-cover problem 
(Solutions , ∪Sx), let F = F ∧ (∨ x |  Sx ∈ MinCover x).

Output DF = <F, NC>.

Example
C1:  {c11:  5 ≤ x – TR ≤ 10} ∨ {c12:  15 ≤ x – TR ≤ 20}

C2:  {c21:  5 ≤ y – TR ≤ 10} ∨ {c22:  15 ≤ y – TR ≤ 20}

C3:  {c31:  6 ≤ x – y ≤ ∞} ∨ {c32:  6 ≤ y – x ≤ ∞}

C4:  {c41: 11 ≤ z – TR ≤ 12} ∨ {c42:  21 ≤ z – TR ≤ 22}

Consistent Component STPs:

STP1: c11, c22, c32, c41

STP2: c11, c22, c32, c42

STP3: c12, c21, c31, c41

STP4: c12, c21, c31, c42

Sx = {1,2}
Sy = {3,4}

MSC({1,2,3,4},{Sx, Sy}) =
{Sx, Sy}

F = x ∨ y
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Larger Deadline Formula

• Suppose  
– 4 consistent component STPs

– NC = 10 

– U (x, 1) = U (x, 2) = U (y, 3) = U (y, 4) = U (z, 4) = U 
(w, 3) = 10 

• The minimal set covers are 
– {Sx, Sy}  and {Sx, Sw, Sz}

• So the deadline formula is 
– (x ∨ y) ∧ (x ∨ z ∨ w)

The Dispatch Bottleneck

• Requires computation of all component STPs

• May be exponentially many of them

• Open Research Question:  Can we identify 
“representative” sets of component STPs?
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Uncontrollability
and

unobservability

Breakfast Again

• You don’t really get to control how long the coffee 
brews (but you can pop the toast at any time).

TR

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2]
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Handling Temporal 
Uncertainty

• TP-u (e.g., STP-u)

• Distinguish between two kinds of events:
– Controllable:  the executing agent controls the time of 

occurrence

– Uncontrollable:  “nature” controls the time of occurrence

X

X

Controllable edge (Y controllable event)

Uncontrollable edge (Y uncontrollable event)

Y

Y

Three Notions of “Solution”

• Strongly Controllable:  There is an assignment of 
time points to the controllable events such that the 
constraints will be satisfied regardless of when the 
uncontrollables occur.

• One (or more) solutions that work no matter what!
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Three Notions of “Solution”

• Weakly Controllable:  For each outcome of the 
uncontrollables, there is an assignment of time 
points to the controllables such that the constraints 
are satisfied.

• One (or more) solutions that work for each outcome.

Three Notions of “Solution”

• Dynamically Controllable:  As time progresses and 
uncontrollables occur, assignments can be made to 
the controllables such that the constraints are 
satisfied.

• Solutions that are guaranteed to work can be created 
conditionally to observations.
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Controllability in STP-u’s

X

Y Z

[0,10]

[1,5]

[2,4]

Strongly Controllable
{X=0, Z = 5}

X

Y Z

[0,10]

[1,1]

[2,4]

X

Y Z

[0,10]

[1,1]

[2,4]

Dynamically Controllable
{X=0, Z = Y + 1}

Weakly Controllable
{X=0, Z = Y – 1}

Strong => Dynamic => Weak

Breakfast Again

• You don’t really get to control how long the coffee 
brews (but you can pop the toast at any time).

TR

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2]

Is it controllable?

Yes, strongly controllable:
CS = 0
Ts = 0
TE = 3   (but not 2)
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Controllability and Observability

• Different notions of controllability make different 
assumptions about what can be observed

• Strong Controllability: uncontrollable events 
cannot be observed and consistency must be 
guaranteed

• Dynamic Controllability: uncontrollable events can 
be observed and consistency must be guaranteed

• Weak Controllability: “I’m feeling lucky”… and 
luck will always be in a position to help achieve 
consistency

Controllability and Dispatchability

• Controllability: defines policies to determine times 
for controllable events depending on knowledge of 
uncontrollable events occurrence

• Dispatchability: identifies effective propagation 
paths such that knowledge on the execution of an 
event constrains the possible execution times for 
other events
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Execution Policies

• Controllability definition emphasizes existence of 
solutions

• At execution time we need policies to make 
decision as a function of our knowledge
– Clock time

– Observation of event occurrence (if possible)

• Like in the case of STPs, provide ways to 
determine bounds and repropagation methods to 
create solutions on the fly

Strongly controllable policies

X

Y Z

[0,10]

[1,5]

[2,4]

Strongly Controllable

X

Y Z5

-2 4
10

0

-1

YZ ≤ YX + XZ

Step 1: tighten
XZ = YZ – YX 

Step 2: delete YZ

7
-5

X

Y Z

[5,7]
[2,4]

•We need to come up with policies assuming no knowledge 
about the uncontrollable event
•Solution: disconnect any dispatchable link from the event
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Strongly controllable policies

X

Y Z

[0,4]

[1,5]

[2,4]

X

Y Z5

-2 4
4

0

-1

7

-5

X

Y Z

[5,4]
[2,4]

Inconsistent

Pseudo-Controllability
• The upper and lower bounds of an uncontrollable 

event are not necessarily propagated outside of the 
uncontrollable link (no necessary tightening of
uncontrollable links) 

• Bound propagation can originate from an 
uncontrollable event because we can have 
knowledge of its occurrence… 

• … but during execution there can be executions 
that propagate into the uncontrollable event tighter 
bounds than the uncontrollable link (possible 
tightening of the uncontrollable links) 
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Pseudo-controllable policies

X

Y Z

[0,10]

[1,1]

[2,4]

Dynamically Controllable

X

Y Z1

-2 4
10

0

-1

Propagates LB
Y Z

Propagates UB
Y Z

OK!

Pseudo-controllable policies

X

Y Z

[2,4]

[-1,1]

[2,4]

X

Y Z1

-2 4
4

-2

1

Propagates UB
Z Y

Propagates UB
Y Z
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<Y∨-3>

Tightening of controllable links

X

Y Z

[2,4]

[-1,1]

[2,4]

X

Y Z1

-2 4

4

-2

1
Step 1: tighten
ZX = ZY – XY

(no knowledge of Y occurrence) 

-3

Step 2: Add conditional stop
If Y has occurred, then Z can

Computing Dynamic 
Controllability of an STPU

• Use triangular reductions

• Case 1:  v < 0
– B follows C, so d.c.

• Case 2:  u 0
– B precedes C:  tighten AB to [y-v, 

x-u] to make d.c.

• Case 3: u < 0 and v 0
– B is unordered w.r.t C:  tighten 

lower bound of AB to (C or y-v) to 
make d.c.

• Iterate on the entire network

A

C B

[p,q]

[u,v]

[x,y]
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Wait Propagation Rules
• “Wait links” are a new type of “partially uncontrollable” link
• If they are present, they cause execution to be contingent on  the 

occurrence of events
• Unlike uncontrollable links, they can be eliminated through 

tightening

Wait Propagation over 
Controllable Edges

X

Y Z

[<Y∨-3> ,4]

[-∞,1]

[2,4]

W

[0,1]

X

Z

<Y∨-3>

W
-1

1

{1}

{2}

Y?=F

[1, +∞]
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<Y∨-2>

Wait Propagation over 
Controllable Edges

X

Y Z

[<Y∨-3> ,4]

[-∞,1]

[2,4]

W
[1, +∞]

[0,1]

X

Z

<Y∨-3>

W
-1

1

<Y∨-2>

Wait Propagation over 
Uncontrollable Edges

X

Y Z

[<Y∨-3> ,4]
[2,4]

W
[1, +∞]

[1,2]

X

Z

W
-1

-1<Y∨-3>
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Full Dynamic Controllability 
Algorithm

Loop
{

Compute pseudo-controllability of network;
if (network is inconsistent or not-pseudo controllable)

return “NON DYNAMICALLY CONTROLLABLE”
if (network is pseudo-controllable)

For all ABC triangles in the temporal network
perform all applicable tightenings (triangular 
reductions and wait regressions)

if no tightening were performed
return “DYNAMICALLY CONTROLLABLE”

}

Termination Condition

• Without further analysis, the algorithm is pseudo-
polynomial
– Pseudo-controllability: O(NE + N2log N)

– Tightening: O(N3)

– Number of repetition of cycle: U, number of time units 
in widest time bound

• Complexity: O(U N3)

• U could be very large
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Cutoff bound

• Since the number of edges is finite, indefinite 
tightening is due to the existence of propagation 
cycles

• Cycle traversal must repeat after a maximum 
number of propagation (as in the Bellman-Ford 
algorithm for shortest paths

• Cutoff bound for dynamic controllability:
– O(NK) with K = number of non-controllable links

• Cutoff on the number of cycles gives O(KN4)
complexity bound.

Handling Causal Uncertainty

• CTP (e.g., CSTP)

• Label each node—events are executed only if their 
associated label is true (at a specified observation 
time)

Obs (A)

X

Y

A

~A

Conditional Plan

Obs(A)

X

Y

A

~A

[5,10]

[8,12]

CTP

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 67



Conditional Plan as CTP
Travel from Home to S, but if the road is

blocked from B to S, go to P.
If you go to S, arrive after 1p.m. (to take

advantage of the discounts).
If you go to P, arrive at C by 11 a.m. 

(because traffic gets heavy).

Strong Consistency

• Not strongly consistent:  Must not be at B before 12 
(if A is true); must be at B by 10 (if A is false)—
and can’t observe A until you’re at B.
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Weak Consistency

• Weakly consistent:  When A is true, leave home 
after 10 (and all other assignments directly follow).  
When A is false, leave home by 9. 

Dynamic Consistency

• Not dynamically consistent: Can’t tell when you 
need to leave home until it’s too late.

• Variant that is is dynamically consistent:  Add a 
parking lot at B where you can wait.
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Generating
Temporal 
Plans

Generating Temporal Plans

• Various models have been developed, dating back 
to the early 1980’s (DEVISER)

• Beginning to see a convergence in the Constraint-
Based Interval approach

• Model the world with 
– Attributes (features):  e.g., coffee

– Values that hold over intervals:  e.g., brewing

– Times points that bound the intervals:  e.g., bt, be

– Axioms that relate the values
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Features and Values
Feature Domain of Values
Coffee none, brewing, ready, stale
Bread untoasted, toasting, toast
Toaster-Status on, off
Toaster-Contents empty, full
Showering yes, no
Bathing yes, no
Clean yes, no
Dressed no, dressing, yes
Location at(X), going(X,Y)

Temporally Quantified Assertions

• Each feature takes a single value at a time, i.e. formally 
there are a set of functions fi(featurei, timej) valuei,j

where valuei,j ∈ domain(featurei)

• Temporally qualified assertions (tqa’s or just “assertions”):
holds (coffee, 8:03, 8:05, brewing)
holds (toaster-content, X, Y, empty)

• Uniqueness Constraints:  
holds(F,s,e,P) ∧ holds(F,s’,e’,Q) 

[e < s’ ∨ e’ < s  ∨ P = Q]
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Planning Axioms
• Used to model actions
• Basic form

Effect
(Action 1 ∧ Preconditions1 ∧ Constraints1) ∨
(Action 2 ∧ Preconditions2 ∧ Constraints2) ∨
. . .
(Action n ∧ Preconditionsn ∧ Constraintsn)

• Can also partition the knowledge differently
• And can also use axioms to model other types of 

constraints (e.g., mutual exclusion)

Example 1

holds(coffee, rs, re, ready) 

holds(coffee, bs, be, brewing) ∧
(be = rs) ∧ (3 be – bs 5)

holds(coffee, ns, ne, none) ∧
ne = bs

Can also split out into two axioms

Effect Action

Action Preconditions

Effect

Action

Preconditions

Add’l. Constraints

Add’l. Constraints
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Example 2

holds(clean, cs, ce, yes) 

[holds(showering, hs, he, yes) ∧
he = cs ∧ ce – cs 120] ∨
[holds(bathing, bs, be, yes) ∧
be = cs ∧ ce – cs 120]

Effect

Alternative
Actions

Example 3

holds(bread, rs, re, toasting) 

holds(toaster-status, ts, te, on) ∧
ts = r s ∧ te = re

holds(toaster-contents, cs, ce, full) ∧
cs rs ∧ re ce ∧

More
“interesting” 
temporal
constraints
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Example 4

“Don’t blow a fuse!”

[holds(coffee, bs, be, brewing) ∧
holds(toaster-status, ts, te, on)]  

be < ts ∨ te < bs

• Additional mutual exclusion constraints are 
implicit in uniqueness constraints

Mutual
exclusion

Planning Axioms

General Form:

Assertion ∧ Assertion ∧ . . . Assertion 

(Assertions ∧ Constraints) ∨
(Assertions ∧ Constraints) ∨
. . . 

(Assertions ∧ Constraints)

Head

Alternatives
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The Planning Problem

• Given a set of features and their domain, a (partial) 
plan is 
– a set of assertions on those features and

– a set of constraints on the time points of the assertions

• A solution is
– a complete assignment of values to features

– such that all of the constraints are satisfied

The Initial Partial Morning Plan

Coffee

Bread

Toaster-status

Toaster-contents

Clean

Showering

Bathing

Dressed

ready(rs,re)

toast(ts,te)

yes(ds,de)

-2 re-te  2
re – TR  500
te – TR  500
de – TR  500

assertions constraints
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Expanding a Plan

• Select an assertion

• Find all the axioms that apply to it

• For each of those axioms

– Choose an alternative (one disjunct in the tail of 
the axiom)

– Ensure that the assertions and constraints in the 
chosen disjunct are in the plan, either by adding 
them or unifying them with assertions and 
constraints already present

Applicable Axioms
• Given 

– plan P
– assertion A and 
– axiom M:  X1 ∧ . . . Xn r.h.s.

• M applies to A if
– For some i, unify (Xi ,M) = , and
– For all j = 1. . . n s.t. j ≠i, unify(Xj,B) = ’ where 

(i) ’ is an extension of , and

(ii) B is an assertion in P
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Expanding the Initial Plan I

Coffee

Bread

Toaster-status

Toaster-contents

Clean

Showering

Bathing

Dressed

ready(rs,re)

toast(ts,te)

yes(ds,de)

-2 re-te  2
re – TR  500
te – TR  500
de-TR  500

be = rs

3 be – bs 5
ne = bs

holds(coffee, rs, re, ready) 
holds(coffee, bs, be, brewing) ∧

(be = rs) ∧ (3 be – bs 5)
holds(coffee, ns, ne, none) ∧

ne = bs

brewing(bs,be)none(ns,ne)

Expanding the Initial Plan II

Coffee

Bread

Toaster-status

Toaster-contents

Clean

Showering

Bathing

Dressed

ready(rs,re)

toast(ts,te)

yes(ds,de)

-2 re-te  2
re – TR  500
te – TR  500
de-TR  500

be = rs

3 be – bs 5
ne = bs

oe = t s

ge = ds

gs ce

he = cs

ce – cs 120

brew(bs,be)none(ns,ne)

toasting(os,oe)

yes(cs,ce)

yes(hs,he)

dressing(gs,ge)
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Causal Links and Uniqueness 
Conditions

Showering

Clean

Exercise

Dressed

yes(hs,he)

dressing(gs,ge)

yes(xs,xe)

yes(cs,ce)

no(ns,ne)

Uniqueness Constraint:  ce ns ∨ ne   cs

Step Reuse

Coffee

Bread

Location

ready(rs,re)

toast(ts,te)

brewing(bs,be)

at(kitchen,ls,le)

toasting(os,oe)

none(ns,ne) ls bs

bs  le

ls  os

os  le
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Underlying Constraint Network

• The temporal constraints form a DTP

• Technically, a dynamic DTP, since time points are 
added incrementally 

• Use DTP techniques to check consistency 
efficiently

CBI Planning Algorithm
Unchecked, Assertions initial assertions
Expand (Unchecked, Assertions, Constraints, Axioms)

If Constraints are inconsistent, fail.
If Unchecked = ∅, return <Assertions, Constraints>.
Select u ∈ Unchecked

For every axiom X ∈Axioms that applies to u
Choose an alternative d from X  {d is the result of the 

unification that causes X to be applicable}
For each assertion s ∈ d
Choose:

Reuse:  Unify s with an assertion in Assertions
New:   Add s to Assertions and Unchecked

Add constraints c ∈ d to Constraints
Expand(Unchecked, Assertions, Constraints, Axioms)
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Resource Constraint
Reasoning: Scheduling

Breakfast at Yosemite

• You are backpacking so you cook the toast on a 
pan…

• …and you have a stove with just one burner.

TR

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2]

on(cpot,stove)

on(pan,stove)

ICAPS 2005

80 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution



Operating the stove
The Planning Perspective

pre
add

del

on (?x, stove)

clear (stove)

clear(stove) putOn (?x, stove)

pre
add

del

clear (stove)

on (?x, stove)

on (?x, stove) takeOff (?x, stove)

?x ∈{cpot, pan}

From Planning to Scheduling

pre
add

del

on (?x, stove)

clear (stove)

clear(stove) putOn (?x, stove)

pre
add

del

clear (stove)

on (?x, stove)

on (?x, stove) takeOff (?x, stove)

stove = 1

stove = 0

stove = 1

stove =0

stove = 1

stove = 0
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From Planning to Scheduling

pre
add

del

putOn (?x, stove)

pre
add

del

takeOff (?x, stove)

stove = 1

stove = 0

stove = 1

stove =0

stove = 1

stove = 0

0 ≤ stove ≤ 1

stove −= 1

stove += 1

From Planning to Scheduling

putOn (?x, stove)

takeOff (?x, stove)

0 ≤ stove ≤ 1

stove −= 1

stove += 1

S

E

?y: cooking (?x, stove)

<?y, ?x> ∈{<coffe, cpot>, <toast, pan>}
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Breakfast as Scheduling

stove

stove −= 1

stove += 1

S

E

?y: cooking (?x, stove)

<?y, ?x> ∈{<coffe, cpot>, <toast, pan>}

0

1

Initial state: holds 
irrespective of plan

Plan resource profile: it 
depends on subgoaling

status

A View of Planning and 
Scheduling

• Planning primarily focuses on constructing a 
consistent evolution of the world (states and 
transitions)

• Scheduling almost entirely focuses on handling 
mutual exclusion and deadlines

• …but since the beginning planning was also 
addressing scheduling – flaws can be often seen as 
scheduling conflicts

• Graphplan and mutual exclusions implicitly 
brought this concept to the forefront
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Remote Agent Planning
Max_ThrustIdle Idle

Poke

Timer

Attitude

Accum

SEP Action

SEP_Segment

Th_Seg

Start_Up Start_Up
Shut_Down Shut_Down

Thr_Boundary

Thrust ThrustThrustThrustStandby Standby Standby

Th_Sega Th_Seg Th_SegIdle_Seg Idle_Seg

Accum_NO_Thr Accum_ThrAccum_Thr Accum_ThrThr_Boundary

CP(Ips_Tvc) CP(Ips_Tvc) CP(Ips_Tvc)

Th_Seg

ti ∈min(ti) max(ti)

Resource Models

gasFlow

gasFlow −= 20.0

gasFlow += 20.0

S

E

?y: cooking (?x, gasFlow)

0

100.0

•Discrete/continuous capacity
•Example: solar panels power
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Resource Models

gasFlow

gasFlow += 100.0

gasFlow −= 100.0

S

E

?friend: AtCamp (hasStove)

0

100.0

•Resource producers

holds (Me, Plans ,Plane, AtCamp(hasStove)

Resource Models

gasAmount

gasAmount −= 20.0S

E

?y: cooking (?x, gasAmount)

0

100.0

•Permanent consumption/production

ICAPS 2005

Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution 85



Insufficiency of Stepwise-
Constant Resource Model

gasAmount

gasAmount += gasFlow*dS

E

?y: cooking (?x, gasFlow)

0

100.0

[d,d]

Insufficiency of Stepwise-
Constant Resource Model

gasAmount

gasAmount −= gasFlow*dS

E

?y: cooking (?x, gasFlow)

0

100.0

[d,d]
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Insufficiency of Stepwise-
Constant Resource Model

gasAmount

gasAmount −= 200.0S

E

?y: cooking (?x, 20.0)

0

100.0

[10,10]

Cannot cook Texan barbeque in a California backcountry camp 
with limits on amount of storable fuel!

Insufficiency of Stepwise-
Constant Resource Model

gasAmount
0

100.0

S

E

?y: cooking (?x, 20.0) d ∈[10,10],
0 < t ≤ d, gasAmount (t) −= 20.0*t

What counts is how the 
consumption rate accumulates over 

time

Start cooking Friend arrives End cooking
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Flexibility in Plans/Schedules
• After a plan is executed, all variables (time, parameters) 

will be set to specific values
• Potential execution strategy: select the fixed values in 

advance and simply send them to the controlled device at 
the appropriate time.

• Worked reasonably well for spacecraft like Voyager.
• Not a lot is happening in the vacuum of space, though…
• Fundamental obstacles in the real world

– Uncontrollability
– Unobservability

• Two possible strategies
– Flexible policies
– “Fix values and repair”

How to Build a Flexible Breakfast 
Schedule

TR

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2]

on(cpot,stove)

on(pan,stove)
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How to build a flexible schedule

TR

TETS

CECS

5

2

-3

2

4

-2

0

0

0

0

Can we start making the toast after the coffee is brewed? YES

How to build a flexible schedule

TR

TETS

CECS

5

2

-3

2

4

-2

0

0

Can we start brewing the coffee after the toast is ready?

0
-1
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One interpretation of precedence 
links

A B

r += 1 r −= 1

0

[0, +∞]
precedence

anti-precedence

C

r −= 1

0

• B A anti-precedence creates a consumer/produced “coupling”
• B can rely on A to produce the resource it needs. Therefore, B will 

never cause a resource oversubscription
• With the addition of C A, C and B compete to “match” with A
• Introducing “coupling” links and managing actual “matches” is what a 

flexible scheduling algorithm really does

PCP scheduling
• [Cheung and Smith, 1997] use scratch propagation for unary capacity 

makespan optimization job-shop scheduling
• Scratch propagation can be done using Dijkstra algorithm from each 

end time to the start times on the same resource
• Scratch propagation cost: O(N2logN) but can terminate early when all 

starts on same resource have been reached
• Incremental propagation achieves better speed
• Three cases for each pair of activities:

– Inconsistency: no ordering is possible
– Pruning: only one ordering is possible
– Heuristic selection: if both orders are possible, select one according to a 

heuristic (e.g., maximum slack)
• Heuristic selection pair to resolve next is determined by a heuristic 

(e.g., minimum average slack)
• Search methods

– Iterative Sampling with randomization
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Fixed Time Scheduling and 
Execution Policies

[Chien et al. 2005] Automated Sciencecraft Experiment

{PowerUp (Imager)} before
{s ∈ [10:00, 13:30], Image(lat, long, Mt.Etna)} 

dataBuffer −= 100

Fixed-time scheduling and 
execution policies
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Conflict Repair Methods
• Use a repair method to eliminate a conflict
• ASE uses a planner, not just a scheduler.
• Hence it is possible to generate new activities or 

select different task decompositions
• Repair methods

– move an activity
– delete an activity
– add a new activity
– detailing an activity
– abstracting an activity
– etc.

Add producer of 
resource. Not 

handled in classical 
scheduling

Chose different activity 
decomposition

From Planning to Execution
The ideal situation

Planner Executive

OKFAIL

Repair plan using same 
method to generate it
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Comparison of Flexible and Fixed 
Policies (1)

• Fixed policies
– Pros

• Simple and intuitive to implement
– It is easier to think of heuristics based on resource profiles

• More compact data structures
• Less costly propagation

– Cons
• Plan does not give “declarative” measure of 

robustness
– Execution repair is fundamental to robustness

• A full plan repair process may be too expensive at 
execution time

– ASE has only 4 MIPS available

Comparison of Flexible and Fixed 
Policies (2)

• Flexible policies
– Pros

• Plan guarantees measure of robustness
– Flexible policies break less often

• Execution time adjustments are intrinsically fast (propagation 
vs planning)

– Cons

• More complex 
– But complexity and computational expenses mostly affect off-line 

planning

• Actual value of flexibility is only as good as the semantics of 
the representation

– … and this is why you are taking this tutorial!
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From Planning to Execution
What actually happens on ASE

Planner Executive

• Planner’s detailed command expansion finds a “witness” to plan consistency
• If failures propagates at the highest activity level, this is a major problem
• Eliminating top-level failure requires careful tuning of “abstraction”
• Differences in internal planner/executive representations pushes toward 

conservatism to avoid mismatches and inconsistencies (it happened in Remote 
Agent…)

• Therefore, robustness is achieved at design time through careful modeling
• Flexible representations could help that design process

Building flexible policies from 
fixed time schedules

• Simple strategy for single capacity resources: simply keep 
the ordering constraints and uncommit the times from the 
fixed values

• Continuous/discrete capacity resources require the 
introduction of anti-precedence couplings between 
consumers and producers

• [Policella et al, 2004] Transform fixed schedule into 
“chaining form” partial order

• Decompose multiple capacity resource into “virtual” single 
capacity resources and add couplings on chains

4

ICAPS 2005

94 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution



Probabilistic measures
of resource contention

Contentious Breakfast

TR

TETS

CECS
[0, 20]

[0, 20]

[3,5]

[3,5]

[-3,3]

on(cpot,stove)

on(pan,stove)

-11

-11
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Time bounds and resource 
conflicts

• Without further coordination, C and T are free to 
collide for the use of the stove

• The inclusion of anti-precedence links 
(“couplings” of producers to consumers) reduce 
and eventually eliminate the possibility of conflict

C

T

Time bounds and resource 
conflicts

• Without further coordination, C and T are free to 
collide for the use of the stove

• The inclusion of anti-precedence links 
(“couplings” of producers to consumers) reduce 
and eventually eliminate the possibility of conflict

C

T
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Temporal Information for 
Contention Analysis

• Partial temporal information (e.g., time bounds for events) 
is insufficient to determine informative contention 
measures.

• More (full) temporal information is expensive to acquire 
and maintain

• There needs to be a balance between cost and utility of 
temporal/research inferences. Eventual value is in  search 
improvement

C

T

C

Tor ?

Probabilistic Resource Contention
• Use probabilistic assumptions to generate time 

assignments given a temporal network
• Combine probabilistic assignments into contention 

statistics
• Use contention statistics as the basis for search 

heuristics
• Heuristic factors in probabilistic analysis:

– Selection of problem sub-structure at the basis of 
statistics

– Probabilistic assumptions on how activities request 
resource capacity

– Variable/value ordering rules that use statistics
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Probabilistic contention based on 
time windows

• [Beck & Fox 2000] Assumptions:
– Fixed durations, consumption at start, same production 

at end

– Uniform distribution of start times

– Time bounds only

• Individual action demand inside the time bound:
– di(t) = max(est, t-dur)≤ ≤min(lft, t+dur) ri/(lft – est)

−ri +ri

• Aggregate demand = sum demand curves = 
expected value of instantaneous resource requests

• How to use it
– Find maximum over all curves maximum contention

– Find pair with maximum demand at contention point 
that are not already ordered

Probabilistic contention based 
on time windows
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Another way to characterize 
conflicts

• Minimum Conflict Sets (MCS) [Laborie & Ghallab 1995]
• Minimum size sets of potentially conflicting activities with 

capacity request exceeding availability
• Order any activity pair in an MCS and eliminate one or more 

MCS
• No conflicts when there are no more MCSs
• Potentially an exponential number MCS but we only really 

care about ordering pairs of activities (O(N2)) so there are very 
strong dominance rules

2

3
4

1
1

5.0

MCS

MCS

¬MCS

Probabilistic contention using 
precedence information

• Monte Carlo resource contention [Muscettola 1994]
• Consider all known temporal constraints
• Simulate a sample of executions ignoring resource contention
• Then compare expected resource request to resource limit to identify 

conflict areas
• Monte Carlo methods are also used in analysis of plan executions
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Comparison of statistical 
contention measures

• Monte Carlo simulation is more informed
• Time-window method is less computationally 

expensive
– Time windows: O(N) in time and space
– Monte Carlo: with sample size S

• O(S E) in time (if network is dispatchable)
• O(S N) in space

• Monte Carlo method also biases sample depending 
on stochastic rule used to simulate the network
– … but the rule can increase realism if it accurately 

describes execution conditions

Resource Usage 
Bounds
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From breakfast to infinity and 
beyond

TR

TETS

CECS
[0, 20]

[0, 20]

[3,5]

[3,5]

[-3,3]

-11

-11

<t2e, 2>

A1

A2

A3

A4

<t1s, 2> <t1e, -2>

<t2s, -1>

<t4s, 4>

<t4e, -4>

<t3s,-6> <t3e, 3>

Ts Te[30, 30]

[0, 6]

time

Resource
Usage

C

Search Guidance

• The ability of detecting early that the flexible plan 
is resource/time inconsistent can save exponential 
amount of work

• Same for early detection of a solution
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Need for exact resource bounds

• Statistical methods of resource contention give 
sufficient conditions to determine that a solution 
has not been achieved

• They cannot guarantee either inconsistency or 
achievement of a solution

• Exact resource bounds can

Resource Bounds

time

Resource
Usage

s1

s2

s3

s4

Lupper

Llower

• Case 1: bounds always within limits solution

• Case 2: bounds at least once outside the limit inconsistency

• Case 3: otherwise search
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Bounds are costly

• In summary, bounds try to summarize the status of 
an exponential number of schedules

• As in the case of probabilistic measures, we can 
obtain different bounds depending of how much 
structural information on producer/consumer 
coupling we use

• The more information, the tighter the bound

• The more information, the more costly the bound

Least informative bounds

• Same situation as for statistical measures
• Bounds have to become non-overlapping to eliminate 

contention
• This cannot be done by the addition of precedence 

constraints alone if the schedule is very flexible
• Produced schedules are “flexible fixed time” schedules 

(i.e., constraint earliest and latest event times)
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Temporal Information in Flexible 
Plans

[1, 10]

<e2e, 2>

A1

A2

A3

A4

<e1s, 4> <e1e, -4>

<e2s, 3>

<e4s, 4>

<e4e,- 4>

<e3s, -5> <e3e, 3>

Ts Te[30, 30]

[1, 4]

[2, 5]

[-2, 3]

[1, 5]

[2, 3]

[0, 4]

[-1, 4]

[0, +∞]

[0, +∞]

[1, 1]

[0, 6] e1s e1e

e2s e2e

e3s e3e

e4s

e4e-1 10
5

-2
-1

1

3

-2

0

4 1

0
4

5

-1

0

6

Ts Te30

-30

-1

4 0

<[5, 17], -4>

<[6, 13], 2>

<[1, 4], 4>
<[3,9], -4>

<[4, 10], 3>

<[3, 15], 4>

<[2, 11], -5> <[3, 15], 3>

e1s e1e

e2s e2e

e3s e3e

e4s

e4e

Anti-Precedence Graph

[et(e), lt(e)] ⇔ et(e) = -|e Ts|
∧ lt(e) = |Ts e|
|e1e2| ≤ 0 ⇔ e1→… → e2

Balance Constraint Bounds

• Event centered: measure contention from the point 
of view of an event, not an absolute time reference

• Fundamental idea:
– Make exact measures of consumption/production for 

predecessors and successors

– Make worst case assumptions for all other events

…

A21 A22 A2n

[1, 1]

[2, 2]

-1 1A11 A12 A1n

…

A23

Lmin, ≤ = − n −1 Lmin, ≥ = − n
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Cost of balance constraint bound

• Non incremental cost (compute the bound from 
scratch)
– Find the anti-precedence network: O(NE) / O(NE + 

N2log N)
– Compute bounds from each event: O(NE) / O(N2)

• Total cost (time propagation + bounds): O(NE) / 
O(NE + N2 logN)

• Incremental propagation can reduce cost per each 
iteration

• Used succesfully for optimal scheduling in 
[Laborie 2001]

Looseness of Balance Constraint 
Bound

• If the two chains in the example operate on a resource with 
capacity 2, no constraint need to be added

• The Balance Constraint Bound however needs the addition 
of quite tight precedence constraints to detect a consistent 
solution

• The cause is the lack of consideration of the structure of the 
network not necessarily ordered with the event

[0, +∞]
[0, +∞]

…

A21 A22 A2n

[1, 1]

[2, 2]

-1 1A11 A12 A1n

…

A23
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Resource 
Envelopes

Resource Envelope

time

Resource
Usage

Lupper

Llower

Lmin

Lmax

• Manager: “I am tired of half measures. How about giving 
me the tightest possible bounds?”

• Computer Scientist A: “Hmmm…I don’t know. It looks 
difficult. Remember the exponential number of schedules?

• Rocket Scientist B: “Aw, no problem. I’ll give you a fast 
polynomial algorithm for it …”
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“WHAT?”

• ∃s∈St | s ∈Sr Scheduling problem   NP-hard

St

Sr

• ∀s∈St | s ∈Sr Resource envelope      looks hard(er)

Resource Envelope Method
Intuitive Description

e1s

0

1

10

r1= 1

-1

3 5

r1= -1

A1

<[0, 3], r1> <[5, 10], -r1>

e1e

<[8, 14], − r2><[5, 11], r2><[0, 3], r1> <[4, 10], − r1>

[1, 1]

0 14

r1= 1; r2 = 2

5

1

2

0 14

r1= 2; r2 = 1

10

1

2

A3A2e2s e2e e3s e3e
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Building a full envelope

t = 3

t = 4

t = 1 t = 2

<[5, 17], -4>

<[6, 13], 2>

<[1, 4], 4>
<[3,9], -4>

<[4, 10], 3>

<[3, 15], 4>

<[2, 11], -5> <[3, 15], 3>

e1s e1e

e2s e2e

e3s e3e

e4s

e4e

0 1 2 3 4

Lmax

t = 5

5

t = 6

t = 17

6 17

Pending Events

Ct
Rt

Ot

<[5, 17], -4>

<[6, 13], 2>

<[1, 4], 4>
<[3,9], -4>

<[4, 10], 3>

<[3, 15], 4>

<[2, 11], -5> <[3, 15], 3>

e1s e1e

e2s e2e

e3s e3e

e4s

e4e

PX = predecessor set of event set X

P{e2s, e3e} = {e2s, e3e, e3s, e1e, e1s}

Pmax = predecessor set of maximum total weight

t

ICAPS 2005

108 Tutorial on Temporal and Resource Reasoning for Planning, Scheduling and Execution



Key algorithm step
• “Find predecessor set within events that are pending at t

that causes the maximum envelope increment”

• If we consider all “couplings” (due to anti-precedence links 
posted by the scheduler or due to original requirements), 
we can find sets of events that match. These will balance 
each other and cause no effect of the envelope level

• Events that do not match create a surplus or a deficit

• The amount of surplus (if any) represents the increase in 
resource envelope level.

• KEY PROBLEM: how do we compute the maximum 
match?

Maximum flows
f(e1, e2) = − f(e2, e1) skew symmetry
f(e1, e2) ≤ c(e1, e2) capacity constraint
f({σ}, A) = f(A, {τ}) + f(A, Ac) flow conservation

σ
τ A

Ac

f({σ}, A) = value of flow.
Maximize it .

Augmenting path = path from σ to τ with positive residual
No augmenting path = flow is maximum

Residual network
For each pair of nodes: rf(e1, e2) = c(e1, e2) – f(e1, e2)
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Maximum Flow Algorithms

Distance labelO(N3)FIFO Preflow-push

Distance labelO(N2E)Generic Preflow-push

Shortest 
distance to τ

O(N2E)Successive shortest 
paths

Total pushable
flow

O(NE logU)Capacity scaling

Total pushable
flow

O(N E U)Labeling

Complexity
Key

Time
Complexity

Algorithm

Resource Increment Flow 
Network

e2e

e4e
e4s

e3e

e2s

e1s e1e

e3s
+∞

+∞

+∞

+∞

+∞
+∞

+∞
+∞

+∞

+∞

Internal flow edges(precedence constraints)

2

3

4

3
4

Incoming flow edges (producer events)

4

5

4

Outgoing flow edges (consumer events)

<[5, 17], -4>

<[6, 13], 2>

<[1, 4], 4>
<[3,9], -4>

<[4, 10], 3>

<[3, 15], 4>

<[2, 11], -5> <[3, 15], 3>

e1s e1e

e2s e2e

e3s e3e

e4s

e4e στ
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A simple Pmax selection problem

-

-

-

-

-

+

+

+

+

Maximum Resource-Level 
Increment Predecessor Set

Theorem 1 : Pmax = set of events that is reachable 
from σ in the residual network of a fmax

Theorem 2 : Pmax is unique and has the minimal 
number of events
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Separation Schedule and 
Separation Time

We know how to 
compute a Pmax but …

… given a Pmax is there a temporally consistent 
schedule and a time tx such that all
events in CH and Pmax are schedule at or before tx and
all events in Pc

max and OH are
scheduled after tx?

Theorem 
3: Yes!

Maximum Resource Level and 
Resource Envelope

• Complete envelope profile [Muscettola, CP 2002]
– Lmax(t) = Δ(Ct) + Δ(Pmax(Rt))

– Pmax(Rt) and Ct change only at et(e) and lt(e).

– Complexity: O(n O(maxflow(n, m, U)) + nm)

• Can we do better?
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Building a full envelope

t = 3

t = 1 t = 2

<[5, 17], -4>

<[6, 13], 2>

<[1, 4], 4>
<[3,9], -4>

<[4, 10], 3>

<[3, 15], 4>

<[2, 11], -5> <[3, 15], 3>

e1s e1e

e2s e2e

e3s e3e

e4s

e4e

0 1 2 3 4

Lmax

5 6 17

Staged Resource Envelope

• Do not repeat flow operations on portion of the 
network that has already been used to compute 
envelope levels

• Deletion of flow due to elimination of consumers 
at time out do not cause perturbation to 
incremental flow

• We can reuse much (all?) of the flow computation 
at previous stages, increasing performance 
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How does it work?

<[5, 17], -4>

<[6, 13], 2>

<[1, 4], −4>
<[3,9], -4>

<[4, 10], 3>

<[3, 15], 4>

<[2, 11], -2> <[3, 15], 3>

e1s e1e

e2s e2e

e3s e3e

e4s

e4e

<[1, 4], −4>
<[3,9], -4>

<[3, 15], 4>

<[2, 11], -2> <[3, 15], 3>

e1s e1e

e3s e3e

e4s

t = 3

4 units of flow

3

1

4

2

22

Flow Reduction

1

Flow Contraction
t = 4

<[1, 4], −4>
<[3,9], -4>

<[3, 15], 4>

<[2, 11], -2> <[3, 15], 3>

e1s e1e

e3s e3e

e4s 4

3
1

4

This event must go!
It enters C4
Push back the flow

Flow Shift

2

0 1
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Flow Expansion

Flow Expansion
t = 4

<[3,9], -4>

<[3, 15], 4>

<[2, 11], -2> <[3, 15], 3>

e1e

e3s e3e

e4s 3

3
2

4 e4s

<[4, 10], 3>

e2s

New event!
Add flow

0

Pmax(4)

Recursive Equation

Lmax(ti) = Lmax(ti-1) +

Δ( E1 = events in Pc
max(ti-1) closed at time ti) + 

Δ( E2 = events in Pmax after Flow Contraction on 
remainder of E1 elimination) +

Δ( E3 = events in Pmax after Flow Expansion on 
remainder of E2 elimination)
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Complexity Analysis
• Look at all known Maximum Flow algorithms

• Identify complexity key
– Total pushable flow (Labeling methods)

– Shortest distance to τ (Successive Shortest Paths)

– Distance label (Preflow-push methods)

• Show that complexity keys have same monotonic 
properties across multiple envelope stages that over a 
computation of maximum flow over entire network.

• Hence, complexity is O(Maxflow(n, m, U))

Summarized excerpt from 
helpful comments of friendly 

ICAPS 2004 reviewers

“Sure, nice theory. But theory 
ain’t much. Where are the 

empirical results, eh?” 
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Average run-time for the calculation of one envelope during search
(minimum and maximum level)

Te s t s e t s  fro m We g la rz, J. (e d.): P ro je c t  S c he dulin g  -  Re c e nt  Mo de ls , Alg o rithms  a nd  Applic a t io n s . Kluwe r, Bo s to n, 19 9 9 , p .  19 7 -
2 12

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

[number of events]

[se
co

nd
s]

INCREMENTAL 0.00080 0.00369 0.01924

NON-INCRMENTAL 0.00143 0.01736 0.14873

20 40 60SPEED-UP 7.54.51.8

Empirical speedup of staged 
algorithm

Envelope scheduling so far
• [Policella et al. 2004] 

• Non-backtrack, non-randomized commitment procedure
– either it finds a schedule at the first trial or it never will

• Two kinds of contention profiles tested
– Resource envelopes

– Earliest start profiles – profiles obtained by schedule executing all 
activities as early as possible

• Methods using earliest start profiles perform better on 
tested benchmark

• Open problem: is there other structural information in the 
envelopes that can be useful outside of contention 
identification?
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One More Breakfast

TR

TETS

CECS
[0, 20]

[0, 20]

[3,5]

[3,5]

[-3,3]

-11

-11

THE END
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