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Tutorial on Hard and Soft Temporal Cons-
traint Techniques for Scheduling Problems
with Preferences and Uncertainty

Preface

This tutorial will describe the main approaches to modelling and solving soft cons-
traints, and will show how to use soft constraint techniques to model and solve schedu-
ling problems with preferences and uncertainty. In particular, we will focus on scheduling
problems that can be described by quantitative temporal constraints where each event
duration can be associated to a level of preferences, and where some events may be
uncontrollable. Then we will introduce preferences in uncertain scenarios, we will define
suitable notions of optimal controllability and corresponding checking algorithms, and
we will show that the addition of preferences does not make the problems more diffi-
cult. The tutorial is intended for researchers in the area of planning and scheduling who
desire to know more about how soft constraint techniques can be useful in their context.

Instructors

Francsca Rossi, University of Padova, Italy

Kristen Brent Venable, University of Padova, Italy





Hard and soft temporal constraint 
techniques for scheduling 

problems with preferences and 
uncertainty

Francesca Rossi, Kristen Brent Venable

University of Padova, Italy

Outline

• Hard Constraints 

• Soft Constraints

• Simple Temporal Problems

• Simple Temporal Problems with 
Preferences

• Simple Temporal Problems with 
Preferences and Uncertainty
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Hard Constraints

Outline

• Search

• Constraint Propagation

– AC, PC, k-Consistency

• Constraint Propagation + Search

• Adaptive Consistency

ICAPS 2005
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Classical (hard) Constraints
(Montanari ’74, Dechter 2003)

• Variables {X1,…,Xn}=X

• Domains {D(X1),…,D(Xn)}=D

• Constraints: each constraint c connects a subset 
of X and is a subset of the Cartesian product of 
the domains of its variables (allowed 
combinations)

• Solution: instantiation of all variables to values in 
their domains such that all constraints are 
satisfied

Typical questions

• Find a solution

– Difficult: NP-hard

• Is t a solution? 

– Easy: just check all the constraints

ICAPS 2005
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Example: graph coloring

• Variables: nodes of the graph

• Domains: sets of colours

• Constraints: two variables, set of pairs of colours
(different colours)

Example: crypto-arithmetic

• SEND+MORE=MONEY

• Variables: the 8 letters

• Domains: [0..9]

• Constraints:

– x y for all x,y

– Sum constraint(s)

ICAPS 2005
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Example: n queens

• Place n queens in an nxn chessboard such that 
they do not attack each other

• Variables: x1,...,xn (one per column)

• Domains: [1..n] (row position of a queen)

• Constraints:

– xi xj for all i,j (no attack on a row)

– xi-xj i-j (no attack on the SO-NE diagonal)

– xi-xj j-i (no attack on a NO-SE diagonal)

Example: qualitative temporal 
reasoning

• Events with a start time and an end time, 
qualitative constraints relating the intervals for 
the events

• Variables: pairs of events

• Domains: 13 temporal relations over pairs of 
intervals (before, after, equal, ...)

• Constraints:

– Allen’s composition table 

– Es.: before x before = before

ICAPS 2005
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Example: quantitative temporal 
reasoning

(Meiri, Dechter, Pearl ’90)

• Events with a start time and an end time, 
quantitative constraints relating the intervals for 
the events

• Variables: start or end time for each event

• Domains: time points

• Constraints:

– a xi-xj b

– Possibly more than one for each pair of variables 

Modelling a constraint problem

• A problem (CSP) may have several 
different representations

• A solver may have very different 
complexity over different representations

ICAPS 2005
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Search

• Search the space of all complete 
instantiations to find a solution

• Exponential number of instantiations 
generate and test is too costly

• Backtrack search: create a tree of 
problems, to build while visiting it

Search tree

• Tree of constraint problems

• Root: given problem

• P1,...,Pn children of P:
– P equivalent to P1 ... Pn (same set of 

solutions)

– Pi has one more instantiated variable

• Leaves: problems with all variables 
instantiated easy to check if consistent 
or not

ICAPS 2005
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Backtracking search

• Visit of the tree: from the root problem, 
move down as much as possible, 
backtrack when no more values for next 
variable

• As soon as we find one solved leaf 
problem, its solution is also a solution for 
the given problem

• Node with an empty domain do not 
search in its subtree

Example

• 3-queen problem

• Variables: x1,x2,x3

• Domains: [1,3]

ICAPS 2005
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Choices to make

• Next variable to instantiate

– Ex.: smallest domain, most constrained

• Next value to try for a variable

– Ex.: central value in an interval

Constraint propagation

• Transform a CSP into an equivalent 
simpler CSP

• Main idea: remove elements from domains 
or tuples from constraints if they cannot 
participate in any solution

• Aim: to obtain a local consistency property

ICAPS 2005
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Arc-consistency
(Mackworth ’77, Mackworth and Freuder ‘85)

• Take any constraint C over x and y

• For each variable x, and each value v from 
its domain, there exists a value v’ in the 
domain of y such that (x,y) satisfies C

• And viceversa (from y to x)

x y

C

Arc-consistency

• If not AC:
– Delete those elements from the domains of x 

and y which create the problem

– Iterate until stability

• Properties:
– Always terminates if finite domains

– Order independent

– Equivalence preserving

• Polynomial time (n2)

ICAPS 2005
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Example

Not AC: no matter what the other constraints are, 
X=b cannot participate in any solution.
So we can delete it without changing the set of solutions.

X Y

a
b

a
b

a a
a b

Examples

• N-queen problems: AC

• Graph coloring problems with 2 or more 
colors: AC

ICAPS 2005
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Example

• CSP:

– x+y = 10, y+z 3

– Dx = [1,0], Dy = [5,15], Dz = [-10,10]

• Not AC: for x=10, there is no value for y in 
[5,15] such that x+y = 10

• Reduced domains: Dx = [1,5], Dy=[5,9], 
Dz = [-10,-2]

• Now it is AC

AC and search

• AC reduces the domains of the variables 
smaller branching factor in the search 

tree

• Faster to get an empty domain 

ICAPS 2005

16 Tutorial on Hard and Soft Temporal Constraint Techniques for Scheduling Problems with Preferences and Uncertainty



Example of search+AC

• 3-queen problem

• AC at every node 

of the search tree

• Variables: x1, 

then x2, then x3

• Values: 1,2,3 X

X
X

X

X

X
X

X

X
X

X
X
X

X X
X

X X

X
X

X X

Path-consistency
(Montanari ’74)

• Given any two variables x and y, and any 
values vx and vy from their domains, such 
that Cxy is satisfied, there exists an 
instantiation for any 3rd variable z, say vz,
such that Cxz and Cyz are satisfied

x y

Cxy

zCxz Cyz

ICAPS 2005
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Path-consistency

• If not PC:
– Delete those pairs from Cxy which create the 

problem

– Iterate until stability

• Properties (same as for AC):
– Always terminates if finite domains

– Order independent

– Equivalence preserving

• Polynomial time (n3)

Examples

• CSP:
– x+y = 10, y+z 3

– Dx = [1,5], Dy=[5,9], Dz = [-10,-2]

• AC but not PC:
– For (x=1,z=-2), there is no value for y from 

[5,9] such that x+y=10 and y+z 3

• Another example: any graph coloring 
problem with 3 colors is PC

ICAPS 2005

18 Tutorial on Hard and Soft Temporal Constraint Techniques for Scheduling Problems with Preferences and Uncertainty



K-consistency

• Given any k-1 variables x1,...,xk-1, and any k-1 
values from their domains, such that all the 
constraints among them are satisfied, there 
exists an instantiation for any kth variable xk such
that all the constraints among x1,...,xk are
satisfied

• K=3 k-consistency = PC

• K=2 k-consistency = AC

• Strong k-consistency = i-consistency for i=1,...,k 

Constraint propagation + search

• Obtaining local consistency at each step may be 
costly, but can prune the tree

• PC+AC (strong 3-cons.) is more costly than AC 
(2-cons), but can prune more

• Strong k-consistency is more costly than strong 
k-1-consistency for any k>1

• Compromise between pruning power and cost of 
obtaining strong k-consistency

• Usually AC or variants of it between AC and PC

ICAPS 2005
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Constraint propagation alone

• Sometimes constraint propagation is 
enough no search is needed to find a 
solution

• Based on properties of the CSP graph or
of the constraints

Consistency and width

• Given a linear ordering < of the variables 
x1,...,xn:

– Width of a node w.r.t. <: number of previous 
nodes in < to which it is connected by an arc

– Width of a graph w.r.t. <: maximum width of 
its nodes w.r.t. <

– Width of a graph: minimum width of the graph 
w.r.t. all <

ICAPS 2005
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Example

Node width: 0          1      1            2
graph width w.r.t. < = 2
graph width = 2 (it is not possible 

to have an ordering with graph width =1)

Consistency and width
(Dechter and Pearl ’87)

• In general: if the width of the CSP graph is k, 
then k+1-consistency is enough to solve the 
CSP

• If the CSP is a tree (width=1), AC is enough to 
solve the CSP

• If width=2 (some cycles), PC is enough

• If width=n-1 (complete graph), n-consistency is 
enough (it means solving he problem!)

ICAPS 2005
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Adaptive consistency

• Choose a linear ordering of the variables: x1,...,xn
• From xn to x1, take xi:

– Obtain the solutions of the CSP over xi U frontier(xi)
– Project this constraint over frontier(xi)
– Add the constraint to the CSP

• For each i, this means obtaining (directional) local 
consistency over xi U frontier(xi): for each instantiation of 
frontier(xi), there exists a value for xi which is compatible

• At the end, a solution can be found by instantiating 
x1,...,xn taking for each variable a value from its domain 
which is compatible with the values chosen for the 
previous variables

Example

For x4: add the constraint between x2 and x3
For x3: change the constraint between x1 and x2
For x2: modify the domain of x1 (AC direzionale)

Then, instantiate:
X1 in its domain
X2 in its domain such that C12 is satisfied
X3 in its domain such that C12, C13, and C23 are satisfied
X4 in its domain such that C23, C24, and C34 are satisfied

x1 x2 x3 x4

ICAPS 2005
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Soft Constraints

Outline

• C-semiring framework

• Expressive Power

• Projection, Combination

• Branch & Bound

• Soft Constraint Propagation

• Cuts

• Variable Elimination

ICAPS 2005
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Classical constraints are useful for ...

• resource allocation 
• scheduling 
• vehicle routing 
• car sequencing
• timetabling 
• graph coloring
• VLSI design
• vision
• Robotics
• ...

However, in most real-life situations we need to express 
fuzziness, possibilities, preferences, probabilities, 
costs, ...

Why is this not enough?

• Over-constrained problems

– it does not make sense to just say that there is no 
solution

• Optimization problems

– Also multi-criteria

• Problems with both preferences and hard 
statements

– ex.: time-tabling (hard constraints about space and 
time, soft constraints about teachers)

• Problems with uncertainty

ICAPS 2005
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A problem with preferences

• The problem: to decide what to eat at a restaurant, given 
some choices for drinks and dishes

• The client has some preferences over drinks, dishes, 
and  their combinations
– Examples:

• White wine is the most prefred drink

• Pizza is the most preferred dish

• Fish is less preferred

• white wine and fish is the most preferred combination

• red wine and meat is less preferred

• We look for a combination which “maximizes” the overall 
preference of the client

Soft  Constraints: 

the C-semiring framework
(Bistarelli, Montanari, Rossi ‘97)

• Variables {X1,…,Xn}=X

• Domains {D(X1),…,D(Xn)}=D

• C-semiring <A,+,x,0,1>:

– A set of preferences

– + additive operator, inducing the ordering: a b iff

a+b=a (idempotent, commutative, associative, unit 
element 0);

– x multiplicative operator: combines preferences 
(commutative, associative, unit element 1, absorbing 
element 0)

– 0,1 respect. bottom and top element

– x distributes over +

ICAPS 2005
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Soft  Constraints: 

the C-semiring framework

• + and x monotone on 

• for all a,b in A, a x b a

• for all a in A, 0 a 1
• Lattice <A, >

– + is lub

– x glb if x idempotent

• When is a total order and x idempotent:

– if a b, then a + b = b and a x b = a, thus +=max and 
x=min

Soft constraints
• Soft constraint:a pair c=<f,con> where:

– Scope: con={Xc
1,…, Xc

k} subset of X

– Preference function : 

f:    D(Xc
1)x…xD(Xc

k) A

tuple (v1,…, vk) p preference

• Hard constraint: a soft constraint where for 
each tuple (v1,…, vk)

f (v1,…, vk)=0   the tuple is allowed

f (v1,…, vk)=1   the tuple is forbidden

ICAPS 2005
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Instances of soft constraints

• Each instance is characterized by a c-semiring <A, +, x, 
0, 1>

• Classical constraints: <{0,1},or,and,0,1>

• Fuzzy constraints: <[0,1],max,min,0,1>

• Lexicographic CSPs: <[0,1]k,lex-max,min,0k,1k>

• Weighted constraints (N):<N + ,min,+,+ ,0>

• Weighted constraints (R):<R + ,min,+,+ ,0>

• Max CSP: weight =1 when constraint is not satisfied and 
0 is satisfied

• Probabilistic constraints: <[0,1],max,x,0,1>

• Valued CSPs: any semiring with a total order

Example of hard constraint

The fast VGA is compatible 
only with at least 512MB of 

memory

Hard constraint

VGA MB

{s=slow, f=fast} {256, 512, 1024} 

<f,256> 0

<f,512> 1

<f,1024> 1<s,1024> 1

<s,512> 1

<s,256> 1

ICAPS 2005
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Example of soft (fuzzy) constraint

The VGA performs better 
with more memory

Soft constraint

VGA MB

{s=slow, f=fast} {256, 512, 1024} 

<f,256> 0.1

<f,512> 0.9

<f,1024> 1<s,1024> 0.9

<s,512> 0.7

<s,256> 0.6

Soft constraints are a quantitative way of 
expressive preferences

Expressive power

• A B iff from a problem P in A it is 
possible to build in polynomial time a 
problem P’ in B s.t. the optimal solutions 
are the same (but not necessarily the 
solution ordering!)

• A    B iff from a problem P in A it is 
possible to build in polynomial time a 
problem P’ in B s.t. opt(P’) opt(P)

ICAPS 2005
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Expressive power

weightedR Prob

weightedN

Valued

Semiring-based

Classical

Fuzzy Lexicographic

Expressive power

weightedR Prob

weightedN

Valued

Semiring-based

Classical

Fuzzy Lexicographic

If interested in maintaining the solution ordering:
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Projection
If c=<f,con>, then c|I = <f', I con>

– f'(t') = + (f(t)) over tuples of values t s.t. t|I con

= t’

VGA MB

{s=slow, f=fast} {256, 512, 1024} 

<f,256> 0.1

<f,512> 0.9

<f,1024> 1<s,1024> 0.9

<s,512> 0.7

<s,256> 0.6

Projection over VGA: 
•s max(0.6,0.7,0.9) = 0.9
•f max(0.1,0.9,1) = 1

Fuzzy constraints: <[0,1],max,min,0,1>Fuzzy constraints: <[0,1],max,min,0,1>

Combination
If ci=<fi,coni>, then

c1 x c2 = <f, con1 con2>

– f(t) = f1(t|con1) x f2(t|con2)

VGA MB

s=slow 0.2
f=fast 0.9

256 0.5
512 0.8
1024 0.7

<256,P4> 0.5

<512,P4> 0.7

<1024,P4> 0.9

<s,1024> 0.9

<s,512> 0.7

<s,256> 0.6

P

P4 0.7

AMD 0.4

<f,256> 0.1

<f,512> 0.9

<f,1024> 1 <256,AMD> 0.5

<512,AMD> 0.5

<1024,AMD> 0.5

f(s,256,P4) = min(0.2,0.6,0.5,0.5) = 0.2
f(f,1024,P4)=min(0.9,1,0.7,0.9,0.7)=0.7
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Solutions
• Sol(C) = X(C)

– an element of A for each tuple of elements of 
D

• val(t) = f1(t|con1) x ... x fk(t|conk)

VGA MB

s=slow 0.2
f=fast 0.9

256 0.5
512 0.8
1024 0.7

<256,P4> 0.5

<512,P4> 0.7

<1024,P4> 0.9

<s,1024> 0.9

<s,512> 0.7

<s,256> 0.6

P

P4 0.7

AMD 0.4

<f,256> 0.1

<f,512> 0.9

<f,1024> 1 <256,AMD> 0.5

<512,AMD> 0.5

<1024,AMD> 0.5

val(s,256,P4) = min(0.2,0.6,0.5,0.5) = 0.2
val(f,1024,P4)=min(0.9,1,0.7,0.9,0.7)=0.7

Multi-criteria problems

• Main idea: one semiring for each criteria

• Given n c-semirings Si = <Ai, +i, xi, 0i,1i>, we can 
build the c-semiring

<<A1,..., An>, +,x, <01,...,0n>,<11,...,1n>>

• + and x obtained by pointwise application of +i
and xi on each semiring

• A tuple of values associated with each variable 
instantiation

• A partial order even if all the criteria are totally 
ordered

ICAPS 2005

Tutorial on Hard and Soft Temporal Constraint Techniques for Scheduling Problems with Preferences and Uncertainty 31



Example

• The problem: choosing a route between two cities
• Each piece of highway has a preference and a cost 
• We want to both minimize the sum of the costs and 

maximize the preference 
• Semiring: by putting together one fuzzy semiring and 

one weighted semiring:
– <[0,1],max,min,0,1>
– <N, min, +, + , 0>

• Best solutions: routes such that there is no other route 
with a better semiring value 
– <0.8,$10> is better than <0.7,$15>

• Two total orders, but the resulting order is partial:
– <0.6, $10> and <0.4,$5> are not comparable

Typical questions

• Find an optimal solution

– Difficult: NP-hard

• Is t an optimal solution? 

– Difficult: NP-hard

• Is t better than t’?

– Easy: Linear in the number of constraints

ICAPS 2005
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How to find optimal solutions

• Classical constraints:

– depth-first backtracking search 

– Constraint propagation

– Variable elimination

– Local search

– ...

• Is it possible to extend/adapt these 
techniques to soft constraints?

Branch and bound

• Same scheme as for optimization CSPs

• Lower bound = preference of best solution 
so far (0 at the beginning)

• Upper bound for each node

• If ub > lb do not enter the subtree

ICAPS 2005
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Upper bounds

• Based on preferences

• t = assignment to past variables  (P)

• ub1= x c(t), with c already assigned by t

• ub2 = x ub(cji), where xi in F, xj in P
– ub(cji) = +cji(vj,a) for a in Di

• ub3 = x (+ cij(a,b))
– x over xi, xj in F

– + over a in Di, b in Dj

• Ub = ub1 x ub2 x ub3

Upper bounds
weighted constraints (min +)

• t = assignment to past variables 

• ub1= + c(t), with c already assigned by t

• ub2 = + ub(cji), for xi in F, xj in P

– ub(cji) = min cji(vj,a) for a in Di

• ub3 = + (min cij(a,b))

– + over xi, xj in F

– min over a in Di, b in Dj

• ub = ub1 + ub2 + ub3

ICAPS 2005
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Upper bounds
fuzzy constraints (max min)

• t = assignment to past variables

• ub1= min c(t), with c already assigned by t

• ub2 = min ub(cji), for xi in F, xj in P
– ub(cji) = max cji(vj,a) for a in Di

• ub3 = min (max cij(a,b))
– min over xi, xj in F

– max over a in Di, b in Dj

• ub = min (ub1, ub2, ub3)

Constraint propagation

• Constraint propagation (ex.arc-consistency):

– Deletes an element a from the domain of a variable x 
if, according to a constraint between x and y, it does 
not have any compatible element b in the domain of y

– Iterate until stability

• Polynomial time

• Very useful at each node of the search tree to 
prune subtrees

ICAPS 2005
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Example

No matter what the other constraints are, 
X=b cannot participate in any solution.
So we can delete it without changing the set of solutions.

X Y

a
b

a
b

a a
a b

Properties

• Equivalence: each step preserves the set 
of solutions

• Termination (with finite domains)

• Order-independence

ICAPS 2005
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Soft constraint propagation

• Deleting a value means passing from 1 to 
0 in the semiring <{0,1},or,and,0,1>

• In general, constraint propagation can 
change preferences to lower values in the 
ordering

• Soft arc-consistency: given cx, cxy, and cy,
compute cx := (cx x cxy x cy)|x

• Iterate until stability

Example: fuzzy arc-consistency

VGA MB

s=slow 0.2
f=fast 0.9

256 0.5
512 0.8
1024 0.7

<s,1024> 0.9

<s,512> 0.7

<s,256> 0.6 <f,256> 0.1

<f,512> 0.9

<f,1024> 1

ccxx := (:= (ccxx xx ccxyxy xx ccyy)|)|xx

VGA=s max(min(0.2,0.6,0.5),min(0.2,0.7,0.8),min(0.2,0.9,0.7))=
max(0.2,0.2,0.2) = 0.2

VGA=f max(min(0.9,0.1,0.5),min(0.9,0.9,0.8),min(0.9,1,0.7))=
max(0.1,0.8,0.7)=0.8

Fuzzy semiring=
<[0,1],max,min,0,1>

+=max an x=min

ICAPS 2005
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Properties

• If x idempotent (ex.:fuzzy,classical):
– Equivalence

– Termination

– Order-independence

• If x not idempotent (ex.: weighted CSPs, prob.), we could 
count more than once the same constraint we need to 
compensate by subtracting appropriate quantities 
somewhere else we need an additional property 
(fairness=presence of -)
– Equivalence 

– Termination

– Not order-independence

Branch and bound with soft 
constraint propagation

• Soft constraint propagation lowers the 
preferences

• ub1, ub2, ub3 can be lower

• more probable that ub < lb

• more probable to prune 
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Cuts

• Given P soft, and given in the semiring, 
build P :

– Same graph as P

– In each constraint, only the tuples with 
preference > 

Example

VGA MB

s=slow 0.2
f=fast 0.9

256 0.5
512 0.8
1024 0.7

<s,1024> 0.9
<s,512> 0.7
<s,256> 0.6 <f,256> 0.1

<f,512> 0.9
<f,1024> 1

P0.5:

VGA MB

s 0
f 1

256 0
512 1
1024 1

<s,1024> 1

<s,512> 1

<s,256> 1 <f,256> 0

<f,512> 1

<f,1024> 1
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Properties

• t optimal solution of P with preference v 

– For each <v, P consistent and t solution of 
P

– For each v, P inconsistent

• Hold if x idempotent

Solution method

• To find the optimal solutions of P:
– Find the consistent P such that, for each > , P

inconsistent

• The solutions of P are the optimal  solutions of 
P

• Just check the P with occurring in P O(kd2)
calls to a classical constraint solver 
– k= number of constraints
– d = domain size

• Binary search O(log(kd2)) calls
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Example

VGA MB

s=slow 0.2
f=fast 0.9

256 0.5
512 0.8
1024 0.7

<s,1024> 0.9
<s,512> 0.7
<s,256> 0.6 <f,256> 0.1

<f,512> 0.9
<f,1024> 1

P0.5:

VGA MB

s 0
f 1

256 0
512 1
1024 1

<s,1024> 1

<s,512> 1

<s,256> 1 <f,256> 0

<f,512> 1

<f,1024> 1
VGA=f,MB=512 is a solution, but also VGA=f,MB=1024 is a solution 

Optimal solution: VGA=f,MB=512 (val=0.8)

Example

VGA MB

s=slow 0.2
f=fast 0.9

256 0.5
512 0.8
1024 0.7

<s,1024> 0.9
<s,512> 0.7
<s,256> 0.6 <f,256> 0.1

<f,512> 0.9
<f,1024> 1

P0.6:

VGA MB

s 0
f 1

256 0
512 1
1024 1

<s,1024> 1

<s,512> 1

<s,256> 0 <f,256> 0

<f,512> 1

<f,1024> 1
VGA=f,MB=512 is a solution, but also VGA=f,MB=1024 is a solution 

Optimal solution: VGA=f,MB=512 (val=0.8)
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Example

VGA MB

s=slow 0.2
f=fast 0.9

256 0.5
512 0.8
1024 0.7

<s,1024> 0.9
<s,512> 0.7
<s,256> 0.6 <f,256> 0.1

<f,512> 0.9
<f,1024> 1

P0.7:

VGA MB

s 0
f 1

256 0
512 1
1024 0

<s,1024> 1

<s,512> 0

<s,256> 0 <f,256> 0

<f,512> 1

<f,1024> 1
Only VGA=f,MB=512 is a solution

Optimal solution: VGA=f,MB=512 (val=0.8)

Example

VGA MB

s=slow 0.2
f=fast 0.9

256 0.5
512 0.8
1024 0.7

<s,1024> 0.9
<s,512> 0.7
<s,256> 0.6 <f,256> 0.1

<f,512> 0.9
<f,1024> 1

P0.8:

VGA MB

s 0
f 1

256 0
512 0
1024 0

<s,1024> 1

<s,512> 0

<s,256> 0 <f,256> 0

<f,512> 1

<f,1024> 1
No solution

Optimal solution: VGA=f,MB=512 (val=0.8)
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Variable elimination

• Generalization of adaptive consistency to soft constraints
• Choose a linear ordering of the variables: x1,...,xn
• From xn to x1, take xi:

– Combine the constraints over xi U frontier(xi)
– Project this constraint over frontier(xi)
– Add the constraint to the CSP

• At the end, the highest preference of x1 is the preference of the 
optimal solutions

• An optimal solution can be found by instantiating x1,...,xn taking for 
each variable an optimal value from its domain which is compatible 
with the values chosen for the previous variables

Complexity

• As many steps as the number of variables (n)

• At each step, time exponential in the size of Y 
plus 1 (and space exponential in size of Y)

• n steps to find an optimal solution

• Time: O(n x exp(|Y|) +n)

• But space is the main problem with this method
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Other issues

• Global constraints (Regin ’94)

– Specific constraints that occurr often in 
practice, and specific efficient propagation 
algorithms for them

• Symmetry breaking

• Local search 
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Simple Temporal Problems

(Dechter,Meiri,Pearl ’91)
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Overview

• Temporal Constraint Satisfaction 
Problems

• Simple Temporal Problems

• Solving STPs

– Floyd Warshall’s algorithm 

– Path consistency

Temporal Constraint Satisfaction Problems

• A TCSP is CSP where 
– Variables event times

– Constraints temporal relations

• Main frameworks
– Qualitative Point Constraints (Vilain,Kautz, van Beek ’89)

• Relations Point algebra {Ø,<,=,>, , ,?, }

• IxTeT, TimeGraph-II

– Qualitative Interval Constraints (Allen’83)

• Variables time intervals

• Relations Allen’s Algebra {before, after, meets, met by, 
overlaps, overlaps-by, during, contains, equals, starts, 
started_by, finishes, finished_by}
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Metric Point Temporal Constraints
(Dechter, Meiri, Pearl ’91)

• The ones we will consider

• Quantitative

• Variables timepoints

• Relations quantitative constraints

• From now on: TCSP = Metric Point TCSP

TCSP formal definition

• Set of variables representing timepoints

{X1, …., Xk}

• Each variable has a discrete or continuous 
domain D(Xi)

• Constraint set of intervals I={[a1,b1],…,[ak,bk]}
– Unary: on Xi, (a1 vi b1) v … v (ak vi bk), vi D(Xi)

– Binary: on (Xi,XJ) , (a1 vJ-vi b1) v … v (ak vJ-vi bk), vi

D(Xi) vJ D(XJ)

– In practice: new variable ‘beginning of the world ’
X0, D(X0)={0}, and every unary constraint on Xi is
rewritten as binary constraint (X0,Xi).
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Example TCSP

• Alice will go to lunch any time between noon and 1pm
and usually stays at lunch for 1 hour. She can go
swimming for two hours either 3 to 4 hours before 
lunch, since then she must shower and drive home, or
3 to 4 hours after lunch, since it is not safe to swim too 
soon after a meal.

• Variables {X0,Ls,Le,Ss,Se}

• Constraints: 
– T0Ls=[12,13],

– TLsLe=[1,1],

– TLsSs=[-4,-3] v [3,4], 
– TSsSe=[2,2]

Constraint Graph

• Variable (variable name) Node (label)

• Constraint (Xi,XJ) Directed edge from Xi

to  XJ labeled with the intervals

Constraint graph of the example: 

[2,2]

X0

Ss Se

LeLs[12,13]

[1,1]

[-4,-3] v [3,4]
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TCSP formal definitions (2)

• SSolution S={v1,….,vk} vi D(Xi) consistent 
with all assignements

• A value vi D(Xi) is ffeasible iff it belongs to 
at least a solution

• MMinimal domain: set of all feasible values
• MMinimal constraint (Xi,XJ): set of feasible 

values for XJ-Xj

• MMinimal TCSP: if all its constraints are 
minimal

• DDecomposable TCSP: any consistent partial 
assignment can be extended to a complete 
solution

• TThe class of TCSPs is NP-hard

Simple Temporal Problems
(Dechter, Meiri, Pearl ’91)

• STPs are TCSPs with a single interval on each 
constraint

• STP constraint on (Xi,XJ) is TiJ=[a,b], meaning  (a vJ-
vi b), vi D(Xi) vJ D(XJ)

• Example: Alice will go to lunch any time between noon and 1pm and
usually stays at lunch for 1 hour. She can go swimming  for two hours 
from 3 to 4 hours after lunch.

[2,2]

X0

Ss Se

LeLs[12,13]

[1,1]

[3,4]

ICAPS 2005

Tutorial on Hard and Soft Temporal Constraint Techniques for Scheduling Problems with Preferences and Uncertainty 49



Solving STPs with the Shortest Path 
Algorithm

• Distance graph of an STP

– Variables Nodes

– Constraint TIJ=[a,b] two edges:

• One from Xi to XJ labeled with b

• One from XJ to Xi labeled with –a

• Distance matrix of an STP
• n x n matrix F (n = number of variables), 

• Element f[i][J] = label of edge Xi XJ

• Element f[i][i]=0, for every i

• An STP is consistent iff its distance graph

Example
1

X0

LeLs

-12

13
-1

Ss Se

2

-2

X0 Ls Le Ss Se

X0
0 13

0

-1

-3

Ls -12 1 4

Le 0

Ss 0 2

Se -2 0

[2,2]

X0

Ss Se

LeLs[12,13]

[1,1]

[3,4]

4

-3

Constraint Graph

Distance Graph

Distance matrix
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Floyd-Warshall
All Pairs Shortest Path Algorithm

1. Input distance matrix n x n

2. For k=1 to k=n

3. For i,j=1 to n

4. f[i][J]=min{f[i][J],f[i][k]+f[k][J]}

The distance graph corresponding to the input 
matrix is acyclic iff after FW, for all i, f[i][i] 0

Complexity O(n3)

Example

X0 Ls Le Ss Se

X0
0 13 14 17 19

0

-1

-3

-5

Ls -12 1 4 6

Le -13 0 2 5

Ss -15 3 0 2

Se -17 -4 -2 0

After Floyd WarshallBefore Floyd Warshall

X0 Ls Le Ss Se

X0
0 13

0

-1

-3

Ls -12 1 4

Le 0

Ss 0 2

Se -2 0
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The d-graph

• The d-graph is the graph corresponding to the 
matrix given in output by FW

• If the there are no negative cycles, then the STP 
corresponding to the d-graph is the minimal 
network of the original STP in input

• Two solutions of the STP are 
– The earliest: every variable X is assigned the lower 

bound of the interval on the constraint (X0,X)

– The latest : every variable X is assigned the upper 
bound of the interval on the constraint (X0,X)

Example

X0 Ls Le Ss Se

X0
0 13 14 17 19

0

-1

-3

-5

Ls -12 1 4 6

Le -13 0 2 5

Ss -15 3 0 2

Se -17 -4 -2 0

Distance Matrix After Floyd Warshall

[2,2]

X0

Ss Se

LeLs
[12,13]

[1,1]

[3,4]

[15,17]

[17,19]

[5,6]

[4,4]

[13,14]

Minimal Network

Latest solution

Earliest solution
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Solving STPs by enforcing 

Path Consistency

• Operations on simple temporal constraints

– Intersection T1
iJ=[a,b] T2

iJ=[c,d] is a constraint 

T3
iJ=[a’,b’]=[a,b] [c,d]

– Composition of Tik=[a,b] Tkj=[c,d] is a constraint 

TiJ=[a+c,b+d]
• A constraint TiJ is path consistent iff

TiJ k (Tik TkJ)
• An STP is path consistent if all its constraints are so
• An STP is consistent iff it is path consistent (not true 

for TCSPs)
• The STP network after path consistency enforcement 

is the minimal network

PC-2: path consistency enforcement

1. Input: STP P

2. Queue Q {(i,j,k)| i<j, k i,j}

3. while Q Ø do

4. Select and delete a path (i,j,k) from Q

5. if TiJ TiJ (Tik TkJ) tthen

6. TiJ TiJ (Tik TkJ)

7. iif TiJ =Ø then exit (inconsistency)

8. Q Q {(i,j,k)| 1 k n, k i,j}

9. end-if

10. end-while

Complexity: O(n3r) relaxations, O(n3r3) arithmetic operations
n= number of variables, r = max size of an interval
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Simple Temporal Problems 
with Preferences 

(Khatib,Morris,Morris,Rossi ’01)

Overview

• Simple Temporal Problems with Preferences

• Tractable Subclass

• Two Solvers for Fuzzy optimal Solutions

• A solver for Pareto optimal Solutions

• Learning local temporal preferences from 
preferences on solutions

• Utilitarian Optimals

• Disjunctive temporal Problems with Preferences
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Simple Temporal Constraints: An Example

Start_p End_p

1 10

Beginning_world

0

7

Start_a End_a

5 15

5

10

-4 4

6 11

7 12

Introducing preferences

Start_p End_p

1 10

Start_a End_a

5 15

5

10

-4 4
Beginning_world

0

7

time

p
re

fe
re

n
c
e
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STPP Formalism

• Simple Temporal Problem with Preferences

• Simple Temporal Problem

• Set of variables X1,…,Xn;

• Constraints T={I}, I=[a,b] a<=b;

• Unary constraint T over variable X :  a<=X<=b;

• Binary constraint T over X and Y: a<=X-Y<=b;

• C-semiring S=<A, +, x, 0, 1>

• A     set of preference values

• +    compares preference values inducing the ordering on  A

• a<=b if a+b=b ,  a,b in A

• x     composes preference values  

• Simple Temporal Constraint with Preferences 

• Binary constraint 

• Interval I=[a, b], a<=b 

• Function     f: I             A a b time

p
re

fe
re

n
c
e

What does solving an STPP mean?

• A solution is a complete assignment to all the 
variables consistent with all the constraints.

• Every solution has a global preference
value induced from the local preferences.

• Solving an STPP means finding an optimal 
consistent  solution , where optimal means its 
global preference is best. 
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Intractability

The class of STPPs is NP-hard.

Proof: Any TCSP can be reduced to an STPP on 
the SCSP=<{1,0},v, ,1,0> semiring in the 

following way:

For every hard constraint I={[a1,b1],…,[ak,bk]}

write the soft constraint <I’,f>

I’=[a1,bk],

f(x) =1 iff j such that x [aJ,bJ]

S is a solution of the TCSP iff it is an optimal 

solution of the STPP

Tractability conditions 

Simple Temporal Problems with Preferences are 

tractable  if:

1) the underlying semiring has an idempotent

multiplicative operator (x).
For example:

Fuzzy Semiring <{x| x in [0,1]}, max, min, 0, 1>

2) the preference functions are semi-convex

3) the set of preferences is totally ordered
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Semi-convex Functions

is an interval

Examples

Semi-convex

Not Semi-convex

})(|{ yxfxy

Solutions of the Rover Example

Start_p End_p

1 10

Start_a End_a

5 15

5

10

-4 4
Beginning_world

0

7

Start_p = 5 End_p= 11 Start_a= 7  End_a=12   global preference =0.6

0.6

Start_pStart_p = 7 = 7 End_pEnd_p= 8 = 8 Start_aStart_a= 9= 9 End_aEnd_a=24     global preference =0.9=24     global preference =0.9

0.9

BEST

Fuzzy Semiring

<[0,1], max, min, 0, 1>

Global preference of a solution:
minimum of the preferences of
its projections

Goal: maximize 
the global preference
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Path consistency with preferences

• As with hard constraints, two operations 
os temporal constraints with preferences:

– Intersection

– Composition

a=6 min(0.33,0.45)=   0.33

a=9 min(0.56,0.25)= 0.25

afafafafaff

andIIII

andXandXondefinedisffIITTthen

XandXondefinedfITandfITIf

fuzzy

ji

ji

212121

2121

212121

222111

,min

,

,,

5  6  7  8  9 10

175 6 7 8 9 10

0.33

0.56

1         105 6 7 8 9

0.45
0.25

0.33
0.25
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Composition of Soft Temporal Constraints

0  1  2  3  4  5  6  7 5  6  7  8  9  10

5 178

If    a=8

r1= 0      r2=8

0.2

0.4

min(0.2,0.4)=   0.2

r1= 1      r2=7

0.3
0.48

min(0.3,0.48)= 0.3

r1= 2      r2=6

r1= 3      r2=5

min(0.4,0.52)= 0.4

min(0.6,0.55)= 0.55

max{0.2,0.3,0.43,0.55}=0.55=f1     f2 (8)

0.55

21221121221121

22112121

,minmax

,

,,

rrarfrfrrarfrfaff

andIrIrrraII

andXandXondefinedisffIITT

thenfITandfITIf

fuzzy

jikjikkjikkjij

kjkjkjikikik

• A Soft Temporal Constraint, TiJ, is path consistent 
iff TiJ k (Tik TkJ)

• An STPP is path consistent if all its constraints are path 
consistent

Algorithm STPP_PC-2

1. Input: STPP P
2. Queue Q {(i,j,k)| i<j, k i,j}
3. while Q Ø do

4. Select and delete a path (i,j,k) from Q
5. if TiJ TiJ (Tik TkJ) then
6. TiJ TiJ (Tik TkJ)
7. if TiJ =Ø then exit (inconsistency)
8. Q Q {(i,j,k)| 1 k n, k i,j}

9. end-if
10. end-while
11. Output Path consistent STPP

As PC-2 except:

a) The input and the output are STPPs
b) are extended to preferences
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0

7

1 10

5

10

5 100 7

5 17

1 10

5 10

XJ
Xi

Xk

5 17

The new 
constraint will
replace the old one

Solving tractable STPPs with path 
consistency

Given a tractable STPP, path consistency is 
sufficient to find an optimal solution without 
backtracking

• Proof:

• Closure of semi-convex functions under intersection 
and composition

• After enforcing path consistency, if no inconsistency 
is  found, all the preference functions have the same
maximum preference level M

• The subintervals mapped into M form an STP in 
minimal form such that an assignment is a solution 
of the STP iff it is an optimal solution of the STPP
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Path-Solver

1. Input STPP P

2. STPP  Q STPP_PC-2(P)

3. Build an  STP PM considering only intervals mapped 
into the best level of preference M 

4. Output STP PM

2 12

STPP
P

3 10

STPP

Q

3 7

STP

PM

a) b)

Optimal Solutions of P Solutions of  PM

1:1

Complexity of Path-solver

• A tractable STPP can be solved in

• O(n3r3) relaxations or more precisely

• O(n3r4l) arithmetic operations

• n = number of variables

• r = max size of an interval

• l = number of different preference  
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Random Generator of STPPs

• It generates an STPP on the fuzzy semiring and 
with semi-convex parabolas as preference 
functions.

– Why semi-convex parabolas?...

…Because:

• they are easily parametrized

• they are representative of many temporal 
relations (they include linear)

• they will be useful for the learning module       

A small simulation of the generator

• Parameters:
=number of variables

5

=range of the first solution 

20

=density

20%

= maximum expansion 
of the intervals

25

e = percentage of 
perturbation for parabolas

20%   30%  10%

0

5 10

2
19

5 10

8

19

-1
6

250
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Experimental Results for Path-solver

Results on randomly

generated problems with :

n=30

r=100

pa=20

pb=20

pc=30

x-axis : density

y-axis : seconds.
0

200

400

600

800

1000

1200

1400

1600

20 30 40 50 60 70 80

s
e
c
o
n
d
s

density

max=100
max=50
max=20

Solving STPPs with a decomposition 

approach

Given a tractable STPP and a preference level y,
the intervals of elements with preference above 
y form an STP Py.

The highest level, opt,  at which STP Popt is
consistent is such that an assignment is a 
solution of Popt iff it is an optimal solution of the 
STPP
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Chopper STP SolverSTPP P STP P’
Consistent

STP

Solution

Inconsistent
STP

Simulation

2 12

2 3

2 10

2 3

2 3

2

3

Floyd-Warshall’s matrix

1)  CHOP!

1010

--22-3

7

2) SOLVE! 3)CONSISTENCY TEST

<0?
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Chop-Solver Algorithm
1) Input STPP P;
2) Input Precision;
3) Real lb=0, ub=1, y=0, n=0;

4) If STPy is consistent
5) y=0.5, n=n+1;

6) while n<=Precision
7) if STPy is consistent
8) lb=y, Y=Y+(lb-ub)/2, n=n+1;

9) else 
10) ub=y, Y=Y-(lb-ub)/2, n=n+1;

11) end of while;
12) return solution;
13) else exit; 

Chop-Solver performs a binary search of the highest level at which
chopping the STPP gives a consistent STP
Precision is the number of steps allowed in the search

Complexity of Chop-solver

• A tractable STPP can be solved using 
Chop-solver in:

– O(precision x n3) if we use Floyd Warshall to 
solve STPs

– O(precision x n3 x r) if we use PC-2 to solve 
STPs

n =number variables

r  = max size of the interval
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0 100 200 300 400 500 600 700 800 900 1000

den 20%
den 40%
den 60%
den 80%

X-axis number of variables
Y-axis time in seconds

Fixed parameters:
Range of first solution:100000
Max expansion: 50000
Perturbation on a: 5%
Perturbation on b: 5%
Perturbation on c: 5%

Varying:
Density 20%, 40%, 60% ,80%

Mean on 10 examples

Path-solver vs Chop-solver

Path-solver            Chop-solver

Constraint representation discrete           continuous

Performance slow            very fast

Time to solve a problem with 40 variables, r=100, max=50, pa=pb=10% and pc=5%

Representational Power unlimited           limited but useful for 

learning

Density Path-solver Chop-solver

40% 1019.44  sec 0.03  sec

60% 516.24  sec 0.03  sec

80% 356.71  sec 0.03  sec
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Pareto Optimal Solutions
(Khatib, Morris,Morris, Venable ’03)

• The WLO+ algorithm finds a Pareto 
Optimal solution of an STPP

• After applying Chop Solver to the 
problem it identifies special 
constraints, the weakest links.

• It modifies the weakest links.

• It reapplies Chop solver.

Weakest Link

opt

Minimal interval Minimal interval

A constraint is a weakest link at optimal chopping level  opt if the maximum 
reached by the preference function on the minimal interval is opt. So…

Weakest link

ICAPS 2005

68 Tutorial on Hard and Soft Temporal Constraint Techniques for Scheduling Problems with Preferences and Uncertainty



WLO+

1aS 2aS 2aE

1 1

1
1

4 9

3 1

1 1

Beginning of the world

1aE

1cpuE 2cpuE
2cpuS

1cpuS
1) Apply Chop solver and

identify weakest links

3 1

2) While there are w.l.

3) Modify the w.l. :

3a) interval fminimal interval

3b) pref. function f y=1

Weakest link

4) Apply Chop Solver

3

Fuzzy Optimal solutions (Chop. S.)

BEa1    BSa2     a1     a2   cpu1   cpu 2 

4          9         3       1       3        3

4          9         3       1       3 1

Pareto Optimal solutions (WLO+)

Weakest link

F(3)<F(1)

Measures of global preferences

Solution
Complete assignment 

to variables
A set of projections
on all constraints

s (s1, s2, …, sn) (s c1, s c2, …, s ck)

t (t1, t2, …, tn) (t c1, t c2, …, t ck)

Fuzzy              s>t   iff max [min i (fci (s ci)) ,min I (fci (t ci))]

Pareto             s>t   iff fci (s ci) fci (s ci) for all i=1…k and exists j 
such that fcj (s cj) > fcj (s cj)

Utilitarian         s>t   iff i (fci (s ci)) > i (fci (t ci))
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WLO+: Experimental Results (1)

x-axis: variables

y-axis: seconds

Fixed parameters:

r=50, max=50, 

density=no. of variables

Throughout all the experiments:

1) 10% of utilitarian 
improvement

2) 75% of wins 

w.r.t. the earliest optimal solution 
returned by Chop Solver

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200

WLO+

What if there is no weakest link?
In some cases there is no weakest link.
Example:

But: continuous domains + convex functions c existence of a weakest link
If the above don’t hold:
Weakest link w.r.t. a particular solution: constraint on which the projection of 

the solution is mapped into chopping level.

Applying WLO+  with the new definition, weakWLO+ , guarantees to find a 
set of solutions that Pareto-dominate the initial one. 

A B

Point A inconsistent

with Point B
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How good is the solution I’ll get?

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200

CHOP
WLO+

weakWLO+

Time to find

A Pareto Opt.

Solution 

Time to find

A dominating

solution

Time to find

a W.L. optimal

solution

…it depends on how much time I have.

variables

se
co

n
d
s

Stratigraphic Egalitarianism and Utilitarian Criteria

(P. Morris et al. ’04)

• The set of solutions returned by WLO+ is a subset of the 
Pareto Optimal solutions

• It can be characterized by the Stratigraphic Egalitarianism
criterion: given a solution S of an STPP let uS=<us

1,…,uS
m >

be the associated vector of preferences (one for each 
constraint). Solution S SE-dominates solution S’ iff for any 
preference level :

– uS
i < implies uS

i uS’
i

– i such that uS
i < implies uS

i >uS’
i

– uS
i implies uS’

i

• UUtilitarian criterion is to maximize the sum of 
preferences

– Finding Utilitarian optimal solutions of STPPs with 
piecewise linear preference functions is tractable

– The problem is translated into a linear program
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Disjunctive Temporal Problems with Preferences
(Peintner,Pollack’04)

• Disjunctive Temporal Constraint: 

(X1-Y1 [a1,b1]) v …. v (Xn-Yn [an,bn])

• Disjunctive Temporal Constraint with Preferences:

(X1-Y1 [a1,b1], f1) v …. v (Xn-Yn [an,bn],fn),   fi: [ai,bi] [0,1]

• Fuzzy Optimization criterion

• Algorithm 

1. For each preference level project a DTP   from 

the DTPP

2. Search for a consistent DTP such that its 

solutions have the highest preference value

• Complexity |preferences| x n3 x (DTP complexity), n=number of 

variables

Learning Simple Temporal 
Problems with Preferences 

(Khatib et al ’02)
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It can be difficult to have precise knowledge on 
the preference function for each constraint.

Instead it may be easier to be able to tell how 
good a solution is.

Global information
some solutions + global 
preference values 

Local Information
shape of preference 
functions

Learning STPPs

• Inductive Learning: ability of a system to induce the 
correct structure of a map t known only for particular inputs

• Example: (x,t(x)).

• Computational task: given a collection of examples 
(training set) return a function h that approximates t.

• Approach: given an error function E(h,t) minimize
modifying h.

• In our context :

• x solution

• t rating on solutions given by expert

• Preference function constraint ci parabola aix
2+bix+ci

• Error E E(a1,b1,c1,…,an,bn,cn)

• Learning technique gradient descent
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h=hW where W=set of internal parameters, 

thus E=EW;

W to small random values (t=0);

W according to the Delta rule:

when satisfied with the level of minimization
reached;

results on a set of new examples, test set.

)(
)(

)()()1(

tW

E
tW

tWtWtW

The Learning Module

5 11 7 12   0.6
7 8 6  11    0.8
……………… …
……………….. …

Training set

Start_p End_p

1 10

Beginning_world

0

7

Start_a End_a

5 15

5

10

-4 4

STP Learning Module

Start_p End_p

1 10

Start_a End_a

5 15

5

10

-4 4
Beginning_world

0

7

STPP
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The Implemented Learning Module

• Works with

Parabolas f(x)=ax2+bx+c as preference functions

Fuzzy Semiring <[0,1],max,min,0,1>
as underlying structure

Smooth version of the min function

• Performs

Incremental gradient descent on the sum of 
squares error

Ts

shstE 2))()((
2

1

)(st

)(sh

Preference value of solution s in the training set

Preference value guessed for solution s from the current network

The Learning Algorithm

1) Read a solution s and its preference value
t(s) from the training set

2) Compute the preference value of s, h(s),

according to the current network

3) Compare h(s) and t(s)

4) Adjust parameters a, b, c, of each preference 

function of each constraint, in order to make 
the error smaller

5) Compute the global error; if below threshold, 
exit, otherwise back to 1)
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Adjustment of the parameters

cbacba
c

E
cc

cbacba
b

E
bb

constrofnumberwithcbacba
a

E
aa

i

ii

i

ii

i

ii

,,,.....,,,~

,,,.....,,,
~

.,,,.....,,,~

111

111

111

Delta rule:

Semi-convexity is maintained during all the learning process

0~0~ athenaif

Stopping the learning phase

Parabolas or fuzzy-parabolas?
……both!
Monitored errors on both kinds of parabolas:
• Sum of squares error
• Absolute maximum error
• Absolute mean error

Stop criterion:
• 100 consecutive failure of improving of at least 70% the 

abs. mean error computed with fuzzy parabolas

Errors computed on test set for final evaluation:
• Sum of squares error
• Absolute maximum error
• Absolute mean error

1

parabola

Fuzzy-parabola
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Experiments

Learning Problems where the global
preference function is min

– Randomly generated problems

Learning problems where the global preference
function is not min
– Minimize makespan

– Minimize maximum lateness

– Minimize resource consumption

Experimental results on randomly generated 

problems

Density

Maximum

Range

D=40 D=60 D=80

Number of 

examples of 

training and test 

set.

max=20
0.017 0.007 0.0077 500

600

700

max=30
0.022 0.013 0.015

max=40
0.016 0.012 0.0071

•Varying parameters:
• density (D) 
• maximum range of interval expansion (max). 

•Fixed parameters :
• number of variables n=25
• range for the initial solution r=40
• parabolas perturbations pa=10, pb=10 and pc=5.

•Displayed: absolute mean error (0<ame<1)  on a  test  set (mean on 30 examples).
• 357<=iterations<=3812
• 2’ 31’’<=time required<=8’ 18’’
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An example with maximum lateness

• Problem: 8 activities to be scheduled in 24 hours

• Given:
– Duration intervals for each activity
– Constraint graph

• Aim: Minimize the ending time of the last activity scheduled.

• Procedure:

1) Solve the hard constraint problem: 900 solutions
2) Rate each solution with a function that gives higher preference to schedules that 

end sooner: 37 optimal solutions

3) Select 200 solutions for the training set, 8 optimal solutions, and 300 for the 
test set.

4) Perform learning: 1545 iterations.

• Results:
– Absolute mean error on test set:  0.01
– Maximum absolute error on test set: 0.04
– Number of optimal solutions of the learned problem: 252 all rated highly by the 

original function.
– Number of unseen optimal solutions recognized by the learned problem: 29.

An example with resource consumption

• Problem: 8 activities to be scheduled in 24 hours

• Given:
– Duration intervals for each activity
– Constraint graph

• Aim: Minimize the global resource consumption

• Procedure:
1) Solve the hard constraint problem:    900 solutions

2) Rate each solution with a function that gives higher preference to 
schedules that require less energy: 13 optimal solutions

3) Select 200 solutions for the training set, 4 optimal solutions, and 300 for
the test set

4) Perform learning: 33945 iterations

• Results:
– Absolute mean error on test set:  0.02
– Maximum absolute error on test set: 0.08
– Number of optimal solutions of the learned problem: 39 all rated highly by 

the original function.
– Number of unseen optimal solutions recognized by the learned problem: 9.
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Simple Temporal Problems 
with Uncertainty

(Vidal,Fargier ’99)

(Morris, Muscettola, Vidal ’01)

Overview

• Simple Temporal Problems with 
Uncertanty

• Strong Controllability

• Dynamic Controllability

• Weak Controllability 

ICAPS 2005

Tutorial on Hard and Soft Temporal Constraint Techniques for Scheduling Problems with Preferences and Uncertainty 79



Simple Temporal Problems with Uncertainty

Informally, an STPU is an STP where some of the variables 
are not under the control of the agent, i.e. the agent cannot 
decide which value to assign to them. 

An STPU:

• Set of executable timepoints (controllable assignment);

• Set of contingent timepoints (uncontrollable assignment);

• Set requirement constraints TiJ:
• Binary 
• Temporal interval I=[a,b] meaning a XJ-Xi b

• Set of contingent constraints  Thk:
• Binary: on an executable Xh and a contingent timepoint Xk
• Temporal interval  I=[c,d] meaning a Xk-Xh b

Example: satellite maneuvering

1 8
Start

End
clouds

Executable
Contingent

1 5 -6 4

2 5

Start
aiming

End
aiming

Executable

Executable

Contingent Constraint
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STPUs Definitions
• Given an STPU P

• A control sequence d is an assignment to the executable 
timepoints

• A situation w is a set of durations on contingent 
constraints (set of elements of contingent intervals)

• A schedule is a complete assignment to the variables of P

• A schedule is viable if it is consistent with all the 
constraints. Sol(P) is the set of all viable schedules of P.

• A projection Pw corresponding to situation w is the STP
obtained replacing each contingent constraint with its 
duration in w. Proj(P) is the set of all projection of P.

• A viable strategy S: Proj(P) Sol(P) maps every 
projection Pw into a schedule including w

Controllability

Strong Controllability

Dynamic Controllability

Weak Controllability

There is a plan
that will work 
whatever happens 
In the future 

I can build a plan
while things 
happen that will 
be successful.

For every possible
scenario there is a 
plan
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Strong Controllability (SC) of STPUs

• An STP with Uncertainty is Strongly Controllable if
there is an assignment to all the executable time 
points consistent with all the possible scenarios 
(=complete assignments to contingent points)

(Vidal, Fargier, 1999)

Start-
clouds

End-
clouds

Start-
aiming

End-
aiming

31 40

0 10

20 25

Executable

Executable

Contingent

Executable

Aiming  should 
start no more 

than 10 s. 
before End-

clouds.

30

0 31

50

25 35

3540

SC algorithm

1. Input STPU Q
2. Rewrite all the constraints 

involving contingent variables 
in terms of constraints 
involving only executable 
variables

3. From an STPU Q obtain and 
STP P defined only on the 
executables of Q

4. STPU Q SC iff STP P is 
consistent

5. Each solution of P is a control 
sequence  of Q consistent 
with any possible situation w

6. Return minimal network of 
STP P

Complexity O(n3),
n=number of executable variables

a b

li ui

wi

ui-b li-a

New constraint

a b

lj uj

wj

uj-li-b lj-ui-a

li ui

wi

New constraint
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Dynamic  Controllability

An STP with Uncertainty is
Dynamically Controllable if there is 

an online execution strategy that 
depends only on observed 

timepoints in the past and that can 
always be extended  to a complete

schedule whatever

may happen in the future.

(Vidal, Fargier, 1999)

Dynamical Controllability: Example

0 5 6 16 17

s_man1 e_man1 s_com1 e_com1 s_man2

1 10 1 101 5 1 5

1 5

Dynamically Controllable

NOT Dynamically Controllable

?

ICAPS 2005

Tutorial on Hard and Soft Temporal Constraint Techniques for Scheduling Problems with Preferences and Uncertainty 83



DC of triangular networks (1)

A C

B

x>0 y>0

0
u v

Follow case:
C first, then B

Precede case:
B first, then C

p>0 q>0

(Morris, Muscettola,Vidal,01)

p>0 q>0

y-v x-u

DC of triangular networks (2)

0

Unordered case:
B first, then C or
C first, then B A C

B

x>0 y>0

u v

p>0 q>0

(Morris, Muscettola,Vidal’01)

p>0 x-u

C

y-v

B must either wait for C or 
wait  y-v after A
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Wait regression

• Regression 1:  

– AB constraint has a wait <C,t>

– Any DB constraint with upper bound u

deduce wait <C,t-u> on AD

• Regression 2:

– AB constraint has a wait <C,t>

– A contingent constraint DB with lower bound z

deduce wait <C,t-z> on AD

DC Algorithm
1. Input STPU P

2. Until quiescence:

3. If enforcing path consistency on P tightens     
any contingent interval then exit (not DC)

4. Select any triangle ABC, C uncontrollable, A
before C 

5. Perform triangular reduction

6. Regress waits

7. Output minimal STPU P

Complexity : deterministic polynomial
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Weak Controllability
(Vidal,Fargier ’99)

• An STPU is weakly controllable if for every situation 
w, the corresponding projection STP Pw is consistent

• Consider STPU Q and the set Z={l1,u1} x … x {lh,uh},
where lJ,uJ are the lower and upper bound of a 
contingent constraint in Q:

Q is WC iff for every w’ in Z, STP Pw’ is consistent

• The WC  algorithm tests this property. Exponential.

• Testing WC is Co-NP-complete (Vidal,Fargier’99 and 
Morris, Muscettola ’99) 

Simple Temporal Problems with 
Preferences and Uncertainty

(Rossi,Venable,Yorke-Simth ’04)
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Overview

• Simple Temporal problems wth
Preferences

• Optimal and -Strong Controllability

• Optimal and -Dynamic Controllability

• Optimal Weak Controllability

Example: satellite manouvering

2 5

1 5
-6 4

1 8
Start

End
clouds

Start
aiming

End
aiming

Simple

Temporal

Problem

PreferencesUncertainty

The earlier the 
cloud coverage 
ends the better

Ideally, the aiming 
procedure should dtart

slightly before the 
cloud coverage ends
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Simple Temporal Problems with 
Preference and Uncertainty

An STPPU:

• Set of executable timepoints (controllable assignment);

• Set of contingent timepoints (uncontrollable assignment);

• Set of soft requirement constraints:
• Binary 

• Temporal interval I

• Preference function f: I A;

• Set of soft contingent constraints:
• Binary: on an executable and a contingent timepoint

• Temporal interval I

• Preference function f: I A

• C-Semiring <A,+,x,0,1>

Example: satellite maneuvering

1 8

Start
clouds

End
clouds

Executable
Contingent

1 5

-6 4

2 5

Start
aiming

End
aiming

Executable

Executable

Soft Contingent Constraint

ICAPS 2005

88 Tutorial on Hard and Soft Temporal Constraint Techniques for Scheduling Problems with Preferences and Uncertainty



STPPUs Definitions (1)

• Given an STPU P

• A control sequence d is an assignment to 
the executable timepoints

• A situation w is a set of durations on 
contingent constraints (set of elements of 
contingent intervals)

STPPUs Definitions (2)
• Given an STPU P

• A schedule is a complete assignment to the variables of P

• A schedule T is viable if it is consistent with all the 
constraints.

– Preference value associated to T: pref(T)=f1(T1) x … x fn(Tn),

where fi = preference function of i-th constraint and Ti = projection 

of T on i-th constraint

– Sol(P) is the set of all viable schedules of P

• A projection Pw corresponding to situation w is the STPP
obtained replacing each contingent constraint with its 
duration in w and the corresponding preference value.
– opt(Pw) is the optimal preference of STPP Pw

– Proj(P) is the set of all projection of P

• A viable strategy S: Proj(P) Sol(P) maps every 
projection Pw into a schedule including w
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Optimal Controllability with Preferences

Optimal Strong Controllability

Optimal Dynamic Controllability

Optimal Weak Controllability

There is an Optimal

plan that will work 
whatever happens 
In the future 

I can build an 
Optimal plan
while things 
happen that will 
be successful.

For every possible
scenario there is an 
Optimal plan

-Controllability with Preferences

-Strong Controllability

-Dynamic Controllability

There is a plan that will work 
whatever happens in the future
that is:
-an optimal solution in scenarios

with optimal preference 

-a solution with preference

otherwise

It is possible to build a plan 
while things happen such that 
it will lead to:
-an optimal solution in scenarios

with optimal preference 

-a solution with preference

otherwise
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Tractability Assumptions

• On the C-semiring:

– Idempotent multiplicative operator

– Totally ordered preference set

Fuzzy Semiring <[0,1], max, min, 1, 0>

Pref(S)=min(f1(S1), …,fn(Sn))

S1 > S2 iff Pref(S1)= max(Pref(S1),pref(S2))

• On the preference functions:

– Semi-convexity

a b

Optimal Strong Controllability (OSC)

• An STPPU P is Optimally Strongly 

Controllable iff there is a viable strategy S
such that

1. For every Pw and Pw’, for each executable x,
S(Pw)(x)=S(Pw’)(x).  Each executable is 
assigned the same value in every scenario.

2. For every Pw, pref(S(Pw))=opt(Pw). The 
schedule obtained is optimal (i.e. there is no 
other with higher preference) in every scenario.
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-Strong Controllability ( -SC)

• An STPPU P is -Strongly Controllable iff
there is a viable strategy S such that

1. For every Pw and Pw’, for each executable x,
S(Pw)(x)=S(Pw’)(x).  Each executable is 
assigned the same value in every scenario.

2. For every Pw, pref(S(Pw))=opt(Pw), if 
opt(Pw) . Otherwise pref(S(Pw)) .

1. The schedule obtained is optimal in every scenario 
such that the corresponding projection has optimal 
preference at most ,

2. otherwise, for scenarios with an optimal preference 
higher than , the solution obtained will have 
preference at least .

Best-SC Algorithm

Checks Optimal Strong Controllability and finds 

the maximum level of -Strong Controllability

Best-SC

1. From the minimum preference up until inconsistency 
Lmax do:

1. Chop the STPPU P and get STPU Q

2. Check if Q is Strongly Controllable

3. Merge the results obtained at all preferences levels

2. If there is a complete assignment S, pref(S) Lmax then
(Lmax-1)-SC; else OSC.
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OSC-Check step 1: Chopping the STPPU

Start
End-
clouds

Start-
aiming

End-
aiming

31 40

20 25

25 35

Chopping a soft constraint at preference = keeping only 
elements with preference .(Hard constraint all allowed 
elements have maximum preference)

0 10

0.9

STPPU  P
STPU Q0.9 =Chop(P, 0.9)

1

STPU Q1 =Chop(P, 1)

9

OSC-Check step 2: enforcing Strong Controllability

1.STPU Q = Chop(STPPU P,  preference )
2. Enforce Strong Controllability (Vidal et al. ,99) on Q

Consider STP T only on executable variables: 
Q Strongly Controllable     iff T consistent

Start-
clouds

Start-
aiming

End-
aiming

20 25

25 35

End-
clouds

31 40

0 10

STPU  Q0.9

Keep only assignments 
to executables consistent 
with ALL contingent 
events

STP  T0.9

3130
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OSC-Check step 3: Merge

Start

Start-
aiming

End-
aiming

20 25

3130

Start

Start-
aiming

End-
aiming

20 25

31
STP  T0.9

STP  T1

Intersect the intervals of the STPs T , for all such that T consistent.
Return the resulting STP T if consistent:
All solutions of T are consistent and optimal wit any possible scenario

Start

Start-
aiming End-

aiming20 25

31

STP  T 

Complexity of Best-SC

|preferences| x |variables|3 x |interval size|

SC complexity
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Optimal Dynamic Controllability (OSC)

• Prehistory of executable x given schedule T, written 
T<x: is the set of all durations of contingent events 
which have occurred before x in T

• An STPPU P is Optimally Dynamically Controllable
iff there is a viable strategy S such that

1. For every Pw and Pw’, for each executable x,  if 
S(Pw)<x=S(Pw’)<x, then S(Pw)(x)=S(Pw’)(x).
Each executable is assigned the same value in every 
scenario in which the same contingent events have 
occurred before it.

2. For every Pw, pref(S(Pw))=opt(Pw).
The schedule obtained is optimal (i.e. there is no other 
with higher preference) in every scenario.

-Dynamic Controllability ( -DC)

• An STPPU P is -Dynamically Controllable

iff there is a viable strategy S such that

1. For every Pw and Pw’, for each executable x,  if 
S(Pw)<x=S(Pw’)<x, then S(Pw)(x)=S(Pw’)(x).
Each executable is assigned the same value in 
every scenario in which the same contingent 
events have occurred before it.

2. For every Pw, pref(S(Pw))=opt(Pw), if 
opt(Pw) . Otherwise pref(S(Pw)) .

1. The schedule obtained is optimal in every scenario 
such that the corresponding projection has optimal 
preference at most ,

2. otherwise, for scenarios with an optimal preference 
higher than , the solution obtained will have 
preference at least .

ICAPS 2005

Tutorial on Hard and Soft Temporal Constraint Techniques for Scheduling Problems with Preferences and Uncertainty 95



Optimal Dynamic Controllability: 
Example

0 5 6 16 21
s_man1 e_man1 s_com1 e_com1 s_man2

1 10 1 101 5 1 5

1 1
0.8

1

Optimally Dynamically Controllable

Best-DC Algorithm

Checks Optimal Dynamic Controllability and 
finds the maximum level of -Dynamic Controllability

Best-DC
1. From the minimum preference up until 

inconsistency Lmax do:
1. Chop the STPPU P and get STPU Q
2. Check if Q is Dynamically Controllable

3. DC-Merge the results obtained at all 
preferences levels

2. If there is a complete assignment S, pref(S) Lmax
then (Lmax-1)-DC; else ODC.
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Best-DC step 1 & 2: example

2 5

1

-6 4

Start
End
clouds

Start
aiming

End
aiming

0.8

0.8

0.8

Preference level =0.8

5

5 8

-4 1

3

1

5

5

4

0.8

Best-DC Merge Step exam

1 5
-6 4

1 8
Start

End
clouds

Start
aiming

Pref. SC SA

0.6

0.5

0.7

0.8

0.9

1.0

1 4 5

1 3 5

1 4 5

1 4 5

1 4 5

2 3

Optimality with scenarios 
with preference 0.9 (e.g. SC=0 and EC=3):
SA must wait until EC is exec. or 4 after SC

Optimality with scenarios 
with preference 1.0 (e.g. SC=0 and EC=2):
SA must wait until EC is exec. or 3 after SC
and it must be exec. before 3 after SC

Empty
not ODC,
0.9-DC
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ODC-Check step 3: DC-Merge

• For every preference level
– For every constraint on executables

– Consider the interval obtained chopping and applying 
DC

– Merge the intervals taking:
• of what follows waits

• U of what precedes waits

• The constraints on executables of the resulting 
STPPU contain only elements that belong to at 
least one optimal dynamic schedule and the 
waits to be respected for optimality

Complexity of ODC-Check

|preferences| x DC Complexity
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Execution of STPPUs
• as for STPUs (Morris et al. 2001)

0. Perform initial propagation from the start timepoint.

1. Immediately execute any executable timepoints that have reached 
their upper bounds.

2. Arbitrarily pick an executable timepoint TP that is live and enabled 
and not yet executed, and whose waits, if any, have all been satisfied.

3. Execute TP. Halt if network execution is complete.

Otherwise, propagate the effect of the execution.

4. Advance current time, propagating the effect of any

contingent timepoints that occur, until an
executable timepoint becomes eligible for
execution under 1 or 2.

5. Go to 1.

Optimal Weak Controllability (OWC)

OWC Check (STPPU P)

1. Ignore preferences on P obtaining STPU P’
2. Check if P’ is WC  

Optimal solution (STPPU P, Scenario s)

1. Instantiate s in P obtaining STPP Q 
2. Chop-solver(Q)

Polynomial

OPTIMALLY WEAKLY CONTROLLABLE
Every scenario has an optimal solution

WEAKLY CONTROLLABLE
Every scenario has a solution
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Comparison among the Controllability 

Notions

’-SC
> ’

’-DC

> ’

-SC

-DC

m -SC

m-DC

opt-SC

opt-DC

OSC

ODC

OWC

SC

DC

WC

m = minimum preference on any constraint
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