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Abstract 
Constraint-based scheduling is a powerful tool for solving 
real-life scheduling problems thanks to a natural integration 
of special solving algorithms encoded in global constraints. 
The filtering algorithms behind these constraints are based 
on propagation rules modelling some aspects of the 
problems, for example a unary resource. This paper 
describes new incremental propagation rules integrating a 
propagation of precedence relations and time windows for 
activities allocated to a unary resource. Moreover, the rules 
also cover so called optional activities that may or may not 
be present in the final schedule. 

Introduction   
Real-life scheduling problems usually include a variety of 
constraints so special scheduling algorithms (Brucker, 
2001) describing a single aspect of the problem can hardly 
be applied to solve the problem completely. Constraint-
based scheduling (Baptiste, Le Pape, Nuijten, 2001) 
provides a natural framework for modelling and solving 
real-life problems because it allows integration of different 
constraints. The above mentioned special scheduling 
algorithms can be often transformed into propagators for 
the constraints so the big effort put in developing these 
algorithms is capitalised in constraint-based scheduling. 
 Many filtering algorithms for specialised scheduling 
constraints have been developed in recent years (Baptiste, 
Le Pape, Nuijten, 2001). There exist algorithms based for 
example on edge-finding (Baptiste & Le Pape, 1996) or 
not-first/not-last (Torres & Lopez, 1997) techniques that 
restrict the time windows of the activities. Other 
algorithms are based on relative ordering of activities, for 
example filtering based on optimistic and pessimistic 
resource profiles (Cesta & Stella, 1997). Recently, as 
scheduling and planning technologies are coming together, 
filtering algorithms combining filtering based on relative 
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ordering and time windows appeared. Detectable 
precedences by Vilím (2002) are one of the first attempts 
for such a combination. Laborie (2003) presents a similar 
rule called energy precedence constraint for reservoir-like 
resources.   
 Filtering algorithms for scheduling constraints typically 
assume that all the constrained activities will be included 
in the final schedule. This is not always true, for example 
assume that there are alternative processes to accomplish a 
job or alternative resources per activity. These alternatives 
are typically modelled using optional activities that may or 
may not be included in the final schedule depending on 
which process or resource is selected. The optional activity 
may still participate in the constraints but it should not 
influence other activities until it is known to be in the 
schedule. This could be realised by allowing the duration 
of the optional activity to be zero for time-windows based 
filtering like edge-finding (Baptiste, Le Pape, Nuijten, 
2001). However, this makes filtering weaker and as shown 
in (Vilím, Barták, Čepek, 2004) a stronger and faster 
filtering can be achieved if optional activities are assumed 
in the filtering algorithm directly. The paper (Focacci, 
Laborie, Nuijten, 2000) proposed a global precedence 
graph where alternative resources correspond to paths in 
the graph, but the graph is used merely for cost-based 
filtering (optimization of makespan or setup times). 
 In this paper we address the problem of integrated 
filtering based on precedence relations and time windows. 
From the beginning we assume the existence of optional 
activities. A filtering algorithm for these so called 
detectable precedences with optional activities on a unary 
resource has been proposed in (Vilím, Barták, Čepek, 
2004). This algorithm uses Θ-Λ-tree to achieve O(n.log n) 
time complexity and it is a monolithic algorithm (must be 
repeated completely if there is any change of domains). 
The same pruning can be achieved by the energy 
precedence constraint proposed by Laborie (2003) if it is 
applied to a unary resource (the energy precedence 
constraint is defined for reservoirs). However, the energy 
precedence constraint is not defined for optional activities 
and details of implementation are not given in the paper. 
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 We propose a new set of propagation rules that keep a 
transitive closure of the precedence relations, deduce new 
precedence relations, and shrink the time windows of the 
activities. They may also deduce that some optional 
activity will not be present in the final schedule. There are 
two main differences from the algorithm proposed in 
(Vilím, Barták, Čepek, 2004). First, we use “light” data 
structures, namely domains of variables. Second, the new 
rules are incremental so they directly react to changes of 
particular domains rather than running a monolithic 
algorithm from scratch. Such rules are much easier for 
implementation and for integration to existing constraint 
solvers and the hope is their incremental nature will lead to 
a good practical efficiency. The implementation of the 
rules is currently being done so the paper reports a work in 
progress. 
 The paper is organised as follows. We first give more 
details on the problem to be solved. Then we describe the 
constraint services available for implementation of new 
constraints. In the main part of the paper, we describe a 
constraint-based representation of the precedence graph 
and we propose a set of propagation rules for the 
precedence graph. After that, we describe propagation 
rules for shrinking time windows by using information 
about precedence relations. 

The Problem 
In this paper we address the problem of modelling a unary 
resource where activities must be allocated in such a way 
that they do not overlap in time. We assume that there are 
time windows restricting the position of these activities. 
The time window [R,D] for an activity specifies that the 
activity cannot start before R (release time) and cannot 
finish after D (deadline). We assume the activity to be non-
interruptible so the activity occupies the resource from its 
start till its completion, i.e. for a time interval whose length 
is equal to the given length of the activity. We also assume 
that that there are precedence constraints for the activities. 
The precedence constraint A«B specifies that activity A 
must not finish later than activity B starts. The precedence 
constraints describe a partial order between the activities. 
The goal of scheduling is to decide a total order that 
satisfies (extends) the partial order (this corresponds to the 
definition of a unary resource) in such a way that each 
activity is scheduled within its time window. Last but not 
least we allow some activities to be so called optional. It 
means that it is not known in advance whether such 
activities are allocated to the resource or not. If the 
optional activity is allocated to the resource, that is, it is 
included in the final resource schedule then we call this 
activity valid. If the activity is known not to be allocated to 
the resource then we call the activity invalid. In other 
cases, that is the activity is not decided to be or not to be 
allocated to the resource, we call the activity undecided. 
Optional activities are useful for modelling alternative 
resources for the activities (an optional activity is used for 
each alternative resource and exactly one optional activity 

becomes valid) or for modelling alternative processes to 
accomplish a job (each process may consist of a different 
set of activities). 
 Note that for the above defined problem of scheduling 
with time windows it is known that deciding about an 
existence of a feasible schedule is NP-hard in the strong 
sense (Garey & Johnson, 1979) even when no precedence 
relations or optional activities are considered, so there is a 
little hope even for a pseudo-polynomial solving 
algorithm. Hence using propagation rules and constraint 
satisfaction techniques is justified there. 

Constraints and Constraint Services 
Constraint satisfaction problem is defined as a triple 
(X,D,C), where X is a finite set of variables, D is a set of 
domains for these variables, each variable may have its 
own domain which is a finite set of values, and C is a set 
of constraints restricting possible combinations of the 
values assigned to variables (a constraint is a relation over 
the variables’ domains). The task is to find a value for each 
variable from the corresponding domain in such a way that 
all the constraints are satisfied (Dechter, 2003). 
 There exist many constraint solvers that provide tools 
for solving constraint satisfaction problems, for example 
ILOG Solver, Mozart or the clpfd library of SICStus 
Prolog. These solvers are typically based on combination 
of domain filtering with depth-first search. Domain 
filtering is a process of removing values from the domains 
that do not satisfy some constraint. Each constraint has a 
filtering algorithm assigned to it that does this job for the 
constraint, and these algorithms communicate via the 
domains of the variables – if a filtering algorithm shrinks a 
domain of some variable, the algorithms for constraints 
that use this variable propagate the change to other 
variables until a fixed point is reached or until some 
domain becomes empty. Such a procedure is called a 
(generalised) arc consistency. When all domains are 
reduced to singletons then the solution is found. If some 
domain becomes empty then no solution exists. In all other 
cases the search procedure splits the space of possible 
assignments by adding a new constraint (for example by 
assigning a value to the variable) and the solution is being 
searched for in sub-spaces defined by the constraint and its 
negation (other branching schemes may also be applied). 
 The constraint solvers usually provide an interface for 
user-defined filtering algorithms so the users may extend 
the capabilities of the solvers by writing their own filtering 
algorithms (Schulte, 2002). This interface consists of two 
parts: triggers and propagators. The user should specify 
when the filtering algorithm is called – a trigger. This is 
typically a change of domain of some variable, for 
example when the lower bound of the domain is increased, 
the upper bound is decreased, or any element is deleted 
from the domain. The propagator then describes how this 
change is propagated to domains of other variables.  The 
constraint solver provides procedures for access to 
domains of variables and for operations over the domains 
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(membership, union, intersection, etc.). The output of the 
propagator is a proposal how to change domains of other 
variables in the constraint. The algorithm may also deduce 
that the constraint cannot be satisfied (fail) or that the 
constraint is entailed (exit). We will describe the 
propagation rules in such a way that they can be easily 
transformed into a filtering algorithm in the above sense. 
Each propagation rule will consist of a trigger describing 
when the rule is activated and a propagator describing how 
the domains of other variables are changed. 

Rules for the Precedence Graph 
As we mentioned above, precedence relations are defined 
among the activities. These precedence relations define a 
precedence graph which is an acyclic directed graph where 
nodes correspond to activities and there is an arc from A to 
B if A«B. Frequently, the scheduling algorithms need to 
know whether A must be before B in the schedule, that is 
whether there is a path from A to B in the precedence 
graph. It is possible to look for the path each time such a 
query occurs. However, if such queries occur frequently 
then it is more efficient to provide the answer immediately, 
that is, in time O(1). This can be achieved by keeping a 
transitive closure of the precedence graph. 

Definition 1: We say that a precedence graph G is 
transitively closed if for any path from A to B in G there is 
also an arc from A to B in G. 

Defining the transitive closure is more complicated when 
optional activities are assumed. In particular, if A«B and 
B«C and B is undecided then we cannot deduce that A«C 
simply because if B is removed – becomes invalid – then 
the path from A to C is lost. Therefore, we need to define 
transitive closure more carefully. 

Definition 2: We say that a precedence graph G with 
optional activities is transitively closed if for any two arcs 
A to B and B to C such that B is a valid activity and A and 
C are either valid or undecided activities there is also an 
arc A to C in G. 

It is easy to prove that if there is a path from A to B such 
that A and B are either valid or undecided and all inner 
nodes in the path are valid then there is also an arc from A 
to B in a transitively closed graph (by induction of the path 
length). Hence, if no optional activity is used (all activities 
are valid) then Definition 2 is identical to Definition 1. 
 In the next paragraphs we will propose a constraint 
model for the precedence graph and two propagation rules 
that maintain the transitive closure of the graph with 
optional activities. We index each activity by a unique 
number from the set 1,..,n, where n is the number of 
activities. For each activity we use a 0/1 variable Valid 
indicating whether the activity is valid (1) or invalid (0). If 
the activity is not known yet to be valid or invalid then the 
domain of Valid is {0,1}. The precedence graph is encoded 
in two sets attached to each activity. CanBeBefore is a set 
of indices of activities that can be before a given activity. 

CanBeAfter is a set of indices of activities that can be after 
the activity. If we add an arc between A and B (A«B) then 
we remove the index of A from CanBeAfter(B) and the 
index of B from CanBeBefore(A). For simplicity reasons 
we will write A instead of the index of A. Note that these 
sets can be easily implemented as finite domains of two 
variables so a special data structure is not necessary. For 
this implementation we propose to include value 0 in 
above two sets to ensure that the domain is not empty even 
if the activity is first or last (an empty domain in CSP 
indicates the non-existence of a solution). The value 0 is 
not assumed as an index of any activity in the propagation 
rules. To simplify description of propagation rules we 
define the following sets (not kept in memory but 
computed on demand): 

 MustBeAfter = CanBeAfter \ CanBeBefore 
 MustBeBefore = CanBeBefore \ CanBeAfter 
 Unknown = CanBeBefore ∩ CanBeAfter. 

MustBeAfter and MustBeBefore are sets of activities that 
must be after respectively before the given activity. 
Unknown is a set of activities that are not yet known to be 
before or after the activity. 
 We initiate the precedence graph in the following way. 
First, the variables Valid, CanBeBefore, and CanBeAfter 
with their domains are created. Then the known 
precedence relations are added in the above-described way 
(domains of CanBeBefore and CanBeAfter are pruned). 
Finally, the Valid variables for the valid activities are set to 
1 (activities that are known to be invalid from the 
beginning may be omitted from the graph) and the 
following propagation rule is fired when Valid(A) is set. 
 The propagation rule is invoked when the validity status 
of the activity is known. “Valid(A) is instantiated” is its 
trigger. The part after  is a propagator describing pruning 
of domains. “exit” means that the constraint represented by 
the propagation rule is entailed so the propagator is not 
further invoked (its invocation does not cause further 
domain pruning). We will use the same notation in all 
rules. 

 Valid(A) is instantiated  /1/ 
if Valid(A) = 0 then 
  for each B do /* disconnect A from B */ 
   CanBeBefore(B) ← CanBeBefore(B) \ {A} 
   CanBeAfter(B) ← CanBeAfter(B) \ {A} 
else /* Valid(A)=1 */ 
  for each B∈MustBeBefore(A) do 
   for each C∈MustBeAfter(A)\MustBeAfter(B) do 
    /* new precedence B«C */ 
    CanBeAfter(C) ← CanBeAfter(C) \ {B} 
    CanBeBefore(B) ← CanBeBefore(B) \ {C} 
    if B∉CanBeBefore(C) then    // break the cycle 
       post_constraint(Valid(B)=0 ∨ Valid(C)=0) 
exit 

Observation: Note that rule /1/ maintains symmetry for all 
valid and undecided activities because the domains are 
pruned symmetrically in pairs. This symmetry can be 
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defined as follows: if Valid(B)≠0 and Valid(C)≠0 then 
B∈CanBeBefore(C) if and only if C∈CanBeAfter(B). This 
moreover implies that B∈MustBeBefore(C) if and only if 
C∈MustBeAfter(B). 
 
We shall show now, that if the entire precedence graph is 
known in advance (no arcs are added during the solving 
procedure), then rule /1/ is sufficient for keeping the 
(generalised) transitive closure according to Definition 2. 
To give a formal proof we need to define several notions 
more precisely.   
 Let J={0,1, … ,n} be the set of activities, where 0 is a 
dummy activity with the sole purpose to keep all sets 
CanBeAfter(i) and CanBeBefore(i) nonempty for all 
1≤i≤n. Furthermore, let G=(J\{0},E) be the given 
precedence graph on the set of activities, and GT=(J\{0},T) 
its (generalised) transitive closure (note that the previously 
used notation i«j does not distinguish between the arcs 
which are given as input and those deduced by 
transitivity). The formal definition of the set T can be now 
given as follows:  

1. if (i,j)∈E then (i,j)∈T 
2. if (i,j)∈T and (j,k)∈T and Valid(i)≠0 and 

Valid(j)=1 and Valid(k)≠0 then (i,k)∈T 

Furthermore, the set T is not maintained as a list of pairs of 
activities. Instead, it is represented using the set variables 
CanBeAfter(i) and CanBeBefore(i), 1≤i≤n in the following 
manner: (i,j)∈T if and only if i∉CanBeAfter(j) and 
j∉CanBeBefore(i). The incremental construction of the set 
T can be described as follows.  

Initialization: for every i ∈ J\{0} set 
• CanBeAfter(i) ← J\{i} 
• CanBeBefore(i) ← J\{i} 
• Valid(i) ← {0,1} 

Set-up: for every arc (i,j)∈E set 
• CanBeAfter(j) ← CanBeAfter(j)\{i} 
• CanBeBefore(i) ← CanBeBefore(i)\{j} 

Propagation: whenever a variable is made valid, call rule 
/1/ 

Clearly, T is empty after the initialization and T=E after 
the set-up. Now we are ready to state and prove formally 
that rule /1/ is sufficient for maintaining the set T on those 
activities which are already valid or still undecided. 

Proposition 1: Let i0, i1, … , im be a path in E such that 
Valid(ij)=1 for all 1≤j≤m-1 and Valid(i0)≠0 and 
Valid(im)≠0 (that is, the endpoints of the path are both 
either valid or undecided and all inner points of the path 
are valid). Then (i0,im)∈T, that is i0∉CanBeAfter(im) and 
im∉CanBeBefore(i0). 

Proof: We shall proceed by induction on m. The base 
case m=1 is trivially true after the set-up. For the 
induction step let us assume that the statement of the 
lemma holds for all paths (satisfying the assumptions 
of the lemma) of length at most m-1. Let 1≤j≤m-1 be 
an index such that Valid(ij)←1 was set last among all 

inner points i1, … , im-1 on the path. By the induction 
hypothesis we get  

• i0∉CanBeAfter(ij) and ij∉CanBeBefore(i0) 
using the path i0, … , ij 

• ij∉CanBeAfter(im) and im∉CanBeBefore(ij) 
using the path ij, … , im 

We shall distinguish two cases. If im∈MustBeAfter(i0) 
(and thus by symmetry also i0∈MustBeBefore(im)) 
then by definition im∉CanBeBefore(i0) and 
i0∉CanBeAfter(im) and so the claim is true trivially. 
Thus let us in the remainder of the proof assume that 
im∉MustBeAfter(i0). 

Now let us show that i0∈CanBeBefore(ij) must hold, 
which in turn  (together with i0∉CanBeAfter(ij)) 
implies i0∈MustBeBefore(ij). Let us assume by 
contradiction that i0∉CanBeBefore(ij). However, at 
the time when both i0∉CanBeAfter(ij) and 
i0∉CanBeBefore(ij) became true, that is when the 
second of these conditions was made satisfied by rule 
/1/, rule /1/ must have posted the constraint 
(Valid(i0)=0 ∨ Valid(ij)=0) which contradicts the 
assumptions of the lemma. By a symmetric argument 
we can prove that im∈MustBeAfter(ij). Thus when 
rule /1/ is triggered by setting Valid(ij)←1 both 
i0∈MustBeBefore(ij) and im∈MustBeAfter(ij) hold 
(and im∉MustBeAfter(i0) is assumed), and therefore 
rule /1/ removes im from the set CanBeBefore(i0) as 
well as  i0 from the set CanBeAfter(im), which finishes 
the proof. 

From now on there will be no need to distinguish between 
the “original” arcs from E and the transitively deduced 
ones, so we will work solely with the set T. To simplify 
notation we shall switch back to the A«B notation (which 
is equivalent to (A,B) ∈ T). 
 In some situations arcs may be added to the precedence 
graph during the solving procedure, either by the user, by 
the scheduler, or by other filtering algorithms like the one 
described in the next section. The following rule updates 
the precedence graph to keep transitive closure when an 
arc is added to the precedence graph. 

 A«B is added  /2/ 
  CanBeAfter(B) ← CanBeAfter(B) \ {A} 
   CanBeBefore(A) ← CanBeBefore(A) \ {B} 
  if A∉CanBeBefore(B) then    // break the cycle 
      post_constraint(Valid(A)=0 ∨ Valid(B)=0) 
  else 
      if Valid(A)=1 then    // transitive closure 
    for each C∈MustBeBefore(A)\MustBeBefore(B) do 
     add C«B  
   if Valid(B)=1 then    // transitive closure 
    for each C∈MustBeAfter(B)\MustBeAfter(A) do 
     add A«C 
  exit 

The rule /2/ does the following. If a new arc is added then 
the sets CanBeBefore and CanBeAfter are updated. If a 
cycle is detected then the cycle is broken in the same way 
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as in rule /1/. The rest of the propagation rule ensures that 
if an arc is added and one of its endpoints is valid then 
other arcs are added recursively to keep a transitive 
closure. The following proposition shows that all 
necessary arcs are added by rule /2/. 

Proposition 2: If the precedence graph is transitively 
closed and some arc is added then the propagation rule /2/ 
updates the precedence graph to be transitively closed 
again. 

Proof: If an arc A«B is added and B is valid then 
according to the definition of transitive closure for 
each C such that B«C the arc A«C should be present 
in the precedence graph. The rule /2/ adds all these 
arcs. Symmetrically, if A is valid then for each C such 
that C«A all arcs C«B (where A«B) are added by the 
rule. Note also, that if the rule adds a new arc then this 
change in the precedence graph is propagated further 
so it may force adding other arcs. Hence all the 
necessary arcs are added. The rule adds only new arcs 
so the recursive calls to the rule must stop sometime. 

Rules for Time Windows 
An absolute position of the activity in time is frequently 
restricted by a release time and deadline that define a time 
window for processing the activity. The activity cannot 
start before the release time and it must be finished before 
the deadline. We assume the activity to be uninterruptible 
so it occupies the resource from its start till its completion. 
The processing time of activity A is constant, we denote it 
by p(A). The goal of time window filtering is to remove 
time points from the time window when the activity cannot 
be processed. Usually, only the lower and upper bounds of 
the time window change so we are speaking about 
shrinking the time window. 
 The standard constraint model for time allocation of the 
activity assumes two variables – start(A) and end(A) – 
describing when the activity A starts and completes. 
Initially, the domain for the variable start(A) is 
[release_time(A), deadline(A)-p(A)] and, similarly, the 
initial domain for the variable end(A) is  
[release_time(A)+p(A), deadline(A)]. If these two initial 
domains are empty then the activity is made invalid. We 
will use the following notation to describe bounds of the 
above domains: 

 est(A) = min(start(A)) earliest start time 
 lst(A) = max(start(A)) latest start time 
 ect(A) = min(end(A)) earliest completion time 
 lct(A) = max(end(A)) latest completion time 

This notation can be extended in a natural way to sets of 
activities. Let Ω be a set of activities, then: 

 est(Ω) = min{est(A), A∈Ω} 
 lst(Ω) = max{lst(A), A∈Ω} 
 ect(Ω) = min{ect(A), A∈Ω} 

 lct(Ω) = max{lct(A), A∈Ω} 
 p(Ω) = ∑{p(A), A∈Ω} 

During propagation, we will be increasing est and 
decreasing lct which corresponds to shrinking the time 
window for the activity. For simplicity reasons we use a 
formula est(A) ← X to describe a requested change of  
est(A) which actually means est(A) ← max(est(A), X). 
Similarly lct(A) ← X means lct(A) ← min(lct(A), X). 
 The time windows can be used to deduce a new 
precedence between activities. In particular, if 
est(A)+p(A)+p(B)>lct(B) then activity A cannot be 
processed before activity B and hence we can deduce B«A. 
This is called a detectable precedence in (Vilím, 2002). 
Vice versa, the precedence graph can be used to shrink 
time windows of the activities. In particular, we can 
compute the earliest completion time of the set of valid 
activities that must be processed before some activity A 
and the latest start time of the set of valid activities that 
must be processed after A. These two numbers define 
bounds of the time window for A. Formally: 

est(A) ← max{est(Ω)+p(Ω) | Ω⊆{X|X«A & Valid(X)=1}} 
lct(A) ← min{lct(Ω)-p(Ω) | Ω⊆{X|A«X & Valid(X)=1}} 

The above two formulas are special cases of the energy 
precedence constraint (Laborie, 2003) for unary resources. 
Note also that the new bound for est(A) can be computed 
in O(n.log n) time, where n is the number of activities in 
Θ = {X | X«A & Valid(X)=1}, rather that exploring all 
subsets Ω⊆Θ. The algorithm is based on the following 
observation: if Ω’ is the set with the maximal 
est(Ω’)+p(Ω’) then Ω’⊇{X | X∈Θ & est(Ω’)≤est(X)}, 
otherwise adding such X to Ω’ will increase 
est(Ω’)+p(Ω’). Consequently, it is enough to explore sets 
ΩX = {Y | Y∈Θ & est(X)≤est(Y)} for each X∈Θ which is 
done by the following algorithm (the new bound is 
computed in the variable end): 

dur ← 0 
end ← inf 
for each Y∈{X | X«A & Valid(X)=1} 
    in non-increasing order of est(Y) do 
  dur ← dur + p(Y) 
  end ← max(end, est(Y)+dur) 

The bound for lct(A) can be computed in a symmetrical 
way in O(n.log n) time, where n is the number of activities 
in {X | A«X & Valid(X)=1}. 
 We now present two groups of propagation rules 
working with time windows and a precedence graph. The 
first group of rules realise the energy precedence constraint 
in an incremental way by reacting to changes in the 
precedence graph. The rules are invoked by making the 
activity valid /1a/ and by adding a new precedence relation 
/2a/. Because these rules have the same triggers as the 
rules for the precedence graph, they can be actually 
combined with them. Hence, we name the new rules using 
the number of the corresponding rule for the precedence 
graph. 
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 The rules shrink the time windows using information 
about the precedence relations as described above. Only 
valid activities influence time windows of other (non 
invalid) activities. This corresponds to our requirement that 
optional activities that are not yet known to be valid should 
not influence other activities but they can be influenced. 
Notice also that if A«C, C«B, and C is valid then it is 
enough to explore possible increase of est(C) only. The 
reason is that if est(C) is really increased then the rule /3/ is 
invoked for C (see below) and the change is propagated 
directly to est(B). Similarly, only activities B such that 
there is no valid activity C in between B and A are 
explored for change of lct(B). 
 When activity A becomes valid and B is after A (A«B) 
or when A is valid and arc A«B is added then A can 
(newly) participate in sets ΩX that are used to compute est 
of B (see above). Visibly, only sets containing A are of 
interest because only these sets can lead to change of 
est(B). The other sets ΩX used to update est(B) have 
already been explored or will be explored when calling the 
rules for some valid activity in ΩX. Moreover, all valid 
activities C such that C«A are used to compute est(A) so 
they can complete together no later than in est(A). Hence 
these activities do not influence directly est(B) (they 
influence it through changes of est(A)). Thus, we need to 
explore all subsets of valid activities X such that X«B and 
¬X«A and these subsets contain A. Only these subsets can 
deduce a possible change of est(B). These are exactly the 
sets used in rules /1a/ and /2a/. A symmetrical analysis can 
be done for activities B before A. Note also that sets Ω’ in 
rules /1a/ and /2a/ can be explored in the same way as we 
described for the energy precedence constraint above. 
 

 Valid(A) is instantiated  /1a/ 
   if Valid(A)=1 then 
  for each B∈MustBeAfter(A) s.t. 
     ¬∃C Valid(C)=1 & A«C & C«B do 
       let Ω = {X | X∈MustBeBefore(B) &  
        X∈CanBeAfter(A) & Valid(X)=1} 
       est(B) ← max{est(Ω’∪{A})+p(Ω’)+p(A) | Ω’⊆Ω} 
  for each B∈MustBeBefore(A) s.t. 
     ¬∃C Valid(C)=1 & B«C & C«A do 
       let Ω = {X | X∈MustBeAfter(B) &  
        X∈CanBeBefore(A) & Valid(X)=1} 
        lct(B) ← min{lct(Ω’∪{A})-p(Ω’)-p(A) | Ω’⊆Ω} 
  exit 
 
 A«B is added  /2a/ 
  if Valid(A)=1 & Valid(B)≠0 then 
       let Ω = {X | X∈MustBeBefore(B) &  
        X∈CanBeAfter(A) & Valid(X)=1} 
       est(B) ← max{est(Ω’∪{A})+p(Ω’)+p(A) | Ω’⊆Ω} 
   if Valid(B)=1 & Valid(A)≠0 then 
       let Ω = {X | X∈MustBeAfter(A) &  
        X∈CanBeBefore(B) & Valid(X)=1} 
       lct(A) ← min{lct(Ω’∪{B})-p(Ω’)-p(B) | Ω’⊆Ω} 
   exit 

The second group of rules is triggered by shrinking the 
time window (/3/ for increased est and /4/ for decreased 
lct). The rules in this group can deduce that the activity is 
invalid, if it has an empty time window, and they can 
deduce a new detectable precedence. Moreover, if the 
activity is valid then the change of its time window is 
propagated to other activities whose relative position to a 
given activity is known (they are before or after the given 
activity). If est of valid activity A is increased then it may 
influence est of B such that A«B (note that B is either valid 
or undecided, because invalid activities are disconnected 
from the graph). This happens if and only if est(B) ≤ 
est(ΩA)+p(ΩA) (see above for the definition of ΩA with 
respect to B). Notice that rule /3/ computes est(ΩA)+p(ΩA) 
to update est(B). Symmetrically, rule /4/ updates lct(B) for 
activities B such that B«A, if necessary. Hence, the 
propagation rules incrementally maintain the energy 
precedence constraint. 
 

est(A) is increased   /3/ 
  if Valid(A)=0 or est(A)+p(A) > lct(A) then 
   Valid(A) ← 0 
   exit 
  else 
   ect(A) ← est(A)+p(A) 
   for each B∈Unknown(A) do 
    if est(A)+p(A)+p(B) > lct(B) then 
     B«A /* detectable precedence */ 
   if Valid(A)=1 then 
    for each B∈MustBeAfter(A) s.t. 
      ¬∃C Valid(C)=1 & A«C & C«B do 
     est(B) ← est(A)+p(A)+ 
      ∑{p(X) | X∈MustBeBefore(B) & 
       est(A)≤est(X) & Valid(X)=1} 

 
lct(A) is decreased   /4/ 
  if Valid(A)=0 or est(A)+p(A) > lct(A) then 
   Valid(A) ← 0 
   exit 
  else 
   lst(A) ← lct(A)-p(A) 
   for each B∈Unknown(A) do 
    if est(B)+p(B)+p(A) > lct(A) then 
     A«B /* detectable precedence */ 
   if Valid(A)=1 then 
    for each B∈MustBeBefore(A) s.t. 
      ¬∃C Valid(C)=1 & B«C & C«A do 
     lct(B) ← lct(A)-p(A)- 
      ∑{p(X) | X∈MustBeAfter(B) & 
       lct(X)≤lct(A) & Valid(X)=1} 

Conclusions 
The paper reports a work in progress on constraint models 
for the unary resource with precedence relations between 
the activities and time windows for the activities. Optional 
activities that may or may not be allocated to the resource 
are also assumed. We propose a set of propagation rules 
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that keep a transitive closure of the precedence relations, 
deduce additional precedence constraints based on time 
windows, and shrink the time windows for the activities. 
These rules are intended to complement the existing 
filtering algorithms based on edge-finding etc. to further 
improve domain pruning. Our next steps include formal 
complexity analysis, detail comparison to existing 
propagation rules (edge finder, etc.), implementation of the 
proposed rules, and testing in real-life environment. 
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Abstract

A scheduling problem consists in a set of pre-defined ac-
tivities that have to be temporally situated with respect to a
set of resource availability constraints. Constraint-based ap-
proaches to scheduling have achieved mature development.
We are currently studying how a constraint based scheduler
can be endowed with the ability to synthesize new activities,
i.e., by reasoning on planning knowledge. This paper de-
scribes some steps in the direction of uniformly managing
planning as a special case of task scheduling. The general
aim is to solve integrated planning and scheduling problems
by rationally integrating in the same architecture various of
the state-of-the-art CSP algorithms.

Introduction
A planning problem specifies adomain theoryconcerning
how changes may occur in the world. A plan reasoner ma-
nipulatescause-effectrelations in the domain theory which
is often encoded in the form of operators, e.g., in PDDL
(Ghallabet al. 1998; Fox & Long 2003). This operators
represent the actions performed by the executing agent in
the environment in order to obtain the desired change. In-
dependently of the “shape” of this knowledge it is impor-
tant to remember that planning knowledge represents the
causal theory that describes the “correct domain evolution”.
Reasoning in planning is mostly dedicated to such logical
knowledge (which we here call “causal constraints”). In a
scheduling problem a set of pre-defined activities have to be
temporally situated with respect to a set of resource avail-
ability constraints. In representing and solving such prob-
lems thetemporalandresourceconstraints play a key role.

In certain application domains the subdivision of the two
problems as separate entities is quite motivated (see for ex-
ample (Srivastava, Kambhampati, & Do 2001)). In other
domains such a clear separation of the planning and schedul-
ing phase is more questionable and architectural approaches
to integrate the two problems have been developed. For in-
stance O-PLAN (Currie & Tate 1991), IxTeT (Laborie &
Ghallab 1995), HSTS (Muscettolaet al. 1992), RAX -PS
(Jonssonet al. 2000), orASPEN (Chienet al. 2000)) have
already succeeded in including aspects from both Planning
and Scheduling (P&S) among their features. These archi-
tectures have always emphasized the use of a rich represen-
tation planning language to capture complex characteristics
of the domain involving time and resource constraints.

Most of recent research on planning has been devoted to
the integrated problem by evolving the plan domain spec-
ification formalism to include temporal duration specifi-
cation and, with some restrictions, resource consumption
(PDDL2.1 (Fox & Long 2003) is the standardized lan-
guage to compare all the efforts in this direction). The pur-
sued idea consists of stretching the specification of a pure
causal/logical problem to include time and resource features.

In the present work we are trying to follow a rather op-
posite perspective: we start from a pure scheduling speci-
fication and introduce language primitives to specify causal
constraints. The aim is to be able to specify a problem in
which not all the activities are specified and some of them
can be synthesized according to the particular choices done
either to serve resource constraints or to represent particu-
larly rich domains. This point of view of extending schedul-
ing engines with some activity synthesizing capabilities has
attracted a high attention especially to manage complex pro-
cess environments (see for instance Visopt ShopFloor sys-
tem (Bartak 2003)).

This very broad idea is currently implemented in a proto-
typical solver calledOMP. By means of a constraint based
representation,OMP uniformly deals with causal and re-
source constraints “on top” of a shared layer representing
temporal information as a Simple Temporal Problem (STP)
(Dechter, Meiri, & Pearl 1991). For the causal reasoning
we use a representation of domain components (calledstate
variables), consisting in temporal automata, as first pro-
posed in HSTS (Muscettolaet al. 1992; Muscettola 1994)
and studied also in subsequent works (Cesta & Oddi 1996;
Jonssonet al. 2000; Frank & Jonsson 2003).

In this architecture activities that have to be scheduled
are organized as a network, where nodes represents activ-
ities and edges represents quantitative temporal constraints
between them. Activities no longer represent a “blind set”
of entities that someone produced and gave to the sched-
uler, but they maintain information about logical links be-
tween them. Thus, an integratedP&Sarchitecture, can man-
age at the same time both types of information (causal and
resource) and solve the whole problem of generating and
scheduling these networks.

This approach can be usefully applied to those domains
where the scheduling problem is actually the hardest aspect,
resource reasoning is very critical with respect to causal
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reasoning and requires specialized scheduling technologies.
Those domains cannot be afforded with a planner that inte-
grates some generic scheduling features. Indeed this kind
of domain often does not require strong planning capabili-
ties. But enhancing the solver with some planning capabili-
ties allows us to tackle problems in these domains in a more
flexible way, as we will show also with a practical example.

In this paper we describe how using CSP technology we
have been able to (1) put causal reasoning into a scheduling
framework, (2) model and (3) solve the corresponding plan-
ning and scheduling problems. We additionally present a
sketchy description ofOMP and describe its current solving
abilities.

Scheduling with Causal Reasoning
As we said in the previous section, we focus oncausal
reasoningas a distinguishing factor between planning and
scheduling. We start from a scheduling framework which is
able to manage temporal and resource constraints, and try
to understand how to increase the capabilities of this frame-
work with planning features.

The approach described here relies on a constraint-based
representation for scheduling problems and aims at describ-
ing a framework where both planning and scheduling prob-
lem instances have as a common representation model, the
Constraint Satisfaction Problem (CSP) (Tsang 1993). A
CSP consists in a set of variablesX = {X1, X2, . . . , Xn}
each associated with a domainDi of values, and a set of
constraintsC = {C1, C2, . . . , Cm} which denote the le-
gal combinations of values for the variables s.t.Ci ⊆
D1×D2×· · ·×Dn. A solution consists in assigning to each
variable one of its possible values so that all the constraints
are satisfied. The resolution process can be seen as an itera-
tive search procedure where the current (partial) solution is
extended on each cycle by assigning a value to a new vari-
able. As new decisions are made during this search, a set of
propagation rulesremoves elements from the domainsDi

which cannot be contained in any feasible extension of the
current partial solution.

In a typical scheduling problem, there is a set ofactivities
that require certain amounts ofresources. There are also
a set of temporal constraints between these activities (du-
ration and minimal and maximal separation between pairs
of activities). Thus the problem is to findwhen to start
each activity in order to ensure that all temporal constraints
are respected and resources are never over or under used,
a constraint due to their finite capacity. Such a schedul-
ing problem can be solved for example with aPrecedence
Constraints Posting(PCP) approach (Cheng & Smith 1994;
Cesta, Oddi, & Smith 2002), in fact building a temporal net-
work where start and end points for each activity are mapped
as time points. The underlying CSP model for temporal in-
formation is usually an STP. Reasoning aboutresource pro-
files it is possible to deduce a set of additionalprecedence
constraintsbetween activities that, when posted, ensure re-
sources are never over used. The problem solving approach
is sketched in fig.1.

As we said the scheduling problem can be seen as the
output of a planning step, when two steps, planning and

Temporal
Network

Activities
Network

Resource
Profiles

Figure 1: Activities Network Scheduling

scheduling, are serialized, and the activity network come
from causal reasoning while temporal separation constraints
between activities come from cause-effect relations between
planned actions. Our aim is to go a little bit further than a
serialization of these two steps, and present a way to model
a scheduling domain where the modeler specifies how ac-
tivities that have to be scheduled are linked to each other
via cause-effect relationships, then find a solution for this
problem, i.e. planning which activities have to appear in the
scheduling problem, according to somegoalsthat have to be
achieved.

Most of current planning frameworks employ the STRIPS
ontology for domain description (Fikes & Nilsson 1971).
The basic aspect of this type of problem formalization con-
sists in describing domain causality in the form of actions
performed by an executor. Actions explicitly describe the
changes that their execution causes on the external world.

On the contrary, we follow a different ontological
paradigm. Rather than focusing on the executing agent, we
consider the relevant sub-parts of a domain that continuously
evolves over time. Then instead of specify which action can
be performed to modify the state of the world, under which
conditions and with which effects, we directly specify which
sequences of states are logically admissible for these sub-
parts. The state of the entire world at each instant of time is
the union of the values of these sub-parts at that instant. We
call these sub-partsstate variablesbecause in fact there are
entities, whose values over a temporal interval, determine
what is going on on the world, in the form of temporally
ordered sequences of state transitions. In addition to state
variables, we use the notion ofresourcesto model typical
scheduling features, besides cause-effect relationships.

We consider here an example from a space environment
where a spacecraft has to achieve some goals with its pay-
loads, like taking pictures with a camera or gathering some
specific data with instruments. A simplified model for this
domain, where observations have to be stored into an in-
ternal memory then downloaded to Earth, can be repre-
sented in our framework using two resources,Memoryand
Downlink Channel, a state variableSatellite, and a set of
state variables{I1, . . . , In} one for each on board instru-
ment. The state variableSatellite should take values in
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the set{Locked(target), Locking(target), Unlocked()}
where Locked(target) is its value when the satellite is
pointed toward the objecttarget, Locking(target) when
the satellite is moving to point its target andUnlocked()
is a sort of idle status. Each instrumentIi takes values
Perform Observation(target, data) when an observa-
tion of objecttarget is performed and information is stored
in data, Download Memory(data) whendata are down-
loaded to Earth (using communication channels) andIdle(),
an idle status.

As we have seen, a scheduling problem can be modeled
over a temporal network, as a network of activities with a
start and an end time point, linked to each other with tempo-
ral constraints, where each activity requires a certain amount
of some resource. In a similar way, callingtaska temporal
interval with a start and an end time point, a planning prob-
lem can be seen as a network of tasks, linked to each other
with temporal constraints, where each task says that the state
variable must take between its start and end point one of the
values specified. For instance in the bottom part of figure 2
we show an example of a task network for the state variable
Satellite we introduced before. There are 3 tasks, two of
them with only one allowable value. This network models
a situation in which the state variable must take the value
Locking(x)for 3 time units1 in the interval[t1, t3], the value
Locked(x)for 2 time units in[t4, t6] and one value in the set
{Locking(x), Locked(x)} for 3 time units in[t2, t5]. As in
scheduling we reason on resource usages by summing activ-
ity requirement at each time point and calculating resource
profiles. Likewise we can calculate a sort of “state variable
profile” by intersecting for each time instant the values re-
quired by each task that overlaps in that time instant. In the
top of figure 2 we show this profile. In fact the state variable
Satellite, according with the task network, can take the value
Locking(x)in [t1, t3], both valuesLocking(x)or Locked(x)in
[t3, t4], the valueLocked(x)in [t4, t6] while it can be any
value in its domain everywhere else.

time
0 H

{Locking(x),Locked(x)}

{Locking(x)} {Locked(x)}

t2 t5

t1 t3 t4 t6

{Unlocked(),
Locking(x),
Locked(x),}

{Locking(x)} {Locking(x),
Locked(x)}

{Locked(x)}
{Unlocked(),
Locking(x),
Locked(x),}

t1 t3 t4 t6

[1,1]

[3,3]

[1,1]

[0,H]

[0,H]

Figure 2: Tasks Network

With this representation of the problem we can see causal
reasoning as a sort oftask scheduling. The problem reduces
to searching for a feasible ordering for these tasks taking
care of the fact that each state variable needs to take at least
one value at each instant. Thus a state variable is a sort of
resource, where two tasks cannot overlap, unless their inter-
section is a non empty set of values.

1For the sake of simplicity duration constraints are not showed
in the figure. We showed only temporal constraints that must occur
between these tasks.

Moreover, becausetasksand activities in fact share the
same temporal network, the integration ofP&S is achieved
by mixing temporal constraints in an environment where
two specialized reasoners, a scheduler for resources and a
task schedulerfor state variables, analyze the situation of
a temporal constraint database, in fact posting constraints
that affect the whole integrated problem. Hence our point
of view: state variables and resources can be seen ascon-
current threadsin execution on a concurrent system, where
a shared temporal model allows crossing relations between
causal and resource usage aspects, even if two distinct rea-
soners affect them. In figure 3 we show three different net-
works, that can be either activities or tasks networks. They
are connected with cross temporal constraints (dashed lines
in the figure) which link (1) the causal problem with the
scheduling problem (for instance requiring a resource us-
age when a task is performed by a state variable); (2) causal
problems on different state variables (for instance requiring
that when a task is performed by a state variable another
state variable must perform some other tasks). Sharing a
common temporal network they share the same temporal
model, thus resources and state variable profiles in fact lie
in the same temporal line, as concurrent threads. But at
the same time causal, resource and temporal reasoning are
clearly separated: the last one is represented in bottom layer
in the figure, while the planning and scheduling problems
are represented as networks in the middle layer. Finally
we schedule these networks reasoning on resource and state
variable profiles (represented in the top layer).

Figure 3: Tasks and Activities Integration

Coming back to our example, we want to model both a
planning and a scheduling problem. A planning problem
because performing observations requires the execution of
some non trivial operations, such as pointing the satellite
toward the object that has to be observed,thenstoring infor-
mationwhile the satellite is locked,thendownloading this
information whenEarth is visible from the satellite. And
also a quite hard scheduling problem, because usually satel-
lites have limited resources, little memory and not so wide
communication channels. Thus we must pay attention to
communication channel usage and memory management.

In order to model these causal constraints we
must requirewhen a state variableIi takes the value
Perform Observation(target, data), the state variable
Satellite is Locked(target) and a valueDownload(data)
occurs sometimesafter the observation is performed.
Moreover, because we want to download data to Earth,
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when the value of a state variableIi is Download(Data),
the state variableSatellite must be Locked(“Earth′′)
(that can be for instance a dashed crossing line in figure
3). Finally the satellite must move toward its target be-
fore pointing it, thus each stateLocked(target) has to
be immediately preceded by aLocking(target) state.
This is a sort of domain theory, in which we specify
how the application domain works by expressing a set of
constraints over values that these variables can take over
time. Activities that have to be scheduled over resources
Memory and Downlink Channel are produced when
an observation is performed (consuming memory) and
when data are downloaded (freeing memory and using
communication channels). Then we must require that when
a state variableIi takes a valuePerform Observation
a resource consumption for resourceMemory has to be
scheduled (another crossing line in figure 3 for instance),
while a production for the same resource and a consump-
tion/production pair for the resourceDownlink Channel
must be scheduled. Of course the entity of such resource
usages depends on how many data have to be stored or
downloaded. We will explain more in detail in the next
section this model.

It is worth pointing out that, due to its ontology, because a
state variable can take no more than a single value for each
time instant, we are also modeling the fact that the satellite
can be pointed only toward an object at a time, and if we
want to observe more than one object or download data, we
have to change its pointing status, in fact moving the physi-
cal object that the state variableSatellite models.

From this point of view, once we specify some goals we
want to achieve, as for instance in our example defining
sometasksas Perform Observation(“Mars′′) with an
instrumentI1 between two time pointst1 and t2, in order
to follow all constraints specified in the domain theory, sev-
eral other tasks that have to be allocated over state variables
and several activities that have to be allocated over resources
are automatically produced, generating task and activity net-
works such as those we saw before, that share the same tem-
poral information. Thus, once all networkss are generated,
in fact unfolding the domain theory and ensuring all cause-
effect relationships are guaranteed according to the domain
theory, the problem becomes to find a feasible ordering for
these tasks and activities in a way that each state variable
takes at least and no more than one value at each instant of
time and resources are never over used. This purpose can be
achieved by scheduling tasks and activities. Moreover prop-
agation rules can be applied, in fact solving the whole prob-
lem as a CSP, alternating propagation and decision steps, as
we will show more in detail later.

Knowledge Engineering
As we have seen before, we follow an ontological paradigm
based on splitting the domain in several components, that
can be state variables or resources, then specifying a domain
theory as a set of constraints. Then, starting from some goals
we want to achieve, producing networks of tasks and activ-
ities that have to be scheduled over state variables and re-
sources.

Expressing a domain theory as a set of constraints over
values that several components can assume suggested us to
specify these components as a sort oftimed automata. Each
component can be specified as an automaton, where labeled
state transition rules specify cause-effect relations between
transitions (labels specify temporal intervals[min,max],
meaning that this transition must occur not beforemin and
not aftermax temporal units). Also states are labeled to
specify their durations.

Finally values of different state variables, activities that
have to be scheduled over resources and cross relations be-
tween tasks and activities are linked each other withsyn-
chronizationconstraints (basically other labeled transition
arcs that specify temporal relations between entities at their
extremes). Cross relations allow the modeler to link causal
theory and scheduling features: linking a task over a state
variable with an activity over a resource we put scheduling
into planning, allowing the modeler to require a resource
usage during certain world’s states, while from the other
hand, linking an activity with a task over a state variable we
put causal theory behind a scheduling problem, allowing the
modeler to require some states of the world when an activity
is scheduled.

This domain theory model is described usingDDL .2 spec-
ifications. TheDDL .2 domain description language (see
(Cesta, Fratini, & Oddi 2004) for a more detailed description
of this language) is an evolution with respect to the previous
proposal calledDDL .1 (Cesta & Oddi 1996).

As we have seen, state variables are basically finite timed
state automata so the specification of a state variable in-
volves the definition of its possible states and its allowed
state transitions. InDDL .2 a state variable definition speci-
fies its name and a list of values, calledstatesthat the state
variable may take. Each state is specified with its name and a
list of static variable types. Indeed the possible state variable
values forDDL .2 are a discrete list of predicate instances
like P(x1, . . . , xm). For each state variableSVi we specify:
(1) A name that uniquely indicate this kind of component;
(2) A domainDVi of predicatesP(x1, . . . , xm) and (3) A
domainDX j for each static variablexj in the predicate.

In Fig. 4(a) we show a possibleDDL .2 model for the
componentSatellite described in the last section where the
typeTARGET takes values on a set containing labels for
each interesting object in the world, plus, of course, a label
for the Earth (whiletarget is an element of this domain).
For each state we specify which states can follow it and
which state can hold before it, expressing in that way which
state transition rules are legal for that component. Value
Unlocked() for instance can hold at least for 1 second and
there is not upper limit to the time the satellite can be in
this idle status (statement[1,+INF ]), and can be followed
(StatementMEETS) by a valueLocking(target). Simi-
larly MET-BY statement allows to specify which value the
component can take just afterUnlocked() value. Roughly
speaking this model describes a simple component which
behavior is an alternation of sequences. . . Unlocked() →
Locking(target) → Locked(target) → Unlocked() . . .
and so on.
The main interesting feature of this language is the descrip-
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SV Satellite (Unlocked(),Locking(TARGET),Locked(TARGET))
{
COMP
{
STATE Unlocked() [1, +INF]{ MEETS{ Locking (x:TARGET);}

MET-BY { Locked (y:TARGET);}}
STATE Locking(x) [1, +INF]{ MEETS{ Locked (x)}

MET-BY {(Unlocked())}}
STATE Locked(x) [1, +INF]{ MEETS{ Unlocked ()}

MET-BY { Locking (x)}}
}}

(a) DDL .2 State Variable description

COMP
{
STATE PerformObservation (target,data) [time(target) , time(target)]

SYNC
{
DURING Satellite Locked(target) [5,+INF] [5,+INF];
BEFORE Instrument DownloadMemory(data) [time(data) ,time(data)];
USE Memory memoryOcc(data) [0, 0] [0, 0] AFTEREND;
USE Channel memoryOcc(data) [0, 0] [0, 0] FROMSTARTTOEND;
}
}

(b) DDL .2 Compatibility

Figure 4:DDL .2 specifications

tion of the so calledcompatibilities, a sort of schema used
to express synchronization constraints in a compact way. It
should be easy at this point to understand how: every time
that a task or an activity is added, compatibilities are used to
generate some other task or activities that have to be sched-
uled over state variables or resources in order to follow the
domain theory.

In our example some compatibilities have to be expressed
for instrument components. When they take the value
PerformObservation(target,data) we need that (1)target
must be visible (then a synchronization is required with a
Locked(target) value for state variableSatellite; (2) Ob-
served data have to be downloaded (then it must exists a
following stateDownloadMemory(Data)in the same com-
ponent behavior). It’s worth nothing you can specify very
complex constraints, like make data downloadable not be-
fore a certain slack of time (in order to perform some elab-
oration on it for instance) and not after another slack of
time (in order to avoid information starving for instance);
(3) You must have enough free memory and enough channel
rate to perform your operations,then activities overMemory
andChannelresource must be allocated. The amount of re-
source required from activities depends on how much data
the instrument produce or it’s able to transmit in time. Simi-
larly for DownloadMemorystate some compatibilities have
to be expressed, to be sure that only previous retrieved data
can be downloaded and Earth is visible. In Fig. 4(b) there
is a DDL .2 compatibility specification for a generic instru-
ment2.

Once you modeled the domain theory you can express
the problem that have to be solved specifying some goals
like actions that have to be performed by instruments com-
ponents, as temporally situatePerformObservationvalues,
and/or a set of pre-defined activities that have to be allo-
cated over resources in any feasible solution (goals over re-
sources).

Starting from this problem specification we can build sev-

2For the sake of brevity we do not showMEETandMET-BYstatement.timeand
memoryOccare two integer functions to calculate how many time need an observation
and which amount of data it produce.

eral networks of task or activity, one for each state variable
or resource. These networks contains a logically feasible
solution over a temporal network. Tasks and activities are
linked each other via temporal constraints, and have to be
scheduled to post more constraint until a solution is reached
(meaning that each state variable assumes at least and no
more than one value at each time instant and resources are
never overused).

Affording the whole problem, starting from a domain the-
ory description, is more useful than generate “blind” activ-
ities networks outside the architecture, then schedule them,
because we can interleave expansion and scheduling steps,
also changing tasks and activities in these networks if we
realize we cannot schedule them (in factDDL .2 allows the
modeler to specify a disjunction of compatibilities that can
be used to expand networks).

The solutions produced are feasible both from planning
point of view (meaning that downloads follow observations
and every operation is performed when the satellite is right
oriented) and from the scheduling point of view (memory
and channel are never overused).

Problem Solving
We have shown how in our framework we can dynamically
generate networks of tasks or activities, where entities have
to be allocated over state variables or resources. These en-
tities share a common temporal model, and are linked to
each other via temporal constraints. Thus we can reason on
each of these networks, deducing, as typical in CSP problem
solving, necessary constraints via propagation, and analyz-
ing the underlying temporal problem in order to calculate
which precedence constraints have to be posted to guarantee
a feasible allocation of these entities over resources or state
variables. All temporal constraints deduced via propagation
and all precedence constraints posted as search decisions af-
fect the whole shared temporal representation, and each de-
cision, even about resource allocation or task ordering, has
an automatic feedback over all other tasks and activities.

In the pure scheduling case methods to deducenecessary
constraints by propagating informations about resource us-
ages have been widely studied. It is possible do deduce a
set of ordering constraints between activities that must be
posted, just because otherwise a resource violation surely
occurs. That is the case of the two activities shown in the
top part of fig 5, which are supposed to be scheduled over
a binary resource. From the underlying temporal network,
we know that the first one can hold somewhere betweent1
(basically the lower bound of its starting point) andt2 (the
upper bound of its ending point), while the second one can
hold betweent3 andt4. Due to the fact that (1) They can-
not overlap because the binary resource does not allow two
activities to hold at the same time; (2) There is no way for
the second activity to hold before the first one with respect
to the temporal position of the involved start and end points;
we can deduce that the second one must hold strictly after
the first one. Thus a temporal constraints[0,∞] is automati-
cally posted between the end of the first activity and the start
of the second. The result is shown in the bottom part of the
same figure.
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Act 1
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Figure 5: Propagation

Generally that is not enough in order to solve the prob-
lem. Sometimes a search decision is necessary. For instance
in the left side of fig. 6 we show a situation with two activ-
ities that have to be scheduled again over a binary resource.
But this time even analyzing the underlying temporal prob-
lem we are not able to calculate any necessary precedence
constraint between these two activities:both orderings are
temporally feasible. Thus a search decision step must be
made, basically between the two feasible orderings shown
in the right side of the same figure.

Act 1

Act 2

Act 1

Act 2

Act 1

Act 2

OR

Figure 6: Scheduling decision

Of course constraints posted during the propagation step
are necessary, i.e. they prune only non-feasible solutions,
meaning thatany feasible solutionmustcontain these con-
straints. On the other hand scheduling precedence con-
straints aresearchdecisions, thus theycouldcut some feasi-
ble solutions. Thus it could be necessary to backtrack during
the search and choose a different ordering for some activi-
ties if it is not possible to find any solution from that point
on.

In the case of more complicated types of resources than
binary ones, like multi capacity resources, aPrecedence
Constraint Postingapproach (Cesta, Oddi, & Smith 2002)
can be applied to calculate a set of feasible ordering con-
straints between these activities that guarantee, once posted
over the temporal network, that involved resources are never
under or over used.

We go a little bit further, studying how to schedule tasks
over state variables, basically following the guidelines we
have shown above. Now we are going to show (1) a method
for discovering an inconsistency of posted constraints (i.e.
a temporal interval where the intersection of values allowed
by constraints over that interval is an empty set) (2) a prop-
agation algorithm which is ables to discover new necessary
orderings between tasks in order to avoid necessary incon-
sistences over state variables.

Task networks scheduling
More formally with respect to what we did above, a task
tk over a state variableSV can be thought as a tuple

〈s, e, dur, S〉 wheres ande are the start and the end time
points of an interval[s, e] such thate− s ≤ dur. If the state
variableSV can take values over a setD, a task specifies a
subsetS of values inD that are allowed during the interval
[s, e]. Roughly speaking a task specifies a disjunction of al-
ternatives values from the domainD that the state variable
can take during its temporal interval, as an activity specifies
an amount of resources needed during its interval.

Follow an idea inspired from (Laborie 2003), for each task
tki in the net we can compute, with respect to all the other
tasks in the net, six different sets:

1. The setBi of tasks that surelyendbeforetki (s.t.∀tkj ∈
Bi, ej < si);

2. The setAi of tasks that surelystart aftertki (s.t. ∀tkj ∈
Ai, sj > ei);

3. The setO<
i of tasks that surelyhold during the start point

of tki (s.t.∀tkj ∈ O<
i , sj ≤ si ∧ ej > si);

4. The setO>
i of tasks that surelyhold during the end point

of tki (s.t.∀tkj ∈ O<
i , sj < ei ∧ ej ≥ ei);

5. The setU<
i of tasks that areunranked with respect to the

start pointof tki, meaning that they can overlaptki or be
ordered beforetki, not after (s.t.∀tkj ∈ U<

i , sj < ei∧ej

is unranked with respect tosi).

6. The setU>
i of tasks that areunranked with respect to the

end pointof tki, meaning that they can overlaptki or be
ordered aftertki, not before (s.t.∀tkj ∈ U>

i , ej > si∧sj

is unranked with respect toei).

Roughly speaking we subdivide the set of tasks in three
subsets: (1) Tasks that are no interesting, meaning that can-
not create problems because they cannot overlaptki in any
solution (setsBi andAi); (2) Tasks interesting for discover
dead ends, because surely overlaptki in any solution (sets
O<

i andO>
i ); (3) Tasks that can overlap or nottki (setsU<

i
andU>

i ) that have to be analyzed to understand if it is possi-
ble to post some necessary precedence constraints. Basically
the same situation showed in fig. 5.

We calculate for each tasktki two sets:

IO<
i =

⋂

k

Sk,∀tkk ∈ {O<
i ∪ {tki}}

IO>
i =

⋂

k

Sk,∀tkk ∈ {O>
i ∪ {tki}}

basically the intersection of values allowed by surely over-
lapping tasks, respectively with respect to the start and the
end point oftki.

Using these definitions we can easily discover dead ends:
if ∃tki‖(IO<

i ≡ ∅ ∨ IO>
i ≡ ∅), means it is not possible to

find a set of values that the state variable can take when the
tasktki starts or ends because the intersection of all values
allowed by the tasks in the net that surely overlap is empty.
So there is not any feasible solution, meaning there is no
way to order these tasks to avoid intervals where the state
variable cannot take any value.

Similarly we calculate for each tasktki two further sets:

IU<
i =

⋂

k

Sk,∀tkk ∈ {O<
i ∪ U<

i ∪ {tki}}
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IU>
i =

⋂

k

Sk, ∀tkk ∈ {O>
i ∪ U>

i ∪ {tki}}

basically the intersection of values allowed by both surely
and unranked overlapping tasks, respectively with respect to
the start and the end point oftki.

If we haveIO<
i 6= ∅ ∧ IU<

i ≡ ∅ or IO>
i 6= ∅ ∧ IU>

i ≡ ∅,
it means that not all tasks thatcould hold during the start
point or the end point oftki can actually hold at the same
time. This test is performed to understand if we can cal-
culate somenecessaryordering between tasks (obviously if
all constraints that could overlap a given task can hold to-
gether no necessary constraints can be calculated). But if all
tasks that could overlaptki cannot hold together (i.e. when
IU<
i ≡ ∅ or IU>

i ≡ ∅), we investigate which of them can-
not overlaptki. Thentki must be constrained to start af-
ter the end of each tasktkj ∈ U<

i such that its allowed
values has empty intersection with values allowed bytki.
When previous relation holds, a temporal precedence con-
straint betweensi and ej must be posted. Symmetrically
we can find winch tasks inU>

i must start after the end of
tki. Roughly speaking we prune the search space calculat-
ing precedence constraints between pairs of tasks that could
temporally overlap but that require sets of values for the state
variable with empty intersection.

In general it is not possible to find a completely safe or-
dering for tasks through propagation only. Choices must be
made between several order when two tasks can be ordered
in two way (as in fig. 6), or when two task are not temporally
related but, because their values, they cannot overlap for
sure, or when there are groups of 3 or more tasks that exhibit
pairwise non empty overlapping, but that cannot overlap all
together. Following the same basic idea of Precedence Con-
straint Posting approach mentioned above (you havepeak
of resource contention when simultaneous activities require
more than maximum amount of resource availability), in our
case you have apeakof state variable contention when si-
multaneous tasks require sets of values with empty intersec-
tion. In fact we can schedule tasks as activities, analyzing
“state variable profiles”, findingconflict sets(a set of tasks
potentially overlapping that have an empty intersection) and
looking for feasible ordering that can solve the conflict.

The Architecture of OMP

OMP is an integrated constraint-based software architecture
for planning and scheduling problem solving. This archi-
tecture implements an interval based planner and scheduler,
built around the idea presented above. Basically, starting
from a domain theory expressed inDDL .2 OMP builds tasks
and activity networks over a shared temporal network, then
schedules them as we explained.

The OMP software architecture essentially implements,
from an abstract point of view, the typical CSP loop solving
strategy, performing alternatively decision and propagation
phases, starting from a CSP problem model. In an high level
block view ofOMP’s architecture we see adecision making
module that explores the search space posting constraints
in a constraint database, that maintains information about
the current partial solution and propagates decision effects

pruning the search space, starting from a domain theory CSP
model(see fig. 7).

Temporal Network

Resource
Manager

State Variable
Manager

CSP Planner

Resource
Scheduler

State Variable
Scheduler

Constraint Database

Decision Making
Module

Figure 7:OMP Software Architecture

The temporal problem is managed and solved only via
constraint propagation (this is because the STP is polynomi-
ally affordable) and, in this case, there is not a decision mak-
ing phase, meaning that temporal constraints can be posted
over atemporal networkthat calculates all necessary infor-
mation (time lower and upper bounds of time points, plus
distance between pairs of time points) using an All Pair
Shortest Path algorithm.

Resource allocation and state variable management prob-
lems rather need both a constraint propagation phase and a
solution search phase. Thus there are inOMP two modules,
the resource managerand thestate variable manager, that
manage task and activity networks basically by performing
constraints propagation strictly connected with twoschedul-
ing modules(in the decision making module) able to analyze
the resource and state variable constraint databases and to
calculate several sets of precedence constraints between ac-
tivities and between tasks, precedence constraints that when
posted over resource and state variable networks are able
to guarantee that scheduling problems over these compo-
nents are solved and each solution is feasible with respect
to resource and state variable component constraints. These
scheduling modules generate a search space, where at each
node the decision making module can choose between dif-
ferent activity or task orderings. Resource propagation algo-
rithms described in (Laborie 2003) have been implemented
in a resource manager module, and the algorithm described
below has been implemented for the state variable manager.
Both for resource and state variable scheduling we basically
use the precedence Constraint Posting Approach adapted to
the features of this architecture.

Temporal, resource and state variable networks consti-
tute, from a CSP point of view, the constraint database in
theOMP software architecture. The decision maker module
closes the loop. TheCSP planneris the decision making
module core: it explores the search space, making choices
between: (1) which tasks and activities are necessary in or-
der to force domain theory compliance and (2) which order
to force among tasks on a state variable or activity over a
resource when propagations are not able to prune all non-
feasible orderings (this set is computed by the scheduler
modules).

In fact the planner, starting from some goals (that is tasks
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and activities that must appear in the final solution) dynam-
ically unfolds the domain theory putting more tasks and ac-
tivities into networks. Every time that a new task or activity
is added we deduce, via propagation rules, new constraints
that affect the situation of all networks, due to the shared
temporal model. Moreover it is feasible to discover dead
ends, and by interleaving scheduling and unfolding steps we
integrate planning and scheduling (DDL .2 allows the user to
model different expansions for a task or an activity, thus dif-
ferent networks can be built for the same problem).

BecauseOMP has been built starting from a scheduling
core the primary aim of our preliminary experimentation has
been to asses its scheduling capabilities. We have focused on
the benchmark problem set described in (Kolisch, Schwindt,
& Sprecher 1998). With a timeout of 100 seconds we were
able to find at least one solution in more than 89% of the
problems which are known to be solvable (with a 9.21%
average deviation with respect to known best makespan) in
the case of theJ30problem set. We are currently focusing
on modeling a set of meaningful integratedP&S domains
which reflect real world application scenarios (see (Cesta,
Fratini, & Oddi 2004) for an example).

Conclusions

This paper presented our current approach to planning and
scheduling integration: we are studying how a constraint
based scheduler can be endowed with the ability to synthe-
size new activities, i.e., by reasoning on planning knowl-
edge.

We underlined howCausal Knowledgeis the main dis-
tinguishing factor between planning and scheduling, thus
building an architecture where causal reasoning can be per-
formed behind time/resource reasoning allowed us to bridge
the gap between these two AI research lines, extending from
one hand pure planning schemes with quantitative time and
resource reasoning and from the other hand extending pure
scheduling schemes with a more complex domain theory.

Our aim was to solve integrated planning and schedul-
ing problems by rationally integrating in the same architec-
ture various of the state-of-the-art CSP algorithms. Then we
showed as modeling the integrated planning and schedul-
ing problem as concurrent evolving components allows us
to afford it as network scheduling, where networks are auto-
matically generated in the same architecture from a compact
domain theory description and some goals that have to be
achieved.

This integrated approach was built sharing a common
CSP representation for all informations involved: time, re-
source and causal knowledge. Thus state of the art propaga-
tion and scheduling algorithms were used embedding them
into the architecture. Thanks to our effort in exploiting simi-
larities and differences between planning and scheduling we
were able to present a framework where causal knowledge
model and management are very close to a pure scheduling
problem, then we were able to develop similar approaches
for task scheduling.
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Abstract

The increasing complexity of embedded real-time ar-
chitectures, as well as the design of critical systems, has
become both difficult to manage and costly. Mapping
statically the set of tasks onto a multi-processor system
is one of the most crucial issues. The designer must
guarantee system feasibility, based on the system model
and consideration of design decisions with respect to the
requirement set. Our approach combines well-known
online preemptive scheduling algorithms and their asso-
ciated feasibility conditions, with problem solving tech-
niques that are based on Constraint Logic Programming
(CLP). We address a large class of online preemptive
scheduling algorithms including so called fixed prior-
ity policies (Highest Priority First - HPF), as well as
dynamic priority policies (specifically, Earliest Dead-
line First - EDF). The paper presents how to solve the
mapping problem on representative examples, consid-
ering globally both task placement and hard real-time
schedulability constraints. Optimization techniques are
also experimented in order to minimize system dimen-
sions. Lastly, we outline different recommendations for
the design of efficient search strategies. Several bench-
marks from various domains are considered as running
examples throughout the paper.

Introduction
Deficiencies in the design or dimensioning of a critical and
real-time high-performance system can cause fatal failures.
In order to prove that for an entire system, real-time and ar-
chitectural size requirements are met, it is necessary to prove
its dimensioning. A relevant example of correct system di-
mensioning is ensuring that the processing resources are suf-
ficient. This is a huge task as the increasing complexity of
systems involves designs of combinatoric complexity. To
master the complexity of system specification and design,
we consider a proof-based methodology, like TRDF1 as dis-
cussed in (Le Lann 97)(Le Lann 98). TRDF allows trans-
lation of the (incomplete and/or ambiguous) description of
an application problem into a precise specification. To be
acceptable, computer-based systems must come with proofs
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2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1TRDF is the French acronym of Real-Time Distributed Fault-
Tolerant Computing.

that all the decisions made during the system design satisfy
system specification.

The complexity of target architectures has increased too,
with many functional units incorporated on a single chip, the
placement of tasks onto the set of processors remains a com-
plex problem raising combinatorial explosions. It is neces-
sary to consider simultaneously several interdependent sub-
problems such as task scheduling and placement. Usually
highly combinatoric, each of these problems is characterized
by feasibility constraints and design decisions (scheduling
policy, data allocation strategy, communication protocols).
Therefore, applying a proof-based method requires multiple
formulations for the representation of the global system. The
modelling phase of the method captures the invariants of the
system specification, but also decomposes and simplifies its
design complexity from coarse to fine grain. The designer
has to solve a task placement problem, and must guarantee
real-time schedulability. Evenmore, the designer needs to
optimize the architecture to fit some space requirements or
to optimize system performances.

Our approach relies on Constraint Logic Programming on
finite parts of � CLP(FD) with all its classical operators
(Van Hentenryck et al. 95). We claim that this language can
solve and possibly optimize the design of complex hard real-
time systems. One area of experimentation for Constraint
Programming techniques has been the automatic data-layout
of High-Performance FORTRAN programs onto parallel
computers, using ����� modelling, CPLEX and branch-and-
bound searches (Bixby and al. 94). Using CLP, relevant re-
sults have also demonstrated the efficiency of the approach
for modelling and solving Digital Signal Processing place-
ment problems (Ancourt and al. 97),(Thiele 97). Another
area of investigation has been the engineering of real-time
(multi-processor) applications (Bacik and al. 98),(Guettier
and Hermant 99). For all these examples, it has been neces-
sary to solve the global problem globally using a composite
model.

This paper presents a global approach for solving or opti-
mizing automatically the mapping of real-time tasks onto
multi-processor architectures using CLP. Focusing on the
feasibility conditions of real-time scheduling algorithms,
generic models and search methods are proposed to tackle
the mapping feasibility, as well as the system size opti-
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mization. The different modelling steps required to express
tractable feasibility conditions in CLP are detailed for an
exhaustive class of online scheduling policies. It encom-
passes necessary and sufficient feasibility conditions for on-
line scheduling algorithms such as Earliest Deadline First
(EDF), Highest Priority First (HPF), as well as its specializa-
tions, Deadline Monotonic (HPF/DM), and Rate Monotonic
(HPF/RM). In spite of their complexity, we demonstrate that
analytical feasibility conditions can be expressed as equiv-
alent feasibility constraints with CLP. Different composite
search strategies are also proposed, combining load balanc-
ing and priority assignement (Audsley 1991) techniques.
This association of offline solving techniques with online
scheduling solutions is a new approach to the proof-based
design of complex distributed and real-time systems.

Problem Specification
In this section, we specify the problem under consideration
according to the TRDF method (Le Lann 97),(Le Lann 98).
First, system requirement capture is summarised. Require-
ments are modeled in a fairly standard fashion, taking into
account the problem models. Second, we state the major
problem property, i.e. the timeliness property. As a result, it
is possible to meet hard real-time constraints that would not
be satisfied with a single processing element.

Models of System Requirements
In subsequent sections of the paper, demonstrations are per-
formed using the assumptions that follow. System require-
ments define a global design problem that must be broken
down into several sub-problems of lower complexity. Each
sub-problem can be modeled with its own mathematical in-
variants. Finding a set of feasible solutions to a given sub-
problem requires the instantiation of all the variables of the
sub-problem. Relations resulting from this decomposition
correlate model variables. They maintain the consistency of
different local solutions and thus feasibility of the global so-
lution.

Computational Model We assume the synchronous com-
putational model (task durations have known bounds). With-
out loss of generality for the models described in this paper,
we will use a discrete time model: �
	�� .

Task Model Let � be the task set to execute. We consider
a level of specification where each task �	�� is represented
by a sequence of steps, each step being mapped onto exactly
one processor. A task has a worst case computation time� �������	�� which can be constant or variable offline. When
it is variable, upper and lower bounds exist and their values
are known.

External Event Types Models All tasks are ready to exe-
cute whenever requested. Activation demands of a task are
constrained by a periodic or sporadic arrival model (Mok
83).

Periodic Sporadic
The ������� �"!$#�% activation date of task & is denoted '(���)�*! .
The first activation date of task & corresponds to � �,+.- .

� ��0/21 �*3 4 	��5� �76 � 	�� ,
� �� �28 	9���:/21 �;3 < 	��5� �=6 � 	��>,?@6 �$ACB 1 �*3 4�D 6 �;E=� , >,?@6 �$AFB G"HI<KJ=4 1 �*3 <�D 6 �@E7�

The period/minimal inter-arrival time of task  is denotedE7� 	��CL
The concrete or non-concrete attributes of task  :
Concrete: 1M�*3 4 known. NO17�;3 <QPR<"SUT known.
Non-concrete: 1 �*3 4 unknown. NO1 �;3 < P <"SUT unknown.

where 1 �*3 4 is a phase difference/ NU1 �;3 < P <"SUT are phase differ-
ences. The sporadic model is more general than the peri-
odic model (Mok 83) and our approach holds for both arrival
models.

In subsequent sections of the paper, we consider a pe-
riodic/sporadic non-concrete traffic � , which is a fi-
nite set of V periodic/sporadic non-concrete traffics �W� . A
periodic/sporadic non-concrete traffic � � captures an infi-
nite set of periodic/sporadic concrete traffics X � . A peri-
odic/sporadic concrete traffic X � is caracterized by its known
activation dates N >M?*6 � A P G"H SUT , its worst case computation
time � � , its period/minimal inter-arrival time EY� , and its rel-
ative deadline Z � . �76 � 	[��� >,?@6 �]\�^_A � >M?*6 �$Aa`bE7� and�dce����cgfh$ViN E �j�KZk�lP . The term traffic is commonly used
in the telecommunication community to refer to a task set.
These two terms can be used indifferently.

Task Placement Model For each task  , we use a coarsed
grain placement form in order to size the task workload ac-
cording to the whole target architecture. At a first glance,
this can be formulated using classical set partitioning for-
mulations.

Architectural Model The architectural model is MIMD
“Multiple Instruction Flow, Multiple Data Flow”, where the
different processors can execute multiple instructions in par-
allel. The architecture is homogeneous, worst case compu-
tation time � � does not depend on which processor is  is
placed.

Property
To be feasible, the solution must satisfy the timeliness prop-
erty, under the models described above.

Tasks are assigned timeliness constraints: latest termina-
tion deadline. A solution is said to be feasible if for ev-
ery possible system run, every timeliness constraint is met.
Values of deadlines are dictated by application considera-
tions. A deadline can be expressed as a natural number:� �	��2��Z � 	�� L
Example of real world specifications
This section presents three realistic specifications extracted
from real world applications discussed in (Tilman et al.
01),(Guettier and al. 01), that are used as on-going exam-
ples throughout this paper. Althought various cost functions
could be investigated, finding a feasible solution on a min-
imal set of processors is considered to be the engineering
cost objective.
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Task m7npoiq$r s,ntoiqlr uinpoiqlr
insert target 50 250 100
distance eval 100 500 150
pursuit target 150 500 300
suppress target 20 200 500

Figure 1: Example of a detection system.

Task m7npoiq$r s,ntoiqlr uinpoiqlr
FDIR 20 100 100
energy manager 100 500 400
camera controler 40 100 100
mmemory controler 400 600 1000
telecom protocol 100 400 200
antena controler 40 100 200
unload protocol 200 400 200

Figure 2: Example of an observation spacecraft
system.

Detection system: As a simpler example, we propose a
detection system (typical of airborne radars or sonars) that
manages a list of targets. A Digital Signal Processing system
(out of the scope of the example) processes a beamforming
algorithm (Ancourt and al. 97).

Spacecraft system: This system performs some observa-
tions and saves its data on a mass memory (Tilman et al. 01).
Controled remotely from earth, the spacecraft can neverthe-
less perform Fault Detection Isolation and Recovery. Data
can be unloaded or new pictures ordered using a communi-
cation antenae.

UAV Avionic system: It is a typical (although very sim-
plified) core functional architecture (fig. 3) of a Unmanned
Aerial Vehicle (UAV) system (Guettier and al. 01). It per-
forms some observations that are downloaded, following a
predefined mission plan. According to situation awarness,
the mission manager task sends limited corrections to the
speed and altitude controller tasks. It can also send situation
information to a remote operator.

Hard real-time scheduling & mapping models
This section presents the constraint based model of the hard
real-time scheduling and mapping problem. Feasibility con-
straints of scheduling algorithms are extracted from the state
of the art in hard real time computing and modeled using a
CLP(FD) language.

The mapping model, based on a set partitioning formu-
lation is at first defined. A more generic formulation than
well-known uniprocessor scheduling feasibility conditions
is then detailed. These necessary and sufficient constraints
are involving variables � � � E7� ��Z � as well as task partition-
ing. The modelling includes Highest Priority First (HPF)
like Deadline Monotonic (DM), Rate Monotonic (RM) as
well as Dynamic Priority classes of scheduling such as Ear-
liest Deadline First (EDF).

In order to improve the problem solving efficiency, sev-
eral decisions in problem representation have to be made. In
the sequel, we explain how the modelling is refined in order
to extract sufficient conditions, used as heuristic constraints.
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Task m7npoiqlr s,npoiq$r u�npovqlr
attitude control 3 8 8
fuel manager 2 30 20
mission manager 4 20 11
gps update 5 40 11
autoprotection 6 40 16
fault detection 5 20 11
speed controler 2 10 11
gyro acquisition 6 10 15
beam input 4 10 15
com manager 2 15 14

Figure 3: Example of an UAV avionic system.

Furthermore, throughout the modelling, constraints are re-
fined in order to be tractable with CLP capabilities.

Mapping models
The mapping of real-time applications can be decomposed
into task placement, architectural and relational models. Set
partitioning is expressed using �5�w� formulation and repre-
sents task distribution. The architectural model is then ex-
pressed as a resource constraint. Additional relational state-
ments ensure the global solution consistency.

Task placement as set partitioning We use a �x�y� for-
mulation to specify whether the processor z is allocated to a
given task  . This model has been widely investigated for the
representation of various combinatorial problems involving
set partitioning (Gondran and Minoux 95).

� �	��2� � z9	�{ �2�0|~} G"� A �v� �� 	�NO�2�_�QP� C	����K���Y�K�O� ^I� J=4 � �� B � (1)

Statement (1) specifies that a task  is allocated to a single
processor z iff � �� B � . Using this formulation, the actual
partitioning may lead to a lower number of busy processors.

Architectural resource constraints The number of busy
processors � has an upper-bound determined by the con-
stant | } G�� . It defines the number of processors required
to map the entire task and is given by � B�� 6��U> NKz�	{ ���K|~} G�� A_� /�
	��,�O� �� B ��P .
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� B �Y�Y���U� ^I� J=4 � 6���;S�� N_� �� P (2)

Relational Constraints Relational statements between
models are required to retrieve global consistent solutions
and to globally optimize cost functions such as the system
size. � C	9�2� � z�	 { �2�0|~} G�� A ��� � ? z ACB � ��� � �� (3)

Modelling feasibility constraints of online
scheduling algorithms
The scheduling algorithms under consideration belong to the
class of online real-time scheduling algorithms. In this class,
there are two subclasses: that of deadline-driven scheduling
algorithms and that of fixed-priority scheduling algorithms.
EDF belongs to the former subclass and dominates any
other scheduling algorithm belonging to the latter subclass,
such as, for instance, Highest Priority First/Deadline Mono-
tonic (HPF/DM) and Highest Priority First/Rate Monotonic
(HPF/RM) (Dertouzos 1974).

This section gives feasibility conditions for EDF and HPF
policies, which allows us to conduct a comparative study in
terms of constraints complexity.

Basic concepts This section defines the basic concepts in-
troduced in (Liu and Layland 73). Further sections extend
the approach and recast feasibility conditions into tractable
constraints for CLP languages.

The workload � ? zY�K����� A : By definition, the workload� ? z������K� A for each processor z is the amount of time that is
needed to run all the tasks whose activation times are in { �2�K� A
(Baruah et al. 1990b). To give the expression of � ? z�������� A ,
we consider the synchronous concrete traffic X�	�� , where� �� �(8 	��
�:1M�*3 < B � .
� ? z������K� ACB I<"S�� � ? z������ 8 ACB I<"S��

� �E,<(� �C< ? z A"� (4)

A necessary feasibility condition (NC): This well-known
necessary condition can be used as a heuristic to solve the
global problem.

� is feasible by EDF, HPF � � z�	�{ ���K| } G�� A ���I<KJ�^ � <
? z AE�< cy� �

(5)
sketch of the proof:

We derive the utilization factor ���t M¡l¢(! from the workload£ �t M¡@¤0¥l¢�! :
���t M¡l¢(! +�¦ &;§ #�¨:©gª £ �t M¡*¤0¥l«Y¬���¢�!l!¤  +¯®°±K²=³v´ ± �t 2!µ ±·¶

By definition, the utilization factor ���t ,¡$¢(! for processor   is the
fraction of time that is needed to run all the tasks over ¸ - ¡�¹a! , i.e.,

the limit of
£ �t M¡@¤0¥l¢�!lº"¤ as ¤ tends to infinity. If « ¬ ��¢(! is feasible

by EDF, then ���t M¡l¢�!�».� -W-W¼ .

Using exact feasibility conditions for EDF
The EDF policy works as follows (Liu and Layland 73).

At any time �½	y¾ \ , if there are pending tasks (i.e., tasks
which have been previously activated but which have not
been fully completed yet), EDF runs the task which has the
earliest absolute deadline. The processor is then said to be
busy. To decide between tasks having the same absolute
deadline, EDF makes use of a tie-breaking rule (e.g., a ar-
bitrary order). If there are no pending tasks, EDF runs no
task. The processor is then said to be idle (see example in
figure 4). In this paper, we consider preemptive versions for
EDF and its associated analytical feasibility conditions.

The processor demand ¿ ? zY�K����� A :
¿ ? zY�����K� ACB �I<KJ�^ ¿ ? z������ 8 A

B �I<"S�� f 6��ÁÀ ���R� DÃÂ �i� ZÄ<E�<ÆÅÈÇ � < ? z A (6)

By definition, the processor z demand ¿ ? zY�K����� A is the
amount of time that is needed to run all the tasks whose ac-
tivation times and absolute deadlines are in { �����$É (Baruah et
al. 1990b). To give the expression of ¿ ? z�������� A , we consider
the synchronous concrete traffic XÊ	�� .
A necessary and sufficient feasibility condition (NSC):� is feasible by EDF Ë� ��	9¾ \ ��¿ ? zY�K����� A cg��Ì (7)

� is feasible by EDF ËÎÍiÏ)z,Ð SOÑ�Ò)Ó À ¿ ? zY�K����� A� Ç cÔ� � (8)

sketch of the proof:
By definition, the processor demand ÕM�t ,¡Ö¤0¡$¢(! is the amount of

time that is needed to run all the tasks whose activation times and
absolute deadlines are in ¸ - ¡l¤Ö× . ¢ is feasible by EDF, if and only
if, ØU �Ù.¸ - ¡�Ú ovÛ�Ü !K¡@Ø�¤:Ù�ÝiÞF¡iÕ,�t M¡$¤0¡$¢(!:»g¤ , i.e., if and only if,ß7à   #@á_â Ò)Ó2ã ÕM�t M¡Ö¤0¡l¢�!lº"¤�äå»æ� -W-W¼ .

Study interval: In order to be operationally satisfied, fea-
sibility constraints cannot be stated on ¾ \ L . Although
the processor busy period ç (Hermant et al. 96),(Hermant
98) is a candidate interval, the resulting constraints are not
tractable in a CLP model. Instead, the study interval is set toè Bêé(� ��*S�� ? E=�@A and is preprocessed. Therefore, equation (8)

becomes:

� is feasible by EDF ËëÍiÏ�z Ð S(ìí4R3 î�ï À ¿ ? z������K� A� Ç ch� (9)
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��� - ¡l¢�! + ®° � ²=³F´ �µ � +�- ¶ þ (10)

ÿ + ®° � ²7³ � ÿµ ��� ´ �M+����W- §	� (11)

Ø�¤�Ù�¸ - ¡ ���W- !K¡�ÕM� - ¡Ö¤0¡l¢�!i»�¤ (12)

Figure 4: Mapping of the detection system onto a
single processor

Example of feasible mapping: A feasible mapping of the
detection system onto a single processor can be de-
rived. The utilization factor 
 ? ����� A is given in (10). Instead
of
è

, the length of the busy period ç is used as the study
interval (11). Lastly, the necessary and sufficient feasibil-
ity condition for EDF (12) holds true, illustrated by a feasi-
ble schedule of the synchronous activation scenario (worst
cases) in fig. 4.

Using exact feasibility constraints for HPF At any time�9	 ¾ \ , if there are pending tasks (i.e., tasks which have
been previously activated but which have not been fully
completed yet), HPF runs the task which has the highest
priority (Liu and Layland 73). Priorities can be allocated
according to deadlines (said to be deadline monotonic) or
period (also called rate monotonic). The highest priority
correponds respectively to the lower deadline or the lower
period. Priorities can also be computed statically in order
to optimize the execution (Audsley 1991), for example, by
maximizing the workload. As for EDF, we consider a peri-
odic/sporadic non-concrete traffic � , which is a set of V peri-
odic/sporadic non-concrete traffics � � . When a set of tasks is
allocated to the same processor, a priority order is associated
to � , as follows.

Priorities: � C	9�2� �28 	��,�O��B 8 �i/UzÁ�? � � � B � A� ? � �< B � A Ë ?]8��  A�� ?  � 8 A (13)

where � the exclusive or.

Response time
�(? z����������� A : To establish necessary and

sufficient conditions as schedulability constraints for HPF
(Lehoczky 90), (Tindell and al. 94), one has to consider the
worst case response time

�(? zY�����K���� A 	�� associated to task and processor z . The task set is feasible, if and only if, for
each task  , at any activation � , the response time meets the
deadline Z � :

� feasible by HPF Ë� z�	�{ �2�K|~} G�� A � � C	��2� � �F	 { ����� A � ��? zY�K�������� A cÊZ �
Workload � ? z������K0�K� A : For each task, the response time
can be rewritten using the workload � ? z�� 6 ������ A 	 � , as
follows: � �	��2� � z�	 { ���K| } G�� A � � �F	 { ����� A ��(? z������K0�K� AFB � ? z���������K� A �a�

Let us consider a task  (of priority  ). In { �2�K�$É , the maxi-
mum number of executions of task  is � D�� �K� EY��� . For each
task
8

(of lower priority
8	�  ), in { ����� ? zY�K�������� AKA , the max-

imum number of executions of task
8

is ��� ? zY�����K���� A � E <�� .
Hence, the workload can be written as follows:

� ? z���������K� AFB�� � D Â �E=��Å � �
� D I<"S��"!l<�#7� � � ? zY�����K���� AE,< � �C< ? z A
(14)

The resulting necessary and sufficient condition: By re-
placing

�(? z������K0�K� A , it follows that:

� feasible by HPF Ë � F	��2� � �
	 { �2�$� A � � z�	�{ �2�K| } G�� A �� ? z������K0�K� A cg� D Zk� (15)

This set of equations converges to a fixed point, which can
be solved using the fixed point semantics of CLP languages.
A tractable interval for activations { �2��� A must be specified
for implementing the constraint using a CLP language. First,
a maximal study interval can be specified using the greater
common multiple of the periods/sporadicities. Second, for
each task, activations can be formulated using the associated
period/sporadicity according to the worst case analysis. This
leads to: � C	9�2����	�{ ���&% � �<"S�� ? E,<WAKA� C	���� � �
	�{ ���&% � �<"S�� ? E < A�A �0/('_� � � B 'R� � E ��� (16)� C	��2� � ' � 	 { �2�)% � �<"S�� ? E,<_A � E=�ÖA (17)

As for EDF (in eq. 9), the % � � constraint, which has
not received efficient implementation yet, is preprocessed.
Here again, upper-approximation may be found in order to
keep the global problem tractable by CLP. Using constraints
(16,17) constraint (14) can be simplified:

� ? z��&'R�K����K� ACB ? � D '_� A ��� D I<"S��*!j<�#7� � � ? z��&' � �K���� AE,< � �C< ? z A
(18)

such that the NSC (15) becomes:
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Figure 5: Mapping of the detection system using
HPF/DM or HPF/RM and HPF/DM onto two processors.

� feasible by HPF Ë� C	9�2� � 'R�i	�{ �2�)% � �<"S�� ? E < A { � � z�	�{ �2�K| } G�� A �� ? zY�)' � ������ A cH' �j� E7�MD Z � (19)

Lastly, the priority order (13) may not be instantiated.
Therefore, the formulation (18) leads to the enumeration
of all priority order without the consideration of constraint
propagation. A more efficient approach is to model the pri-
ority order using a permutation matrix I , such that state-
ment (18) Ë (20): I 	 NW�2�_�QPKJ G$L)M ì]�_ï&N J G$L�M ì �_ïO�QP BRIÈ� O�k� OE P BSIÈ� OE � O�TP ? z��&'R����� AFBSIÈ� O� ? z��&'_���K� A� P ? z��&'_���K0�K� ACB ? � D '_� A � P� D I<"S(U 4R3 �]ïWV � P ? zY�)' � ������ AE P< X � P< ? z A (20)

Example of feasible mapping: An optimal mapping (in
terms of the number of processors) of the detection
system can be given on two processors, using a HPF
policy (fig. 5). It considers tasks insert target
and distance eval placed onto processor � , while
tasks pursuit target and suppress target are
placed onto processor � . For processor � , task
insert target is assigned the highest priority, while
task distance eval is assigned the lowest. This as-
signment corresponds to the Deadline Monotonic (DM) or
the Rate Monotonic (RM) fixed priority assignment. For
processor � , task pursuit target is assigned the high-
est priority, while task suppres target is assigned the
lowest. This assignment corresponds to the Deadline Mono-
tonic fixed priority assignment.

This placement defined can also be computed automati-
cally using the CLP models implementation.

Automatic Solving Using CLP Language
Several problems can be solved using models presented.
Specific periods, deadlines, response or computation times
that would be related to an applicative function (such that
the worst case durations of the UAV control tasks) can be
solved. However, within the scope of this paper, the focus
is on a non-functional requirement: the minimal number of
required processors � .

Search strategies
This section presents the main design concepts for search
strategies dedicated to the scheduling and mapping problem
under consideration.

Elementary search The elementary search strategy is
based on the labeling and Branch & Bound predicates,
provided in most of CLP implementations (Carlsson et al.
97). Even when problem models are tractable, these basic
strategies are too weak to cope with the largest problem in-
stances.

Load balancing strategies So called load balancing
heuristics can be introduced as static heuristics, or as a dy-
namic search strategy. These heuristics and strategies can be
used for both HPF and EDF scheduling policies.

Static heuristic: This strategy is similar to elementary
search, but disjunctive constraints on the utilization factor
are added in order to statically decompose the search space.
This strategy structures the search space in favour of as-
signements that do not under-utilize processors (also called
no starvation heuristic).

Dynamic balancing search strategy: Instead of using
standard labeling predicates, this strategy reorders dy-
namically2 the set of variables to explore. Each time a place-
ment variable � < Y is successfully instantiated (which indi-
cates that task

8
is placed on processor ' ), a set of variablesf � B N_� ^� �_�R� � �� P is selected according to the least uti-

lized processor z . The selection function tests the minimal
bounds of constraint variables NZ
 ?\[ ��� A P �Y�Y���4 . Then, the
strategy attempts to instantiate one variable of the set f � .
If one variable can be successfully instantiated, the strategy
starts over until all the tasks are placed. Otherwise, it back-
tracks and another processor is selected according to the in-
creasing order of utilization factors.

Uniprocessor optimal priority assignment heuristic:
The last search strategy to be investigated relies on the
uniprocessor optimal priority assignment (PA) (Audsley
1991). Using this method, only the problems involving HPF
scheduling policies can be improved. Far from being opti-
mal on multi-processor problems, this PA method can nev-
ertheless be used as a heuristic. The search strategy first

2Here, the term ’dynamic’ does not mean that the strategy is
performed online, but that the construction of the search tree is
dynamic (e.g. during the search itself).
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enumerates the set of placement variables, for each proces-
sor and each task � �� . Then, for each processor, the opti-
mal PA is performed. It consists of instantiating tasks of a
highest priority first, without backtracking on these assign-
ments (Audsley 1991). Still complete, this technique obvi-
ously simplifies the search complexity. The PA heuristic can
be used in combination with both static and dynamic bal-
ancing strategies but may conflicts with the load balancing
strategies.

Experiments
Six combinations of strategies (figure 6) and scheduling
policies have been experimented on 522 problem instances,
optimising for the number of processors. The elementary
strategy without any heuristic does not give meaningful re-
sults in reasonable time, until the static load heuristic is
added.

Problem generation method
The experimentation method relies on the real world exam-
ples. A problem generation technique operates by iteratively
decreasing of 5% the task deadlines until problem instances
becomes infeasible for the maximum number of processors.
This way, problem instances become more difficult by de-
creasing the global laxity of the hard real-time constraints.
Experiments are performed on a 1Ghz Intel III processor,
with 256 MBytes of main memory and WindowsXP Pro and
SICStus Prolog 3.9.0, using finite domain constraint library
(Carlsson et al. 97).

Global results
The subset of experiments under consideration (figure 6) en-
ables the comparison of the different policies (namely EDF
and HPF) for the mapping problem, as well as the various
strategies proposed. Figure (figure 6) includes data gathered
from the three benchmarks. On this figure, the column best
solutions is the number of instances for which at least one
solution is retrieved. The column proof of completeness is
the number of instances for which the problem is solved op-
timally or for which it can be proved that no feasible solution
exist.

policy, strategy number of instances best solution proofs of completeness

EDF, static load 87 82 62
HPF, static load 87 65 26
HPF, static load, PA 87 76 39
EDF, dynamic load 87 86 66
HPF, dynamic load 87 66 26
HPF, dynamic load, PA 87 57 41

Figure 6: Experiments under consideration

At first glance, experiments suggest that solving the map-
ping problem with an EDF scheduling policy is easier than
with its HPF equivalent. Globally, the priority assignment
heuristic improves the search efficiency (for HPF cases),
when the static load heuristic is activated. For HPF cases,
and without the priority assignment heuristic, the strategies
fail to prove completeness for any of the problem instances
in benchmark spacecraft system and uav avionic

(completeness can be proved only for the 26 easy instances
of the detection system benchmark).

When considering the EDF policy, the number of prob-
lems solved is 5% better (6% better for the proofs of com-
pleteness) by replacing the static load balancing heuristic
with a dynamic search. This is also the case for the HPF
policy using the priority assignments heuristic, but only for
the proof of completeness (41 versus 39 instances). As a re-
sult of the conflicting strategies, the dynamic load strategy
combined with the PA heuristic gives a reduced performance
on the number of problems solved (57 versus 66 instances).

Evaluation of solutions
Figure 7 compares the number of processors found for the
two non-trivial benchmarks (spacecraft system and
uav avionic), when decreasing the global laxity. Using
the EDF policy, search strategies find a smaller number of
processors. Furthermore, using this policy, more problems
can be (optimally) solved in the time limit imposed. By con-
vention, when the strategy fails to give any feasible solution
or to prove that the problem instance is not feasible, a ver-
tical line is drawn. As for the global results, the priority
assignment heuristic improves the costs, except for the con-
flicting load balancing strategy.

Strategy performances
For the purpose of the experiments, a time-out is imposed
on the different runs. Therefore, experiments that success-
fully yield to a proof of optimality (mainly on benchmarks
detection system and spacecraft system) are
separated from experiments that lead to optimized solu-
tions, without guarantee of optimality (mainly on bench-
marks spacecraft system and uav avionic).

Time for proving optimality Figure 8 gives the different
completion times for benchmark spacecraft system
to prove solution optimality according to the dif-
ferent search strategies. Concerning the benchmark
detection system, the proof of optimality can be per-
formed for all the experiments with ] and ^ processors.
However, due to the little differences between solving du-
ration and the small problem size, the curves are not repre-
sented in this paper.

With the EDF policy, proof of completeness can
be performed on all the problem instances of the
spacecraft system in figure 8, and similarly on parts
of the problem instances of the uav avionic. In gen-
eral, the time for proving the optimality is not modi-
fied when replacing the load balancing heuristic with the
dynamic load balancing strategy. For the benchmark
spacecraft system, and using the priority assignment
heuristic, proofs of optimality can be performed for a subset
of instances. The dynamic load balancing strategy improves
the solving time only for two instances. Without the priority
assignement heuristic, strategies fail to prove completeness
for the HPF scheduling policy in the time limit (7 seconds).

Time for finding an optimized solution Figure 9 gives
the completion times for benchmark uav avionic to find
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Figure 7: Theuav avionic example (6 processors): com-
parison of the minimal number of processors with different
search strategies

an optimized solution. The time out range is 20 seconds.
Again by convention, a vertical line is drawn when the solv-
ing strategy fails to produce any feasible solution or to prove
that the problem instance is not feasible. It is not obvious
that the dynamic load balancing strategy improves the solv-
ing duration on 9-a. Furthermore, as shown on figure 9-
b, the conflict of this strategy with the priority assignment
heuristic gives a counter-performance (instances under 200
of laxity cannot be solved). In contrast, for the EDF pol-
icy, strategies are improved with the load balancing heuris-
tic, even for the set of non-feasible instances (as shown on
figures 9-a and 9-b).

Conclusions and Further Work
This paper demonstrates that the necessary and sufficient
conditions can be preserved while modelling the feasibil-
ity of HPF and EDF preemptive scheduling policies using
a CLP language. From a Constraint Programming point
of view, this represents an interesting alternative to the
fully static approach generally considered, where preemp-
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Figure 8: Time to complete proof of optimality on the
spacecraft system example (4 processors)

tive scheduling is solved completely offline. The constraint-
based modelling described in this paper has a larger applica-
tive impact, as many real-time operating systems for embed-
ded applications make use of HPF policies. Furthermore,
using these constraint-based models, various mapping prob-
lems can be solved. On realistic benchmarks, experiments
have shown that proofs of completeness can be found in rea-
sonable time.

The paper illustrates how to support the engineering of
distributed real-time systems using a proof-based method.
As a matter of fact, a generic heuristic, such as load bal-
ancing performs better with EDF. With other HPF policies,
the benefit of this heuristic is not clear, even using dynamic
search techniques that are generally recognized as strong
strategies. It is very difficult to conclude on the gain of the
priority assignment heuristic, although dedicated to the HPF
scheduling policy.

Most importantly, the paper shows for real world exam-
ples that the design of distributed real-time architectures is
simpler using EDF policies. On various problem instances
with the EDF policies, strategies have been able to prove
search completeness. As a result, the solution optimality
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Figure 9: The uav avionic example (6 processors): time
to retrieve optimized solutions using the different strategies

or the non feasibility of these problem instances can be
decided, proven and guaranteed. For the same instances,
strategies fail to prove search completeness using HPF poli-
cies. This paper is a first step towards the promising combi-
nation of offline and online multi-processor scheduling tech-
niques. The modelling of communication protocols shall be
part of further works.
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Abstract

In (EHW04b), the authors introduced to constraint pro-
gramming the notion of (a, b)-super solutions. They are
solutions in which, if a small number of variables lose
their values, we are guaranteed to be able to repair the
solution with only a few changes. This concept is use-
ful for scheduling in dynamic and uncertain environ-
ments when the robustness of the schedule is a valu-
able property. We introduce a new algorithm for finding
super solutions that improves upon the method intro-
duced in (EHW04a) in several dimensions. This algo-
rithm is more space efficient as it only requires to double
the size of the original constraint satisfaction problem.
The new algorithm also permits us to use any constraint
toolkit to solve the master problem as well as the sub-
problems generated during search. We also take advan-
tage of multi-directionality and of inference based on
the neighborhood notion to make the search for a solu-
tion faster. Moreover, this algorithm allows the user to
easily specify extra constraints on the repairs.

Introduction
In (EHW04b), the authors introduced to constraint program-
ming the notion of (a, b)-super solutions. Super solutions
are a generalization of both fault tolerant solutions (WB98)
and super models (MGR98). These are solutions such that
a small (bounded) perturbation on the input will have pro-
portionally small repercussions on the outcome. For in-
stance when solving a scheduling problem, we may want
that, in the event of a machine breaking, or of a task exe-
cuting longer than expected, the rest of the schedule should
change as little as possible if at all. As a concrete example,
consider the following job-shop scheduling problem, where
we need to schedule four jobs consisting of four activities,
each requiring a different machine. The usage of a machine
is exclusive, and the sequence of a job is to be respected.

Job 1:

Job 2:

Job 3:

Job 4:

The second figure shows an optimal solution.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Job 1:

Job 2:

Job 3:

Job 4:

One may argue that this solution is not robust. Indeed
activities are tightly grouped and a “break” on a machine,
and the subsequent delay, may trigger further delays in the
schedule. On the other hand the next figure shows a solution
where, for a small makespan increase, a large proportion of
activities can be delayed of two units of time, without affect-
ing at all the rest of the schedule.

Job 1:

Job 2:

Job 3:

Job 4:

Such solutions are thus stable in the sense that when in-
validated, a close alternative solution can be applied. How-
ever, there are a number of other ways to capture robustness.
for instance in (HF93), the approach to robustness is prob-
abilistic and a robust solution is simply one that is likely
to remain valid after a contingent change. The problem of
scheduling under uncertainty has been widely studied in the
past (See (AD01) and (NPO04) for instance). We wish to
investigate how super solutions compare to these special-
ized methods. For instance, if we consider the slack-based
framework (AD01), the intuitive idea is that a local pertur-
bation will be “absorbed” if enough slack is available, end
therefore solutions involving slack are preferred. Now, one
can think of a scenario where the best reaction to a delay or
a break would not be to delay the corresponding (plus per-
haps few other) activity, but to postpone it and advance the
starting time of another activity instead. This situation is not
captured by slack based method. Although, it is important to
notice that if the latter approach aims at minimizing the im-
pact of a delay on the makespan, it is only a secondary con-
sequence for super solutions. Indeed, the main concern is
to limit the number of activities to reschedule. Therefore, a
direct comparison is difficult. The concept of flexible sched-
ule is more closely related to our view of robustness as this
method promotes stability against localized perturbations.

On the other hand, super solutions have a priori several
drawbacks compared to such specialized approaches.

Firstly, finding super solutions is a difficult problem and
as a result the methods proposed so far are often restricted
to toy problems like the one used in the previous example.
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Algorithms with better performance have been proposed for
very restricted classes of super solution. However, if we do
not restrict ourselves to these classes, solving a problem of
reasonable size is often out of reach with the current ap-
proaches.

Another difficulty is that, being a general framework, it
is not always immediately applicable to a specific problem.
In (EHW04a) we showed how super solutions have to be
adapted to cope with specifics of job shop scheduling prob-
lems in particular. For instance, if variables are activities and
values are time points, then we cannot schedule to an earlier
time point as a response to a break. Moreover, moving the
same activity to the next consecutive time point may not be
a valid alternative.

In this paper we introduce a new algorithm that can help
to address the above drawbacks. The central feature of the
new algorithm is that it is closer to a “regular” solver, we
solve both the original problem as well as sub-problems gen-
erated during search using any standard constraint solver.
Therefore, methods that have been proven to be effective in
a particular area (like shaving (CP94), specialized variable
orderings (SF96) or specialized constraint propagators) can
be used both for the main problem and the sub-problems.
We also propose a more effcient and more effective algorithm
than what has been proposed in (EHW04a). The new algo-
rithm is more efficient as we avoid solving all sub-problems
and it is more effective by using the information gathered
when solving these sub-problems to get more pruning on
future variables. Moreover, this architecture also helps to
adapt the criteria of robustness to the problem. Indeed, to
model a particular requirement we can just add it as a con-
straint to the sub-problems.

Formal background and notations
A constraint satisfaction problem (CSP) P consists of a set
of variables X , a set of domains D such that D(Xi) is the
finite set of values that can be taken by the variable Xi, and
a set of constraints C that specify allowed combinations of
values for subsets of variables. We use upper case for vari-
ables (Xi) and lower case for values (v). A full or partial
instantiation S = {〈X1 : v1〉, . . . 〈Xn : vn〉} is a set of as-
signments 〈Xi : vj〉 such that vj ∈ Xi. We will use S[i] to
denote the value assigned to Xi in S. A (partial) solution is
an instantiation satisfying the constraints. Given a constraint
CV on a set of variables V , a support for Xi = vj on C is
a partial solution involving the variables in V and contain-
ing Xi = vj . A variable Xi is generalized arc consistent
(GAC) on C iff every value in D(Xi) has support on C. A
constraint C is GAC iff each constrained variable is GAC on
C, and a problem is GAC iff all constraints in C are GAC.
Given a CSP P and a subset A = {Xi1 , . . . Xik

} of X , a
solution S of the restriction of P to A (denoted P |A) is a
partial solution on A such that if we restrictD(Xi) to {S[i]}
for i ∈ [i1..ik], then P can be made GAC without domain
wipe-out.

We introduce some notations used later in the paper. the
function H(S, R) is defined to be the Hamming distance
between two solutions R and S, i.e., the number of vari-
ables assigned to different values in S and R. We also de-

fine HA(S, R) to be the Hamming distance restricted to the
variables in A.

HA(S, R) =
∑

Xi∈A

(S[i] 6= R[i])

An a-break on a (partial) solution S is a combination of
a variables among the variables in S. A b-repair of S
is a (partial) solution R such that HA(S, R) = |A| and
H(S, R) ≤ (a + b). In other words, R is an alternative
solution for S such that if the assignments of the variables
in A are forbidden, the remaining “perturbation” is restricted
to b variables.

Definition 1 A solution S is an (a, b)-super solution iff for
every a′ ≤ a, and for every a′-break of S, there exists a
b-repair of S.

The basic algorithm
We first describe a very simple and basic version of the algo-
rithm without any unnecessary features. Then we progres-
sively introduce modifications to make the algorithm more
efficient and more effective.

The basic idea is to ensure that the current partial solution
is also a partial super solution. In order to do so, as many
sub-problems as possible breaks for this partial solution have
to be solved. The solutions to these sub-problems are partial
repair solutions. We therefore work on a copy of the original
problem that we change and solve for each test of reparabil-
ity. Note that the sub-problem is much easier to solve than
the main problem, for several reasons. The first reason is that
each of the sub-problems is polynomial. Indeed, since a re-
pair solution must have less than a + b discrepancies with
the main solution, the number of possibilities is bounded
by na+bda+b. Typically, the cost of solving one such sub-
problem will be far below this bound since constraint prop-
agation is used. Another reason is that we can reuse the
variable ordering dynamically computed whilst solving the
main problem. Furthermore, we will demonstrate later that
not all breaks have to be checked, and that we can infer in-
consistent values from the process of looking for a repair.
Pruning the main problem is critical, as it not only reduces
the search tree, but also reduces the number of sub-problems
to be solved.

The algorithm for finding super solutions is, in many re-
spects, comparable to a global constraint. However, it is im-
portant to notice that we cannot define a global constraint
ensuring that the solution returned is a super solution as
this condition depends on the variables domains, whilst con-
straints should only depend on the values assigned to vari-
ables and not their domains. For example, consider two vari-
ables X1, X2 taking values in {1, 2, 3} such that X1 < X2.
The assignment 〈X1 = 1, X2 = 3〉 is a (1, 0)-super solu-
tion, however, if the original domain of X1 is {1, 3}, then
〈X1 = 1, X2 = 3〉, is not a (1, 0)-super solution. Neverthe-
less, the algorithm we introduce could be seen as a global
constraint implementation as it is essentially an oracle tight-
ening the original problem It is however important to ensure
that this oracle is not called for every change in a domain as
it can be costly.
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Initialization: In Algorithm 1, we propose an pseudo code
for finding super solutions. The input is a CSP, i.e., a triplet
P = (X ,D, C) and the output a (a, b)-super solution S. We
first create a copy P ′ of P , where X ′i ∈ X

′ iff Xi ∈ X
and C ′ ∈ C′ iff C ∈ C. This copy will be used to find b-
repairs. At any point in the algorithm,D(Xi) (resp. D′(X ′i))
is the current domain of Xi (resp. X ′i). The set Past ⊆ X
contains all variables that are already bound to a value and
we denote Past′ the set containing the same variables, but
“primed”, Past′ = {X ′i|Xi ∈ Past}.

Algorithm 1: super-MAC(P, a, b)
Data : P, a, b

Result : S: an (a, b)-super solution
S ← ∅; Past← ∅; P ′ ← P ;
if ¬backtrack(P, P ′, S, Past, a, b) then

print “NO SUPER-SOLUTION”;

print “A SUPER-SOLUTION FOUND: S”;

Main Backtracker Procedure (Algorithm 2) searches and
backtracks on the main problem P . It is in very similar to
a classical backtracker that maintain GAC at each node of
the search tree, except that we also add a call to the proce-
dure reparability at each node. Note that any solver
or local/global consistency property can be used instead as
long as the procedure reparability is called. A possi-
ble way of implementing reparability –in a standard
constraint toolkit– can be as a global constraint containing
internally the extra data structure P ′ and an associated spe-
cialised solver. As such global constraint can be costly, it
should not be called more than once per node.

Algorithm 2: backtrack(P, P ′, S, Past, a, b) : Bool
if Past = X then return True;
choose Xi ∈ X \ Past;
Past ← Past ∪ {Xi};
foreach v ∈ D(Xi) do

saveD;
D(Xi)← {v};
S ← S ∪ {〈Xi : v〉};
if AC-propagate(P ) & reparability(P, P ′, S, Past, a, b)
then

if backtrack(P, S, Past, a, b) then return True;

restoreD;
S ← S − {〈Xi : v〉};

Past = Past − {Xi};
return False;

Enforcing reparability: Procedure reparability
(Algorithm 3) makes sure that each a-break of the solution
S has a b-repair. If |S| = k then we check all combinations
of less than a variables in S, that is

∑
j≤a(k

j ) breaks.
This number has no closed form, though it is bounded
above by ka. For each a-break, we model the problem
of the existence of a b-repair using P ′. Given the main
solution S and a break A, we need to find a b-repair, that

is, a solution R of P ′|Past′ such that HA(S, R) = |A|
and H(S, R) ≤ |A| + b. The domains of all variables
are set to their original state. Then for any X ′i ∈ A, we
remove the value S[i] from D′(X ′i), thus making sure
that HA(S, R) = |A|. We also add an ATMOSTkDIFF
constraint that ensures H(S, R) ≤ k, where k = |A| + b.
Finally, we solve P ′|Past′ , it is easy to see that any solution
is a b-repair.

Algorithm 3: repairability(P, S, Past, a, b):Bool
foreach A ⊆ Past′ such that |A| ≤ a do

foreach Xi ∈ A do
D′(X′

i
)← D(Xi)− {S[i]};

k ← (|A|+ b);
S′ ← solve(P ′|

P ast′
+ATMOSTkDIFF(X ′ , S));

if S′ = nil then return False;
return True;

Propagating the ATMOSTkDIFF constraint: The
ATMOSTkDIFF constraint is defined as follows:

Definition 2 ATMOSTkDIFF(X ′1, . . . X
′
n, S) holds iff k ≥∑

i∈[1..n](X
′
i 6= S[i])

This constraint ensures that the solution we find is a valid
partial b-repair by constraining the number of discrepancies
to the main solution to be lower than a+ b. To enforce GAC
on such a constraint, we first compute the smallest expected
number of discrepancies to S. Since S is a partial solution
we consider the possible extensions of S. Therefore, when
applied to the auxiliary CSP P ′ this number is simply

d = |{i|D′(X ′i) ∩ D(Xi) = ∅}|

We have three cases:

1. If d < k then the constraint is GAC as every variable can
be assigned any value providing that all other variables
X ′i take a value included in D(Xi), and we will still have
d ≤ k.

2. If d > k then the constraint cannot be satisfied.
3. If d = k then we can set the domain of any variable X ′i

such that D(X ′i) ∩ D(Xi) 6= ∅ to S[i].

Comparison with previous algorithm This new algo-
rithm is simpler than the one given in (EHW04a) as no extra
data structure is required for keeping the current state of a re-
pair. Moreover, the space required is at most twice the space
required for solving the original problem, whilst the previ-
ous algorithm stored the state of each search for a b-repair.
We want to avoid such data structures as they are exponen-
tial in a. Even though a is typically a small constant, this
can be prohibitive. Another advantage in doing so is that the
search for a repair can easily be done, whereas in the pre-
vious algorithm, doing so would have been difficult without
keeping as many solver states as breaks, since the search was
starting from the point it ended in the previous call.

The search tree explored by this algorithm is strictly
smaller than that explored by the previous algorithm. The
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methods are very comparable as they both solve sub-
problems to find a b-repair for each break. However, since
the sub-problems solved by this previous algorithm were im-
plemented as a simple backtrack procedure (without con-
straint propagation), it was not possible to check if a b-repair
would induce an arc inconsistency in an unassigned variable.

Improvements
Now we explore several ways of improving the basic algo-
rithm.

Repair multi-directionality
The multi-directionality is a concept used for instance
for implementing general purpose algorithms for enforcing
GAC. The idea is that a tuple is a support for every value it
involves. The same metaphor applies when seeking repairs
instead of supports. In our case, suppose that we look for a
(2, 2)-super solution and suppose that R is a repair solution
for a break on the variables {X, Y } that require reassign-
ing the variables {V, W}. This constitutes also a repair for
{X, V }, {X, W}, {Y, V }, {Y, W} and {V, W}. We there-
fore need not to look for repair for these breaks.

We used a simple algorithm from Knuth (Knu) to generate
all ≤ a-breaks. This algorithm generates the combinations
in a deterministic manner, and therefore constitutes an or-
dering on these combinations. Moreover, this ordering has
the nice property that given one combination in input, one
can compute the rank of this combination in the ordering in
linear time on the size of the tuple. The size of the tuple is in
our case a small constant, we thus have an efficient way of
knowing if the break that we currently consider is covered
by an earlier repair. Each time a new repair is computed, all
breaks it covers are added to a set, then when we generate a
combination, we simply check that its index is not in this set
otherwise we do not need to find a repair for it.

Neighborhood-based inference:
The second observation that we make to improve the effi-
ciency is less obvious but has broader consequences. First,
let us introduce some necessary notation:

A path linking two variables X and Y is a sequence of
constraints CV1

, . . . CVk
such that i = j + 1 ⇒ Vi ∩ Vj 6=

∅ and X ∈ V1 and Y ∈ Vk, k is the length of the path.
The distance between two variables δ(X, Y ) is the length
of the shortest path between these variables (δ(X, X) = 0).
∆d(X) denotes the neighborhood at a distance exactly d of
X , i.e., ∆d(X) = {Y | δ(X, Y ) = d}. Γd(X) denotes
the neighborhood up to a distance d of X i.e., Γd(X) =
{Y | δ(X, Y ) ≤ d}. Similarly, we define the neighborhood
Γd(A) (resp. ∆d(A)) of a subset of variable A as simply⋃

X∈A Γd(X) (resp. ∆d(A)).
Now we can state the following lemma which will be cen-

tral to all the subsequents improvements. It shows that if
there exists a b-repair for a particular a-break A, then all
reassignments are within the neighborhood of A up to a dis-
tance b.

Lemma 1 Given a solution S and a set A of a variables,
the following equivalence holds:

∃R s.t. (H(S|A, R|A) = a and H(S, R) < d)
⇔

∃R′ s.t. (H(S|A, R′|A) = a and
H(S|Γd−a(A), R

′|Γd−a(A)) = H(S, R′) < d)

Proof: We prove this lemma constructively. We start from
two solutions S and R that satisfy the premise of this im-
plication and construct R′ such that S, R′ satisfy the con-
clusion. We have H(S, R) = k1 < k, therefore exactly
k1 variables are assigned differently between S and R. We
also know that H(S|A, R|A) = |A| = a therefore only
b = k1 − a are assigned differently outside A. Now we
change R into R′ in the following way. Let d be the small-
est integer such that ∀Xi ∈ ∆d(A), R[i] = S[i]. It is easy
to see that d ≤ b as ∆d1

(A) and ∆d2
(A) are disjoint iff

d1 6= d2. We let all variables in Γd(A) unchanged, and for
all other variables we set R′[i] to S[i]. Now we show that
R′ satisfies all constraints. Without loss of generality, con-
sider any constraint CV on a set of variables V . By defini-
tion, the variables in V belongs to at most two sets ∆d1

(A)
and ∆d2

(A) such that d1 and d2 are consecutive (or possibly
d1 = d2). We have 3 cases:

1. d1 ≤ d and d2 ≤ d: all variables in V are assigned as in
R, therefore CV is satisfied.

2. d1 > d and d2 > d: all variables in V are assigned as in
S, therefore CV is satisfied.

3. d1 = d and d2 = d + 1: the variables in ∆d2
(A) are

assigned as in S, and by definition of R′, the variables in
∆d1=d(A) are assigned as in S, therefore CV is satisfied.

3

Computing this neighborhood is not time expensive, as it
can be done as a preprocessing step. A simple breadth first
search on the constraint graph, i.e., the graph were any two
variables are connected iff they are constrained by the same
constraint. The neighborhood Γd(A) of a break A is recom-
puted each time, however it just requires a simple union op-
eration over the neighborhood of the elements in A.

Updates of the auxiliary CSP: The first use of Lemma 1
is straightforward. We know that, for a given break A, there
exists a b-repair only if there exists one that sharea all as-
signments outside Γb(A). Therefore, we can make P ′ equal
to the current state of P apart from Γb(A). This does not
make the algorithm stronger. However, we can then post
an ATMOSTkDIFF constraint only on Γb(A) instead of X ′,
since we have all the pruning on X ′ \ Γb(A) for “free”.

Avoiding useless repair checks: Now suppose that
Γb+1(A) ⊆ Past′. Then we know that this break has al-
ready been checked at the previous level in the search tree,
and the repair that we found has the property that assign-
ments on ∆b+1(A) are the same as in the current solution.
Thus any extension of the current partial solution, is also
a valid extension of this repair. Therefore we know that
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this repair will hold in any subtree, hence we do not need
to check it unless backtracking beyond this point.

Tightening the ATMOSTkDIFF constraint: Considering
the property of Lemma 1, we can tighten the ATMOSTkDIFF
constraint by forbidding some extra tuples. Doing this, we
get a tighter pruning when doing arc consistency, while
keeping at least one solution, if such solution exists. The
first tightening is that all differences outside Γb(A) are for-
bidden. But, we can do even more inference. For in-
stance, suppose that for that we look for a 3-repair for the
break {X ′1} and that ∆1(X

′
1) = {X ′2, X

′
3}, ∆2(X

′
1) =

{X ′4}, ∆3(X
′
1) = {X ′5, }, and the domains are as follows:

X ′1 = {1, 2}, X ′2, X
′
3 = {3, 4}, X ′4, X

′
5 = {1, 2, 3, 4}

Moreover, suppose that for the main backtracker, the do-
mains are as follows:

X1 = 3, X2, X3, X4, X5 = {1, 2}

We can observe that already 2 reassignments are made at
distance 1 from X1. As a consequence, if X ′5 was to be
assigned differently to X5, then X4 would have to be equal
to X4, and therefore there is no discrepancy on any variable
from ∆2(X

′
1), hence there must be a repair such that any

variable outside Γ2(X1) is assigned as in the main solution.
We can thus prune the values 3 and 4 fromD(X ′5) (to make
it equal to X5).

Inference from repair-seeking to the main CSP: We can
infer that some values of the main CSP will never participate
in a super solution while seeking for repairs. This allows us
to prune the future variables, which can greatly speed up the
search process, especially when combined with GAC prop-
agation on “regular” constraints. For instance consider con-
straint problem P , composed of the domain variables:

X1 = {1, 2, 4}, X2 = {1, 2}, X3 = {1, 2}, X4 = {1, 2}

subject to the following constraint network:

X1 X2

sum is even 6=

X4

X3

=

sum ≤ 3

We have P ′ = P , and it is easy to see that P is arc consis-
tent. Now suppose that we look for a (1, 1)-super solution,
and our first decision is to assign the value 1 to X1. The
domains are reduced so that P remains arc consistent:

X1 = {1}, X2 = {1}, X3 = {1, 2}, X4 = {1, 2}

Then we want to make sure that there exist a 1-repair for
the break {X1}. We then consider P ′ where D(X ′1) is set
to D(X ′1) \ {1}. Moreover the constraint ATMOST2DIFF is
posted on Γ1({X1}) = (X1, X2):

X ′1 = {2, 4}, X ′2 = {1, 2}, X ′3 = {1, 2}, X ′4 = {1, 2}

Since P ′|{X′

1
} is satisfiable, (for instance, {〈X ′1 : 2〉} is a

partial solution that does not produce a domain wipe out in

any variable of P ′) we continue searching. However, if be-
fore solving P ′ in order to find a repair we first propagate
arc consistency, then we obtain the following domains:

X ′1 = {2, 4}, X ′2 = {2}, X ′3 = {1}, X ′4 = {2}

Observe that 2 ∈ D(X3) whilst 2 6∈ D(X ′3), this means that
no repair for X1 can assign the value 2 to X3. However,
Lemma 1 works in both direction, since X ′3 6∈ Γ1(X

′
1), we

can conclude that X ′3 and X3 should be equal, and therefore
we can prune the value 2 directly from X3. In this toy ex-
ample, this removal will make P arc inconsistent, and there-
fore we can conclude without searching that X1 cannot be
assigned to 1.

Notice that this extra pruning comes at no extra cost, the
only condition that we impose is to make P ′ arc consis-
tent before searching on it. After this arc consistent pre-
processing for a break A, any value pruned from the domain
of a variable X ′i ∈ X

′ \ Γb(A), can be pruned from Xi as
well.

The main drawback of this method is that as soon as
the problem involves a global constraint (for instance “all
the variables must be different”), then typically we have
Γ1(Xi) = X for any Xi ∈ X . Therefore all previous im-
provements based on neighborhood are useless. However,
one can make such inference, but using a different reason-
ing, even in the presence of large arity constraints. The idea
is the following: Suppose that after enforcing GAC on P ′,
the least number of discrepancies is exactly a + b, that is,
Diff = {i|D(Xi) 6= D′(X ′i)} & |Diff | = a + b. We
can deduce that any variable X ′j such that j 6∈ Diff must
be equal to Xj , for any b-repair. Indeed, it applies to any
repair, since only pre-processing and no search was used.
Therefore, we can prune domains in both P and P ′ as fol-
lows:

∀i 6∈ Diff D(Xi)← D(Xi) ∩D(X ′i) & D(X ′i)← D(Xi)

We can therefore modifyreparability by taking into
account the previous observations (Algorithm 4).

Extensions
In (EHW04a), the authors propose to extend or restrict su-
per solutions in several directions to make them more useful
practically. In scheduling problems, we may have restric-
tions on how the machines are likely to break, or how we
may repair them. Furthermore, we have an implicit tempo-
ral constraint that forbid some reassignments. For instance,
when a variable breaks, there are often restrictions on the
alternative value that it can take. When the values represent
time, then an alternative value might have to be larger than
the broken value. Alternatively, or in addition, we may want
the repair to be chosen among larger values, for some or-
dering. It may also be the case that certain values may not
be brittle and so cannot break. Or that if certain values are
chosen, they cannot be changed. This algorithm allows to
express these restrictions (and many more) very easily, as
they can be modelled as extra constraints on P ′.

For instance to model the fact that an alternative value has
to be larger than the broken value, one can post the unary
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Algorithm 4: repairability(P, S, Past, a, b):Bool
covered← ∅;
foreach A ⊆ Past′ such that |A| = a and A 6∈ covered and Γb+1 6⊆

Past′ do
foreach Xi ∈ A do
D′(X′

i
)← D′(X′

i
)− {S[i]};

foreach Xi ∈ (X \ Γb(A)) do
D′(X′

i
)← D(Xi);

if ¬AC-propagate(P ′) then return False;
Diff ← {i|D(Xi) 6= D

′(X′

i
)};

if Diff = a + b then
foreach Xi ∈ (X \Diff) do
D(Xi)← D

′(X′

i
)← (D′(X′

i
) ∩ D(Xi));

foreach Xi ∈ (X \ Γb(A)) do
D(Xi)← D

′(X′

i
);

S′ ← solve(P ′|
P ast′

+ATMOST(|A| + b)DIFF(Past′ , S));
if S′ = nil then return False;
Diff ← {i|S′[i] 6= S[i]};
foreach A′ ⊆ Diff such that |A′| = a do

covered← covered ∪ {A};

constraint X > S[X ], where X is any variable involved in
the break, and S[X ] is the value assigned to this variable
in the main solution. Moreover, one can change the con-
straint ATMOSTkDIFF itself. For instance, suppose that we
are only interested in the robustness of the overall makespan,
and we are solving a sequence of deadline job shop. One can
extend the deadline of P ′ by a given (acceptable) quantity q,
and omit the ATMOSTkDIFF constraint. The resulting so-
lution will be one such that no “break” of size less than or
equal to a can result in a makespan increase of more than q.

Another concern is that the semantic of the super solution
depends on the model chosen for solving a problem. For
instance, an efficient way of solving the job shop schedul-
ing problem is to search over sequences of activities on each
resource, rather than assigning start times to activities. In
this case, two solutions involving different start times may
map to a single sequence. Therefore the semantic of a su-
per solution is changed, a break or a repair implies a modifi-
cation of the order of activities for a resource. It is therefore
interesting to think of ways of solving a problem using a
model whilst ensuring that the solution is a super solution
for another model. If it is possible to channel both represen-
tations, then one can solve one model whilst applying the
reparability procedure to the second model.

Optimization
Finding super solutions is still, and will certainly remain a
difficult problem. One way to avoid this difficulty is to try
to get a solution as close as possible to a super solution. We
can then start from an initial solution found using the best
available method, and then we improve its reparability with
a branch and bound algorithm.

The (a, b)-reparability of a solution is defined as the num-
ber of combinations of less than a variables that are covered
by a b-repair. In (EHW04a), the authors report that turn-
ing the procedure into a branch and bound algorithm that

maximize reparability is the most promising way of using
super solutions in practice as an (a, b)-super solution may
not always exist. Moreover doing so, one can get a “regu-
lar” solution with the fastest available method, and improve
its reparability afterward.

The algorithm introduced here can easily be adapted in
this way. The procedure reparability would return the
number of b-repairs founds, instead of failing when a break
does not accept one. The main backtracker would then back-
track either if the problem is made arc inconsistent or the
value returned by reparability is less than the repara-
bility of the best full solution found so far. We rewrite the
procedure reparability adapted to this purpose in Al-
gorithm 5.

Algorithm 5: reparability(P, S, Past, a, b):Int
covered← ∅;
foreach A ⊆ Past′ such that |A| = a and A 6∈ covered and Γb+1 6⊆

Past′ do
foreach Xi ∈ A do
D′(X′

i
)← D′(X′

i
)− {S[i]};

foreach Xi ∈ (X \ Γb(A)) do
D′(X′

i
)← D(Xi);

S′ ← solve(P ′|
P ast′

+ATMOST(|A| + b)DIFF(Past′ , S));
if S′ 6= nil then

Diff ← {i|S′[i] 6= S[i]};
foreach A′ ⊆ Diff such that |A′| = a do

covered← covered ∪ {A};

return |covered|;

Unfortunately, if all other improvements still hold, we
cannot prune P as a result of a pruning when pre-processing
P ′, since a break without repair is allowed.

Future work
Our next priority is to implement this algorithm for finding
super solutions to the job-shop scheduling problem. We will
use a constraint solver that implements shaving, the ORR
heuristic described in (SF96), as well as constant time prop-
agators for enforcing GAC on precedence and overlapping
constraints. As these two constraints are binary, the neigh-
borhood of a variable is limited. Hence the theoretical re-
sults introduced here should apply. Moreover, we expect this
reasoning to offer a good synergy with a strong global con-
sistency method such as shaving. Indeed more inference can
be done on the repairs (without searching) than with GAC,
and thus more values can be pruned in the main search tree
because of the robustness requirement. We therefore expect
to be able to solve much larger problems than the instances
solved in (EHW04a).

Conclusion
We have introduced a new algorithm for finding super solu-
tions that improves upon the previous method. The new al-
gorithm is more space efficient as it only requires to double
the size of the original constraint satisfaction problem. The
new algorithm also permits us to use any constraint toolkit to
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solve the master problem as well as the sub-problems gener-
ated during search. We also take advantage of repair multi-
directionality and of inference based on just a restricted
neighborhood of constraints. Moreover, this algorithm al-
lows the user to easily specify extra constraints on the re-
pairs. For example, we can easily specify that all repairs
should be later in time than the first break.
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Abstract

Many real-world planning problems require sophisti-
cated reasoning about numeric resources, including
sharing of resources by different actions. Constraint-
based planners offer machinery to represent complex
constraints and dependencies between actions. How-
ever, such planners usually consider a single partial
plan at a time, and limit themselves with finding a
feasible solution. Alternatively, planning graph based
planners use an aggregate data structure over multi-
ple partial plans to guide search, which allows such
planners to guarantee optimality of the solution. Typ-
ically, such planners restrict the form of supported re-
source expressions. In this paper we describe a planner
for construction of computational grid workflows that
combines these approaches. Our planner uses an en-
velope over multiple execution sequences represented
by a constraint network to drive the search towards a
good solution, while supporting expressive models for
resource sharing and multi-resource reservations.

Introduction
Traditionally, in planning, resources are allocated to ac-
tions using an all-or-none policy; they cannot be shared.
For example, at most one job can be executed on a ma-
chine at any given time.

In real-world planning problems, the amount of avail-
able resources and action requirements are often stated
using real numbers. This more general model of re-
sources creates additional degree of flexibility in the
problem. For example, the number of jobs that can
be executed on a machine in parallel depends on the
resource requirements of the jobs and the amount of
resources available on the machine. The situation be-
comes even more complicated when actions have dura-
tions and the resource availability changes over time.

In planning, the sequence of actions to be scheduled
first needs to be chosen. Often, the same result may be
achieved in different ways. The resource requirements
of different options for achieving intermediate goals can
interact in complex ways, affecting feasibility and opti-
mality of the solution. For example, a job may require

∗The work was done when the author was a student at
New York University.

a host with at least 16 CPUs. The execution time of
such a job depends on the number of CPUs allocated
for the job and their speed. Allocation of a larger num-
ber of CPUs to one job may decrease its running time,
but make parallel execution of other jobs impossible.

Constraint-based planners (Smith, Frank, & Jónsson
2000; Rabideau, Engelhardt, & Chien 2000; Ghallab &
Laruelle 1994) support very expressive resource mod-
els. However, such planners usually refine a single par-
tial plan at any given moment and focus on finding a
feasible solution. To produce solutions of good quality
(minimum makespan, smaller resource consumption),
such planners rely on domain-specific control knowl-
edge, which needs to be provided by a human expert.

On the other hand, GraphPlan-based planners (Blum
& Furst 1997; Koehler 1998; Gerevini & Serina 2002)
build a data structure, called a planning graph, that
aggregates information over multiple partial plans, es-
sentially providing a logical envelope over all possibly
reachable world states. Planning graphs help to find
an optimal solution. Unfortunately, GraphPlan-based
planners offer limited support for complex resource in-
teractions and time-varying resource availability.

In this paper we describe GPRS (Grid Planner with
Reservations and Sharing), a planner for construct-
ing executable workflows in computational grid envi-
ronments. Our planner combines ideas from planning
graph and constraint-based planners. GPRS uses an en-
velope over multiple alternative partial plans for search
guidance. To represent sharing and reservation of re-
sources, numeric variables belonging to nodes of the
envelope graph are organized in a constraint network.
This allows GPRS to guide search towards an optimal
solution while supporting expressive models for resource
sharing and multi-resource reservations.

The rest of this paper is structured as follows. First,
we present the problem of constructing grid workflows.
Then, we describe the GPRS algorithm, and evaluate
(i) its ability to handle expressive resource models, (ii)
scalability of the planner, and (iii) quality of the so-
lutions. We describe related work, and conclude with
a discussion of limitations of our algorithm and future
research directions.
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Workflow construction problem
The workflow construction problem (WCP) is the prob-
lem of designing executable workflows in computational
grids. The objective of computational grids is to pool
together distributed computational and storage equip-
ment to efficiently solve computationally and data in-
tensive tasks.

A typical grid environment consists of a network of
hosts and links, which have resources, such as CPU,
memory, and bandwidth. We model resource availabil-
ity as a piecewise constant function of time.

A typical grid workflow consists of jobs that process
files. A file has a globally unique name and a size. Each
job is specified by a set of required files, a set of pro-
duced files, and resource requirements. A job can be
executed on a host that has sufficient resources. The
resources are occupied for the duration of the job and
released upon its completion.1 In general, the dura-
tion of the job is a function of the amount of resource
available for the job.

Files can be transfered over network links, consuming
link resources for the duration of the transfer. The lat-
ter depends on the size of the file and on the available
network bandwidth. Note that it is possible to transfer
files over multi-link paths. In this case, the duration
is computed using the minimum link bandwidth along
the path (path bandwidth). During the transfer, path
bandwidth is reserved on all participating links, which
allows high-bandwidth links to be shared between sev-
eral parallel low-bandwidth transfers.

The workflow construction problem is, given a net-
work topology and resource availability, a set of job
descriptions, and an initial allocation of files on hosts,
construct an executable workflow (execution plan) con-
sisting of job executions on hosts and file transfers over
paths such that a given file is obtained on a given net-
work host as soon as possible. Constructing an optimal
executable workflow may require resource sharing and
trading off computation and communication.

The WCP can be viewed as a planning problem,
where job executions and file transfers correspond to
actions, and resource and file availability describe the
state of the world.

In the example shown in Figure 1, the goal is to ob-
tain a small file Res on host 3. Res can be computed in
1 time unit given two files pA and pB (for the purpose
of this example we assume that the job duration is the
same for all hosts). Each of these files can be computed
in 2 time units from files rA and rB respectively. All
four files, pA, pB, rA, and rB, are present in the net-
work. Each of these files has size 100 units. The size of
the Res file is 10 units.

Given the available link bandwidth, the optimal
strategy (Figure 2) is to transfer pA from the remote
host over path 1-2-3-4 (action trpA), recompute pB us-

1Some resources, such as quotas for computing time in
supercomputer centers, are consumed, rather than occupied
and released. Currently, GPRS does not deal with these.

here

bw=100 bw=10bw=100bw=100

rA rB pB

21 3 4 5

pA

Need Res 

Figure 1: Bandwidth (bw) and file availability.

0

Link 1−2

Link 2−3

Link 3−4

Host 4

Time inf3.1321

trpA

jobB

trRes
trpA

trpA

jobC

Figure 2: Solution to the problem shown on Figure 1
that trades of computation and communication.

ing the rB file (action jobB), compute Res on host 4
(jobC), and transfer the final result to the destination
host (trRes). Note that, if the execution of the com-
ponent producing the final result is co-located with the
recomputation of pB, the time used to transfer pA over-
laps with the computation of pB.

Finding this optimal solution requires reasoning
about resource reservations and sharing, as well as an
ability to compare different possible solutions.

GPRS
The Grid Planner with Reservations and Sharing
(GPRS) combines the ideas of planning graph based
algorithms and constraint propagation. GPRS builds
an envelope over possible execution sequences to obtain
completion time estimates for search guidance. Nodes
of the envelope graph, which correspond to actions and
propositions, may have multiple variables associated
with them. The values of these variables are propagated
using a constraint network. Currently, the plan extrac-
tion phase of GPRS is based on critical path scheduling.

Envelope graph
The purpose of the envelope graph is to obtain lower
bound estimates on the completion time of various parts
of the computation to guide the search towards the best
(fastest) ways of achieving goals.

The graph has two types of nodes: AND nodes cor-
respond to actions (job executions, file transfers), and
OR nodes to propositions. In planning for computa-
tional grids, propositions describe the availability of a
file on a network host.

A typical goal of a grid application is to produce a
particular file on a particular host. While the size of
such a goal is usually small (e.g., one file-host pair),
the total amount of information about the state of the
network and resource availability may be large. There-
fore, GPRS constructs the envelope graph using regres-

ICAPS 2005

WS1. Workshop on Constraint Programming for Planning and Scheduling 37



Goal
pA@3

STG=1

Res@1

Res@2

Res@4

Res@5

dur=1

dur=1

dur=0.1

dur=0.1

dur=0.1

STG=0

STG=0

STG=0

STG=0

STG=0

STG=0.1

STG=0.1

STG=0.1

STG=1

Res@3

STG=0.1

STG=0.1

STG=0.1

STG=0.1

STG=0.1

dur=0.1

dur=0.1

dur=0.1

dur=1

dur=1
pA@4

STG=1.1

pB@4
STG=1.1

STG=1
pB@3

trRes4−3

trRes5−3

jobC@3

trRes2−3

trRes1−3 trRes1−4

trRes2−4

trRes3−4

trRes5−4

jobC@4

STG=0

Figure 3: Part of the logical envelope graph. Bold font
shows actions, italics shows propositions. Boxes corre-
spond to leaf nodes. Numbers under nodes show short-
est time to goal (STG) and action duration.

sion from the goals, which allows the planner to identify
and bring in necessary information during the search.
Figure 3 shows the initial phase of construction of the
envelope graph for the problem shown in Figure 1.

For each OR node no, the support of no is a set of
AND nodes corresponding to actions that can achieve
the proposition of the node no. For example, availabil-
ity of file Res on host 3 Res@3 is supported by four
actions for transferring the file from different network
hosts and one job execution action. For each AND node
na, the support of na is a set of OR nodes correspond-
ing to preconditions of the operator of node na. Thus,
action jobC@3 is supported by availability of files pA
and pB on host 3 (pA@3 and pB@3).

Both AND and OR nodes can support multiple sinks.
For example, Res@2 supports trRes2-3 and trRes2-
4. Such reuse of nodes makes the envelope a general
graph (with cycles) and reduces memory requirements
for envelope construction.

Each of the nodes of the envelope graph may have
several variables associated with it, including the Ear-
liest Completion Time (ECT) and the Shortest Time to
Goal (STG) variables. ECT corresponds to the lower
bound on time for completing the current node after
the start of the workflow. STG is the lower bound on
time to reach the goal after completion of the current
node. The planner optimizes the makespan of the com-
putation and uses ECT variables to guide the search.
The STG variables are used to order constraints for
propagation as described below.

A support tree is defined recursively as a single
support node for each proposition (OR) node and all
support nodes for an action (AND) node.2 The best
tree of the envelope graph is a support tree in which the
cheapest support node is chosen for every proposition.
The envelope graph is expanded until the best tree is
completely rooted in the initial state.

2Strictly speaking, a support tree is not necessarily a
tree, but a DAG.

pA@4

job@4

Res@4
pB@4

ECT ECT

ECT

Min
ECT

Max

AllReady
RR

CPU@4

ECT

Constraint network

Envelope graph
trRes1−4

Figure 4: Envelope and constraint network. Dotted
lines connect variables (hexagons) to the nodes they
belong to.

Only leaf nodes belonging to the best tree are ex-
panded. After expansion of a leaf node in the regres-
sion way, constraint propagation is performed, which
can improve the lower bound estimates of the ECTs of
nodes and change the set of nodes forming the best tree.
Because of this non-uniform expansion of the envelope
graph, GPRS essentially performs best-first search in
the space of support trees (as opposed to GraphPlan
(Blum & Furst 1997), which extends all branches of the
envelope simultaneously).

Note that the envelope and the corresponding con-
straint network are optimistic in that they can miss
dependencies between different branches. For example,
logically independent jobs may compete for the same
resources and, therefore might have to be scheduled se-
quentially rather than in parallel. Because of this opti-
mism, the best tree of the envelope graph does not nec-
essarily correspond to a valid solution, and additional
expansion may be initiated during solution extraction.

Constraint propagation
Nodes of the constraint network, underlying the enve-
lope graph of GPRS, may correspond to variables of
the envelope nodes, such as earliest availability time of
files on hosts (ECT for files), resource variables, and
artificial variables.

Variables and constraints. For the ECT variables,
the value of a variable is a number describing the cur-
rent lower bound estimate of the completion time. Val-
ues of the resource variables may be represented as
piecewise constant functions describing the maximum
available levels of the resource as a function of time.
Ultimately, the type of values variables can have is lim-
ited only by the constraint-propagation algorithm used.

Actions of a plan can be executed sequentially or in
parallel. In both cases, the dependencies between the
actions are represented using constraints.

For example, an execution of a job on a host can only
start when all required files are available on that host.
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This dependency is represented as follows (Figure 4).
An artificial variable AllReady is created, which is con-
nected to the ECT variables of all nodes correspond-
ing to the required files using a Max constraint. The
ECT variable of the job node is connected to the All-
Ready variable using a Resource Reservation (RR) con-
straint, which also takes into account resource availabil-
ity. The reservation constraint directly computes the
earliest completion time of the job given resource avail-
ability profiles, file availability time (AllReady), and an
expression describing running time of the job as a func-
tion of available resources. The default implementation
of the RR constraint searches for the earliest moment
after AllReady when all required resources simultane-
ously satisfy job requirements for the duration of the
job. Alternative implementations and types of con-
straints can be provided by the user to encode resource
reservation policies specific for job types and capabili-
ties of host operating systems/schedulers.

Actions that can be executed in parallel may affect
each other via shared resources. The envelope of GPRS
is built over multiple possible execution sequences, and
not all actions that are included in the envelope, or
even in its current best tree, would necessarily be in-
corporated in the final plan. Therefore, GPRS takes an
optimistic approach. Only reservations of nodes cho-
sen during solution extraction to be a part of the solu-
tion (committed nodes) affect resource availability vis-
ible to other actions. In other words, a resource can be
promised to several actions at the same time. This can
cause suboptimality of a solution.

Scheduling of constraint propagation. Con-
straint propagation is performed after every change to
the envelope graph: expansion of a leaf node or commit-
ment of a node during solution extraction. Since con-
straint propagation is the most frequent and expansive
operation, it is desirable to make it as fast as possible.

GPRS requires that every variable belongs to at most
one envelope node (resource variables are independent),
and every constraint changes values of variables of a
single node. The latter restriction can be enforced by
creating artificial variables. The nodes of the envelope
graph, in addition to ECT variables, also own Shortest
Time to Goal (STG) variables (Figure 3), which are
lower bounds on the completion time of the plan after
completion of execution of the node. The values of STG
variables are obtained by simple summation of lower
bounds of action durations during the expansion of the
envelope graph.

During the constraint propagation, constraints are
scheduled in the order of decreasing STG of the nodes
whose variables they affect. This technique permits
almost loop free constraint propagation. (Some con-
straints may be executed more than once during the
same propagation episode because of the loops in the
envelope graph).

f@Bf@A

B−>A

A−>B

goal

Figure 5: Envelope graph with an infinite loop.

Loop breaking. The ECT variables are lower bound
estimates of the actual completion time. During con-
struction of the envelope graph, the values of the ECT
variables of leaf nodes are considered zero.

The envelope graph can contain loops, for example,
when the same file f may be transferred back and forth
between two network hosts A and B, and no job can pro-
duce this file (Figure 5). Expansion of a leaf node, e.g.
f@B in our example, which increases the ECT of that
node, may cause infinite loops in constraint propagation
along graph cycles.

To avoid this, before expansion, the ECTs of all nodes
reachable from the leaf node being expanded are set to
infinity. Subsequent constraint propagation can only
decrease the bounds, when possible. In case of an infi-
nite loop, such as the one shown in Figure 5, the lower
bounds of ECTs of unreachable nodes will remain infin-
ity, and the constraint propagation will terminate after
checking each node only once.

Solution extraction
The envelope graph is expanded until the best tree has
all its leaves true in the initial state. The envelope
graph is optimistic, because it can miss some inter-
actions between different branches of the application
DAG. Therefore, the best tree of the envelope graph
does not necessarily represent a valid plan.

To construct a valid plan, we use critical path
scheduling for the final solution extraction phase of the
GPRS algorithm. A critical path is a path in the
best tree leading from the root (the goal node) to a
leaf, which chooses the most expensive support node
for each AND node.

The planner commits nodes of the critical path
starting from the leaf. Committing a node involves fix-
ing the start time of the action and making all resource
reservations belonging to the node permanent. Such
commitment of reservations is possible as long as the
constraint network is quiescent.

As a result of committing resource reservations, the
availability of involved resources may change, which
may affect other reservation constraints that involve the
same resources, and, via constraint propagation, com-
pletion times of various nodes of the envelope graph.
The change of ECT values of the graph nodes may
change the portion of the graph considered to be the
best tree and therefore result in further expansion of
the envelope graph.

The current implementation of GPRS does not sup-
port backtracking. Once a node is committed, the com-
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mitment cannot be revoked. In addition, when a leaf
node is committed, all nodes of the critical path leading
to this leaf node get frozen. The latter means that, al-
though the values of variables of those nodes, including
ECT, may change, the frozen nodes are guaranteed to
be a part of the solution. Because the envelope graph
is optimistic, such a non-backtracking nature of the so-
lution extraction phase may result in suboptimal so-
lutions. Moreover, the non-backtracking algorithm is
incomplete and may fail to find a solution in the pres-
ence of budget restrictions (quotas on resource usage
and/or deadlines).

On the other hand, the non-backtracking solution ex-
traction phase is fast. Moreover, the use of the envelope
graph during the solution extraction phase allows the
planner to make continuous adjustments to the best
tree including rescheduling actions and replacing whole
subtrees. This flexibility usually leads to good quality
of solutions, and appears to compensate in practice for
the theoretical incompleteness of the algorithm.

Evaluation

In this section we evaluate the ability of GPRS to han-
dle the expressiveness of the model of grid applications
with explicit resource reservations and sharing, the scal-
ability of the planner with respect to the network and
application size, and the quality of solutions produced
by the planner.

Handling expressiveness
A planner for computational grids needs to reason
about sharing of numeric resources between jobs and
data transfers running in parallel. The planner also
needs to reason about action durations and start and
completion times in the presence of time-varying re-
source availability. Finally, the planner needs to be
able to select different options, such as file replicas or
job types capable of producing a given data product,
and trade off computation and communication so as to
minimize the total duration of computation. To check
if GPRS can correctly handle these tradeoffs, we ran
the following experiment, which exercises the features
listed above.

The abstract structure of the application is shown in
Figure 6. The application consists of three jobs, orga-
nized in two levels. Each of the two jobs of the first level
requires three input files, produces two output files, and
takes 100 time units to complete. The third job requires
four files and produces one file in 40 time units. The
size of files a, b, c, d, and e is 500 units. Files f, g, k,
and q are 100 units each. The final result file r has size
1000. Note that file c is required by two jobs, and file
k can be produced by two different jobs. In the latter
case the semantics is that the file k will contain exactly
the same data regardless of how it was produced.

The network structure for our problem is shown in
Figure 7. Replicas of several files are available on dif-
ferent network hosts as shown in the figure. The band-

size 1000
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jobC

size 500

jobA

jobB
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Figure 6: Abstract structure of a grid application. Cir-
cles represent files, and rectangles jobs.
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Figure 7: Network structure. Link names are shown in
italics. Availability of file replicas is shown in normal
font next to the hosts. Width of the lines corresponds
to the link bandwidth. The dashed line shows the link,
whose availability varies over time.

width of the links connecting storage nodes to the stor-
age router is at most 5; the bandwidth of all other links
is at most 10 units. We assume that only host Server
can perform computation.

We further assume that the availability of the Server
host and the availability of the link StorageL between
the main Router and the storage router StorageR vary
with time due to reservations from other ongoing com-
putations. The availability windows for network re-
sources are shown in Figure 8.

The goal of this problem is to obtain the r file on
host Client as quickly as possible.

The plan found by GPRS is shown in Figure 9. This
plan has the optimum duration given the resource avail-
ability. Note that because of the limited availability of
both computational and link resources, the planner de-
cided to recompute two of the intermediate data prod-
ucts and fetch the other two from where they are stored.
The replica of file q is chosen so that the transfers of

Server
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StorageL

StorageL1

StorageL2
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1 1
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10 10
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5

Figure 8: Resource availability. Numbers in the bars
show the amount of the resources.
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Figure 10: Resource reservations by actions. Multiple
resources may be simultaneously used by a single ac-
tion, and several actions can concurrently use the same
resources (e.g. link StorageL).

files g and q can be done in parallel.
Before any commitments were made, GPRS consid-

ered execution of both jobs A and B to be the fastest
way to obtain intermediate files. However, committing
the decision to execute job A changed availability pro-
file of Server. As a result of subsequent constraint
propagation, the structure of the best tree changed to
include file transfers from the storage hosts.

The planner also correctly handles multiple reserva-
tions and sharing of resources (Figure 10). For exam-
ple, transfer of file g from Storage2 to Server requires
simultaneous reservation of bandwidth of three links.
Two of these links (StorageL and ServerL) are used
for transfer of file q from Storage1 at the same time.

Performance
To evaluate the scalability of the planner we used para-
meterized synthetic applications and networks, whose
structure matches that of typical grid workflows and
environments.

Figure 11 shows the network used in our experiments.
This network consists of C clusters each containing N
computational hosts and one router, which connects the
cluster to the central master router. Hosts in a cluster
can be thought of as supercomputers in a supercom-
puter center. Hosts within a cluster are fully connected.

cluster router

���
�

computing node

central router

Figure 11: Synthetic network used in performance eval-
uation.

In total, the network contains (N +1)×C +1 hosts, of
which N × C can perform computation.

Figure 12 shows the application kernel used in the ex-
periments. The structure of this kernel is modeled after
existing grid applications such as Montage (Berriman
et al. 2003). This application kernel is parameterized,
which allows us to analyze scalability of the planner
with respect to different properties of the application.

The application consists of S segments limited by the
splitting and merging components. The portion of the
segment between these components contains W paral-
lel execution sequences, each consisting of H process-
ing jobs. An instance of this application contains
(H ×W + 2)× S − 1 jobs and ((H + 1)×W + 1)× S
files. The splitting and merging components serve as
synchronization and data aggregation points. Jobs of a
typical workflow can take tens of minutes to execute on
large supercomputers, so it is feasible to invest up to
several minutes of time on a workstation to construct
and optimize a workflow.

In our experiments, we varied values of C, N , S, H,
and W . In all cases, the goal is to achieve availability of
the merged file of the last segment on the first computa-
tional host of the first cluster. Initially, all intermediate
files of the first level of the first segment are available in
the network. These initial files are distributed sequen-
tially to all computing nodes of the network.
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Figure 13: Scalability of GPRS wrt the network size.

Scalability with the network size. To evaluate
scalability of GPRS with respect to the size of the net-
work, we run the planner for a set of networks with
parameters C ∈ {1..9}, N ∈ {2..9} using the kernel ap-
plication with S = 1, H = 3, W = 5. Figure 13 shows
planning time as a function of the number of computing
hosts in the network. As can be seen from the figure,
the planning time grows fast. This can be explained by
the fact that, to support simultaneous reservations of
groups of network links, the planner considers all hosts
of the network as targets for file transfers. The num-
ber of hosts contributes to the branching factor of the
search space. The fact that the algorithm still scales to
networks of considerable size can be explained by the
pruning power of the envelope graph.

Scalability with the width of workflow. Next we
evaluated scalability of GPRS with respect to each of
the three parameters affecting the size of the workflow.
Figure 14 shows planning time as a function of the total
number of files in the generated workflow for the follow-
ing experiments: {C = 2, N = 2, S = 1..36, H = 1,
W = 5}, {C = 2, N = 2, S = 1, H = 2..100, W = 5},
{C = 2, N = 2, S = 1, H = 3, W = 5..125}.

As the results demonstrate, the planning time grows
more than quadratically with the depth of the work-
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Figure 14: Scalability of GPRS wrt the size of the work-
flow.
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Figure 15: Suboptimal plan generated by GPRS.

flow. This can be explained by the fact that in the
current implementation a complete constraint propaga-
tion is performed after every action choice during the
solution extraction phase. The complexity of this prop-
agation is close to linear with respect to the width of
the workflow, but grows faster with respect to the depth
of the workflow. We expect that a different (lazy) im-
plementation of constraint propagation would lead to
significant speedup of the algorithm. Note, however,
that grid workflows tend to have few stages, and there-
fore scalability of the planner with respect to the depth
of the workflow is less important than that with the
number of parallel execution sequences.

Solution quality
Due to the use of the critical path scheduler with com-
mitments for plan extraction, the plans found by GPRS
may be suboptimal. For example, Figure 15 illus-
trates the plan produced by GPRS for the problem with
{C = 1, N = 2, S = 1,W = 2,H = 1}.

The solution shown in the figure contains two file
transfers more than the optimal solution. In this ex-
ample, the scheduler made a greedy decision about
scheduling the longest path of the workflow first, and
then had to schedule the rest of the workflow using the
remaining resources.

Despite possible suboptimality, GPRS still performs
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good load balancing. It is problematic to find an exact
optimum for problems with reasonable size. However,
it is easy to check optimality of the solution in some
special cases.

To assess the quality of solutions, we asked the plan-
ner to find a configuration of the kernel application de-
scribed above with one segment with one job level of
width 300 for a network with 2 clusters with 4 comput-
ing hosts each. We set the link bandwidths to a very
high value, so that delays introduced by data transfers
are negligible.

This application contains the total of 301 jobs, which
can be executed on any of the 8 computing hosts. GPRS
assigned 37 jobs to each of the hosts of the B cluster,
38 jobs to three hosts of A cluster (A1,A2, and A3),
and 39 jobs to host A0. Since A0 is the host where
the final answer was requested, the job assignment is
indeed optimal.

The load-balancing effect can be explained by the
fact that all decisions made by the scheduler are imme-
diately taken into account by the envelope graph. The
envelope is built over all possible execution sequences,
and at any moment chooses the best way to achieve
every subgoal given the current set of resource reserva-
tions.

Related work
The workflow construction problem searches for an op-
timum solution in the presence of complex (numeric)
dependencies between actions. In designing an algo-
rithm for solving such a problem, two decisions need to
be made. First, action selection and resource allocation
may be done simultaneously or separately. Second, dur-
ing the search, the planner can consider each possible
refinement of a plan separately, or perform aggregation
using envelope-like structures.

Planners that reason about numeric resources during
action selection typically support only limited form of
functions (Koehler 1998; Refanidis & Vlahavas 2000).
Separating these concerns allows Pegasus planner for
the WCP (Blythe et al. 2003) to achieve good scal-
ability. However, planners that separate action selec-
tion from resource reasoning may perform poorly in
resource-driven domains (Srivastava 2000). This may
be important, for example, when data transfers and job
executions have comparable durations.

The second choice, single partial plan vs. envelope
over multiple options, affects quality of the solution.
Although single-plan algorithms may be faster, they
rely on domain-specific control knowledge to guide the
search (Blythe et al. 2003). Considering several op-
tions simultaneously helps to drive the search towards
an optimum solution (Kichkaylo, Ivan, & Karamcheti
2004).

This paper presents an algorithm that uses constraint
networks to construct envelopes over multiple alterna-
tive plans. This approach allows GPRS to combine the
benefits of the harder options for both of the above
choices with a reasonably small overhead.

Discussion and future work
Even when using a greedy critical path scheduler,
GPRS still produces high quality plans. We believe
that the reason for this is the use of the envelope over
multiple sequences for search guidance. Every time a
decision is committed to be a part of the plan, corre-
sponding changes of the resource availability are propa-
gated through the envelope. This may cause the change
of the best tree towards the optimal solution given all
committed decisions.

We believe that the planner’s performance and the
quality of the solution can be further improved. One
possibility is to add explicit constraints between paral-
lel execution sequences relying on the same resources.
Adding such constraints will incur computational over-
head. Whether or not this overhead would be justified
by the improvements in the performance and solution
quality is a topic for future research.

Another idea is to propagate the total resource re-
quirements of each subtree (in addition to time) as it is
done in (Kichkaylo, Ivan, & Karamcheti 2004).

Finally, it would be interesting to see how support for
non-replenishable resources, e.g. quotas, which can be
implemented using backtracking, affects performance of
the planner.
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Abstract

In temporal planning domains, the exact duration of actions
are usually known at planning time so a temporal planner is
able to compute the best plan w.r.t makespan. However, in
many realistic domains the exact duration of actions is only
known at the instant of executing the action. This is the case,
for instance, of temporal domains where it is common to find
external factors that cause a delay in the execution of actions.
In this case, the actual duration of a temporal action depends
on the timing at which the action is actually executed.
In this paper we present an approach to obtain a plan for a
temporal domain with delays. Our approach consists in com-
bining a planning process, from which a temporal plan is ob-
tained, and a scheduling process to allocate (instantiate) such
a temporal plan over a time line. This latter process takes into
account the delays defined in the domain while allocating ac-
tions in time.

Introduction
Research in AI planning is more and more concerned with
the introduction of more expressive languages and develop-
ment of new techniques to deal with more realistic problems.
A crucial element in this approach to reality is time. In the
last years, several extensions in the standard language PDDL
have represented a step forward in the resolution of temporal
planning problems, as the introduction of durative actions in
PDDL2.1(Fox & Long 2003) or timed initial literals in the
most recent PDDL2.2(Edelkamp & Hoffmann 2004).

However, handling time in real planning problems is
much more than dealing with durative actions or incorpo-
rating temporal constraints. Time plays an important role
because it is a source of imprecision and uncertainty. In
this direction we can find in the literature several approaches
to handle an extended model of durative actions, as the in-
troduction of uncertainty in the time consumption of ac-
tions ((Biundo, Holzer, & Schattenberg 2004), (Bresina et
al. 2002)).

Time also plays an important role when plans are to be
executed in a specific temporal setting. The user might want
the plan not to finish later than time � , or start at time ��� as
earliest or to have a maximum duration � . These constraints
may be considered during planning if the planner is able to
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handle them and the language used for domain modelling
accounts for it.

More relevant are the intrinsic restrictions to the partic-
ular domain or environment. In this category we can find
the typical delays that affect the execution of actions. Ac-
tions do not always take the same time to execute but real
durations depend on the timing at which actions are actually
executed, which may be affected by a longer or shorter de-
lay. A lot of elements condition the real duration of actions:
moving from one place to another is more costly at peak
hours, loading objects in a container depends on the number
of resources (hoists, humans) available when the load is car-
ried out and a space operation might last differently whether
it is carried out in daytime or at night.

In this paper we present an approach to obtain a plan for
temporal domains with delays. The approach integrates a
standard planning process, from which a temporal plan is
obtained, with a CSP resolution to instantiate the tempo-
ral plan over a real time line. Our work brings two main
contributions. First it introduces a model to handle delays
in temporal planning domains, a concept that has not been
previously dealt with in the literature. Second we present
a different way of handling actions with variable durations
through a scheduling process rather than within the planning
process.

The paper is organized as follows. The following sec-
tion motivates the use of delays in temporal environments
and introduces some concepts to define action delays. Sec-
tion Planning in temporal domains with delays sketches the
overall working schema of our approach. Section Apply-
ing delays presents the algorithm used to apply delays to
a given temporal plan. Section Plan scheduling as a CSP
outlines the steps to encode the plan information and fulfil
the temporal requirements specified by the user. Section Ex-
perimental Results presents some results that show different
schedulings of a temporal plan over a time line and how this
information can be exploited to satisfy the time restrictions.
Finally, the last section concludes and outlines some future
work.

Delays in a temporal setting
In this section we give an exposition to motivate the intro-
duction of action delays in temporal planning. The key issue
in the proposed approach is that actions or activities seldom
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last as initially planned (expected) in daily life.
Usually, when we refer to a ”delayed action” we mean the

action execution does not finish at the scheduled time. There
are several reasons that can be a cause of delay:� the action execution does not start at the expected time

and therefore it does not finish at the scheduled time, i.e.
the action is delayed due to a later happening of the start-
ing time. In this case there are no variations in the du-
ration and the action is simply shifted forward in time.
These delays are usually produced by the causal relation-
ships the action holds with other actions that, in turn, are
also delayed (a chain-delay effect).� the action execution starts at its scheduled time but the du-
ration is longer than expected. These delays are normally
caused by external factors that affect the action execution.
Although these external conditions can be predicted in ad-
vance they are not static causes that happen forever but
only rather at specific times along the action execution.� both reasons stated in the above items. Delays in the ac-
tion duration give rise to a later ending time and, conse-
quently, dependent actions start later and so on.

In PDDL 2.1, the duration of the actions is dependent on
the particular action parameters. For example, in a classi-
cal logistics or transportation domain these parameters can
be the origin, the destination, the truck, the driver etc. Vari-
able durations can be modelled through the use of functions
(level 3 durative actions).

Let’s now add one more dose of reality. We all know that
driving at night is harder than driving during daytime; driv-
ing at peak-hours is slower than driving at regular hours;
driving under the rain is also slower; a load/unload opera-
tion that is carried out at lunch time will take longer as the
number of available resources is half the usual. Under all
these situations the standard action duration (under normal
conditions) is increased by external factors to the action it-
self.

In principle, delays are produced by generic causes that
affect action durations equally, no matter the timing at which
actions are executed. For instance, driving with a heavy traf-
fic flow implies to move slower, regardless if it happens at 9
a.m. or at 9 p.m..

However, many common causes of delay typically oc-
cur at particular times or time intervals. Peak-hours usu-
ally occur early in the morning or late in the afternoon
after work. A lack of human resources may likely oc-
cur at lunch time. Therefore, an action may be affected
by different delays along its execution depending on the
time intervals over which the action is executed. If action
drive-truck T1 A B starts at 8 a.m. and it takes two
hours under normal conditions, the first driving hour may be
affected by a heavier traffic flow than the second hour. Un-
loading a truck that usually takes one hour may be longer
because the action starts at 11.30 a.m. and there are fewer
workers from 12.00 a.m. on.

A delay is the extra-time to put in the action duration
over a time interval due to an external factor. Let’s define�
	����������� the delay caused by any reason. Figure 1 shows

two driving actions affected by different delays at different
times. Road connecting B to C is a highway so heavy traffic
never occurs. And road connecting A to B is located in the
west part so darkness comes later.

α heavy−traffic α nightα night

α nightα night

α medium−traffic α medium−traffic

drive−truck T1 A B

drive−truck T1 B C

0 8 10 14 20 24

time line (hours)

Figure 1: Causes of delays in two drive actions

The value of � 	����������� can be specified as:

1) a fixed value (i.e. 5 minutes)
2) a value proportional to the standard action duration (i.e.

5% of the standard duration or equivalently a fraction
5/100 in the interval [0,1])

3) a value given by a formula (i.e.������� ���
� � � !#" �%$&� � � �('*)�+ � )
Additionally, we can distinguish between causes of delays

that are known in advance and dynamic causes that appear
during the plan execution and cannot be predicted at plan-
ning time. In the first group we can find: the traffic flow in
the roads, the existance of works in the roads, the happen-
ing of a mass event in the city, a shortage of workers, the
night fall, etc. Among the second group we can find: the
appearance of rain, traffic-lights stop working and any kind
of unexpected event. In the rest of the paper we will focus
just on the first group of delays.

Delays over time
As we mentioned in previous section, the value of � 	���������,�
can be specific for each action if �-	����������� is defined in
terms of some of the action parameters. We will denote by� 	����������. �/0� the value that results from computing � 	���������,�
for 132 . �4	����������.  / � represents the increase fraction that has
to be applied on 132 when the 57681*9�:<;>= of delay is found
during the execution of 1?2 .

The total delay of an action will depend on its start time
of execution so the same action will have different delays at
different starting execution times. In order to compute the
delay of an action we have first to define the delays that af-
fect the action over the time line. Thus, it is necessary to
represent the delay patterns of actions over a time window.
Typically, the range of the time window would be the over-
all plan duration but it is also possible to specify a repetitive
delay pattern over sequential time windows along the plan
duration. In this paper we study a general case where the
time window covers the range of a whole day from 0 to 24
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Figure 2: Graphical representation of delays

hours but the analysis can also be applied to a different tem-
poral scope.

For each action 1?2 and time window @ ACB�D(A ��E (in our caseA BGFIH D(A � FKJ�L ) we define a set of subintervals over @ A B DCA � E
and specify a delay associated to each of them. This set of
subintervals along with their corresponding delays are called
timing intervals of an action 1?2 . When 132 is executed over a
timing interval, the actual duration of 1 2 is augmented with
the delays indicated in the timing interval.

There can be more than one cause of delay over a tim-
ing interval. We denote by � ��M�N  / . O / . OQP�R , � �0S8N  / . O / . OQP�R , T�TUT ,� �0V3N �/0. OW/0. O P R the values of the delays produced by causes6 M DC6 S D�T�TUT�D�6 V on action 132 over timimg interval @ A(2CD(AYX E . That
is, the result of � 	���Z<. �/0�\[ 6�]>^_57681*9�:<;`= over timing in-
terval @ A�2CD(AYX E . For the sake of simplicity, we will denote by� N 8/0. OW/0. O P R how long action 1?2 is totally delayed over @ A(2CD(AYX E
due to all the delay causes produced over such a timing in-
terval.

The definition of delays over timing intervals for an action132 can be interpreted as a continuous function over the time
line. This scheme would also allow to specify delays as a
probability distribution. Figure 2 shows the timing intervals
of the action drive-truck T1 A B for �_a ���b�c deOWf�8g g 2 �
and � V 2ih aUO . Thus, heavy traffic only affects timing interval@ j#D�k H E and the action is delayed H T Lml\n 9eo3pq1 2�r ; and driving
at night produces a retard over the timing interval @ J�H D,s E ofH T Jtl\n 9eo?pu132 r .

Planning in temporal domains with delays
In PDDL, the duration of an action in a temporal domain can
be expressed as a fixed value (simple time) or the result of
a numeric-valued fluent (time). The straightforward conse-
quence of handling temporal domains with delays is that the
same action can have different durations depending on the
timing intervals over which it is executed, that is the dura-
tion will be different depending on its start execution timing.

Dealing with delays when a temporal plan is being com-
puted adds a great complexity to the planning process be-
cause the actual duration of each action is unknown until it is
allocated in the time line. One alternative would be to com-
pute in advance the duration of each single action at each
time point. However, although this can be done in poly-

nomial time, the result would be a prohibitive number of
different instantiated actions (one instance for each different
possible duration) which would cause a blow up in the plan-
ning process. Moreover, computing accurate estimations of
the plan duration to define heuristics would be much harder
as the exact duration of actions is unknown.

Therefore, our proposal is not to consider the allocation
(instantiation) of a plan in time into the temporal planning
process but in a separate post-planning process (see figure
3). First, we obtain a plan from an existing temporal planner
and the start/end time of the plan is initially set to a value on
the real time line, according to the user specifications; oth-
erwise, the start time is set to any value. Then we calculate
the extended duration of the plan when delays are applied.
Once we have the plan allocated in time, we check if the
user temporal constraints hold in the plan. If this is the case,
a solution is returned. Otherwise, the plan is converted into
a CSP and its resolution will provide new allocations of the
plan in time until we find a solution that satisfies the user
restrictions.

The post-planning process performs two main tasks:� Apply delays to a temporal plan. When the plan is set
on a time line and, consequently, the timing intervals over
which actions are executed are known, an algorithm to
compute the extended duration of the plan is applied. This
is explained in detail in next section.� Scheduling a plan as a CSP. The objective of converting
a plan into a CSP is to find new allocations in time for
the plan. Actions are reordered and re-allocated in time
so as to minimize the overall delay and satisfy the user
restrictions. This is explained in section Plan scheduling
as a CSP

User constraints?

Temporal plan

Extended plan

with delays

CSP resolution

Found solution?

Return plan

Return plan

Yes

Yes

No

No

Figure 3: Post-planning process to compute a plan in a tem-
poral domain with delays

Applying delays
In this section we present the algorithm to compute the ex-
tended duration of a temporal plan given the action delays at
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vxwzy
do
if {Q|~}_��|~}��t�%� � ZU� �i��� � ���3�Y��� {��u�8����� max {��q�~���,�,� }U���

then ���#|~} w max {�� � �����,��}�����|~}_��|~}����%� � Z<� ����� � ���3� �
else � w {�� �8��� � max {�� � ���,�,� }U������{0� �¡� � � Z � � � � � ���3�Y� �|~} w |~}-� �

endifvxw\v �&�
while | }£¢ y

Figure 4: Algorithm for delays application

their timing intervals. The extended (real) duration of a par-
allel plan P composed of several sequences of actions will
be the extended duration of the longest sequence.

We initially set the start/end time of the plan according to
the user specifications. This gives us information about the
timing intervals over which actions will be executed and we
can then proceed to compute the extended duration of the
plan. We show here how to compute the extended duration
of a single action; the same process is then repeated for every
action and the final extended plan duration is calculated as
indicated above.

Let 1 ] be a durative action which start time and stan-
dard duration are denoted by ¤�;U¥*] and n ] respectively. 1?]
starts at timing interval @ A�¦*D(A M E and finishes at timing inter-
val @ A V3d�M DCA V*E (see case 0 in Figure 5). The basic procedure
of the algorithm works as follows: for action 1 ] and timing
interval @ A 2 D(A X E , find out “how much” of the duration of 1#]
over @ A�2�DCAYX E actually corresponds to the action execution and
“how much” corresponds to causes of delays in the timing
interval; then substract the action duration from n ] and re-
peat again for the next timing interval. Figure 4 shows the
algorithm for applying delays to a single action 1 ] .

The expression pWA0§�¨ M $ max pWA0§*D�¤8;�¥ ] rCr in the if condi-
tion always returns the range of timing interval @ A�§?DCAY§�¨ M�E ex-
cept the first time if 1#] does not start exactly at A § . The
expression p n ]x© n ] l � N 8Z�. O � . O ���*� R r denotes the extended
duration of 1 ] over timing interval @ A0§3DCAY§�¨ M�E . If this du-
ration goes beyond A §8¨ M then we compute “how much” ofpWAY§�¨ M $ max puAY§?D�¤�;U¥ ] r(r (duration of 1 ] over @ AY§#D(AY§�¨ M,E ) ac-
tually corresponds to the action execution ( ª ), such thatª © ª l � N  Z . O � . O ���3� R F AY§�¨ M $ max pWAY§3D�¤�;U¥ ] r (cases (1),
(2), (3) and (4) in figure 5). n ] is then updated and the pro-
cess is repeated for the next timing interval while n ] = H . If
the extended duration completely falls within @ A�§?D(AY§�¨ M�E (case
5 in figure 5) then ;<« n ] is updated by adding this extended
duration to the range of the previous timing intervals (case 6
in figure 5). The final result will be an extended 1 ] duration,
as it can be observed in case 6 of figure 5.

Plan scheduling as a CSP
This step is executed when the scheduled plan P does not
fulfil the user requirements. We build a CSP that encodes:� information in plan P

¬¬¬®®®
¯¯¯¯¯¯¯°°°°°°°

±±±²²²

³³³´´´ µµµ¶¶¶
··················¸¸¸¸¸¸¸¸¸¸¸¸¸¸¸¸¸¸

tb=0 t0 t1 . . . tn

dk

t2 tn−1 te=24

dk
dk

dk
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tn+1
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(2)

(3)

(4)

(5)

(6)

. . . 

(0)original action
begk
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endk

endk

Figure 5: Graphical representation of delays application

� all possible planning alternatives in P (different ways of
achieving a literal with actions in P)� the different durations actions in P can take on according
to their timing intervals� user constraints

It is important to remark that, unlike other approaches
((Do & Kambhampati 2001), (Kautz 2004)) our CSP does
not encode the planning problem but a scheduled plan in
time plus all the necessary information to modify the plan
and make it accomplish the user requirements.

CSP specification
Let ¹ be a partially-ordered set of actions º 1#»�DC1 M DUT�TUT8DC1 Ve¼ ;1 ¦ and 1 V are the initial and final ficticious actions that rep-
resent the start and end time of ¹ , respectively. We will
use : 2 and ; 2 to denote the start and end time of an ac-
tion 1 2 , and A 2 to refer either : 2 or ; 2 indistinctly. Let ½
be the set of variables ½ F¿¾ V2�À ¦ :<2_Á ¾ V2ÂÀ ¦ ; 2 . For the
ficticious intial and final actions, : ¦ F ; ¦ and : V F ; V .
Time is modelled by Ã ¨ and their chronological order. Par-
ticularly, the list of possible values for an end time point
is Ä � / F º H T�T�T J�L ¼ ^ÅÃ ¨ and for a start time point isÄ � / F º3@ H D(Æ M,E @ Æ M DCÆ S8E T�T�TU@ Æ V D J�L E ¼ ^ÇÃ ¨ where Æ~2 denote
the left/right extreme points of the timing intervals. We dis-
tinguish three types of constraints È : planning constraints,
timing interval constraints and user constraints.

This specification gives rise to a TCSP (Ghallab, Nau, &
Traverso 2004) as the problem involves a set of variables ½
having continuous domains ( Ã ¨ ), each variable represent a
time point and the three types of constraints are encoded as
a set of unary and binary constraints (see below).

(A) Planning constraints. We show here how to encode
planning relationships into temporal constraints.� Causal link. We denote a causal link (Penberthy & Weld
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1992) between actions 1?2 and 1~X as pu132CDC1~X~DuÉ r where É
is the literal that 1?2 produces for 1ÊX . The translation of
a causal link into a temporal constraint has four variants,
depending on literal É is produced at start or end of 1 2 and
required at the start or end of 1ÊX . These four variants are
encoded as binary constraints: : 2ÌËI:�X , :<2ÍËÎ;�X , ; 2-ËI:8X
or ; 2 ËÏ; X . We will use the general temporal constraintA 2 ËÐA X to refer to any of the four variants.
The different planning alternatives (ways of producing lit-
eral É with actions in ¹ ) are encoded as a disjunctive tem-
poral constraint:Ñ

Ò  Z8Ó §�Ô 8Õ�ÕUÖÂ Z,× A ] ËØAYX (1)

� Threat. Let’s suppose 1?] threatens causal link pq1 2 DC1 X DqÉ r .
The set of disjunctive constraints to model the demotion
and promotion choices are:Ù

Ò  Z8Ó §�Ô Õ��0ÚQÖÂ Z8× A(]�5ÛA 2ÝÜ A(]�=ÐA X (2)

In the case of an overall condition the disjunctive con-
straint would be Þ Ò  Z8Ó §�Ô Õ��0ÚQÖ� Z8× A(]x5ÛA 2ÝÜ A(]�=Û; X .
We classify planning constraints into three different cate-

gories:

1. Safe causal link. When 1?2 is the only way to produce lit-
eral É and there is no action, except may be 1 X , that deletesÉ . This implies 132 is the only producer so the causal link
is unmodifiable and there are no threats over pu1#2CDC1~X~DqÉ r .
Therefore, a safe causal link is encoded as temporal con-
straint that represents a causal link.

2. Hard causal links. When 1?2 is the only way to produce É
and it exists at least one action that deletes É . This implies1 2 is the only producer so the causal link is unmodifiable
and there can be threats over pu1?2CDC1~X~DqÉ r . Therefore, a hard
causal link is encoded as a temporal constraint that repre-
sents the causal link plus a set of disjuntive constraints to
avoid threats over such a causal link.

3. Weak causal links. When there are several producer ac-
tions of É for 1 X . A weak causal link is encoded by using
the disjunctive temporal constraint of the planning alter-
natives plus a set of disjuntive constraints to avoid threats
on each possible causal link. The combination of these
contraints is encoded as:Ñ

Ò �/ Ó §�Ô 8Õ�ÕUÖÂ�/ × A�24ËÐAYX<ßÌp [ 1 ]~à É\^ n ; áCpu1 ] r puA ] 5ØA�2 Ü A ] =ØAYX r(r (3)

(B) Timing intervals constraints. These constraints rep-
resent the different durations an action 1 2 can take on de-
pending on the timing interval where 1 2 starts its execution.
For example, assuming we have � @ 1?2CDCâÝD�ã E and � @ 132(D,ã?D�ä E ,
the final duration of 132 will be different if :<2å^æ@ âÝD�ã E or: 2 ^ç@ ã?DCä E . Actually, the final duration also depends on the
specific time point within the corresponding timing inter-
val but we will simplify the modelling by just assuming that
the extended duration of 1?2 is the same when : 2 falls at any

point within the same timing interval1. The timing interval
constraints are encoded as:[ 1 2 ^�¹

Ñ
Ò N O � . O ���3� R Ô N OuèC. Oué0R A § ËÇ: 2 ËØA §�¨ M ßê; 2ëF : 2 © n (4)

where n is calculated by applying the algorithm of figure
4. We restrict the plan to be executed before A � FÎJ�L .

(C) User constraints. Constraints on the start/end time of
the plan are expressed as :<¦íìîÆ�¦ , ; V ËîÆ V . The same
specification is used to represent restrictions on the start/end
time of the actions in the plan ( AC2ïËIÆ�2�A�2GìðÆ�2 ). A limit in
the plan duration is encoded as ; V F :U¦ © n ] .

Example. Figure 6 represents a scheduled plan in the in-
terval [10,14:30]. It shows a plan where each action is repre-
sented by a rectangle with its preconditions (Pr) and effects
(Ef). The causal links between the actions are denoted by
arrows with labels on the form (type of causal link, literal).
All conditions are at start except condition Æ of 1?ñ which is
overall and all add and del effects are at end.

10        11        12       13        14        15   ...  18

Pr={r}
Ef={q,t,-r}

Pr={t,v}
Ef={r,-t,-v}

Pr={r}
Ef={s,t,-r}

Pr={v}
Ef={w}

a0 an

a1

a4

a2 a3

Ef={r,v} Pr={q,s,w}

Weak, r

Weak, t

Safe, v

Hard, v

Safe, q

Safe, w

Weak, r
Safe, s

Figure 6: A scheduled plan over a time line

The set of temporal constraints representing the planning
relationships are:� Safe causal links: ;<¦òËí: S , ; M ËÇ: V , ; óôËØ: V , ; ñ Ëí: V� Hard causal links: ; ¦ Ëç:Uñ , ; S =Ç;<ñ (this latter constraint

represents the only way to avoid the threat of 1 S over the
hard causal link)� Weak causal links: Let’s take, for instance, the weak
causal link pu1*¦ÊDC1 M DCo r . The backup producer is 1 S so the
planning alternatives are ; ¦òËÇ: M Ü ; S ËÇ: M . The possible
threatener is 1 ó . Consequently, the final encoding for this
weak causal link implies one way of solving a threat over
the first planning choice and the two ways of avoiding a
potential threat on the second planning choice:@ ; ¦ ËØ: M ßõpu; ó =Ø: M r E Ü @ ; S ËÇ: M ßõpu; ó 5Ç: S Ü ; ó =Ç: M r E
Similarly for the rest of weak causal links encodings.

The set of temporal constraints to represent the timing in-
tervals and user restrictions are:� : ¦ ìök H , ; V Ëök Lø÷ â H (user constraints)

1In this first aproximation we only consider the left extreme of
timing intervals. In a future work, we will extend this approach to
work with the exact duration of each action according to the time
point within the timing interval.
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� p H ËK: M Ëùk J ß�; M F : M © k r%Ü p�k J ËI: M Ë J�L ß�; M F: M © JÊr� p H Ë7: S ËKúôß�; S F : S © k~Tûã rëÜ puú�Ëü: S Ëýk L ß�; S F: S © JÊr�Ü p(k L Ëí: S Ë J�L ßê; S F : S © â r� p H ËK: ó Ëùk H ß�; ó F : óÌ© J~r%Ü p�k H ËI: ó ËÏkUj�ß�; ó F: óÍ© k r�Ü p(kUjtËí: ó Ë J�L ßê; ó F : ó-© L*r� H ËØ:UñòË J�L
Solving the CSP
After encoding the current plan into a TCSP, we have a rep-
resentation of this plan joint with all the possible alternative
plans we could build. The next step is to solve this TCSP in
order to obtain a new plan, which satisfies the user require-
ments. As shown above, this is a disjunctive TCSP, with
unary and binary constraints. A straightforward way of solv-
ing it is to decompose it into several non-disjunctive TCSP
(Detcher 2003). This is the approach we have adopted, but
we need to distinguish between two levels of decomposition:
the first level considers the disjunctive planning constraints
(weak and hard) while the second level considers the disjun-
tive timing interval constraints. Once a non-disjuntive TCSP
has been built, we apply an arc-consistency procedure in or-
der to shrink intervals domain for each : 2 . The remainder
of this section formalizes the algorithm to solve the general
TCSP.

First, we need to define the intersection of intervals
(Detcher 2003). Let þ F º<ÿ M D�TUT�T�D�ÿ Ú�¼ and � Fº�� M D�TUT�T8D���� ¼ be two constraints representing the domain of
intervals of a temporal variable : 2 or ; 2 . The intersection
of þ and � , denoted by þ���� , admits only values that are
allowed by both þ and � , that is, þ���� F º
	 M DUT�T�T�D�	 Ve¼
where 	 ] F ÿ82����X for some � and � .

Our algorithm works in four stages. At any time, the al-
gorithm can return that there is no solution when any of the
variable domains becomes empty. These stages are:

1. Dealing with the user requirements. The first step of
this algorithm consists in shrinking the given domains of
the variables according to the user requirements. We dis-
tinguish three types of user requirements and each of them
has a different process:� Start and end of the plan: Given a start and end of the

plan constraints of the form : ¦ ìÎÆ ¦ and ; V ËÎÆ V , we
can shrink the domains of all the variables in the CSP
as we implicitly know that [ 1 2 ^\¹ÌD�:U¦ ËØ: 2 ß�; 2 ËÇ; V .
Given that Ä O / represents the domain of a variable : 2
or ; 2 , the new domains are computed as follows:Ä O / F Ä O / �ö@ Æ ¦ D(Æ V?E
In case :U¦ or ; V are not restricted, then it is assumed
that Æ ¦ F $�� and Æ V F � .� Duration of the plan: This requirement cannot be used
to shrink the variable domains, because it does not re-
strict at what time an action may or may not start. It
only shrinks the makespan of the plan which is not rep-
resented in the variable domains.� Start and end of one action: Given two constraints indi-
cating the start and end of an action of the form :�2 ìØÆ ¦

and ; 2ôËùÆ V , we can shrink the domain of these vari-
ables in the same way as with the start and end of the
plan.

2. Selection of the planning disjunction. We focus on
those constraints which produce disjunctions: hard and
weak causal link constraints. Let È�� F pu1 2 DC1 X DqÉ r be a
causal link.� Assuming that È�� is a hard causal link, let 6�X be a

threat constraint related with È�� on the form of (2).
Therefore, the number of different TCSP we can build
considering only È�� is ����X FöJ�� 8Z � , where � 1 ] � is the
number of actions that threaten È�� .� Assuming that È�� is a weak causal link, let 6 X be the
constraint corresponding to È�� on the form of (3).
Therefore, the number of different TCSP we can build
considering only È�� is ���¡X F � 132�� l J��  Z � , where � 132��
is the number of actions that can solve É for 1 X and � 1?]��
is the number of actions that threaten È�� .

The number of different TCSP grows exponentially as the
number of hard and weak causal links increases. Namely,
this number is:�� / Ô��! #" 6 2_l

�� / Ô%$& '" 6 2
where �È�� and �KÈ�� are the set of hard and weak
causal link constraints, respectively. We select one of the
obtained TCSP randomly2.

3. Selection of the timing interval disjunction. At this mo-
ment, we only consider the TCSP selected in the previous
step. Let 6 2%F)( Ò N O � . O ���3� R pWA § Ëí: 2 ËØA §8¨ M ßê; 2 F : 2 © n3r
be a timing interval constraint. Again, we can build a
number of different TCSP, each of them considering a dif-
ferent execution interval for each action. This number isª Ò �/ Ô�* � �,+ 8/ � , where � �,+ �/ � is the number of timing in-
tervals for each action. Fortunately, this number is an up-
per bound of the number of the TCSP we must actually
consider, as some of these combinations rule out due to
the domains restriction performed in previous steps. We
select a TCSP which will be solved in the next step.

4. Arc-consistency. An arc-consistency process is applied
in order to shrink the domain for each variable, that is,
we do not calculate the minimal domain because the
start/end time points of the actions come conditioned by
the start/end time points of the previous actions. The arc-
consistency process we have implemented takes - pW« S r ,
where « is the number of variables.

Example We continue with the example of the previous
section. The domains of the variables are those represented
in the timing interval constraints. Taking into account the
user requirements, the new domains of the variables after
applying the first step of the TCSP resolution process will
be:

2At this moment, there is no reasoning about which of the ob-
tained TCSP may lead to a solution with a higher probability. This
will be discussed in the experiments section.
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Timing Duration
	

300 250 200
intervals

Makespan 238 238 No plan
2 Start-End time 0:00-3:58 0:00-3:58

Time (secs.) 0.031 0.031 2.14 (4.48)

Timing Duration
	

300 260 245
intervals

Makespan 276 258
4 Start-End time 0:00-4:36 17:18-21:36

Time (secs.) 0.047 543 Time Out

Timing Duration
	

300 250 200
intervals

Makespan 222 222
6 Start-End time 0:00-3:42 0:00-3:42

Time (secs.) 0.016 0.031 Time Out

Table 1: Duration constraints

� Ä �/. F Ä �0. F º*@�k H DUk L�÷ â H E ¼� Ä � � F º*@�k H D�k J E DU@�k J DUk L ÷ â H E ¼ D�Ä � � F º*@�k H D�k L�÷ â H E ¼� Ä �/1 F º*@�k H D�k J E DU@�k J DUk L ÷ â H E ¼ D�Ä �01 F º*@�k H D�k L�÷ â H E ¼� Ä �/2 F º*@�k H D�k L�÷ â H E ¼ D�Ä �/2 F º*@�k H D�k Lt÷ â H E ¼� Ä �03 F º*@�k H D�k L�÷ â H E ¼ D�Ä �03 F º*@�k H D�k Lt÷ â H E ¼� Ä �/4 F Ä �04 F º*@�k H D�k Lt÷ â H E ¼
As shown in the previous section, there is a number of

hard and weak causal links, which in turn define different
TCSP. We select the following planning disjunctions: ; ó Ë: S , ; S ËÇ: M ßê;<óô5Ø; S and ;<¦òËÇ:Uó-ß>; M =Ç:Uó .

Now, we have to select a set of disjunctions from the tim-
ing interval constraints. Let’s assume we select the follow-
ing ones: p H ËÇ: M ËÎk J ßx; M F : M © k r , p H Ëí: S ËØú4ß�; S F: S © k~Tûã r , p H ËÇ:<óôËðk H ßê; ó F :<ó © J~r and H Ëí: ñ Ë J�L .

In this case, it is obvious that the obtained TCSP is
inconsistent, as constraint 2 cannot be satisfied ( Ä �01 Fº*@�k H D�k J E DU@�k J DUk L7÷ â H E ¼ ). If instead of disjunction p H Ë: S Ëðú�ß�; S F : S © k~Tûã r , we select disjunction puú�ËI: S Ëk J ß�; S F : S © JÊr , the TCSP is consistent and after apply-
ing the arc-consistency, we obtain the following start time
points for each action: :<¦ F k H D�: M F kUâÝD�: S F k~kÊD�:<ó Fk H D�: ñF k H DC; V F k L . Therefore, this new plan fulfil the
user requirements.

Experimental Results
In order to check the behaviour of our TCSP, we run dif-
ferent experiments with a hand-made problem from the
driverlog domain3. The temporal plan returned by LPG
(Gerevini, Saetti, & Serina 2004) for this problem instance
contains 18 actions and a makespan of 200 time units (before
applying delays).

The above tables represent different temporal restrictions
specified by the user for three different temporal settings (2,
4 and 6 timing intervals). The first row in the results for
each timing interval represents the plan makespan, the sec-
ond row the start and end time of the plan and the third row

3Domain from the International Planning Competition 2002:
http//planning.cis.strath.ac.uk/competition

Timing Start- [10,20] [12,20] [14,19] [14,18:35]
intervals End time

Makespan 245 264 284 No plan (274)
2 Start time 10:00 12:00 14:00 (14:00)

End time 14:05 16:24 18:44 (18:34)
Time (secs.) 0.17 0.047 0.031 0.031 (0.0625)

Timing Start- [10,20] [12,20] [14,19] [14,18:20]
intervals End time

Makespan 301 296 268 No plan (253)
4 Start time 10:00 12:00 14:00 (14:00)

End time 15:01 16:56 18:28 (18:13)
Time (secs.) 0.843 0.0625 0.0468 0.172 (0.906)

Timing Start- [10,20] [12,20] [14,19] [14,18:30]
intervals End time

Makespan 284 286 273 No plan (263)
6 Start time 10:00 12:00 14:00 (14:00)

End time 14:44 16:46 18:33 (18:23)
Time (secs.) 0.25 0.0624 0.203 2.14 (3.46)

Table 2: Constraints on the start and end of the plan

the CPU time in seconds. All experiments were run on Pen-
tium IV 3GHz with 512 Mb of memory and censored after
15 minutes.

Table 1 shows the results when the user requirement is to
set the plan duration below three different values (300, 250
and 200 time units). For 2 timing intervals and a duration of
less than 200 seconds no plan is found. The value in brackets
indicates a second CSP has been solved with no success.

Table 2 shows the results when the user imposes restric-
tions on the start and end time of the plan within a time in-
terval. For example, first column indicate that the start and
end time of the plan must fall within the interval [10,20].
We can see that the most time-consuming experiment is for
the longest plan execution interval. This clearly shows that
when the plan execution interval is more restricted, the num-
ber of consistent timing intervals decreases and the search is
faster. However, in this case, it does not exist a valid combi-
nation of timing intervals, the necessary time to return No
plan increases as long as the number of timing intervals.
Again values in brackets represent the results obtained from
a second CSP resolution.

Table 3 represents a restriction on the plan duration plus
a restriction on the start time of the plan. First column de-
note that the makespan must be below 250 seconds and the
start time of the plan at any point later than time 10.00. The
missing data for the start/end time rows correpond to those
cases where a plan is not found.

We can also observe that CPU time is shorter in Table 1
than Table 3. In general, if only restrictions on the duration
are considered then appropriate timing intervals combina-
tions are found faster. In the case of 4 timing intervals and a
duration below 260 time units we notice the solution found
(258 t.u.) is very close to the limit and the CPU time is very
high (543 seconds) which indicates that almost all possible
combinations of timing intervals have been searched until
finding a solution. From comparing results in Table 2 and
Table 3 we can deduce that when there are restrictions on
the start and end time of the plan the computation is faster
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Timing Duration /
	

250 /
�

10
	

240 /
�

10
	

300 /
�

12
	

250 /
�

12
intervals Start time

Makespan 245 No plan (No plan) 264 No plan (No plan)
2 Start-End time 10:00-14:05 12:00-16:24

Time (secs.) 0.17 2.25 (4.46) 0.0156 0.01562 (0.078)

Timing Duration /
	

300 /
�

10
	

300 /
�

12
	

300 /
�

14
	

260 /
�

14
	

300 /
�

18
	

230 /
�

18
intervals Start time

Makespan 291 286 268 258 240 No plan (No plan)
4 Start-End time 10:00-14:51 12:00-16:46 14:00-18:28 17:18-21:36 18:00-22:00

Time (secs.) 2.2 0.0426 0.0316 0.0624 0.0171 0.078 (0.185)

Timing Duration /
	

300 /
�

10
	

300 /
�

12
	

300 /
�

14
	

250 /
�

14
	

300 /
�

18
	

220 /
�

18
	

200 /
�

18
intervals Start time

Makespan 284 286 273 249 228 219 No plan (No plan)
6 Start-End time 10:00-14:44 12:00-16:46 14:00-18:33 17:13-21:22 18:00-21:49 18:59-22:38

Time (secs.) 0.87 6.62 3.49 3.73 0.156 0.3124 2.125 (4.2)

Table 3: Constraints on the duration and the start time of the plan

because it is possible to rule out many more combinations of
timing intervals.

In general, a conclusion from the experiments is that the
more number of timing intervals the longer time for the CSP
resolution. When dealing with 2 timing intervals, the num-
ber of possible action instantiations is about 4000 and for 4
timing intervals is about 16 million of combinations. The
CPU time of the experiments depend on when the intervals
that provide the shortest duration to actions are selected in
the CSP resolution, the set of valid intervals according to the
start/end or duration restriction, etc. As a whole, the most
time-consuming experiments are those with the earliest start
time and shortest makespan.

As a conclusion, what we want to highlight from the ex-
periments is that the CPU time for the CSP resolution is per-
fectly affordable even though no heuristic information at all
has been used to select the most appropriate CSP or tim-
ing intervals for a particular solution. Moreover, modeling
time restrictions at execution time is much simpler in a CSP
framework than in a planning system.

Conclusions and further work
In this paper we have presented an extended model of dura-
tive actions which takes into account the fact that actions are
delayed at the time of being executed in a real domain. This
way, we introduce the concept of delay as the increase in the
duration of an action due to very common causes in daily life
but rarely considered in planning modelling. The introduc-
tion of delays create a complete different scenario in tem-
poral planning. Now plans may have a different makespan
according to its timing of execution and this aspect has to be
taken into account in order to meet the user restrictions on
the start/end time or duration of the temporal plan.

Using a CSP approach to tackle time restrictions at exe-
cution time is a very promising working line. Experiments
show that even using a completely uninformed CSP, this ap-
proach brings significant benefits at a very low cost, spe-
cially if we consider to obtain the same gains from a plan-
ning perspective. This makes us keep on considering a sepa-
rate process for allocating a plan in time. This process could

be used not only to handle delays or temporal user require-
ments but also all kind of restrictions that come out when a
plan is to be instantiated in a particular temporal setting.
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Abstract

In an uncertain world, a rational planning agent must simul-
taneously reason with uncertainty about expected outcomes
of actions and preferences for those outcomes. This work
focuses on systematically exploring the interactions between
preferences for the durations of events, and uncertainty, ex-
pressed as probability distributions about when certain events
will occur. We expand previous work by introducing a means
for representing events and durations that are not under the
control of the planner, as well as quantitative beliefs about
when those events are likely to occur. Two reasoning prob-
lems are introduced and methods for solving them proposed.
First, given a desired overall preference level, compute the
likelihood that a plan exists that meets or exceeds the spec-
ified degree of preference. Second, given an initial set of
beliefs about durations of events, and preferences for times,
infer a revised set of preferences that reflect those beliefs.

Introduction
Rational agents are capable of mentally exploring the in-
teractions between what they believe and what they desire
as outcomes of actions. More often than not, the value of
the outcomes of actions cannot be described by a single at-
tribute, but rather by attributes that combine to determinethe
overall value of the outcome (Keeney & Raifa 1993). Fur-
thermore, the outcome of actions may not be known with
certainty, as a result of the need to interact with the world.

Many practical planning or scheduling problems surround
events that are not controlled by the planning agent. For ex-
ample, Earth Science observation scheduling may involve
assigning times for the remote sensing of an area of inter-
est on the Earth before, during, or after a fire has occurred
there. The start and end of the fire are not known with cer-
tainty at planning time, but Earth Science models might be
available to estimate a set of times when fires are likely to
occur. In addition, the scientific utility of an observation
may vary based on when the observation is taken relative to
the fire, resulting in preferences for temporal orderings and
durations between planned events and uncontrollable events
(Morris et al. 2004b). As automated planning matures as
a software technology, new techniques inspired by decision
theory are being integrated to address the fact that plans are
executed in the world, with varying degrees of value to the
planner based on their outcomes (Blythe 1999). A princi-

pled approach to scheduling problems as the above is essen-
tial for a decision-theoretic temporal planner that takes into
account preferences when determining plan quality.

The goal in this paper is to devise systematic methods for
exploring the interactions between temporal preferences and
uncertainties. We introduce a framework that generalizes
the Simple Temporal Problem(STP) formulation (Dechter,
Meiri, & Pearl 1991), called theSimple Temporal Problem
with Preferences and Probabilities, or STP3. One com-
ponent of the generalization adds the capability to express
preferences for times, following (Khatibet al. 2001). The
other component allows for the designation of uncontrol-
lable events and the associated probability space over times.
We extend techniques previously used to solve temporal
planning problems with preferences to identify solutions that
are both globally preferred and highly probable.

Besides defining the STP3 framework, the contribution of
this paper is to describe solutions to two practical reasoning
problems arising from the interactions between probabilities
and preferences. We extend techniques previously used to
solve temporal problems with preferences to identify solu-
tions that are both globally preferred and highly probable.

Decision-theoretic planning is surveyed by (Blythe 1999).
Most approaches extend classical planning techniques or
employ Markov Decision Processes (e.g. (Boutilier, Dean,
& Hanks 1999)), in contrast to our constraint-based focus.
Of work on temporal reasoning for planning, a characteris-
tic example is (Hanks, Madigan, & Gavrin 1995), who, like
us, consider exogenous events, but focus on eliciting proba-
bilities and qualitative preferences from a human expert.

In the constraints literature, preferences are commonly
represented using semiring-based formulations, the ap-
proach we adopt. An alternative formulation for qualitative
preferences is CP-nets (Boutilieret al. 2004). Uncertainty
has also been represented both qualitatively and quantita-
tively; probabilistic frameworks include that of (Fargieret
al. 1995), which we adopt, and its extensions.

Generic constraint-based frameworks that account for
both preferences and uncertainty include (Dubois, Fargier,
& Prade 1996). Our work is distinguished by restricting
attention to Simple Temporal constraints. Prior work in
this line has considered STPs with preferences but no un-
certainty (Khatibet al. 2001); and STPs with uncertainty
constraints but no preferences (Morris, Muscettola, & Vidal
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2001; Tsamardinos, Pollack, & Ramakrishnan 2003). While
(Rossi, Venable, & Yorke-Smith 2004) incorporate both as-
pects, that work considers only qualitative uncertainty, that
is, with implied uniform distributions.

Example: Earth Science Campaign
Observation Scheduling

An Earth Science campaignis a systematic set of activities
undertaken to meet a particular science objective. Here, we
present a hypothetical campaign based on a science objec-
tive to test an emissions model predicting the aerosols re-
leased by wildfires. Data on several variables must be gath-
ered in order to accomplish the analysis, and several remote
sensors, such as those on the Landsat satellite, provide data
products at various spatial resolutions relevant to these vari-
ables. Preferred times for acquiring Landsat data for vegeta-
tion type for a region of interest in the northern hemisphere
would be the prior June or July in the same year that the
fire burned, when forested land can most easily be spectrally
distinguished from grassland. For mapping aerosol concen-
tration, images coincident to burning must be obtained; the
Terra and/or Aqua satellites have relevant instruments. For
the burned area, data should be acquired after (though not
too long after) the fire is out, while for mapping vegetation
moisture content, hyperspectral data from an EO-1 Hyper-
ion instrument are relevant, and the most useful data would
be that acquired just preceding the fire.

From this description, the inputs to a campaign planning
problem potentially consist of the following characteristics:

• a set of temporal, spatial, and resource constraints on
when and where images are to be taken;

• user preferences for when an observation should be taken;

• temporal ordering constraints between planned events and
uncontrollable, exogenous events such as fires.

A reasonable goal, given these inputs, is to generate a con-
cise representation of the set of solutions (assignments of
times and sensing resources) that are maximally preferred
and reflect a set of initial beliefs about when exogenous
events are likely to occur. We formulate a framework ca-
pable of describing the problem and generating this output.

Simple Temporal Problems with Preferences
and Probabilities

A soft temporal constraintdepicts restrictions on the dis-
tance between arbitrary pairs of distinct events, and a user-
specified preference for a subset of those distances. In
Khatib et al. (Khatibet al. 2001), a soft temporal constraint
between eventsi andj is defined as a pair〈I, fij〉, whereI is
a set of intervals{[a, b], a ≤ b} andfij is a local preference
functionfrom I to a setA of admissible preference values.1

WhenI is a single interval, a set of soft constraints defines a
Simple Temporal Problem with Preferences(STPP), a gen-
eralization of a Simple Temporal Problem (Dechter, Meiri,

1For the purposes of this paper, we assume the values inA are
totally ordered, and thatA contains designated values for minimum
and maximum preference.

T R
O b s 1 F S O b s 2

F E
p 1 ( t ) p 2 ( t )f 1 ( t )

f 2 ( t )D 1 D 2
[ 0 , ∞ ]

[ � ∞ , ∞ ]
[ � ∞ , ∞ ] [ 3 0 , 9 0 ] [ 6 0 , 1 2 0 ]

Figure 1: STP3 Representing the Fire Campaign Scenario

& Pearl 1991). An STPP can be depicted as a pair(V, C)
whereV is a set of variables representing events or other
time-points, andC = {〈[aij , bij ], fij〉} is a set of soft con-
straints defined overV . An STPP, like an STP, can be or-
ganized as a network of variables representing events, and
links labeled with constraint information.

Similar to other recent approaches (Morris, Muscettola, &
Vidal 2001; Tsamardinos, Pollack, & Ramakrishnan 2003;
Rossi, Venable, & Yorke-Smith 2004), we extend the STPP
framework to represent temporal uncertainty. First, we parti-
tionV into two groups: thedecision variablesVd and thepa-
rametersVu representing uncontrollable events. This parti-
tion induces a distinction betweendecision constraints(Cd)
anduncertainty constraints(Cu): those constraints whose
end-point is controllable (i.e. a decision variable), and those
whose end-point is a uncontrollable (i.e. a parameter). An
uncertainty constraint depicts a duration between events as a
continuous random variable. To ease the exposition, we as-
sume that the uncertainty constraints are mutually indepen-
dent2; this allows the constraints inCu to be expressed in
the form〈[aij , bij ], pij〉, wherepij : [aij , bij ] → [0, 1] is the
probability density function over the designated interval. We
call the framework〈Vd, Vu, Cd, Cu〉, whereCd are soft con-
straints, aSimple Temporal Problem with Preferences and
Probabilities, or STP3.

Example 1 Earth Science Observation Problem.Inputs:
Variables inVd standing for two controllable events consist-
ing of taking an observation (Obs1, Obs2), and two uncon-
trollable events inVu, the start and end of a fire (FS, FE)
(for simplicity, observations are viewed as instantaneous), as
shown in Figure 1. There is also an event TR representing
the beginning of time. Soft constraintsf1(t), f2(t) in Cd are
associated with the durations betweenObs1 andFS, and
betweenObs2 and FE, respectively. For example,f1(t)
may express that there is no value for takingObs1 after the
start of the fire (FS), and a preference for times that are as
close toFS as possible. Similarly,f2(t) expresses a pref-
erence forObs2 happening beforeFE as close as possible,

2For instance, imagine that the Earth Science planner maintains
a Bayes network elsewhere to express the dependencies; eachprob-
ability p(t) is given implicitly by that network.

ICAPS 2005

WS1. Workshop on Constraint Programming for Planning and Scheduling 53



with a penalty if the observation is taken after the fire. Un-
certainty constraintsp1, p2 in Cu are associated with random
variables representing the start time and the duration of the
fire. These constraints are based on Earth Science models
about fires in the area of interest. For example,p1 may ex-
press a normal distribution over the range of times.

A solution to an STP3 is a set of assignments toV =
Vd ∪ Vu that satisfies all the constraints inC = Cd ∪ Cu.
Given an STP3 P , letSol(P ) be the set of all solutions toP .
An arbitrary solutions ∈ Sol(P ) can be viewed as having
two parts:sd, the set of values assigned toVd, andsu, the
set of values assigned toVu.

Our goal is to develop efficient methods for generating
a concise, graphical representation of subsets ofSol(P )
corresponding to highly likely, globally preferred solutions.
This STP-based graphical representation is called aflexible
(temporal) plan. Many planning systems use an STP-based
representation of the temporal aspects of their plans (Smith,
Frank, & Jónsson 2000).

Following previous efforts, methods for flexible tempo-
ral planning under uncertainty can be distinguished based
on assumptions about the strategy to be applied in executing
the flexible plan. Astatic execution strategyassumes no ac-
cess to the values ofsu during plan execution; by contrast a
dynamic execution strategyis applied as plan execution pro-
ceeds and the values ofsu are observed over time (Morris,
Muscettola, & Vidal 2001; Rossi, Venable, & Yorke-Smith
2004). The results of this paper assume a static execution
strategy; we defer discussions of planning for dynamic exe-
cution of STP3s to future work.

Component Solvers. The solution methods described be-
low are based on different decompositions of an STP3 into
component sub-problems for which efficient solution meth-
ods exist. As a final preliminary, we fix some terminology
and briefly summarize these sub-problem solution methods.
Given an STP3, theunderlying STPPis the problem that re-
sults when a constraint{[a, b], pXY } ∈ Cu is replaced by
the STP component constraint[a, b]. Theunderlying Prob-
abilistic STPis the problem that results when each soft con-
straint{[a, b], fXY } ∈ Cd is replaced by the STP compo-
nent constraint[a, b]. Theunderlying STPreplaces all con-
straints inCd ∪ Cu with their STP components.

Efficient solution methods for STPs are well-known
(Dechter, Meiri, & Pearl 1991). An Simple Temporal Net-
work (STN) is a graph of nodes representing the STP vari-
ables and edges labeled with the interval temporal con-
straints. Each STN is associated with a distance graph de-
rived from the upper and lower bounds of the interval con-
straints. An STN is consistent iff the distance graph does not
contain a negative cycle; this condition can be determined
by applying a single-source shortest path algorithm such as
Bellman-Ford. In addition to consistency, it is often useful
to determine for an STN theequivalentSTN (in terms of a
set of solutions) in which all the intervals are as “tight” as
possible. Thisminimal networkcan be determined by ap-
plying an All-Pairs Shortest Path (APSP) algorithm to the
input network (Dechter, Meiri, & Pearl 1991).

B A C
( a ) ( b )

[ 1 , 1 ] [ 0 , 4 ] f ( t ) = 4 ) t
[ 1 , 5 ] N o r m a l ( 3 , 1 ) BA C[ u , v ] N o r m a l ( a , b )[ w , x ] f ( t )[ y , z ]

Figure 2: Illustrating the Interactions between Temporal
Probabilities and Preferences

Previous efforts in solving STPPs have been based on
identifying and applying criteria for “globally preferredso-
lutions” such as “weakest link” (maximize the least pre-
ferred local preference), “pareto”, and “utilitarian” (Mor-
ris et al. 2004a). Developing efficient solvers has required
local preference functions that are linear or semi-convex.3

One method for solving STPPs efficiently is called thechop
method, first introduced in (Khatibet al. 2001). The chop
method is a two-step search process of iteratively choosing
a preference valueα, “chopping” every preference function
at that point, and then solving an underlying STP defined by
the interval of temporal values whose preference values lie
above the chop line, i.e.{x : f(x) ≥ α}; henceforth, we
refer to this as thechop interval. The highest chop point that
results in a solvable (i.e. consistent) STP produces a flexible
plan whose solutions are exactly the optimal solutions of the
original STPP (based on the criteria of weakest link). Binary
search can be used to select candidate chop points, making
the technique for solving the STPP tractable.

Assessing the Likelihood of Achieving
Preferred Plans

This section and the next consider two practical reasoning
problems involving the interactions of uncertainty and pref-
erences about time, and demonstrate how under certain as-
sumptions they can be solved efficiently using STP3s. The
first problem addresses the question:what are the chances
of achieving a certain level of global preference, given my
belief about the way the world will behave?To illustrate,
consider the simple STP3 in Figure 2(a). Here,Vd = {A, B}
andVu = {C}, and there are two decision constraints, be-
tweenB andC and betweenA andB. B is tightly con-
strained to occur exactly one time unit afterA. The soft
constraintBC prefers durations betweenB and C to be
minimal (higher values more preferred); this is expressed by
the preference functionf(t) = 4 − t. The probability den-
sity function forAC is represented by specifying the named
function (normal) with mean (3) and standard deviation (1).

3A function is semi-convexif drawing a horizontal line any-
where in the Cartesian plane of the graph of the function is such
that the set ofX such thatf(X) is not below the line forms an in-
terval. Semi-convexity ensures that there is a single interval above
any chop point, and hence that the resulting problem is an STP.
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B
A

C[ 0 , 1 0 ]u n i f o r m [ 0 , 1 0 ] f ( t ) = t
[ 0 , 1 0 ]u n i f o r m

Figure 3: Why the Upper Bound May Not be Tight

Suppose an agent wants to infer the chances of there being
a solution with an overall preference level of 2 or greater. We
can answer this question by restricting assignments toBC
with anf value of 2 or greater, and propagating the temporal
constraints over the network. This means shrinking theBC
interval to[0, 2], which in turn shrinksAC to [1, 3]. Conse-
quently, the answer to the posed question can be obtained by
computingP (1 ≤ t ≤ 3) =

∫
3

1
p(t)dt.

This technique can be generalized for arbitrary STP3s.
Given an STP3 P , to determine the probability of achieving
a solution of global preference valueγ or higher, we perform
the following procedure:

1. Given an input STP3, chop each local preference function
at the designated preference valueγ. Form a new problem
by replacing each associated interval with the resulting
chop interval.

2. Determine the minimal network of the underlying STP of
the new problem, using an APSP algorithm.

3. Compute the overall probability of the underlying proba-
bilistic CSP. Assuming independence of thepij , the value
to be computed is

∏

pij

P (aij ≤ t ≤ bij), (1)

where for each uncertainty constraint,[aij , bij ] is the in-
terval of the minimal network derived from step 2.

Provided step 3, which may be done using numerical in-
tegration, is of polynomial complexity, the whole method
is polynomial. Steps 2 and 3 of this method resemble the
method proposed in (Tsamardinos, Pollack, & Ramakrish-
nan 2003) for solving Probabilistic STPs. Unfortunately, it
can be easily shown that the computed value provides only
an upper bound on the probability that the solutions defined
at that chop level or above will succeed. That this is not a
tight upper bound can be demonstrated by a simple example,
found in Figure 3. In this example, chopping the preference
function at 10 and solving the underlying STP would not
shrink the temporal bounds of the uncertainty links. There-
fore, the probability of succeeding returned by this method
would be 1, although in fact some of the probability mass is
lost as a result of the chop.

Despite these limitations, an upper bound computation
may be useful; if the bound is too low, the planner will be
forced to “lower expectations” of the plan branch under con-
sideration, i.e. its overall expected preference level.

A tighter bound would require examining the mass of the
polytope defined by all the constraints (a similar observa-
tion was made in (Tsamardinos, Pollack, & Ramakrishnan
2003)). Applied to the previous example, we getP ((0 ≤
AB ≤ 10) ∧ (0 ≤ BC ≤ 10)) from (1), but the true proba-
bility is P ((0 ≤ AB ≤ 10)∧(0 ≤ BC ≤ 10)∧(AB +BC ≥
10)) or simply P (AB + BC ≥ 10), assuming the bounds.
(Note that the AB and BC random variables are no longer
independent under the condition AB+ BC ≥ 10.) We can
reformulate this asP (

∨
x(AB = x ∧ BC ≥ 10 − x)) and

calculate it as
∫

10

0

(∫
10

10−x

p(y)dy

)
p(x)dx.

Inducing Preferences from Probabilities
In this section we consider a sort of dual problem to that
posed in the previous section:given current expectations
about the world, how can preferences be systematically ad-
justed to fit with those expectations?Intuitively, by answer-
ing this question, the planner can “factor out” the temporal
uncertainty in the problem, resulting in a pure decision prob-
lem: because of the factoring, the solutions most preferred
based on the induced preferences are also most likely.

This factoring process takes into account the initial pref-
erences on decision constraints, combining them with the
preferences induced from the uncertainty constraints. The
core idea is to apply the concept of expected utility from de-
cision analysis (Keeney & Raifa 1993) to represent induced
local preferences. Once the reasoning is complete, the “out-
put” preferences on the decision constraints thus reflect both
the preferences of the agent and its expectation about the
uncertainty in the world.

The main result of this section will be to state a set of suf-
ficient conditions for finding an efficient algorithm for this
process for certain classes of STP3. The method consists of:

1. Given an input STP3, derive the minimal network of the
underlying STP.

2. Apply a local consistency algorithm (discussed below) to
the resulting STP3 (i.e. with the tightened interval con-
straints) to compute the induced preferences.

3. Solve the underlying STPP of the resulting network using
the chop solver to find the globally preferred solutions.

The set of solutions making up the flexible plan that results
are theexpected globally preferredsolutions.

To examine the second step in more detail, we mimic the
method oftriangular reductionfound in (Morris, Muscet-
tola, & Vidal 2001), used to solve Simple Temporal Prob-
lems with Uncertainty (STPUs). We consider all STP3s as
collections oftriangular subnetworksof the form illustrated
by Figure 2(b), where there is a single uncertainty constraint
on AC with bounds[u, v], and two decision constraints on
AB andBC with bounds[y, z] and[w, x] respectively. As
in the Earth Science example,A might be the beginning of
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time, B might be the start of a planned observation, and
C the onset of a fire. The goal is to compute theregres-
sionof pAC overfBC to find the induced soft decision con-
straintfAB. (The case in whichAB is also associated with a
soft constraint can be handled as part of the general solution
method discussed later.)

To handle the single triangle case, we need to consider
three possible orderings betweenB andC. We assume that
step 1 of the approach has been applied, so that the triangular
network has been minimized. IfB precedesC (w ≥ 0), then
the induced soft constraint is{[y, z], fAB}, where

fAB(t) =

∫ v

u

f(t′ − t)p(t′)dt′.

Although in general this function cannot be derived analyt-
ically, with certain restrictions placed on the shape of the
preference function it may be possible to compute it directly.
Alternatively, we can estimate it numerically (e.g. Monte
Carlo integration), or even perform crude but fast estimation
based on the expected value. IfC precedesB (x ≤ 0), then
intuitively the planner does not require any knowledge about
the expected time ofC in order to deduce the preferred time
to executeB dynamically (the soft constraint onAB in this
case can be derived from that ofBC). However, recall that
we focus only on the situation of static execution, in which
knowledge aboutC is not available at planning time. This
means that the predictive models of the Precede case are rel-
evant to planning the Follow case: the same technique can be
followed. Finally, for static execution the same also applies
if B andC are unordered (w < 0, x > 0).

To derive the induced constraints for general STP3 net-
works, we consider all triangles separately, propagating the
effects of one operation to neighboring triangles, until the
network is quiescent. Thus, the structure of the algorithm is
similar to determining path-consistency in an STP network.
Propagation requires combining local preference functions.
The same combination operator as that used for determin-
ing local consistency for preference networks (Rossiet al.
2002) can be applied here for propagating soft constraints.
After the network has reached quiescence, the planner can
safely discard the probability density functionspXY in Cu.
Removing them results in the underlying STPP, which can
be solved by the chop method (Khatibet al. 2001).

The following result summarizes these core ideas. It will
be proved informally and illustrated by an example. Follow-
ing terminology in (Morris, Muscettola, & Vidal 2001), an
STP3 will be said to bepseudo-controllableif no interval in
an uncertainty constraint is “squeezed” as the result of per-
forming step 1 above (computing the minimal network). We
refer to the STP3 that results from performing step 2 above
as theinduced STP3.

Theorem 1 Given an STP3 with the following properties:

1. The input preference functionspij are linear or semi-
convex piecewise linear (intuitively, semi-convex piece-
wise linear means that there are no “V” shaped segments);

2. The STP3 is pseudo-controllable;
3. The probability distributions on the uncertainty con-

straints are normal;

B
A

C[ 0 , 1 0 ] p 1 ( t )N o r m a l ( 4 , 1 )
[ 0 , 1 0 ]f ( t ) = t[ 0 , 1 0 ]h ( t )D[ 0 , 1 0 ] p 2 ( t )N o r m a l ( 7 , 1 )

[ 0 , 1 0 ]g ( t ) = 1 0 d t

Figure 4: Example of Induced Preferences

then, using the method described above, the set of expected
globally preferred solutions to the initial STP3 can be com-
puted in polynomial time.

The first condition of the theorem is needed to ensure that
the induced STP3 has only functions that are semi-convex,
which is required for the application of the chop solver
method in step 3 (a polynomial-time procedure). Steps 2
and 3 are required to simplify the induced functions to lin-
ear functions involving expected values (see the example be-
low). The conclusion of the proof consists of observing that
the underlying procedures applied in the method (all-pairs
shortest path, the local-consistency technique for deriving
induced preferences, the chop solver, and numerical integra-
tion for determining the expected values) are all polynomial.

To illustrate step 2 of the method in the general case, con-
sider the STP3 in Figure 4. This problem consists of two
decision constraints onBC andBD with associated prefer-
ence functionsf, g defined,f clearly preferring larger dura-
tions betweenB andC, andg preferring smaller durations.
Two uncertainty constraints onAC andAD consist of nor-
mal probability density functionsp1 andp2 with means and
standard deviations indicated in parentheses. The goal is to
infer the induced preference functionh onAB (the network
is already minimal).

First, considering the triangleABC, one induced function
for h arises as follows:

h1(t) =

∫
10

0

f(t′ − t)p1(t
′)dt′

=

∫
10

0

[t′ − t]p1(t
′)dt′

=

∫
10

0

t′p1(t
′)dt′ − t

∫
10

0

p1(t
′)dt′.

Notice that because of the pseudo-controllability of the
network (it being already minimal), the last equation re-
duces toE(T1) − t, since then

∫
10

0
p1(t

′)dt′ = 1 and∫
10

0
t′p1(t

′)dt′ = E(T1), whereE(T1) is the expected value
of the random variableT1 associated with the duration. A
similar derivation based on the triangleABD then results in
another induced functionh2(t) = 10 − [E(T2) − t]. The
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final induced functionh becomes the combination ofh1 and
h2: e.g. the intersection of the areas under the functions.

This approach can be generalized for regression over
semi-convex piecewise linear preference functions. LetfBC

be the intersection ofn linear segmentsf1

BC , . . . fn
BC , where

for eachk, [ak
BC , bk

BC ] is the segment for whichfBC =
fk

BC . When regressingpAC over fBC to compute the in-
duced preference functionhAB, we have:

hAB(t) =

∫ bn

a1

fBC(t′ − t)pAC(t′)dt′

=
∑

k=1,...,n

∫ bk

ak

fk
BC(t′ − t)pAC(t′)dt′,

which simplifies to sums involving linear functions.
This example shows how with suitable restrictions on the

shapes of the preference functions and on whether the all-
pairs computation eliminates any of the probability mass, the
computation of induced preferences can be made efficient.

Discussion and Future Work
We have examined temporal reasoning under the interac-
tions of preferences and quantitative uncertainty in the con-
text of constraint-based planning. In addition to the formu-
lation of the STP3 framework, which augments the Simple
Temporal Problem with both preferences and probabilities,
the main contribution of this paper is to formulate two plan-
ning decision problems. Utilizing standard methods from
decision theory, probability theory, and recent advances in
constraint satisfaction, we have shown how flexible tempo-
ral plans can be generated that are most preferred based on
what the planning agent believes about the expected times of
events; and how the agent can update its preferences, given
its beliefs.

Fundamentally, preferences and uncertainty are orthogo-
nal aspects of the decision problem. Both planning decisions
we have considered are approaches to combining the two
aspects; which is most relevant depends on the aim of the
planning agent and the questions being asked of it. The first
decision, to evaluate the probability of a plan existing with
at least a given preference, is useful to determine whether a
plan branch can meet a minimum quality threshold. The sec-
ond decision, to update preferences based on beliefs, is use-
ful to factor the uncertainty into a single criterion for plan
evaluation. Besides these two decision problems, the pro-
posed framework can be applied to related problems; for in-
stance, an agent might seek to determine the maximal prefer-
ence level at which a solution exists with a given probability
p. Whenp = 1 and the probabilities are uniform, this cor-
responds to certain forms of strong controllability addressed
in (Rossi, Venable, & Yorke-Smith 2004).

Future theoretical efforts include characterizing more
fully the computational complexity of STP3s, and refining
the bound on the probability that a plan exists with given
preference quality. In addition to implementing the methods
described in this paper, our major next step is to extend the
results here to address issues in planning under a dynamic

execution strategy. Of particular importance will be to ex-
amine the interactions between preferences andwait con-
straintsthat emerge when determining the controllability of
flexible plans, as described in (Morris & Muscettola 2000).
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Abstract

In previous work, we have defined a two-step procedure
calledSolve-and-Robustifyfor generating flexible, partial or-
der schedules. This partitioned problem solving approach —
first find a viable solution and then generalize it to enhance
robustness properties — has been shown to provide an ef-
fective basis for generating flexible, robust schedules while
simultaneously achieving good quality with respect to opti-
mization objectives. This paper extends prior analysis of this
paradigm, by investigating the effects of using different start
solutions as a baseline to generate partial order schedules.
Two approaches are compared: the first constructs partial or-
der schedules from a single fixed-time schedule, obtained by
first performing an extended makespan optimization search
phase; the second considers the search for fixed-time sched-
ules and flexible schedules in a more integrated fashion, and
constructs partial order schedules from a number of differ-
ent fixed-times starting solutions. The paper experimentally
shows how the characteristics of the fixed-time solutions may
lower the robustness of the final partial order schedules and
discusses the reasons for such behavior.

Introduction
In previous work (Policellaet al. 2004b; 2004a) we have
shown how a two-step procedure — first find a solution then
make it robust — can provide an effective basis for generat-
ing flexible, robust schedules that also achieve good solution
quality. Under this scheme, a feasible fixed-time schedule is
generated in stage one (in particular an early start times solu-
tion is identified), and then, in the second stage, a procedure
referred to aschainingis applied to transform this fixed-time
schedule into aPartial Order Schedule, orPOS. By virtue
of the fact that aPOS retains temporal flexibility in the start
times of various activities in the schedule, aPOS provides
greater robustness in the face of executional uncertainty.

The common thread underlying the “chained” representa-
tion of the schedule is the characteristic that activities which
require the same resource units are linked via precedence
constraints into precedence chains. Given this structure,
each constraint becomes more than just a simple precedence.
It also represents aproducer-consumerrelation, allowing
each activity toknowthe precise set of predecessors which

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

will supplythe units of resource it requires for execution. In
this way, the resulting network of chains can be interpreted
as a flow of resource units through the schedule; each time
an activity terminates its execution, it passes its resource
unit(s) on to its successors. It is clear that this representa-
tion is robust if and only if there is temporal slack that al-
lows chained activities to move “back and forth”. Concepts
similar to chaining have also been used elsewhere: for exam-
ple, the Transportation Network introduced in (Artigues &
Roubellat 2000), and the Resource Flow Network described
in (Leus & Herroelen 2004) are based on equivalent struc-
tural assumptions.

This paper addresses an aspect not explored in our previ-
ous work: how different start schedules influence the whole
process of identifying partial order schedules. Taking a
constraint-based solver and the best chaining algorithm from
our previous work, we define and analyze the performance
of two extended search configurations of theSolve-and-
Robustifysolution approach: the first combination schema
constructs flexible schedules from a single starting point
solution after an extended, iterative sampling optimization
phase, while the second iterates both solve and robustify
considering different fixed-time schedules as starting points
and selecting the best partial order schedule found.

The paper first introduces the basic concepts of sched-
ule robustness and Partial Order Schedules, then describes
the two step approach toPOS synthesis. The new analysis
follows next. We describe each extended search procedure,
present the results of an experimental evaluation and inter-
pret these results. Finally we draw some conclusions.

Scheduling with Uncertainty and Partial
Order Schedules

The usefulness of schedules in most practical scheduling do-
mains is limited by their brittleness. Though a schedule of-
fers the potential for a more optimized execution than would
otherwise be obtained, it must in fact be executed as planned
to achieve this potential. In practice this is generally made
difficult by a dynamic execution environment, where unfore-
seen events quickly invalidate the schedule’s predictive as-
sumptions and bring into question the continuing validity of
the schedules’s prescribed actions. The lifetime of a sched-
ule tends to be very short, and hence its optimizing advan-
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(a) Initial allocation of three activities on a
binary resource

(b) Allocation after an activity lasts longer

Figure 1: Brittleness of a fixed-time schedule

tages are generally not realized. For instance, let us consider
the example in Fig. 1 that shows the allocation of three dif-
ferent activities on a binary resource. According to quite
common practice in scheduling, a solution associates an ex-
act start and end time to each activity.

Such solution may exhibit a high degree of brittleness, for
instance, as shown in Fig. 1(b), when the first activity lasts
longer than expected a conflict in the usage of the machine
is immediately generated because of the fixed start-time for
the activities.

An alternative approach consists of adopting a graph for-
mulation of the scheduling problem, wherein activities com-
peting for the same resources are simply ordered to establish
resource feasibility, and it is possible to produce schedules
that retain temporal flexibility where allowed by the prob-
lem constraints. In essence, such a “flexible schedule” en-
capsulates a set of possible fixed-time schedules, and hence
is equipped to accommodate some amount of the uncertainty
at execution time.

Following this intuition we have introduced the definition
of Partial Order Schedules, or POSs (Policella 2005). A
POS consists of a set of feasible solutions for the schedul-
ing problem that can be represented in a compact way by a
temporal graph, that is, a graph in which any activity is as-
sociated to a node and temporal constraints define the order
in which such activities have to be executed.

To provide a more formal definition of aPOS we use the
activity on the node representation: given a problemP , this
can be represented by a graphGP (VP , EP ), where the set of
nodesVP = V ∪ {a0, an+1} consists of the set of activities
specified inP and two dummy activities representing the
origin (a0) and the horizon (an+1) of the schedule, and the
set of edgesEP containsP ’s temporal constraints between
pairs of activities. A solution of the scheduling problem can
be represented as an extension ofGP , where a setER of
simple precedence constraints,ai ≺ aj , is added to remove
all the possible resource conflicts. Given these concepts, a
Partial Order Scheduleis defined as follows:

Definition 1 (Partial Order Schedule) Given a scheduling
problemP and the associated graphGP (VP , EP ) that rep-
resentsP , a Partial Order Schedule, POS, is a set of solu-
tions that can be represented by a graphGPOS(VP , EP ∪
ER).

In practice aPOS is a set of partially ordered activities such
that any possible complete activity allocation that is consis-

tent with the initial partial order is also a resource and time
feasible schedule.

It is worth noting that a partial order schedule provides
an immediate opportunity to reactively respond to some of
the possible external changes by simply propagating their
effects over the “graph”, by using a polynomial time com-
putation. In fact the augmented duration of an activity, as
well as a greater release time, can be modeled as a new tem-
poral constraint to post on the graph. It is also important to
note that, even though the propagation process does not con-
sider the consistency with respect the resource constraints,
it is guaranteed to obtain a feasible solution by definition of
POSs. Therefore a partial order schedule provides a mean
to find a new solution and ensures its fast computation.

RCPSP/max. This work considers the Resource-
Constrained Project Scheduling Problem with minimum
and maximum time lags, RCPSP/max (Bartusch, Mohring,
& Radermacher 1988) as the reference problem. The basic
entities of this problem are a set ofactivities denoted by
V = {a1, a2, . . . an}. Each activity has a fixedprocessing
time, or duration, pi and must be scheduled without
preemption.

A scheduleis an assignment of start times to activities
a1, a2, . . . an, i.e. a vectorS = (s1, s2, . . . , sn) wheresi

denotes the start time of activityai. The time at which activ-
ity ai has been completely processed is called itscompletion
time and is denoted byei. Since we assume that process-
ing times are deterministic and preemption is not permitted,
completion times are determined byei = si + pi. Sched-
ules are subject to bothtemporalandresource constraints.
In their most general form temporal constraints designate ar-
bitrary minimum and maximum time lags between the start
times of any two activities,lmin

ij ≤ sj − si ≤ lmax
ij where

lmin
ij andlmax

ij are the minimum and maximum time lag of
activity aj relative toai. A scheduleS = (s1, s2, . . . , sn) is
time feasible, if all inequalities given by the activity prece-
dences/time lags and durations hold for start timessi. Dur-
ing their processing, activities require specific resource units
from a setR = {r1, r2, . . . rm} of resources. Resources are
reusable, i.e. they are released when no longer required by
an activity and are then available for use by another activity.
Each activityai requires of the use ofreqik units of the re-
sourcerk during its processing timepi. Each resourcerk has
a limited capacity ofck units. A schedule isresource feasi-
ble if at each timet the demand for each resourcerk ∈ R
does not exceed its capacityck, i.e.

∑
si≤t<ei

reqik ≤ ck.
A scheduleS is calledfeasibleif it is both time and resource
feasible.

Metrics for Comparing Partial Order Schedules. As
described before, a singlePOS represents a set of temporal
solutions that are also resource feasible. This set of sched-
ules provides a means for tolerating some amount of exe-
cution uncertainty. When an unexpected event occurs (e.g.,
a start time delay), the temporal propagation mechanism (a
polynomial time calculation) can be applied to update the
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start times of all activities and, if at least one temporal solu-
tion remains viable, produces a new partial order schedule.
Therefore, it is intuitive that the quality of a certainPOS
is tightly related to the set of solutions that it can represent.
In fact the greater the number of solutions, the greater is the
expected ability in dealing with scheduling uncertainty. An-
other aspect to consider in analyzing the solutions clustered
into a partial order schedule is the distribution of such alter-
natives over all the activities. Such distribution will be the
result of the configuration given by the constraints present
in the solution. For this reason it is necessary to introduce
metrics that consider such aspects.

A first measure,flex, is taken from (Aloulou & Portmann
2003). This measure counts thenumber of pairs of activities
in the solution which are not reciprocally related by simple
precedence constraints. This provides a first analysis of the
configuration of the solution. The rationale is that when two
activities are not related it is possible to move one without
moving the other one. Hence, the higher the value offlex
the lower the degree of interaction among the activities. It is
worth noting that a limitation of theflex metric consists in
being able to give only a qualitative evaluation of the solu-
tion because it counts only existence/not-existence of a di-
rect ordering relation. This may be sufficient for scheduling
problem with no time lag constraints like the one used in
(Aloulou & Portmann 2003), but is rather limited to describe
flexibility in RCPSP/max where it is necessary to integrate
this flexibility measure with some factor that takes into ac-
count the quantitative aspects of the temporal problem (or
solution).

A metric that satisfies this requirement is defined in
(Cesta, Oddi, & Smith 1998). It requires the presence of a
fixed time horizon for the termination of all the activities. In
order to compare two or morePOSs we bound any partial
order schedule to have a finite number of solutions. Then the
metric is defined as the average width, relative to the tempo-
ral horizon, of the temporal slack associated with each pair
of activities(ai, aj):

fldt =
n∑

i=1

n∑

j=1∧j 6=i

slack(ai, aj)
H × n× (n− 1)

× 100 (1)

whereH is the temporal horizon of the problem,n is the
number of activities,slack(ai, aj) is the width of the al-
lowed distance interval between the end time of activityai

and the start time of activityaj , and100 is a scaling factor1.
We use this metric to characterize thefluidity of a solution,
i.e., the ability to use flexibility to absorb a temporal vari-
ation in the execution of activities. It also considers that
a temporal variation concerning an activity is absorbed by
the temporal flexibility of the solution instead of generat-
ing deleterious domino effect (the higher the value offldt,
the less the risk, i.e., the higher the probability of localized
changes).

1In (Cesta, Oddi, & Smith 1998) this metric was defined as ro-
bustness of a solution,RB.
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Figure 2: Previous work

Solve and Robustify
In (Cesta, Oddi, & Smith 1998) a two-stage approach to gen-
erating a flexible schedules is introduced as one possibility
for robust schedules. Under this scheme a feasible fixed-
time schedule is first generated in stage one, and then, in the
second stage, a procedure referred to aschainingis applied
to obtain a robust solution. In this second step, fixed-time
commitments are converted into a sequences (chains) of ac-
tivities to be executed by various resources.

In a recent paper, (Policellaet al. 2004b), this approach
has been generalized to RCPSP/max. These results estab-
lish the basic viability of a chaining procedure. At the same
time, the procedure used in this work was developed simply
to provide a means of transforming a given schedule into a
POS; no attention was given to the potential influence of
the chaining procedure itself on the properties exhibited by
the final, flexible solution. For these reasons, in (Policella
et al. 2004a) the authors examine the problem of generat-
ing POSs from the broader perspective of producing flexi-
ble schedules with good robustness properties, and investi-
gate the design of informed chaining procedure that exploits
knowledge of these properties to increase the robustness of
the finalPOS. This latter work first introduced an iterative
improvement schema for a randomized chaining algorithm.

A sketchy representation of theSolve-and-Robustifyap-
proach can be seen, Fig. 2(b), as an open loop cascade of a
“solver” and a “robustify” modules. The subsequent work
in (Policellaet al. 2004a) can be represented as a first loop
with respect to the simple cascade by applying an itera-
tive improvement cycle around the robusty phase, Fig. 2(b).
Iterative improvement is obtained by randomizing the ba-
sic procedure to obtain different search paths from different
restarts2.

The ESTA greedy solver. As a solver we use here the
Precedence Constraint Postinggreedy schema calledESTA
described in (Cesta, Oddi, & Smith 1998; 2002). This
proceeds analyzing the infinite capacity representation of a
RCPSP/max problem where the temporal constraint are sat-
isfied and the resource profiles contain violations. More pre-
cisely, a violation orresource contention peakconsists in a
set of activities that are executed at the same time and that

2In the figure, a module containing a randomized procedure is
labeled with a star (e.g.,Robustify∗).
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require an amount of resource greater than the resource ca-
pacity. Then the solving process posts further precedence
constraints to remove these peaks. The selection of the new
constraint is accomplished by using three alternative heuris-
tics; a first, simple strategy consists in considering all the
pairs of activities in a peak. Other two approaches use the
MCS, minimal conflict sets, where anMCS is a set of re-
source conflicting activities such that any of its proper subset
is consistent. To avoid the complexity of computing all the
MCSs two polynomial sampling approaches are used:linear
andquadratic. The use of the three different heuristics gives
rise to three different variants of theESTA algorithm.

Iterative chaining. In our current approach the robustifi-
cation phase is carried out through chaining. A chaining pro-
cedure transforms a feasible fixed-time solution into aPOS
by dispatching activities to specific resource units3. Since
choices can be made as to how to dispatch activities to re-
source units, it is possible to generate differentPOSs from
the same starting solution, and these differentPOSs can be
expected to have different robustness properties.

In (Policella et al. 2004a) iterative sampling is used to
explore this set of solutions. Randomization is added to ob-
tain a different solution at each iteration and, in so doing,
to generate a sequence ofPOSs starting from the same ini-
tial schedule. ThePOSs are evaluated with respect to a
specific robustness measure, and the best one found is re-
turned. Additionally, different heuristics have been explored
that change the effectiveness of chaining. In this paper we
use the most effective one, calledMIN ID (minimizing interde-
pendencies) in (Policella 2005).

The heuristicMIN ID takes into account existing ordering
relations with those activities already allocated in the chain-
ing process in order to minimize possible links among pairs
of chains which will degrade the flexibility of the solution.
In this procedure, the allocation of an activityai on the
chains of a multi-capacitive resourcerj proceeds according
to the following steps:

(1) collect in the setPai , the chainsk belonging torj , for
which their last element,lastk, is already ordered with
respect to the activityai, i.e.,lastk ≺ ai;

(2) if Pai 6= ∅ a chaink ∈ Pai is randomly chosen, other-
wise a chaink is randomly selected among the available
ones;

(3) a constraintak ≺ ai is posted, whereak = lastk;

(4) if ai requires more than one resource unit, then the re-
maining set of available chains is split into two subsets:
the set of chains which hasak as last element,Cak

, and
the set of chains which does not,̄Cak

;

(5) to satisfy all remaining resource requirements,ai is al-
located first to chains belonging to the first subset,k′ ∈
Cak

and,

3Note that this procedure is required to enable schedule execu-
tion.
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Figure 3: Current contribution

(6) in case this set is not sufficient, the remaining units of
ai are then randomly allocated to the first available chains,
k′′, of the second subset,k′′ ∈ C̄ak

.

Some properties of chaining. Why are we interested in
the use of the chaining approach? Previous works have
found several interesting properties.

First, any partial order schedule can be obtained by a
chaining procedure (Policellaet al. 2004a, Theorem 1). This
result allows us to restrict the attention, without loss of gen-
erality, to the set ofPOSs generated by a chaining proce-
dure.

Second, given a scheduleS, the makespan of the earli-
est solution4 of the partial order schedule generated through
chaining,POSS , is not greater than the makespan of the in-
put solution. Thus, the makespan of a solution is preserved
by the chaining-based robustification phase.

Additionally, previous work has identified structural prop-
erties for the effectiveness of chaining in RCPSP/max. In
particular, the analysis of solutions obtained via chaining has
brought out the presence ofsynchronization pointswhich
tend to degrade solution flexibility. These stem from the
presence of activities which require multiple resource units
and from precedence constraints between activities allocated
on different chains. In fact, each of these aspects will mu-
tually constrain two (or more), otherwise independent pro-
cesses.

Finally, an interesting aspect of the procedure is that it can
be coupled with any fixed-time schedule generation proce-
dure. Independently on the fact that we are using our own
constraint-based approach to solving RCPSP/max, the ro-
bustify step can be applied to other approaches to solve the
same scheduling problem like (Dorndorf, Pesch, & Phan-
Huy 2000; Smith & Pyle 2004; Cicirello & Smith 2004).

Generating flexible schedules from different
initial solutions

In previous work we have not investigated the effects that
different fixed-time initial solutions may have to the final

4The solution in which each activity is allocated at the earliest
start time defined by the partial order schedule.
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(a) ISESiC

(b) GRASPiC

Figure 4:ISESiC vs. GRASPiC

synthesizedPOS. This complementary analysis is con-
tributed by this paper. In particular we extend our schema
as shown in Fig. 3 where dashed lines highlight the new
steps: (a) understanding the influence onPOSs of a much
broader search for a better makespan before the robustify
step; (b) considering the whole solve-and-robustify open
loop within a meta-heuristic schema. For the solving phase
we draw on our own CSP solvers for RCPSP/max.

The iterative sampling procedure
The first approach we investigate in shown in Fig. 3(a). In-
stead of the simpleESTA greedy solver, we insert theISES
iterative improvement schema that is based on a randomized
ESTA (henceSolve∗ in the figure). The randomized version
of ESTA is obtained by doing a pseudo-random selection of
the decision. Conflict selection is performed not picking the
best ranked conflict but choosing randomly within an ac-
ceptance band. This technique, introduced first in (Oddi &
Smith 1997), eliminates heuristic bias when the discrimina-
tion power of the estimator is low. The whole approach is
calledISESiC because in practice it joins theISESoptimizer
with the iterative chaining that uses theMIN ID method.

The grasp-like procedure
The second approach introduced in this paper is shown in
Fig. 3(b). It follows a typicalGRASPmeta-heuristic schema
(Resende & Ribeiro 2002). The idea is to use the random-
ized ESTA to create different start schedule with the greedy
solver then apply the iterative chaining exploration (hence
the GRASPiC name). This whole schema is iterated until a
termination criterion is met. Based on a robustness metric
the bestPOS found is returned.

A further remark
In Fig. 4 we underscore graphically the different ways the
iterative procedure and theGRASP-like follow through the
search space. They both start from an infinite capacity so-
lution that is not resource consistent, theISESiC performs
iterative sampling for a while then pick the best fixed-time
schedule, according to the makespan value, and call the ro-
bustify (sketched as a circle whose size is related to the num-
ber of performed iterations — see later). TheGRASPiC fol-
lows the different pattern of simply looking for different start
schedule using the randomizedESTA then calling the robus-
tification.

Experimental Evaluation
We apply the two approaches to two well-known
RCPSP/max benchmark sets, j30 and j100. The benchmark
set j30 is composed of 270 instances each of them with 30
activities and 5 resources, while the j100 is composed of 540
instances each of them with 100 activities and 4 resources.

RegardingISESiC , at the first step theISES algorithm is
used considering 10 restarts as termination criterion. Af-
ter that, aPOS is searched for applying iterative chaining
with a number of iterations equals to 100. The implementa-
tion of theGRASPiC method is based on 10 iterations of the
main loop, where an initial fixed-time schedule is computed
at each step, and on 10 iterations in iterative improvement
applied to robustify, where a differentPOS is computed at
each step. Thus in both approaches the bestPOS is selected
among a set of 100 alternatives. We recall that in both cases
the iterative chaining method is used with theMIN ID heuris-
tic. In order to have a fair evaluation of the two criteria,
we normalize the results according to an upper bound. The
latter is obtained for each metricµ() considering the value
µ(P) that is the quality of the network that represents the
initial temporal structure of the problem.

Therefore, in the tables below, for each algorithm we re-
port the following values: the normalized values,|flex|
and|fldt|, of the two robustness metrics, the CPU time re-
quested (in seconds), the number of posted constraints,npc,
and the makespan,mk.

The set j30. Table 1 contains the results obtained using
the six versions of theISESiC method5. An analysis of the
result presented shows us as the values of both the metrics
do not show great difference among the different algorithm
variants. In fact the values of|flex| range from0.472 to
0.475 and the results of|fldt| from 0.626 to 0.631. Regard-
ing the two metrics introduce above, it is possible to notice
a twofold behavior. In fact the values offlex are close or
equals to the best value,0.475, obtained in (Policellaet al.
2004a)6. This is because in both the procedure the iterative
chaining method withMIN ID has an important rule in increas-
ing the flexibility (in terms offlex) of the final partial order

5These are obtained by the combination of the three heuristic
with the two robustness criteria used during the iterative chaining
process.

6This result is obtained by usingESTAiC+MIN IDflex +MCS
quadratic with 100 iterations.
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j30 |flex| |fldt| cpu npc mk
ISESiC+MIN IDflex 0.472 0.603 6.63 30.20 98.52
ISESiC+MIN IDflex +MCS linear 0.472 0.607 8.22 30.26 98.12
ISESiC+MIN IDflex +MCS quadratic 0.475 0.601 9.44 30.09 98.26
ISESiC+MIN IDfldt 0.451 0.627 6.63 30.64 98.44
ISESiC+MIN IDfldt +MCS linear 0.446 0.631 8.22 30.64 98.10
ISESiC+MIN IDfldt +MCS quadratic 0.448 0.626 9.42 30.74 98.22

Table 1:ISESiC

j30 |flex| |fldt| cpu npc mk
GRASPiC+MIN IDflex 0.461 0.668 6.43 29.17 105.25
GRASPiC+MIN IDflex +MCS linear 0.473 0.672 7.49 28.54 104.65
GRASPiC+MIN IDflex +MCS quadratic 0.475 0.670 8.54 28.85 104.86
GRASPiC+MIN IDfldt 0.443 0.686 6.43 29.36 105.08
GRASPiC+MIN IDfldt +MCS linear 0.448 0.687 7.49 28.85 104.56
GRASPiC+MIN IDfldt +MCS quadratic 0.449 0.689 8.53 28.99 104.59

Table 2:GRASPiC

schedule7. On the contrary, the same behavior is not con-
firmed by the results obtained through theISESiC variants
which try to optimize thefldt metric. In this case we have
a decreasing of the quality: from0.670 to 0.631. A different
behavior is obtained in case of theGRASPiC variants (see
Table 2). Both consideringflex andfldt, the methods are
able to achieve good quality solutions. In fact in the case of
flex, like in the case ofISESiC , we achieved results that are
close or equals to the current best (0.475). It is worth noting
that in the case offldt the same results obtained in (Poli-
cellaet al. 2004a) are achieved. This confirm the relevance
of the improvements in the chaining algorithms.

The set j100. Table 3 and Table 4 show the results ob-
tained in the case of the benchmark j100. In this case the
difference of the two problem are smoother than in the pre-
vious benchmark. In case offlex we have that theISESiC

variants are better of theGRASPiC (but with an improvement
of only 2%). The opposite result is achieved in case offldt:
in this case we have0.642 and0.634 respectively for the best
GRASPiC variant and the bestISESiC variant (the percentage
difference is about 1%). The difference behavior observed in
case of j100 with respect to the benchmark j30 underscores
a distinction between the two benchmarks. In fact, despite
the size of each instance, the benchmark j100 presents a set
of instances that are simpler with respect to the j30, both in
terms of the temporal network and in the resource usage.

Discussion: makespan versus robustness
The tradeoff between makespan and robustness highlighted
above is worth a comment. We have seen before the results

7Of course there is a noticeable difference in terms of
CPU time, where we have respectively9.44 seconds for the
ISESiC+MIN IDflex +MCS quadratic version and1.21 for the
ESTAiC+MIN ID.

of the ISESiC method which is based on the use ofISES to
optimize the makespan of the initial schedule as well as to
increase the efficiency of the solving process. These results
show that optimization of the makespan value reduces the
ability to obtain robust schedules especially if the fluidity
metric is taken into account.

Figure 5 underlines possible motivations which can lead
to different behaviors between flexibility and fluidity with
respect to the makespan optimization factor. Fig. 5(a)
presents a possible problem. This is a one resource prob-
lem in which three activities have to be scheduled. These
are ordered according to the constraints in the figure, i.e.,
betweena and b there is a simple precedence constraint8

while betweena andc the constraint specifies a time win-
dow [1, 3], i.e.,c cannot start more than 3 time-units after or
1 time-unit before the end of the activitya. Furthermore, the
size of each activity describes both its duration (the width)
and its resource need (the height). Additionally botha and
b require one resource unit for two time units whilec has
a duration equal to three time-units and a resource require-
ment of2. To complete the description of the problem, the
resource capacity is equal to2.

Figure 5(b) and 5(c) show two different fixed-time sched-
ules with the associated partial order schedule (the darker ar-
rows represent the additional constraints necessary to obtain
a flexible solution). Note that in this case for each fixed-
time solution there is a unique partial order schedule: in
fact any of the two proposed solutions gives a complete lin-
earization of the activities. The two schedules have different
makespan, respectively7 and8.

Let us now consider first the flexibility metric. If we look
at the two partial order schedules (on the right hand side
of Fig. 5(b) and 5(c)) it is possible to notice that in both
cases there is the sameflex value. In fact in both cases the
flex value is zero because there is no pair of un-ordered ac-

8Where H represents the temporal horizon of the problem.
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j100 |flex| |fldt| cpu npc mk
ISESiC+MIN IDflex 0.211 0.620 44.80 42.57 414.73
ISESiC+MIN IDflex +MCS linear 0.211 0.619 43.63 42.22 413.67
ISESiC+MIN IDflex +MCS quadratic 0.211 0.617 46.05 42.20 413.69
ISESiC+MIN IDfldt 0.205 0.634 44.85 42.37 414.61
ISESiC+MIN IDfldt +MCS linear 0.205 0.633 43.64 42.11 413.40
ISESiC+MIN IDfldt +MCS quadratic 0.205 0.632 46.00 42.17 413.47

Table 3:ISESiC

j100 |flex| |fldt| cpu npc mk
GRASPiC+MIN IDflex 0.207 0.630 26.67 38.80 437.77
GRASPiC+MIN IDflex +MCS linear 0.207 0.627 27.01 38.94 437.20
GRASPiC+MIN IDflex +MCS quadratic 0.208 0.629 27.85 38.84 437.46
GRASPiC+MIN IDfldt 0.201 0.641 26.74 39.11 436.32
GRASPiC+MIN IDfldt +MCS linear 0.201 0.641 27.01 38.79 435.72
GRASPiC+MIN IDfldt +MCS quadratic 0.202 0.642 27.85 38.77 435.79

Table 4:GRASPiC

tivities. Now we can shift the attention toward the fluidity
metric. This metric considers the slack value between any
pair of activities, that is, the minimum and maximum dis-
tance between them. In the figure, for the pair(a, c) we have
the same value for both solutions,dist(a, c) = [1, 3], which
stems from the time window constraint defined between the
two activities. On the other pair instead we have two dif-
ferent values:dist(a, b) = [0, 1] in the case in Fig. 5(b)
anddist(a, b) = [4,H − 4] in the case in Fig. 5(c). This
clearly shows that the flexibility value for the sub-optimal
solution is greater than the one in Fig. 5(b). The same
behavior can be found for the pair(b, c), where we have
dist(b, c) = [0, 1] for the case in Fig. 5(b) while for the
case in Fig. 5(c)dist(c, b) = [0,H−8]. The problem is that
in the schedule with the optimum makespan (Fig. 5(b)) the
activity b is “caged in” by the other two activities. Therefore
the time window constraint defined betweena andc has the
effect of limiting the flexibility of activityb. Furthermore
since the capacity of the resource is equal to the requirement
of c, no chaining method can overcome this problem.

It is possible to note that this is peculiar characteristic of
the RCPSP/max problems and in particular this is due to the
presence of maximum distance constraints. In fact if the
maximum constraint betweena andc did not exist, activity
b would have the ability to move back and forth in a larger
interval thus yielding in a more flexible solution.

Further remarks. The use of more optimized initial
schedule biases the robustify phase against the construc-
tion of flexible partial order schedule. In fact the tightness
(makespan) of the initial solution can preclude the achieve-
ment of good solutions. This behavior is justified from the
different nature of the two metrics:flex is a qualitative cri-
terion whereas thefldt is a more quantitative metric. There-
fore a schedule with a better makespan value presents an al-
location of the activities more compact giving fewer degree
of intervention to the iterative chaining procedure. Finally
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Figure 5: Dependency between makespan and robustness

while in (Policellaet al. 2004a) has been proved that the
robustify step does not deteriorate the results obtained in the
solve phase, we can not claim the same for the effects of
some characteristics of the fixed-time solutions on the final
flexible schedule.

Conclusions
This work has considered the Solve-and-Robustify approach
introduced in (Policellaet al. 2004b; 2004a) and has com-
plemented previous results by analyzing the influence of dif-
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ferent fixed-time schedule on the final partial order schedule.
In particular, two more sophisticated approaches based on
Solve-and-Robustify have been defined and evaluated. The
former is based on the idea of developing flexible solutions
from makespan optimized solutions. The second approach
instead has been obtained following theGRASP paradigm,
where the robustify step can be considered as a local search
procedure.

The results of the experimental evaluation have shown an
interesting trade-off between the makespan and the more
quantitative of the robustness metrics used,fldt. In prac-
tice the use of more optimized initial schedule biases the ro-
bustify phase against the construction of flexible partial or-
der schedule. In fact the tightness (makespan) of the initial
solution can preclude the achievement of good flexible solu-
tions. Therefore while the robustify step does not deteriorate
the results obtained in the solve phase some characteristics
of the fixed-time solutions may lower the robustness of the
final partial order schedules.
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Abstract 
This paper elaborates on the temporal planning graphs with 
mutual exclusion reasoning of the known TGP planning 
system, in order to build a heuristic temporal Partial Order 
Causal Link (POCL) planner. The planner exploits the 
temporal planning graph in two ways: First, it obtains 
heuristic estimates for sets of open goals during the plan 
construction phase, in order to solve the symbolic 
dimension of the planning problem. And second, it obtains 
additional disjunctive constraints, based on both permanent 
and temporary mutex relations, which are used by a CSP 
solver, in order to solve the temporal dimension of the 
planning problem. Furthermore, in the paper we simplify 
the temporal planning graph construction process, we 
propose two completeness preserving pruning rules and a 
heuristic function that takes into account clusters of 
permanently mutexed open goals. Preliminary results 
evaluate the effectiveness of the various choices and 
indicate future research directions. 

Introduction  
Partial Order Causal Link (POCL) planning was the 
dominant planning paradigm until the middle of the 
previous decade. It has been adopted by numerous 
planning systems, such as SNLP (McAllester and 
Rosenblitt, 1991) and UCPOP (Penberthey and Weld, 
1992) for symbolic domains, (Penberthy and Weld, 1994) 
for temporal and metric domains and (Peot and Smith, 
1992; Pryor and Collins, 1996) for domains with 
uncertainty, among others. The main problem of the POCL 
approach was its inability to solve problems of moderate 
size, although it provably managed to reduce the size of 
the search space, with respect to the older state-space or 
regression-based planning approaches. This was mainly 
due to the lack of effective domain independent heuristics. 
Researchers mainly concentrated on devising alternative 
flaw selection strategies, e.g. (Peot and Smith, 1993; Joslin 
and Pollack, 1994; Schubert and Gerevini, 1995) among 
others. 
The introduction of planning graphs (Blum and Furst, 
1997) caused a significant increase in the performance of 
planning systems. State-space planners (Bonet, Loerings 
and Geffner, 1997; Refanidis and Vlahavas, 2001; Bonet 
and Geffner, 2001; Hoffmann and Noebel, 2001) exploited 
planning graph structures to devise heuristics to guide 
either progression or regression, achieving great 

performance, both in terms of solution speed and in the 
size of the tractable problem instances. TGP (Smith and 
Weld, 1999) extended planning graphs in a temporal 
setting. 
The first attempt to exploit planning graph structures for 
POCL planning in symbolic domains was RePOP (Nguyen 
and Kambhampati, 2001). (Younes and Simmons, 2003) 
utilize also planning graphs to extract heuristics in a POCL 
setting, but they emphasize in flaw selection strategies.  
Constraint programming techniques have been used in 
POCL, especially in temporal domains, before the advent 
of planning graphs and graph-based heuristics. Examples 
are IxTeT (Ghallab and Laruelle, 1994), ZENO (Penberthy 
and Weld, 1994) and Deviser (Vere 1983). These 
techniques are very efficient in reasoning about the time-
windows. A common approach adopted by the POCL 
planning community is to interleave planning and 
scheduling, solving conflicts by introducing simple 
ordering constraints between actions (Smith, Frank and 
Jonsson, 2000; Vidal and Geffner, 2004). 
In this paper we utilize the temporal planning graphs with 
mutual exclusion reasoning (Smith and Weld, 1999) to 
create a heuristic POCL planner that will use constraint 
programming to schedule the actions. Our temporal 
planning setting consists of deadline goals being 
simultaneously achieved at the end of the plan execution, 
whereas durative actions achieve their effects at the end of 
their duration. Our approach consists of two phases: 
Initially a temporal planning graph, involving eternal and 
conditional mutex relations between pairs of propositions, 
pairs of actions and pairs of a proposition and an action, is 
created until leveling off. Then, a POCL planning phase is 
started, progressively solving open goals and posting 
disjunctive constraints to solve threats. Heuristics extracted 
from the temporal planning graph are used to select among 
the alternative ways to support open goals. Threats are 
detected using the information encoded in mutex relations. 
Our approach does not rely on the presence of no-op 
actions or of a minimum quantum of time. After a plan 
with no open goal is found, a CSP solver is employed to 
search for a feasible schedule. Suitable completeness 
preserving pruning rules have been employed to reduce the 
branching factor. 
According to (Smith, Frank and Jonsson, 2000), our 
approach could be classified as stratified P&S. However, 
there is some interleaving between P&S, since non-
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disjunctive temporal constraints, originating by the causal 
link relations, are taken into account during the plan 
construction phase and may lead to plan rejection, in case 
of tight bounds. Moreover, temporal information is taken 
into account by the heuristic. 
The rest of the paper is as follows: First we review the 
temporal planning graph structure, as it has been 
implemented in our system. Then we rewrite the graphplan 
plan-extraction phase, using POCL planning and constraint 
programming. On top of this, we build then a heuristic 
POCL temporal planner, with the heuristic being extracted 
from the planning graph. In the same section we present 
two additional pruning techniques that we found useful in 
our experiments. Finally, we present preliminary results 
from the evaluation of the various techniques implemented 
in our system and pose future directions. 

Temporal Planning Graphs 
In this section we present the way the temporal planning 
graphs are constructed in our system. We use a slightly 
different and simplified approach than in (Smith and Weld, 
1999), which does not lead to arbitrarily complex 
formulae. 
As in (Smith and Weld, 1999), we define eternal mutex 
(emutex) relations and conditional mutex (cmutex) 
relations between pairs of propositions, pairs of actions 
and pairs of a proposition and an action (in the following 
we will refer to propositions and actions as nodes of the 
planning graph). An emutex relation between two nodes 
denotes that they can never hold simultaneously (being 
held for an action means being executed). A cmutex 
relation between two nodes determines a time point, before 
which the two nodes cannot hold simultaneously (this time 
point may be infinite, denoted with inf). In the following 
we will use Prec(A) and Eff(A) to denote the preconditions 
and effects of an action A respectively. 
Two nodes are emutexed in the following cases: 
• Each proposition P is emutexed with its negation ¬P. 
• An action A and a proposition P are emutexed, iff 

P∈Eff(A) or ¬P∈Eff(A) or ¬P∈Prec(A). 
• Two actions A and B are emutexed iff either A or B 

deletes the preconditions or effects of the other, or A 
and B have emutexed preconditions. 

Cmutex relations are computed in a recursive manner, 
during the construction of the planning graph. The basic 
data structures of the temporal planning graph are the 
following: 
− prop(P,T): Time T is the earliest time proposition P 

may become true. 
− action(A,T): Time T is the earliest time action A may 

start execution. 
− emutex(N1,N2): Nodes N1 and N2 are emutexed. 
− cmutex(N1,N2,T): Nodes N1 and N2 are cmutexed until 

time T (T may be inf). 
To avoid duplicate effort in storing mutex relations, we 
used a lexicographic ordering in their arguments N1 and 
N2. 

During planning graph creation, a time-ordered queue of 
events is maintained. There are two kind of events: 
− new_prop(P,T): Proposition P has been achieved at 

time T. 
−  end_cmutex(P,Q,T): The cmutex relation between 

propositions P and Q ends at time T. 
The procedure for creating the temporal planning graph is 
initialized by asserting prop(P,0) and new_prop(P,0) for 
each initial state’s proposition P. Then, the planning graph 
is created according to the following steps (Figure 1): 
 
1. Retract the earliest event E. Let T be its time. If no 

event exists, then stop. 
2. If E=new_prop(P,T), let Actions include each action A 

having P in its preconditions. If E=end_cmutex(P,Q,T) 
event, let Actions include each action A having P and 
Q in its preconditions. 

3. For each action A in Actions, such that all of its 
preconditions have been achieved in time earlier than 
or equal to T and there is no pair of preconditions 
being emutexed or cmutexed until later than T: 
a. Call ADD_EFFECTS(Eff(A), T+DA) 
b. Call NEW_EMUTEX(A) 
c. Call CMUTEX_ACTION_PROP1(A,T) 
d. Call CMUTEX_ACTIONS(A,T) 
e. Call CMUTEX_PROPS(A) 
f. Call STOP_CMUTEX_PROPS(A,T+DA) 
where DA is A’s duration. 

 
In the following we explicate these procedure calls. 
 
ADD_EFFECTS(Eff(A),T+DA): For each firstly achieved 
fact P∈Eff(A), this procedure asserts prop(P,T+DA) and 
event new_prop(P,T+DA). Moreover, emutex relations to 
existing nodes are created. For those propositions in Eff(A) 
that already exist in the planning graph with time reference 
earlier than or equal to T+DA, nothing happens. Finally, for 
those propositions in Eff(A) that already exist in the 
planning graph, with time reference later than T+DA, their 
time reference is replaced by T+DA and the corresponding 
pending new_prop event is updated accordingly.  
NEW_EMUTEX(A): This procedure creates emutex 
relations between the new action A and existing planning 
graph nodes, according to the related definitions. 
CMUTEX_ACTION_PROP1(A,T): This procedure creates 
new cmutex relations between the newly inserted action A 
and already existing propositions that are cmutexed with 
A’s preconditions and are not emutexed with A. For each 
such proposition Q that is cmutexed with any proposition 
P∈Prec(A) until time T1, a cmutex relation between A and 
Q until (the maximum possible) T1 is asserted. 
CMUTEX_ACTIONS(A,T): This procedure creates cmutex 
relations between A and other existing actions, to which A 
is not emutexed. A is cmutexed to another action B until 
time T1, if there is a pair of propositions P∈Prec(A) and 
Q∈Prec(B), such that cmutex(P,Q,T1), and T1 is the latest 
time for any such pair of propositions, provided that T1>T. 
CMUTEX_PROPS(A): This procedure creates cmutex 
relations between propositions achieved by A, and other 
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propositions. In particular: 
− Each proposition P firstly achieved by A is cmutexed 

until inf to every other proposition Q, to which A is 
emutexed and P is not emutexed. A call to 
CMUTEX_ACTION_PROP2(A,P,Q,inf) is issued. 

− Each proposition P firstly achieved by A is cmutexed 
to every other proposition Q, to which A is cmutexed. 
The end T1 of cmutex(P,Q,T1) is equal to the sum 
between T0 and DA, where T0 is obtained by 
cmutex(A,Q,T0). Event end_cmutex(P,Q,T1) is created, 
in case T1 is not inf (T1 is inf if T0 is also inf). A call to 
CMUTEX_ACTION_PROP2(A,P,Q,T1) is issued. 

− For each proposition P reachieved by A, for every 
other proposition Q to which A is cmutexed until time 
T0<inf, call UPDATE_CMUTEX_PROPS(P,Q,T1), 
where T1=T0+DA. 

STOP_CMUTEX_PROPS(A,T+DA): This procedure 
terminates cmutex relations between propositions in the 
following four cases: 
− For each pair of propositions P and Q, such that 

P∈Eff(A), Q∈Eff(A), call 
UPDATE_CMUTEX_PROPS(P,Q,T+DA). 

− For each proposition P∈Eff(A), for each proposition 
Q∈Prec(A), such that ¬Q∉Eff(A), call 
UPDATE_CMUTEX_PROPS(P,Q,T+DA). 

− For each proposition P∈Eff(A), for each proposition 
Q∉Prec(A), such that ∄ R∈Prec(A), such that 
emutex(Q,R) or cmutex(Q,R,T1), for some T1, call 
UPDATE_CMUTEX_PROPS(P,Q,T+DA). 

− For each newly achieved proposition P∈Eff(A), for 
each action B≠A, such that P is not mutexed with B, 
for each proposition Q∈Eff(B), call 
UPDATE_CMUTEX_PROPS(P,Q,T+DA+DB) 

 

The following procedures were referenced above: 
CMUTEX_ACTION_PROP2(A,P,Q,T): This procedure 
creates cmutex relations until T between proposition P and 
actions that have Q as precondition, i.e. for each action 
B≠A, such that Q∈Prec(B), assert cmutex(P,B,T).  
UPDATE_CMUTEX_PROPS(P,Q,T+DA): This procedure 
updates cmutex relations between existing propositions 
(note that the absence of a cmutex relation between a pair 
of existing propositions means that they are not cmutexed). 
So, if cmutex(P,Q,T1), where T1>T+DA, exists in the 
planning graph, then retract cmutex(P,Q,T1), delete the 
event end_cmutex(P,Q,T1) (if any), assert 
cmutex(P,Q,T+DA), create event end_cmutex(P,A,T+DA) 
and perform the following calls: 

− UPDATE_CMUTEX_ACTION_PROP(P,Q,T+DA) 
− UPDATE_CMUTEX_ACTIONS(P,Q,T+DA) 
Finally, the following two procedures are responsible for 
recursively updating cmutex relations concerning actions: 
 

UPDATE_CMUTEX_ACTION_PROP(P,Q,T+DA): This 
procedure updates any preexisting cmutex relation between 
proposition P and any action C, such that Q∈Prec(C), as 
well as between proposition Q and any action B, such that 
P∈Prec(B). Concerning the former case (the second is 
symmetric), the update is performed only if, taken into 
account the rest of C’s preconditions and the cmutex 
relations between them and P, the resulting end time T1 of 
the cmutex relation between P and C is earlier than the 
existing one. For each such update, and for each R∈Eff(C), 
UPDATE_CMUTEX_PROPS(P,R,T1+DC) is called, where 
DC is the duration of C. 
UPDATE_CMUTEX_ACTIONS(P,Q,T+DA): This 
procedure updates any preexisting cmutex relation between 
pairs of actions B and C, such that P∈Prec(B) and 
Q∈Prec(C). The update is performed only if, taken into 
account the cmutex relations between any pair of 
preconditions of B and C, the resulting end time T1 of the 
cmutex relation between B and C is earlier than the 
existing one. 

Efficient planning graph construction 
With a closer look at the presented algorithm we consider 
that cmutex relations between actions are not used for 
updating other types of cmutexes; they are just updated 
when changes in cmutex relations between propositions or 
pairs of an action and a proposition occur. So, we could 
omit the calls to CMUTEX_ACTIONS and 
UPDATE_CMUTEX_ACTIONS from the presented 
algorithm and replace them by a separate procedure that 
would be called once only, at the end of the algorithm, and 
would compute the cmutex relations between actions based 
on the cmutex relations between propositions. 
Note that computing and updating cmutex relations 
between actions is the most costly part of the planning 
graph construction phase. This observation led us to a 
more greedy approach: We do not compute cmutex 
relations between actions in advance, but we compute 
them on demand during the plan extraction phase. In case 
of a heuristic plan extraction phase this leads to a 
significant reduction in the time needed to solve the 
problems, since the majority of the cmutex relations 
between actions is never requested. 

Main 
loop 

ADD_EFFECTS 

NEW_EMUTEX_RELATIONS 

CMUTEX_ACTION_PROP1 

CMUTEX_ACTIONS 

CMUTEX_PROPS 

STOP_CMUTEX_PROPS 

CMUTEX_ACTION_PROP2 

UPDATE_CMUTEX_PROPS 

UPDATE_CMUTEX_ACTION_PROP

UPDATE_CMUTEX_ACTIONS 

Figure 1: Flow of procedure calls while creating temporal planning graphs. 
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Plan Extraction as a  
Constraint Satisfaction Problem 

In this section we formulate the plan extraction process as 
a constraint satisfaction problem in the space of partial 
plans. Our approach works with ground actions and 
represents their start times with constraint variables.  
The main data structures are the following: 
• An Agenda with entries of the form 〈G,T〉, where G is 

an open goal and T is a constraint variable, always 
unified with the start time of an action of the plan. 

• A partial plan Plan with entries of the form 〈A,TA〉, 
denoting that action A starts execution at time TA, 
where TA is a constraint variable. 

• A list Persistence with entries of the form 〈G,T1,T2〉, 
meaning that proposition G has to be true between T1 
and T2, where T1 and T2 are constraint variables. 

Agenda is initialized with the goal propositions and the 
time at which the goals have firstly achieved in a non-
mutexed way, whereas the other structures are initially 
empty. The main loop of the algorithm is the following: 
 
1. Dequeue 〈G,T〉 from Agenda. If Agenda is empty, call 
the CSP solver to schedule the actions. In case of success, 
return current instantiated plan, otherwise backtrack. 
2. Non-deterministically try to support 〈G,T〉 in one of the 
following options: 

2a. Support 〈G,T〉 from the initial state. Call: 
    PERSISTENCE_PLAN(G,0,T,Plan) 
    PERSISTENCE2(G,0,T,Persistence) 
   Add 〈G,0,T〉 in Persistence. 

2b. Non-deterministically try to support 〈G,T〉 from an 
existing action 〈A,TA〉, such that G∈Eff(A). Post the 
constraint TA+DA≤T. Call: 

    PERSISTENCE_PLAN(G,TA+DA,T,Plan) 
PERSISTENCE2(G,TA+DA,T,Persistence) 

Add 〈G,TA+DA,T> in Persistence. 
 2c. Non-deterministically choose a new action A to 
insert in Plan, such that G∈Eff(A). Create a new constraint 
variable, TA, for the start time of A. Post the constraint 
TA+DA≤T. Call: 
   ACTION_PLAN(A,TA,Plan) 
   ACTION_PERSISTENCE(A,TA,Persistence) 
   PERSISTENCE_PLAN(G,TA+DA,T,Plan) 
   PERSISTENCE2(G,TA+DA,T,Persistence) 

Add 〈G,TA+DA,T> in Persistence. For each 
precondition P of A, add 〈P,TA〉 in Agenda. 

 
In the following we explicate the procedure calls. 
 
PERSISTENCE_PLAN(G,T1,T2,Plan): This procedure 
ensures that protecting goal G between T1 and T2 is 
consistent with the current plan. In particular, for every 
entry 〈A,TA〉 in Plan: 
− If there is an emutex relation between A and G, or a 

cmutex that lasts until inf, post the following 
constraint: 

TA≥T2 or TA+DA≤T1 
− If there is a cmutex relation between A and G that ends 

at finite time T, post the following constraint: 
TA+DA≤T1 or TA≥T2 or T1≥T or TA≥T 

PERSISTENCE2(G1,T11,T12,Persistence): This procedure 
ensures that protecting goal G between T11 and T12 is 
consistent with other protected intervals. In particular, for 
every entry 〈G2,T21,T22〉 in Persistence: 
− If G1 and G2 are emutexed or cmutexed until inf, post 

the following constraint: 
T11≥T22 or T21≥T12 

− If G1 and G2 are cmutexed until the finite time T, post 
the following constraint: 

T11≥T22 or T21≥T12 or T11≥T or T21≥T 
ACTION_PLAN(A,TA,Plan): This procedure resolves 
threats between the new action A and other existing actions 
in Plan. In particular, for every entry 〈B,TB〉 in Plan: 
− If A=B (different instances of the same action), or if A 

and B are emutexed, or if they are cmutexed until inf, 
post the following constraint: 

TB≥TA+DA or TA≥TB+DB 
− If A and B are cmutexed until the finite time T, post 

the following constraint: 
TB≥TA+DA or TA≥TB+DB or TB≥T or TA≥T 

ACTION_PERSISTENCE(A,TA,Persistence): This 
procedure resolves threats between the new action A and 
the protected intervals in Persistence. In particular, for 
every entry 〈G,T1,T2〉 in Persistence: 
− If A and G are emutexed or cmutexed until inf, post 

the following constraint: 
TA+DA≤T1 or TA≥T2 

− If A and G are cmutexed until the finite time T, post 
the following constraint: 

TA+DA≤T1 or TA≥T2 or TA≥T or T1≥T 
 
The innovation in the above algorithm is that temporary 
cmutex relations are taken into account and produce 
threats, whereas alternative ways to promotion, and 
demotion are available to resolve these threats. An 
interesting remark concerns the way these threats are 
resolved. The four disjuncts in e.g.: 

T11≥T22 or T21≥T12 or T11≥T or T21≥T 
do not constitute mutual exclusive cases (as it happens 
with the promotion and demotion in solving threats caused 
by permanent mutexes). Actually in a solution plan it may 
be the case that more than one of these disjuncts is true. An 
alternative settlement that produces mutual exclusive cases 
would be the following one: 

(T11≥T22 and T11<T and T21<T) or  
(T21≥T12 and T11<T and T21<T) or  

(T11≥T and T21<T) or  
T21≥T 

This resolution poses more constraints and may lead faster 
to fail, but it also produces plans with constraints that are 
not intuitive.  
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Heuristic POCL Temporal Planning 
As with the original TGP, the main problem of the plan 
extraction process described in the previous section is that 
it must be repeated for each time step, starting from the 
time point at which the goals are firstly achieved without 
mutexes between them, where the time step is equal to the 
greatest common divisor of the durations of the problem 
actions. This is necessary if we want to get an optimal plan 
with respect to its makespan. However, this is unpractical 
for realistic domains, especially for temporal ones, so we 
disregard optimality and we attempt to obtain near optimal 
plans, using heuristics extracted by a leveled-off planning 
graph and branch and bound search techniques. 
There are several ways to derive heuristics from planning 
graphs, which can easily be adapted in a temporal setting. 
The most used is the sum heuristic (Nguyen and 
Kambhampati, 2000), which scores a partial plan with the 
sum of the earliest possible times, in which each 
proposition G in Agenda can be achieved. These times are 
obtained by the prop(G,T) relations of the temporal 
planning graph.  
In our system we adopted a slightly different heuristic, 
adapted by (Younes and Simmons, 2003). For each set of 
open goals: 
− We do not consider duplicate goals, i.e. multiple 

occurrences of the same proposition in Agenda. Each 
multiple occurring proposition is counted once only. 

− We do not consider goals that can potentially be 
supported by actions already inserted in the plan. This 
favors actions that, although they inserted in the plan 
to support a specific open goal, could be used to 
support other goals too. 

− From the remaining goals, we sum the maximum of 
the heuristic values for each cluster of goals that are 
emutexed or cmutexed until the infinite to each other. 
This takes into account that permanently mutexed 
propositions have usually to be achieved in sequence, 
so the cost to achieve them is estimated by the cost of 
the most expensive one. 

− In the above sum, we add the number of the goals, 
taking into account both duplicate goals, goals 
supported by existing actions and mutexed goals. This 
aims at solving ties between partial plans. 

 

The procedure for POCL heuristic planning is quite similar 
to that described in the previous section. The basic 
difference is the following: For a specific partial plan, a 
number of refined new plans are created simultaneously, 
corresponding to the various ways to support an open goal. 
The new plans are scored by the heuristic function and 
stored in memory together with other existing partial plans. 
That is, we adopted a best-first schema to search the space 
of the partial plans. Finally, the best partial plan is retracted 
and refined in the next step. Ties are broken by preferring 
newer plans. 
This setting led us in a variety of choices that reduce the 

branching factor without sacrificing completeness. The first 
one of them concerns the delay of the ordering decisions: 
threats in the plan are resolved by posting disjunctive 
constraints, instead of creating separate child-plans without 
disjunctions. Having disjunctions reduces the possibilities 
for propagating constraints, which may lead to inability for 
early inconsistency detection. On the other hand, this 
choice overcomes the problem of the numerous similar 
child-plans having the same sets of open goals and actions 
but different orderings. Generating separate child plans for 
the alternative ways to resolve threats would lead to a 
continuously increasing number of similar plans with equal 
heuristic values that would dominate every other area of 
the search space. In case of an early wrong estimate, it 
would be more difficult to overcome it. 
Another tuning of the planning process concerns the way 
open goals are selected. We adopted the approach to 
resolve the most costly goal of each selected partial plan, 
according to the heuristic function. Note that the order in 
which open goals are selected does not constitute a 
backtracking point, however, it has large impact on the 
efficiency of any POCL planner. Selecting the most costly 
goal allows generally for faster downgrading of the 
heuristic values, towards a solution plan. On the other 
hand, with our heuristic function, which is a hybrid max-
sum function, selecting any other than the most costly goal 
could lead to the generation of child-plans with the same 
heuristic value to their parent.  

Repeated Subgoal Pruning 
In this section we present a pruning technique we 
implemented in our planner, which in some problems led to 
significant reduction in the branching factor. We call it 
repeated subgoal pruning and, in order to present it we 
have first to define the notion of primitive subgoal chains. 
 

Def. 1: A primitive subgoal chain is an ordered list of 
subgoals 〈Gn, Gn-1, …G0〉, where each subgoal Gi has been 
inserted in Agenda as a precondition of action Ai, where 
action Ai was initially inserted in the plan to support 
subgoal Gi-1. Subgoal G0 is an original goal of the problem 
instance. We denote the primitive subgoal chain starting by 
any specific subgoal G with PCHAIN(G). 
 

Note that in Def. 1 we do not care about other subgoals that 
action Ai might have been used to support, after its 
introduction in the plan. So, the preconditions of Ai cannot 
belong to the same primitive subgoal chain with these 
subgoals that Ai was used afterwards to support. A 
primitive subgoal chain is extended only when a new 
action is introduced in the plan to support its left-most 
subgoal. In this case, various new primitive subgoal chains 
are generated, one for each precondition of the new action. 
 

Repeated subgoal pruning rule: A new action A with 
G∈Eff(A), cannot be inserted in a plan to support a specific 
subgoal G, if there is any proposition P∈Precs(A) such that 
P∈PCHAIN(G). 
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The above pruning rule sacrifices completeness. Indeed, 
there are many plans where a single proposition may 
change its truth value many times. For example, in Figure 2 
the task is to clean a dirty room, which can be done only if 
the light is on. The light is initially off, and we have to 
leave it off at the end. So, in order to achieve all goals, 
light has to get once on and then off in the plan. On the 
other hand, changing repeatedly and many times the status 
of the light would be irrational. We want to avoid irrational 
loops without sacrificing completeness. To achieve this, we 
adopted the following approach: 
The repeated subgoal pruning rule is implemented in our 
system as follows: Suppose we are processing subgoal 
〈G,T〉. There are several possibilities to support G (from 
the initial state, from several existing actions and from 
several new actions) and all of them are examined in order 
to generate the corresponding child-plans. Suppose there 
are some (among others) new actions that could support G, 
but the pruning rule is activated for all of them. For all 
these actions, a single new child-plan is generated, in 
which no new action has been inserted. The new child-plan 
differs from its parent one only in that subgoal 〈G,T〉 has 
been marked as inactive (initially all subgoals are marked 
as active). Moreover, 〈G,T〉 has been labeled with the 
number of actions the current plan has. In case no active 
goal exists in the new Agenda, the new child plan  is 
pruned. 
Inactive subgoals differ from active ones in that they 
cannot be supported by new actions or by the initial state: 
They can only be supported by existing actions that have 
been added in the plan after they became inactive (this is 
why each inactive subgoal is labeled with the number of 
actions in the plan at the time the subgoal became 
inactive). 
The child-plan generated when a subgoal becomes inactive 
is identical to its parent one, so it is scored with the same 
value by the heuristic function. So, it may happen that this 
child-plan will be selected in the next loop of the POCL 
planning procedure for further refinement, thus entering in 
an infinite loop. We cope with this problem in two ways: 
First, we penalize inactive subgoals, so that their plans will 
not be selected in case other plans with the same heuristic 
value but fewer inactive subgoals exist. This is done by 
adding for each inactive subgoal a small constant in the 
heuristic value. Second, when a plan with inactive 
subgoals is selected for further refinement, the inactive 
subgoal is not selected as the most costly subgoal (event if 
it is), except if new actions have been inserted into the plan 
after this subgoal became inactive. This last technique 
eliminates the risk of entering into infinite loops when 
refining partial plans with inactive subgoals. 
Figure 2 illustrates all these. We have two subgoals, off 
and clean. Suppose that initially we choose SWITCH_OFF 
to support off, because this is the most costly subgoal. So, 
the primitive subgoal chain 〈on, off〉 is generated from the 
precondition of SWITCH_OFF. Suppose next we have to 
support clean, and we insert CLEAN in the plan. The 
primitive subgoal chains 〈on,clean〉 and 〈dirty,clean〉 are 
generated. Suppose next we have to support the 

precondition on of SWITCH_OFF. The only way to do this 
is to insert SWITCH_ON in the plan. But this activates the 
pruning rule, and the insertion is rejected. The subgoal 
becomes inactive and then subgoal on of CLEAN is tried. 
Now, action SWITCH_ON can be inserted into the plan, 
since subgoal chain 〈off,on,clean〉 does not activate the 
pruning rule. Next, subgoal dirty is supported by the initial 
state, subgoal on of SWITCH_OFF can be supported by the 
already existing action SWITCH_ON (which has been 
inserted into the plan after the subgoal became inactive) 
and finally subgoal off is supported by the initial state. 
An alternative, but less efficient way to cope with repeated 
subgoals would be to prune altogether any child-plan with 
new actions falling under the pruning rule, without 
marking goals in Agenda as inactive. In this case, in order 
to preserve completeness, all subgoals in Agenda should be 
processed for each partial plan (and not only the most 
costly one). This approach, although more general and 
intuitive, is less efficient. 
The last paragraph gives rise to an alternative formulation 
of the pruning rule. First, we generalize the notion of the 
primitive subgoal chains:  
 

Def. 2: A subgoal chain is an ordered list of subgoals 〈Gn, 
Gn-1, …,G0>, where each subgoal Gi is a precondition of 
some action A of the plan, where an effect of A supports 
subgoal Gi-1. Subgoal G0 is an original goal of the problem 
instance.  
 

This definition does not care about the order in which 
actions have been inserted in the plan and subgoals were 
resolved, as happens with primitive subgoal chains. With 
this definition, the pruning rule can be rewritten in a more 
declarative (but less operational) way: 
 

For any subgoal G appearing in a causal link of a 
partial order plan, there must exist at least one subgoal 
chain starting with G, were G is not repeated. 

 

One could claim that this pruning rule is nothing more than 
repeated state pruning, so this pruning could be achieved 
by employing a closed list of visited states. However, in a 
temporal setting with disjunctive constraints it is not easy 
to check whether two partial plans with different sets of 
actions are equivalent. The pruning rule we presented 
manages at least to catch some of these cases. 

Deleted Supports 
A second pruning rule concerns pairs of actions being 
supported by the same proposition, whereas both actions 

SWITCH ON

off on 
SWITCH OFF

on off 

CLEAN 
on 

dirty 
clean 

dirty

INITIAL

off 
clean

GOAL

off

Figure 2: Subgoal chains. Solid lines denote primitive 
subgoal chains. 
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delete this proposition. Suppose there is a proposition P in 
the plan, being either an initial proposition or an add effect 
of an existing action. This specific proposition supports 
two actions A and B, for which P∈Prec(A), P∈Prec(B) but 
also ¬P∈Eff(A) and ¬P∈Eff(B) hold. It is obvious that this 
is an inconsistency and this partial plan must be discarded. 
However, the use of disjunctive constraints in our setting 
renders this inconsistency undetectable; it is detected only 
at the scheduling phase. 
We implemented a mechanism in our system, which, each 
time a new causal link is created, checks which other 
existing actions are supported by the same proposition. For  
such pairs A and B of actions, being supported by the same 
proposition, the following constraints posted: 
− If neither A nor B deletes P, no constraint is posted. 
− If A deletes P but B preserves it, A is demoted after B. 
− If B deletes P but A preserves it, B is demoted after A. 
− If both A and B delete P, the plan is discarded. 

Solution Generation and Presentation 
Each time a partial plan is found, with Agenda being empty 
of open goals, a constraint solver is employed to search for 
feasible assignments of values to the constraint variables, 
i.e. the start times of the actions. Due to the extensive use 
of disjunctive constraints, the domains of the constraint 
variables are usually very broad before labeling begins. We 
use a branch and bound schema for solving the CSP 
problem, with the makespan of the plan being the 
minimized quantity. This ensures that we will get the 
shortest temporal plan, with respect to the specific partial 
plan at hand. Of course this is not the globally optimal 
plan, since alternative partial plans might result in even 
shorter makespans. If we want to find even better plans, we 
can continue the POCL planning procedure by setting the 
upper bound slightly shorter than the makespan of the 
found plan for the remaining partial plans. 
Concerning the presentation of the solution plan, what we 
get from the CSP solver is an assignment of time points to 
the start times of the actions. If we want a more flexible 
presentation, we can present also the constraints between 
the actions. In case of disjunctive constraints, we can 
remove those disjuncts that are not satisfied by the current 
assignment. However, even with this removal, more than 
one disjuncts from each disjunction may be present, since, 
as we explicated earlier in this paper, the disjunctions do 
not correspond to mutually exclusive cases. Our current 
implementation keeps all these satisfiable disjuncts and 
presents them as part of the solution. 

Preliminary Results 
In this section we evaluate the various techniques we 
presented in the paper. We implemented a POCL temporal 
planner in Prolog and used ECLiPSe 5.8 as our 
environment. We ran our experiments in a Pentium 4, 
3GHz, 1GB memory machine and we set a time limit of 5 
mins. Our intention was not to create a high-performance 
planning system, so we did not give attention in 
implementation details but in declarativeness. As a result, 
our planner is not quite efficient to solve complex temporal 
problems.  
We ran our system on the easiest of the temporal Satellite 
domain of the 4th International Planning Competition1. We 
compared the full featured system with alternative 
configurations, where one feature each time was 
deactivated. The results are shown in Figure 3. Time in all 
cases includes the creation of the temporal planning graph. 
We set a high enough upper bound for time, so all 
problems were solvable. 
Columns Full present the performance of the full featured 
system. Columns Older present a configuration where ties 
are broken by preferring the older plans. We can see that in 
this case shorter plans are found, however more time is 
needed in general, making the larger problems unsolvable 
within the specified time limit. 
Columns STP (for simple temporal problem) concern a 
configuration of the system, where threats were resolved 
by generating alternative children. This choice may 
increase dramatically the branching factor, so we applied it 
only to threats generated by emutex or permanent cmutex 
relations. In these cases, ties were broken by favoring 
promotion of new actions. As we can see, there was a 
significant increase in time needed to solve even the easiest 
problem. 
Columns –Pruning 1 concern the case where the repeated 
subgoal generation pruning rule was not used. We observe 
a significant negative impact in system’s performance. In 
columns –Prunning 1 older ties are broken by preferring 
older plans. The results in this case are similar as in the 
Older case, although we receive slightly longer solution 
times.  
We do not present results for the case where the second 
pruning rule was inactivated. In this case the planner failed 
                                                 
1 The code and the problem files can be found at 
http://ai-server.uom.gr/pocl  

# Full Older -Pruning 1 -Pruning 1, Older STP 
 time makespan time makespan time makespan time makespan time makespan

satellite1 1.1 177 1.7 269 81.83 1984 3.3 269 374.47 323 
satellite2 10.4 453 8.8 182 - - 13.88 182 - - 
satellite3 10.7 441 13.4 251 - - 15.5 251 - - 
satellite4 43.1 501 - - - - - - - - 
satellite5 246.3 688 - - - - - - - - 

Figure 3: Preliminary results for various configurations of the planner (time in secs). 

 

ICAPS 2005

72 WS1. Workshop on Constraint Programming for Planning and Scheduling



to solve any problem, because the CSP subproblem 
generated by the planning procedure was unsolvable and 
detecting this unsolvability was very costly. Note that with 
the second pruning rule being active, no unsolvable CSP 
problem was generated in this domain. 
We tried to run the system without considering threats 
generated by the temporary cmutex relations. In this case 
we did not notice any significant difference to the Full 
case. This was the case even when we tightened the upper 
bound. This is explained by the fact that large disjunctive 
constraints do not allow for propagation, especially in the 
presence of good heuristics. However, we think that the 
role of temporary cmutex relations needs further 
investigation, e.g. with a more powerful constraint 
propagation. 
Finally we tried to run our system to problems from the 
Pipesworld and the Airport domain of the 4th Iternational 
Planning Competition. The results in this case were not 
consistent, being able to solve just a few instances 
occasionally. After careful investigation of this behavior 
we realized that it was due to early commitment in 
particular actions to support open goals, which was not 
easy to abandon at later stages. We believe that this 
problem could be alleviated with the use of lifted actions, 
which in turn raises new questions about the way lifted 
propositions could be evaluated by a heuristic function 
(e.g. taking the min or the average value from all their 
instantiations). 

Conclusions and Future Work 
In this paper we presented a temporal POCL planning 
system, which exploits a temporal planning graph in order 
to extract heuristic values and posts disjunctive constraints 
to resolve threats. We used a domain independent temporal 
heuristic that, among others, takes into account groups of 
permanently mutexed open goals and sums only the 
maximum of their heuristic values. Finally, we presented 
two completeness preserving pruning rules that are well 
suited in the framework of stratified (i.e. separated 
planning and scheduling) POCL temporal planning. 
We believe that the use of disjunctive constraints is well 
suited in the framework of stratified heuristic POCL 
temporal planning, since it avoids the problem of 
overgenerating child plans with the same or similar 
heuristic values. On the other hand, disjunctive constraints 
demand for stronger propagation rules to exploit pruning 
challenges. In the future we aim to work at this direction. 
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Abstract 
This paper considers two approaches to improving 
efficiency and stability in semi-dynamic Disjunctive 
Temporal Problems (DTPs).  A semi-dynamic DTP is a 
sequence of DTPs (Stergiou and Koubarakis 1998) in which 
each problem is a restriction of the problem before.  We 
consider three basic types of DTP restrictions—tightening 
the bound of an existing constraint, adding a simple 
constraint, and adding a disjunctive constraint.  The 
techniques we use for solving semi-dynamic DTPs come 
from the literature on dynamic Constraint Satisfaction 
Problems (CSPs) and include nogood recording (Schiex and 
Verfaillie 1993) and oracles (van Hentenryck and Provost 
1991).  Experimental results show that nogood recording 
improves efficiency but hurts stability, whereas oracles 
improve efficiency even more while also improving 
stability.  The performance of nogood recording and oracles 
used in combination is not significantly different than the 
performance of oracles alone. 

Introduction   
The Disjunctive Temporal Problem (DTP) is a very 
expressive temporal constraint formalism (Stergiou and 
Koubarakis 1998).  This expressivity comes at the cost of 
NP-complete complexity (Dechter, Meiri, and Pearl 1991), 
so a great deal of prior research has focused on heuristic 
approaches to solving DTPs (Stergiou and Koubarakis 
2000, Tsamardinos and Pollack 2003, Armando et al. 
2004).  For many applications, however, it may be 
necessary to solve a sequence of DTPs in which each 
problem is very similar to the one before.  Moreover, in at 
least some applications, it is much more common for one 
DTP in the sequence to be a restriction, rather than a 
relaxation, of the previous DTP in the sequence. 
 Execution-monitoring systems, such as Autominder 
(Pollack et al. 2003) and the Remote Agent (Muscettola et 
al. 1998), provide one example.  Consider the Autominder 
system, a schedule maintenance and execution-monitoring 
system that issues reminders to keep a user on schedule.  
Autominder represents a user’s schedule as a DTP, which 
is updated whenever time passes, an action is executed, or a 
                                                 
Copyright © 2005, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved. 
 

new action and its constraints are added to the schedule.  
After each such change, Autominder must check the 
consistency of the new DTP.  As long as the user neither 
retracts any constraints from the schedule nor executes an 
action that violates the schedule, each DTP in the sequence 
will be a restriction of the one before. 
 Plan generation systems that model complex temporal 
constraints, such as DT-POP (Schwartz and Pollack 2004) 
and TGP (Smith and Weld 1999), provide another 
example.  DT-POP is a partial-order planner that can 
generate plans that include complex temporal relationships 
over multiple goals and actions, each of which may involve 
arbitrarily many time points.  DT-POP represents all of 
these temporal relationships as DTPs, so each time a partial 
plan is modified to repair a flaw, DT-POP must solve a 
new DTP to determine whether the resulting plan is 
consistent.  Whether adding an ordering constraint to repair 
a threat adding a causal link or new action to repair an open 
condition, the DTP is modified by adding or tightening 
constraints.  As a result, the DTP of each partial plan in the 
search tree is a restriction of the DTP of its parent. 
 In this paper, we explore the question of solving semi-
dynamic DTPs—sequences of DTPs in which each is a 
restriction of the previous one.  We consider three types of 
basic DTP restrictions, which are jointly sufficient to 
represent any of the changes to a DTP described in the 
examples above.   We employ two techniques that have 
been previously used for solving dynamic CSPs (sequences 
of finite-domain CSPs):  nogood recording and oracles. 
 We are interested in how these techniques affect search 
efficiency as well as solution stability—i.e., the extent to 
which the solution to one DTP is similar to the solution to 
the previous DTP.  As pointed out by Verfaillie and Schiex 
(1994, page 307), instability in a dynamic CSP “…may be 
unpleasant in the framework of an interactive design or a 
planning activity, if some work has been started on the 
basis of the previous solution.”  The same can be said of 
dynamic DTPs. 
 In the next section, we define DTPs and describe the 
standard approaches to solving them.  We then introduce 
and formally define the semi-dynamic DTP.  After that, we 
describe nogood recording and oracles, and we show how 
they can be applied to semi-dynamic DTPs.  We then 
describe a set of experiments that compares these two 
techniques, both alone and together, and present results 
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showing their effect on efficiency and stability.  We 
conclude with a discussion of the results and ideas for 
future work. 

The Disjunctive Temporal Problem 
The DTP is a generalization of the Simple Temporal 
Problem (STP).  An STP (Dechter, Meiri, and Pearl 1991) 
is a pair <V, C>, where V is a set of temporal variables that 
represent time points and C is a set of simple temporal 
constraints over the time points of V.  Each simple 
temporal constraint of C has the form x – y � b, where x 
and y are time points of V and b is a real number.  Such a 
constraint is interpreted as “x follows y by no more than b 
units of time.”  An STP is often represented as a d-graph, 
in which each time point is a vertex and each constraint is a 
directed edge weighted by its bound.  An STP is consistent 
iff its d-graph contains no negative cycles, so if |V| = n, then 
the STP can be solved in O(n3) time with a standard all-
pairs shortest path algorithm such as Floyd-Warshall or 
Bellman-Ford (Cormen, Leiserson, and Rivest 1990). 
 A DTP is also a pair <V, C>, where V is a set of 
temporal variables that represent time points, but C is a set 
of disjunctive temporal constraints over the time points of 
V.  Each disjunctive temporal constraint of C has the form 
c1 ∨ c2 ∨ … ∨ cm, where each ci is a simple temporal 
constraint.  A disjunctive temporal constraint is satisfied if 
at least one of its component simple temporal constraints is 
satisfied.  A DTP can express constraints that an STP 
cannot.  For example, if a schedule contains two actions, A 
and B, that cannot overlap, a DTP can express this with the 
constraint “A ends before B begins, or B ends before A 
begins.” 
 There are two predominant methods for solving a DTP.  
The first is to convert the DTP into a Satisfiability (SAT) 
problem.  This method is used in TSAT++ (Armando et al. 
2004), which is currently the fastest DTP solver.  The 
second is to convert the DTP into a finite-domain CSP, as 
explained below.  This method is used in Epilitis, which 
was the fastest when it was developed several years ago 
(Tsamardinos and Pollack 2003).  Very little research has 
considered dynamic SAT problems (Hoos and O’Neill 
2000), whereas much research has already been done on 
dynamic CSPs (van Hentenryck and Provost 1991, Schiex 
and Verfaillie 1993, Verfaillie and Schiex 1994).  For this 
reason, the current work builds on the CSP method for 
solving DTPs. 
 To transform a DTP into a finite-domain CSP <V, D, C> 
(called a meta-CSP), one has each variable of V represent a 
single disjunctive temporal constraint of the DTP, where 
the domain of each variable v ∈ V is the set of component 
simple temporal constraints.  The constraints C of the meta-
CSP express the requirement that any combination of 
simple temporal constraints that is chosen as an assignment 
of the values as a solution of the meta-CSP must form a 
consistent STP. 
 For example, suppose we are given a DTP with time 
points {w, x, y, z} and these constraints: 

 c1 = (z – y ≤ 2) 
 c2 = (w – y ≤ 5) ∨ (w – x ≤ 7) 
 c3 = (y – x ≤ -3) ∨ (y – w ≤ -6) 
 
This DTP contains three disjunctive temporal constraints, 
so the corresponding meta-CSP will contain three 
variables.  The domain of each variable in the meta-CSP is 
the set of component simple temporal constraints, so the 
domain of c1 is {(z – y ≤ 2)}, the domain of c2 is {(w – y ≤ 
5), (w – x ≤ 7)}, and the domain of c3 is {(y – x ≤ -3), (y – 
w ≤ -6)}. 
 After this transformation, the DTP can be solved with 
any number of standard CSP techniques.  Epilitis, the 
fastest DTP solver that uses this meta-CSP transformation, 
uses five different techniques to improve efficiency.  Three 
of these techniques—forward checking, conflict-directed 
backjumping, and nogood recording—come from the 
finite-domain CSP literature.  The other two techniques—
removal of subsumed variables and semantic branching—
are made possible by the fact that the temporal constraints 
are linear inequalities.  See (Tsamardinos and Pollack 
2003) for details on Epilitis. 

The Semi-Dynamic DTP 
As mentioned above, we define a semi-dynamic DTP to be 
a sequence of (static) DTPs, where each DTP in the 
sequence is a restriction of the previous one.  The current 
work considers three types of restrictions in DTPs: 
 
1. tighten: The bound b of a temporal constraint x – y � b 
is reduced.  When a bound is tightened, it is possible that 
some of the assignments in which it participates used to be 
valid but now create a negative cycle in the d-graph.  The 
constraint that is tightened corresponds to a value of the 
meta-CSP, so tightening the bound of a constraint in the 
DTP has the effect of tightening a constraint in the meta-
CSP. 
 
2. add STC: A simple temporal constraint is added to the 
DTP.  This corresponds to adding a variable to the meta-
CSP with a domain size of one.  The meta-CSP solver has 
no choice but to include the assignment of this value to this 
new variable in any potential solution that it considers. 
 
3. add DTC: A disjunctive temporal constraint is added to 
the DTP.  This corresponds to adding a variable to the 
meta-CSP with a domain size greater than one.  The meta-
CSP solver can choose any of the values in the domain of 
the new variable. 
 
 Some might argue for the inclusion of a fourth type of 
restriction—the removal of a disjunct from a disjunctive 
temporal constraint.  In the meta-CSP, this would corres-
pond to the removal of a value from the domain of a 
variable.  It is possible to achieve the same effect by 
tightening the bound of the disjunct to negative infinity; 
even though the value is still present in the meta-CSP, it 
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could not participate in any solution and would be 
immediately pruned by forward checking.  For this reason, 
we only consider the three types of restrictions listed 
above. 
 We can now formally define the semi-dynamic DTP: 
 
Definition 1. A semi-dynamic DTP is a pair <P0, C>, 
where P0 is a static DTP, and C is a sequence of changes, 
each of which is one of the three types of restrictions listed 
above.  If C contains n changes, then a semi-dynamic DTP 
solver must solve the sequence of DTPs P0, P1, …, Pn, 
where each DTP Pi is created by restricting Pi-1 according 
to change ci, for 1 ≤ i ≤ n. 
 
 The current work only considers semi-dynamic DTPs in 
which each change is a single restriction.  In some systems, 
it might make more sense to perform several restrictions 
between subsequent DTPs.  For example, if an event e is 
executed exactly t units of time after another event f, an 
execution-monitoring system can represent this by adding 
two simple temporal constraints to the schedule: (e – f ≤ t) 
and (f – e ≤ -t).  Both of these constraints can be added 
before the new DTP is solved.  Semi-dynamic DTPs in 
which each change is a set of restrictions remains an open 
avenue for future research. 
 We consider two techniques that have been shown to 
improve the performance of dynamic CSPs, adapting them 
to semi-dynamic DTPs.  The next section describes nogood 
recording, and the section after that describes oracles. 

Nogood Recording 
Nogood recording (NGR) has been shown to be an 
effective technique for improving both static and dynamic 
CSPs (Schiex and Verfaillie 1993).  Intuitively, a nogood is 
a partial assignment of variables that cannot be extended to 
a complete solution.  Formally, a nogood of CSP <V, D, 
C> (where V is the set of variables, D is the set of 
respective variable domains, and C is the set of constraints) 
is a pair <A, J>.  A is an assignment to a subset of the 
variables of V, and J is a subset of V such that the 
constraints over J prevent A from participating in any 
solution (J is called the justification of the nogood). 
 As a CSP solver searches for a solution, it records a 
nogood each time it finds a dead end.  As search continues, 
the CSP solver checks each partial assignment it considers 
against each nogood it has recorded.  If it finds a nogood 
<A, J> such that A is a subset of the partial assignment 
being considered, then that partial assignment can be 
pruned immediately.  If the CSP solver is also using 
conflict-directed backjumping, then the justification J tells 
the solver how far it can safely backtrack. 
 In order to maximize the pruning power of each nogood, 
the assignment should be made minimal.  This is 
accomplished by applying two basic properties of nogoods.  
First, if <A, J> is a nogood, then <A↓J, J> is also a 
nogood, where A↓J is the projection of assignment A onto 
the variables of justification J.  In other words, we can 

safely remove any variable in A that does not participate in 
the constraints over J.  Second, if all possible extensions of 
an assignment A along a particular variable x have been 
recorded as nogoods <A ∪ {x�vi}, Ji> for all values vi in 
the domain of x, then <A, ∪i Ji> is also a nogood.  In other 
words, since any solution must assign a value to every 
variable, and since there is no valid extension of A that 
assigns a value to x, we know that A cannot be extended to 
a complete solution.  During search, this second property 
makes it possible to record a nogood when backtracking 
over a non-leaf that is a generalization of all of its children 
combined. 
 Suppose we are solving a CSP with variables w, x, y, and 
z, all of which have the domain {1, 2, 3}.  Say our current 
assignment is {w�1, x�2, y�3, z�1}, but this 
assignment is found to violate a constraint over w, x, and z.  
We could record the nogood <{w�1, x�2, y�3, z�1}, 
{w, x, z}>, but the first property of nogoods tells us that we 
can instead record the smaller nogood <{w�1, x�2, 
z�1}, {w, x, z}>.  This nogood has greater pruning power 
because it applies no matter what value is assigned to y.  
Now say that, after further search, we discover that 
<{w�1, x�2, z�2}, {w, x, z}> and <{w�1, x�2, z�3}, 
{w, x, z}> are also nogoods.  At this point, we have seen 
that the assignment {w�1, x�2} extended with any 
assignment to z leads to a dead end, so the second property 
of nogoods tells us that we can record the nogood <{w�1, 
x�2}, {w, x, z}>.  This nogood has more pruning power 
because it applies no matter what value is assigned to z. 
 Epilitis was the first system to apply NGR to static 
DTPs.  The only difference between applying NGR to 
finite-domain CSPs and DTPs comes when finding the 
justification of a nogood at a leaf dead end.  In a CSP, the 
constraints are given in some explicit description, but in the 
meta-CSP of a DTP, the constraints are given implicitly 
that any assignment must form a consistent STP.  An STP 
is inconsistent iff its d-graph contains a negative cycle, so 
the justification of a nogood in a DTP is found by simply 
identifying the time points involved in the negative cycle, 
and then identifying the meta-CSP variables whose 
assignments created that negative cycle. 
 In practice, the number of nogoods that are recorded can 
grow to an unmanageable size, so a few basic techniques 
can be used to prevent this from happening.  First, as the 
reader may have noticed while looking at the previous 
example, when the second property of nogoods is applied, 
the new nogood that is generated is a generalization of the 
nogoods that were combined to create it.  Whenever the 
second property is applied, all of the nogoods that were 
combined to create the new one can be removed from the 
set of nogoods without losing any pruning power.  Second, 
the more variables in a nogood’s assignment, the fewer 
assignments they apply to, so nogoods with large 
assignments have little pruning power.  It is therefore 
common practice to select a size limit and only record 
nogoods whose assignment is within this limit.  
Tsamardinos and Pollack (2003) suggest a nogood size 
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limit of 10 for Epilitis, and we follow their suggestion in 
our implementation. 
 The application of NGR to dynamic problems is 
straightforward.  Nogoods are recorded while searching for 
a solution to one problem instance and then applied while 
searching for a solution to the next problem instance.  If the 
problem is relaxed, some of the nogoods may no longer be 
valid and would have to be removed from the set.  The 
current work, however, only considers semi-dynamic DTPs 
in which no relaxations are permitted, so we do not need to 
deal with this case.  A restriction only removes solutions of 
a problem instance, so any partial assignment that could be 
safely pruned by a nogood before the restriction can be 
safely pruned after. 

Oracles 
Oracles (van Hentenryck and Provost 1991) have also been 
applied to dynamic finite-domain CSPs.  During CSP 
backtracking search, all partial assignments that were tested 
before the first solution was found must have been pruned.  
After a restriction to the CSP, those same partial 
assignments can be immediately pruned from the new 
search space.  An oracle records the path to the first 
solution so the next search can try to repeat it, bypassing 
the pruned portion of the search space. 
 Formally, we define an oracle for a problem as a triple 
<A, O, P>.  A is the solution assignment of the previous 
problem in the sequence, O is the order in which variables 
were chosen to find this solution, and P is the set of values 
that were tested and pruned from the domain of each 
variable along the way.  If the current problem resulted 
from a restriction, then all of the values in P can be safely 
pruned again without being tested.  If the solver is also 
using conflict-directed backjumping or NGR, then a 
justification must be recorded along with each pruned value 
of P. 
 Given a CSP <V, D, C> and an oracle <A, O, P>, 
backtracking search proceeds as follows.  First, a variable 
var is selected according to O.  Each value in the domain of 
var that appears in P can be pruned immediately without 
search.  Then the value assigned to var according to A is 
chosen.  This process continues until either a new solution 
is found or the value that should be chosen according to A 
causes an inconsistency.  In the latter case, the oracle is 
abandoned from that point in the search.  From then on, 
variables and values are selected according to the solver’s 
heuristics, and no more values are pruned without first 
being searched.  If a solution is found, a new oracle can be 
generated from the search path to guide the next search. 
 An oracle can be generated directly from a search tree 
once the first solution is found.  Consider the search tree 
shown in Figure 1.  The nodes that are crossed out 
represent partial assignments that were tested and pruned, 
the black nodes represent partial assignments along the 
search path to the solution, and the white nodes represent 
partial assignments that have not been tested yet.  The 
oracle is enclosed in a dotted line. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. An oracle from a CSP search tree. 
 
 The pseudo-code for solving a CSP with an oracle 
appears in Figure 2.  The Oracle-Search procedure takes 
three arguments: the CSP <V, D, C> that is currently being 
solved, the oracle <A, O, P> from the previous problem 
that is guiding the current search, and the oracle <A’, O’, 
P’> that is being created to guide the next search.  If the 
given CSP is consistent, Oracle-Search returns the new 
oracle (which contains the solution assignment); otherwise, 
Oracle-Search returns FAIL. 
 Oracle-Search is a recursive procedure, so it begins by 
checking if all of the variables have been assigned, and, if 
so, it returns the new oracle (line 1).  Otherwise, it selects 
the next variable to be assigned.  If the old oracle is still 
being followed, Oracle-Search follows the variable 
ordering O from the previous search, and all of the values 
that were tested and pruned during the previous search can 
be pruned immediately without being tested in the current 
search (lines 3-6).  If the old oracle has been abandoned, 
Oracle-Search falls back on a heuristic variable selection 
method (lines 7-8).  Either way, the new variable choice is 
appended to the variable ordering of the new oracle (line 
9). 
 Now Oracle-Search tests the values in the working 
domain of the chosen variable until one is found that leads 
to a solution or all of them have failed.  The first step is to 
choose a value to test.  If the old oracle is still being 
followed, Oracle-Search starts by testing the value that 
was assigned to the chosen variable in the previous solution 
assignment (lines 11-12).  If the old oracle has been 
abandoned, Oracle-Search falls back on a heuristic value 
selection method (lines 13-14).  The chosen value is 
removed from the working domain of the chosen variable 
(line 15). 
 Once the variable and value have been chosen, the new 
binding is added to the current assignment and tested 
against the constraints (lines 16-17).  If none of the 
constraints are violated, Oracle-Search calls itself 
recursively (line 18).  In this recursive call, the new oracle 
has been modified to reflect the new variable and value 
choices, along with any other values that have been pruned 
from the chosen variable’s working domain.  If the chosen 
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value leads to a solution, then that solution (which is the 
new oracle) is returned immediately (line 19). 
 If the chosen value does not lead to a solution, or if the 
new assignment failed the constraint check, then the value 
is pruned from the working domain of the chosen variable 
(line 20).  The fact that this value has been pruned is 
recorded in the new oracle (line 21).  Since the value from 
the previous solution assignment is always tested first, that 
value must have failed by this point.  This means that the 
oracle cannot lead the solver directly to a solution, so the 
oracle is abandoned (line 22).  From this point on, Oracle-
Search will behave exactly like a standard CSP back-
tracking search algorithm, except that it will continue to 
build the new oracle to guide the next search.  If all of the 
values in the working domain of the chosen variable have 
failed to lead to a solution, then Oracle-Search returns 
FAIL (line 23). 
 
Oracle-Search(<V, D, C>, <A, O, P>, <A’, O’, P’>) 
// <V, D, C> is the CSP being solved 
// <A, O, P> is the oracle from the previous problem 
// <A’, O’, P’> is the new oracle being created 
1 if all variables assigned, then return <A’, O’, P’> 
2 P” � P’ 
3 if still following old oracle <A, O, P>, then 
4  choose next variable var according to O 
5  prune all values from D[var] that appear in P[var] 
6  P”[var] � P[var] 
7 else (old oracle has been abandoned) 
8  choose next variable var according to heuristic 
9 let new ordering O” be O’ appended with var 
10 while working domain D[var] is not empty 
11 if still following old oracle <A, O, P>, then 
12  choose value val according to A[var] 
13 else (old oracle has been abandoned) 
14  choose value val according to heuristic 
15 remove val from D[var] 
16 let new assignment A” be A’ ∪ {var�val} 
17 if A” does not violate constraints C then 
18  sol � Oracle-Search(<V, D, C>, <A, O, P>, 
    <A”, O”, P”>) 
19  if sol ≠ FAIL then return sol 
20 prune val from D[var] 
21 P”[var] � P”[var] ∪ {val} 
22 abandon the old oracle 
23 return FAIL 
 
Figure 2. A CSP solver that uses an oracle to guide search. 
 
 We can make several observations about the behavior of 
this algorithm.  If the solution of the previous problem is 
still a valid solution after the restriction, then the oracle 
will lead the solver directly to it.  If a new variable has 
been added to the problem, the oracle will cause the solver 
to try to extend the previous solution by assigning the new 
variable each of the values in its domain before it 
backtracks to test any other assignments.  If the solution of 
the previous problem is no longer a valid assignment after 

the restriction, then the oracle will still force the solver to 
use as much of the previous solution as possible. 
 The use of oracles can be applied directly to the meta- 
CSPs of a semi-dynamic DTP.  As with nogoods, a 
relaxation could invalidate some of the justifications that 
are recorded with the pruned values of the oracle, so these 
values would have to be removed from the pruned set 
before the next search was to begin.  The current work, 
however, only considers restrictions, so we do not need to 
deal with this case. 

Experimental Comparison 
We compare the efficiency and stability of four algorithms 
for solving semi-dynamic DTPs.  Since nogood recording 
and oracles operate on CSPs and Epilitis is the fastest 
algorithm to solve DTPs using the meta-CSP transfor-
mation, we use Epilitis as the underlying static DTP solver 
of all of our algorithms. 
 As stated earlier, TSAT++ is currently the fastest static 
DTP solver, but the publicly available implementation of 
TSAT++ only outputs four pieces of information after 
solving a DTP: the consistency of the given DTP, the total 
time TSAT++ used to determine consistency, the search 
time, and the number of constraint checks performed.  It 
does not output a solution of the DTP when it is found to 
be consistent.  This makes it impossible to reuse solutions 
or to measure the stability of solutions of subsequent DTPs 
in the sequence, so a fair comparison to TSAT++ is not 
possible at this time.  We are presently working with the 
creators of TSAT++ to get an implementation that does 
output solutions. 
 The four algorithms we tested are as follows: 
 
1. Naïve: The first algorithm is a naïve algorithm that 
repeatedly applies Epilitis to solve each DTP in the 
sequence from scratch.  Even though this algorithm (as well 
as all of the others) uses nogood recording as a method to 
enhance the efficiency of Epilitis, the nogoods learned 
during one search are forgotten when the DTP changes. 
 
2. NGR: The second algorithm is exactly the same as the 
first algorithm, except that all of the recorded nogoods are 
applied to all subsequent DTPs in the sequence. 
 
3. OR: The third algorithm forgets all of its recorded 
nogoods when the DTP changes just like the naïve 
algorithm does, but this algorithm generates an oracle after 
each DTP is solved and applies it when solving the next 
DTP in the sequence. 
 
4. Both: The fourth algorithm combines both techniques.  
It applies recorded nogoods to all subsequent DTPs, and it 
generates an oracle after solving one DTP and applies it to 
the next. 
 As pointed out in the section on oracles, if the previous 
solution is still a valid assignment after the restriction, an 
oracle will guide the search to test the previous solution 
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first and then extend it if a new meta-CSP variable has been 
added to the problem.  To facilitate better comparison, we 
apply this same technique to both of the algorithms that do 
not use oracles.  Before starting a new search, all of the 
algorithms check whether the previous solution is still 
valid, or if it can be extended when a new variable has been 
added to the meta-CSP.  A new search is performed only if 
the previous solution is not (and cannot be extended to) a 
solution of the current problem. 
 To compare the algorithms, we generated four sets of 50 
semi-dynamic DTPs.  Each semi-dynamic DTP consists of 
a consistent initial DTP (P0) and a sequence of restrictions 
(C).  The first set contains only tighten changes, the second 
set contains only add STC changes, the third set contains 
only add DTC changes, and the fourth set contains all three 
types of changes chosen from a uniform distribution.  The 
sequence of changes terminates when either the DTP 
becomes inconsistent (because more restrictions will 
always produce inconsistent DTPs) or the DTP has been 
changed 50 times. 
 The initial DTP of each dynamic problem is generated 
randomly based on the parameters of the most difficult 
problems considered in (Tsamardinos and Pollack 2003).  
Each of the initial DTPs in our experiments contains 30 
time points and 180 disjunctive temporal constraints.  This 
is a ratio of 6 disjunctive constraints to each time point, 
which Tsamardinos and Pollack found to be a phase 
transition point where DTPs are the most difficult to solve.  
Each disjunctive temporal constraint is the disjunction of 2 
simple temporal constraints, and the bound of each simple 
constraint is chosen randomly with uniform probability 
from the integers of [-100, 100]. 
 A tighten change is generated by randomly selecting a 
simple constraint of one of the disjunctions and reducing its 
bound by a random integer amount in [0, 100].  An add 
STC change is generated in the same manner as the 
disjunctive constraints of the initial DTP, except that the 
new constraint contains only 1 disjunct instead of 2.  An 
add DTC change is generated in exactly the same manner 
as the disjunctive constraints of the initial DTP.  For all 
types of restrictions, the set of time points in the DTP does 
not change. 
 Each type of change affects the DTP to a different 
degree.  A tighten change only has a probability of 0.5 of 
tightening a disjunct that is part of the solution from the 
previous problem, and even if it does, it is still possible that 
the bound is not reduced enough to invalidate the previous 
solution.  An add STC change forces the solution to include 
one particular simple constraint, so it is more likely to 
invalidate the previous solution.  An add DTC change 
forces the solution to include a new simple constraint, but 
the particular simple constraint can be chosen from the set 
of (two) disjuncts in the new disjunctive constraint.  
Because of the inherent differences among the types of 
changes, the semi-dynamic DTPs generated by applying 
them differ in both the average number of changes that are 
made before the problem becomes inconsistent and the 
percentage of solutions that can be reused for each 

algorithm.  Table 1 shows the differences among the four 
problem sets.  The values in Table 1 demonstrate that the 
average number of changes and percentage of reused 
solutions can both vary greatly with the change type, but 
vary little among the different algorithms. 
 
 

% solutions reused  change 
type 

avg number 
of changes 
before 
inconsistent 

Naïve NGR OR Both 

tighten 39.6 91.91 92.32 92.27 92.22 
add 
STC 

5.1 62.75 61.57 61.66 61.57 

add 
DTC 

16.0 82.75 82.38 82.20 81.75 

all 13.4 78.81 78.81 80.06 79.25 
 

Table 1. Average number of changes per problem and 
percentage of solutions reused for semi-dynamic DTPs 

with different types of restrictions. 
 
 We ran each of the four algorithms on all of the 
problems and measured the efficiency and stability of each 
algorithm.  Efficiency was measured in two ways: the CPU 
time and the number of nodes (i.e., partial assignments) 
tested while solving each semi-dynamic DTP.  Stability is 
measured as the percent of variable bindings from the 
previous solution that match the new solution.  Recall that a 
new search is only necessary when the previous solution 
cannot be reused or extended.  If all of the same variable 
bindings from the previous solution match the new 
solution, then the stability is 100%; however, in the case of 
100% stability, a new search is not necessary, so these 
cases are not included in the averages that are reported.  
Thus, the stability values reported are lower than they 
would be had the solution-reuse cases been incorporated 
into the averages.  Tables 2, 3, 4, and 5 show the results of 
tighten, add STC, add DTC, and all changes, respectively.  
The algorithms were all implemented in Java and the 
experiments were run on a 3.0 GHz Pentium 4 machine 
with 1 GB of memory. 
 
 
 Naïve NGR OR Both 
time (sec) 37.60 19.38 11.91 12.86 
nodes 27,777 14,041 9,808 10,116 
stability 75.50 73.60 79.20 79.40 
 

Table 2. Efficiency and stability on tighten restrictions. 
 
 
 Naïve NGR OR Both 
time (sec) 13.44 11.99 9.79 10.39 
nodes 9,778 8,863 7,808 8,230 
stability 73.46 67.15 75.10 75.80 
 

Table 3. Efficiency and stability on add STC restrictions. 
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 Naïve NGR OR Both 
time (sec) 39.14 28,69 21.86 22.09 
nodes 27,882 20,596 16,452 16,309 
stability 76.80 74.18 80.40 80.17 
 
Table 4. Efficiency and stability on add DTC restrictions. 

 
 
 Naïve NGR OR Both 
time (sec) 16.48 12.39 9.45 10.25 
nodes 12,037 8,953 7,770 8,285 
stability 73.30 71.67 76.10 76.32 
 

Table 5. Efficiency and stability on all restrictions. 

Discussion  
Tables 2-5 show that for every type of restriction, nogood 
recording helps efficiency but hurts stability relative to the 
naïve approach.  NGR helps efficiency because the 
nogoods allow earlier pruning in DTPs that appear later in 
the sequence.  NGR can hurt stability because Epilitis 
counts the number of nogoods in which each value 
participates as part of its variable and value selection 
heuristics, so the additional nogoods can steer the DTP 
solver to a very different part of the search space.  Even if 
the number of nogoods for each value was not incorporated 
directly into the variable and value selection heuristics, the 
additional nogoods from the previous search would still 
allow forward checking to prune some values early.  Since 
most heuristics count the number of values in the working 
domain of each variable, and since the additional nogoods 
would remove some of these values, we would still expect 
the heuristics to guide the search to a different part of the 
search space, leading to a reduction in stability. 
 Tables 2-5 also show that for every type of restriction, 
the use of oracles resulted in better efficiency and stability 
than either the naïve approach or nogood recording.  On 
one hand, an oracle can improve efficiency by pruning part 
of the search space and reusing part of the previous 
solution.  On the other hand, an oracle might have hurt 
performance by leading the solver to part of the search 
space where it will not find a solution.  Apparently, oracles 
help performance much more than they hurt it:  they 
improve performance in all cases, most dramatically 
reducing CPU time to less than one third of the naïve 
approach when tightening bounds (see Table 2).  Oracles 
improve stability by starting the search from the previous 
solution, generally increasing stability by 2 to 3 percent 
over the naïve approach.  This is in contrast to nogood 
recording, which generally decreased stability by roughly 
the same amount. 
 It is interesting to compare the performance of the 
combination of oracles with nogood recording against the 
performance of oracles alone.  We had expected that the 
combination of techniques, when compared to oracles 
alone, would result in equivalent stability (because the 

oracles would still guide the beginning of the search) but 
improved efficiency (because the nogoods would allow 
earlier pruning and provide more informed heuristics when 
the oracle is abandoned).  Tables 2-5 show us that, overall, 
the performance of the combination of techniques was 
nearly equivalent to the performance of oracles alone in 
both stability (as we had expected) and efficiency (as we 
had not expected).  We conjecture that the efficiency of 
oracles alone versus oracles with nogood recording is so 
similar because the stability resulting from oracles is so 
high (generally in the range of 75 to 80 percent); this means 
that only a relatively small number of variables in the meta-
CSP need to be reassigned, so the additional pruning and 
heuristic power gained through the use of nogoods has little 
opportunity to influence efficiency.  Additional 
experimentation is necessary to determine whether or not 
this is true. 

Conclusions 
   This paper is an initial attempt to improve efficiency 
and stability in semi-dynamic DTPs.  We have presented 
two approaches and examined their effectiveness.  Our 
initial experimental results show that oracles are more 
effective than nogood recording at improving both 
efficiency and stability.  We hope to continue our research 
by running more experiments that vary the number of time 
points and the ratio of time points to disjunctive temporal 
constraints, and by comparing the techniques on real data. 
 There are many possible ways to extend this work.  This 
work only investigates restrictions on DTPs, so one 
obvious extension is to consider the problem of fully 
dynamic DTPs, which include both restrictions and 
relaxations.  We already touched briefly on how relaxations 
can complicate both nogood recording and oracles.  
Another extension would be to look at other dynamic CSP 
algorithms and apply them to dynamic DTPs.  For example, 
the local changes algorithm of (Verfaillie and Schiex 1994) 
strives to reuse as much of the previous solution as 
possible, so it might be able to improve stability, but 
possibly at the cost of efficiency. 
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Abstract

Quantitative temporal constraints are an essential requirement
for many planning domains. The HTN planning paradigm
has proven to be better suited than other approaches to many
applications. To date, however, integrating temporal reason-
ing with HTN planning has been little explored. This pa-
per describes a means to exploit the structure of a HTN plan
in performing temporal propagation on an associated Simple
Temporal Network. By exploiting the natural restriction on
permitted temporal constraints, the time complexity of prop-
agation can be sharply reduced, while completeness of the
inference is maintained. Empirical results indicate an order
of magnitude improvement on real-world plans.

Introduction
Quantitative temporal constraints are an essential require-
ment for many real-life planning domains (Smith, Frank, &
Jónsson 2000). The Hierarchical Task Network (HTN) plan-
ning paradigm has proven to be better suited than other ap-
proaches to many applications (Myerset al. 2002). To date,
however, integrating temporal reasoning within the HTN
planning process has been explored in only a few systems.

This paper describes a means to exploit the structure of
a HTN plan in performing temporal propagation on an as-
sociated Simple Temporal Network (STN). We introduce an
algorithm calledsibling-restricted propagationthat exploits
the restricted structure of STNs that arise from an HTN
plan. The idea behind the algorithm is to transverse a tree
of sub-STNs that correspond to the expansions in the HTN
task hierarchy. The HTN structure limits the sub-STNs to
have constraints only between parent and child nodes and
between sibling nodes. Because the STNs thus considered
are small, compared to theglobalSTN corresponding to the
whole plan, the overall amount of work to perform propa-
gation is sharply reduced. Empirical results demonstrate an
order of magnitude improvement on real-world plans.

Many metric temporal planners adopt an STN (or its gen-
eralisation to a Disjunctive Temporal Network) to describe
the temporal relations underlying the plan. HTN planners in
this category include O-Plan (Tate, Drabble, & Kirby 1994),
SIPE-2 (Wilkins 1999), HSTS/RA/Europa (Jonssonet al.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

2000), PASSAT (Myerset al. 2002), and SHOP2 (Nauet al.
2003). Similar representations are used by other HTN sys-
tems, such as IxTeT (Laborie & Ghallab 1995). Our work
is distinguished by explicit use of the HTN plan structure to
propagate on the underlying STN. Of the systems that do not
adopt an STN, temporal HTN planning has been addressed
both from a classical HTN planning perspective, such as Ya-
man & Nau (2002), and from other perspectives, such as
logic programming (Son, Baral, & Tuan 2004).

Combining planning and scheduling has been approached
from both sides of the gap (Smith, Frank, & Jónsson 2000).
Specific algorithms have been developed for temporal prop-
agation (e.g. Tsamardinos, Muscettola, & Morris (1998))
and resource propagation (e.g. Laborie (2003)) within a
planning context. Again, while numerous systems feature
methods to efficiently propagate temporal information and
use it in the planning or scheduling process, we are not aware
of any published results on specific algorithms to exploit
HTN structure in STN propagation.

Whether in the HTN paradigm or not, it is possible to
encode the whole temporal planning problem as a Con-
straint Satisfaction Problem — as done by El-Kholy &
Richards (1996), Do & Kambhampati (2001), Mali (2002),
and Frank & J́onsson (2004), among others. For us, the ben-
efit of closely integrating casual task inference and STN-
based task scheduling in the overall reasoning process, while
maintaining distinction between them, comes in exploiting
the specialised nature of the two aspects.

The next section presents necessary background on HTN
planning, Simple Temporal Networks, and STN propagation
algorithms. The following sections introduce the sibling-
restricted propagation algorithm, present an initial charac-
terisation of its theoretical properties, and evaluate its im-
plementation in the PASSAT plan authoring system.

Background
Hierarchical Task Network planning (Erol, Hendler, &
Nau 1994) generalises traditional operator-based planning
through the addition of methods. Methods encode rich net-
works of tasks that can be performed to achieve an objective.
Tasks within a method are temporally partially ordered, and
may have associated preconditions and effects in addition to
those of the method as a whole. With HTN methods, plan-
ning can assume a hierarchical flow, with high-level tasks
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being decomposed progressively into collections of lower-
level tasks through the application of matching methods
with satisfied preconditions. Most large-scale, realistic plan-
ning applications to date have employed the HTN paradigm
(Smith, Frank, & J́onsson 2000).

Simple Temporal Networks For modelling and solving
the temporal aspects of planning and scheduling problems,
quantitative temporal constraint networks in the form of the
Simple Temporal Problem (STN) (Dechter, Meiri, & Pearl
1991) are widely adopted. Schwalb & Vila (1998) survey
the wider work on temporal constraint satisfaction, includ-
ing qualitative and hybrid formulations.

An STN is a restriction of theTemporal Constraint Prob-
lem to have a single interval per constraint. VariablesXk

denote time-points and constraints represent binary quan-
titative temporal relations between them. A distinguished
time-point, denotedTR, marks the start of time. Unary do-
main constraints are modelled as binary relations toTR; thus
all constraints have the form:lij ≤ Xj −Xi ≤ uij , where
lij anduij are the lower and upper bounds respectively on
the temporal distance between time-pointsXi andXj , i.e.
Xj −Xi ∈ [lij , uij ].

Consistency of an STN can be determined by enforcing
path consistency on the distance graph arising from the con-
straints (Dechter, Meiri, & Pearl 1991). Moreover, an STN,
together with theminimal networkof time-point domains,
can be specified by a complete directed graph, itsd-graph,
where edgei→ j is labelled by the shortest path lengthdij
betweenXi andXj in the distance graph. Any All-Pairs
Shortest Path algorithm (e.g. Floyd-Warshall) may be used
to compute the d-graph given the distance graph, and the
d-graph may be represented as a sparse or densedistance
matrix. We denote its computation byPC.

Like many other planners, PASSAT employs an STN to
represent the temporal aspects of plans, using an approach
called constraint-based interval planning (Frank & Jónsson
2004). The temporal extent of each task is modelled by a
time-point each for its start and end. At regular occasions in
the planning process, checking consistency of the temporal
constraints and propagation of temporal information is re-
quired. This is achieved by invokingPC on the plan’s STN.

Propagation The basic method forPC is to use an All-
Pairs Shortest Path algorithm on the distance matrixA; the
STN is consistent iff no diagonal element is negative (aii <
0 for somei corresponds to a cycle in the d-graph) (Dechter,
Meiri, & Pearl 1991). In the terminology of Bessière (1996),
this method isPC-1. Let the d-graph haveV vertices andE
edges. The complexity ofPC-1 is Θ(V 3) (Floyd-Warshall)
for a dense representation of the graph andΘ(V 2 log V +
V E) (Johnson’s algorithm) for a sparse representation. Note
that a HTN withn tasks has2n + 1 vertices in the d-graph
of its STN: two time-points for each task, plus one forTR.

For incremental recomputation when a constraint is added
or removed, a Single-Source Shortest Path algorithm can
be used (Cesta & Oddi 1996). The complexity isΘ(V E)
(Bellman-Ford) for a dense graph andΘ(E + V log V ) (Di-
jkstra) for a sparse graph.

Dechter (2003) and Bessière (1996) present other path

consistency algorithms that can be specialised for the STN
and used to implementPC computation. Of note isPC-2,
which avoids redundant computation by use of an auxiliary
data structure. For an STN withn time-points, ifPC-1 is
Θ(n3) time andΘ(1) space,PC-2 is Θ(n3) time butΘ(n3)
space, but exhibits better performance in practice provided
the space requirements do not dominate (Bessière 1996).
Dechter (2003) also presents an algorithmDPC that deter-
mines consistency but does not obtain the minimal network;
separately, Cesta & Oddi (1996) present an incremental al-
gorithm with the same function.

These algorithms are largely subsumed by4STP (Xu &
Choueiry 2003). This algorithm, which does find the mini-
mal network, outperformsPC-1, and is comparable to (dense
graphs) or outperforms DPC (sparse graphs). The algorithm
proposed in this paper invokes an STN solver repeatedly on
different STNs;4STP or any of the other methods described
for PC may be employed.

Sibling-Restricted Propagation
The idea behind sibling-restricted propagation is to exploit
the HTN structure, under a mild restriction on permitted
temporal constraints. Simple temporal constraints are per-
mitted only between parent tasks and their children, and be-
tween sibling tasks. For example, suppose taskA has been
decomposed into tasksB and E. Temporal constraints are
permitted between the start and end time-points ofA, B and
E. They are permitted betweenB and its children, but not
betweenA or E and the children ofB. Temporal constraints
are also prohibited betweenB and some other taskX.

This assumption on what STN constraints may exist be-
tween plan elements is inherent to HTN models. In par-
ticular, there is no way in standard HTN representations to
specify temporal constraints between tasks in different task
networks. Thus sibling-restricted propagation imposes no
additional limitations on the expressiveness of HTNs.

The STN that arises from an HTN with the sibling con-
straint restriction has marked structure properties. The STN
can be decomposed into a tree of smaller STNs; the shape
of this tree mirrors the shape of the hierarchical structure in
the plan. By traversing this tree, invokingPC at each ‘node’
STN, we can propagate temporal information on the plan
elements. The restriction on constraints guarantees we can
propagate on this tree and lose no information compared to
propagating with the whole global STN: it means that the
algorithmSR-PC presented below is sound and complete.

Expanding a taskτ into its children imposes some implied
HTN constraints. Namely, each childτi cannot start before
or finish after its parent; in terms of Allen’s interval algebra
(Allen 1983),τi during τ . STN constraints can represent
all of Allen’s relations. They can also represent the partial
ordering of children in a task network, which we denoteτi ≤
τj (of course, children need not be ordered). What cannot
be expressed are disjunctive constraints, such as task non-
overlap, i.e. “τi occurs before or afterτj”.

Algorithm Description
To explain theSR-PC algorithm we need some details on
the distance matrix representationA of a set of tasks. The
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Figure 1: Example HTN plan with two levels of expansion

domainof a time-point — its current known earliest possi-
ble start and latest possible finish — is given by its current
temporal distance fromTR. In the minimal network form
of the STN, the domain of every time-point is the broadest
possible, given the constraints, such that every value in the
domain participates in at least one feasible solution to the
STN (Dechter, Meiri, & Pearl 1991). Without loss of gener-
ality, we order our distance matrices withTR = X0 as the
first time-point, i.e. the first row and column. Then the do-
main of a time-pointXi is [−ai0, a0i]. The initial domain
of Xi is given by any constraints between it andTR; if there
are none, its default initial domain is(−∞,∞).

Secondly, the duration of a taskτ is given the bounds on
the distance between its start and end time-points (let them
beXi andXj), i.e. the interval given by the minimum and
maximum possible temporal distances between them.1 If
there is an explicit constraint betweenXi andXj , we call
the temporal distance it describes thelocal domainof τ . For
example, the constraint10 ≤ Xj−Xi ≤ 20, implies thatτ ’s
local domain is[10, 20]. The local domain is a bound onτ ’s
duration, possibly not tight if the STN is not minimal. Again
without loss of generality, we order our distance matrices to
pair the start and end time-points of each task, so that thekth

task is modelled by time-pointsX2k−1 andX2k. Then the
local domain of taskτk is [−a2k,2k−1, a2k−1,2k].

Bounds on the duration ofτ can be computed in a second
way: from the domains ofXi andXj , provided it is possible
to relate these time-points toTR, i.e. their domains are more
informative than(−∞,∞); we call this theglobal domain
of τ . If the plan has no temporal constraints that relateτ to
TR, and the user has not specified whenτ starts or ends (in
absolute time or relative toTR), then the global domain on
τ will be computed as(−∞,∞). However, ifXi andXj

are related toTR, then afterPC is complete the duration of
τ computed from their domains will coincide with the local
domain ofτ . In general, the duration ofτ is contained in the
intersection of the two sets of bounds, local and global.

Pseudocode forSR-PC is shown in Algorithm 1. Given
a task in a HTN plan, which we call theroot taskτ for the

1This, the standard semantics for task durations (Frank &
Jónsson 2004; Wilkins 1999), means that, given two of the task’s
start, duration and end, we can compute bounds for the third.

Algorithm 1 Sibling-Restricted Propagation
1: SR-PC (TR, root taskτ )
2: if τ is not a leaf nodethen
3: Create distance matrixA for τ
4: PerformPC onA, and update domains
5: L← children ofτ {list of pending child nodes}
6: repeat
7: for eachchild c ∈ L do
8: SR-PC (TR, c) {recurse}
9: Update local domain ofc in A

10: if any change toA occurredthen
11: Perform (incremental)PC onA and update domains
12: L← ∅
13: for eachchild c of τ do
14: if c’s global or local domain changed by line 11then
15: Add c toL {must reconsiderc}
16: until L = ∅
17: return

invocation, the algorithm updates the durations of the task
and all its descendents in the plan, by recursively following
the HTN expansions. Note the root task need not be the top-
level objective of the plan, i.e. the root of the whole HTN.

Providedτ is not a leaf in the plan hierarchy, i.e. is not a
primitive action or an unexpanded task, we create a distance
matrix A (line 3). The time-points in the matrix are those
for the temporal reference pointTR, and for the start and
end time-points of the task and its children. On this distance
matrix, which corresponds to a subproblemPτ of the global
STN of the whole plan, we performPC (line 4) and update
the domains of the time-points inPτ .

We then build a listL of pendingchildren, whose sub-
STN may need to be updated (line 5), and recurse to each
child in this list (line 8). Note the list of pending children
is initially set to all children of the root task. In making the
recursive step, the local domain of the child in its distance
matrix is the intersection of its local domain inA and its
global domain. This ensures that all inference on the child’s
duration to date is propagated.

Once the recursive steps are all complete, if the local or
global domain of any task inPτ were updated as a result, we
update the distance matrix and performPC again (line 11);
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this and subsequent invocations ofPC may be incremental.
Any child whose local domain changes as a result may have
an impact on its siblings. Thus we must recurse again to
all such children: these children are added to the new list
L (line 15) and the loop repeats. The parent–children cy-
cle terminates when parent and all childPC invocations are
quiescent (line 16). If at any point aPC invocation finds an
inconsistency,SR-PC halts and reports that the whole plan
is temporally infeasible.

Worked Example
Figure 1 depicts a small HTN plan. The top-level objec-
tive taskA has been decomposed (during the first expansion:
first level to the second) into tasksB andE. B has been de-
composed intoC andD; andE into F–H (with two further
expansions: second level to the third). The temporal bounds
on each task are shown on the three timelines. Each task has
start and end time-points. The constraints are the implied
HTN constraints (not shown), some pairwise task ordering
relations (depicted by<), and some quantitative STN con-
straints (depicted by the arrows).

The distance matrix of the global STN is shown in Fig-
ure 2; ‘- ’ denotes no explicit constraint between the two
time-points, i.e. an uninformativeXj − Xi ≤ ∞. Con-
straints prohibited by the sibling-restricted condition are
shown by ‘. ’; note the marked block structure of these en-
tries. Recall that time-point domains are found in the first
row and column; local domains of tasks are found in the off-
diagonal entries. Although the matrix as shown is sparse, it
will become dense after temporal propagation is complete.

On the STN this matrix represents,SR-PC considers sub-
problems withTRand the time-points of tasks as follows:

1: TR, A
2: TR, A, B, E
3: TR, B, C, D
4: C (leaf: just return)
5: D (leaf: just return)
6: TR, E, F, G, H
7: F (leaf: just return)
8: G (leaf: just return)
9: H (leaf: just return)
10: TR, A, B, E (no change)
11: TR, A (no change)

To illustrate the propagation steps ofSR-PC, consider its
invocation withA as the root, i.e. line 2 (TR, A, B, E )
above. After the initial call toPC, we recurse to each child:
first toB (the next three lines), then toE (the following four
lines). SinceA’s distance matrix was updated by changed
domains forB andE both, we callPC again (line 10 above,
line 11 in Algorithm 1). After this step, neither child ofA
has had its global or local domain updated; thus there are no
tasks inL for the next iteration (line 16 in Algorithm 1), and
soSR-PC terminates.

Comparison with Naive PC By naivePC on a plan, we
mean invokingPC on the distance matrix of the global STN:
in the example, the matrix of Figure 2. We will assume, for
n time-points, that an implementation ofPC has time com-
plexity Θ(n3) for full propagation, andΘ(n2) when incre-
mental, i.e. for (re)computation for one time-point. This is

TR A B C D E F G H
TR 0 0 - - - - - - - - - - - - - - -
A 0 0 180 25 - . . . . - - . . . . . .

- 0 0 - 0 . . . . - 0 . . . . . .
B - 0 - 0 80 0 - - - - - - - - - - -

- - - -20 0 - 0 15 0 - - - - - - - -
C - . . 0 - 0 - - - . . . . . . . .

- . . - - -5 0 - - . . . . . . . .
D - . . 0 15 - 0 0 10 . . . . . . . .

- . . - - - - -5 0 . . . . . . . .
E - 0 - - 0 . . . . 0 - 0 - - - - -

- - - - - . . . . 0 0 - 0 - 0 - 0
F - . . - - . . . . 0 - 0 5 - - - -

- . . - - . . . . - - 0 0 - - 15 -
G - . . - - . . . . 0 - - 0 0 - - -

- . . - - . . . . - - - - 0 0 - -
H - . . - - . . . . 0 - - - - - 0 20

- . . - - . . . . - - - - - - -5 0

Figure 2: Complete distance matrix for the example HTN

fitting for a dense representation of distance matrices, as cur-
rently in PASSAT. Recall that each task in the plan has two
time-points; theTR is an additional one time-point.

By counting operations, naivePC on Figure 1 has time
4913 (plus one distance matrix setup) and space 289.SR-
PC has time 1758 (plus four matrix setups and two updates)
and space 228 (plus stack space when navigating the tree
of STNs). Thus, in this simple example, for approximately
equal space,SR-PC reduces the time complexity by 67%.

Algorithm Properties
Because children can be added to the pending list (line 15)
on every iteration, it is not obvious that the loop in the Al-
gorithm 1 terminates. The proof comes from considering
the circumstances when a local domain of a child task can
be updated. We sketch the principle ideas, beginning with a
necessary lemma.

Lemma 1. Let τ be a task with no grandchildren, andA be
its distance matrix formed by Algorithm 1 afterPC has been
initially applied (i.e. on first entry to the loop). Suppose the
local domain ofτ in A, dτ , is tightened, and all other local
domains held constant. When consistency is restored with
PC, a further tightening ofdτ cannot occur.

Proof. Suppose initiallydτ = [l, u]. SinceA is consistent,
for every valuex ∈ [l, u] there exists a supporting tuple of
values for the other time-points inA. Now let dτ be tight-
ened tod′τ = [l′, u′] ⊆ [l, u]. Restore consistency ofA
with PC and suppose, for a contradiction, thatPC narrows
d′τ further. This means there formerly existed an element
x′ ∈ [l′, u′], now removed because it had no support. But
x′ ∈ [l, u], contradicting the initial consistency ofdτ .

The main result applies this lemma in structural induction
over the tree of STNs considered bySR-PC. The base case
is trivial, since Algorithm 1 returns immediately, with no
changes to any domain, when invoked on a leaf node.

Theorem 2. Let Π be a HTN plan withP its underlying
(global) STN. Letτ0 be the top-level objective task ofΠ.
Algorithm 1 invoked onτ0 terminates.
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Proof. Let λ(Π) be the number of iterations through the
loop in lines 6–16. We proceed by induction over the tree
of STNs thatSR-PC transverses. Consider a taskτ with
childrenτ1, . . . τf . LetA be the distance matrix created for
τ . Observe that if a child has no children itself, thenPC and
soSR-PC invoked on the child’s distance matrix affects no
change (since all of the child’s distance matrix is contained
in A, andPC has been invoked onA in line 4). In particular,
this holds whenτ has no grandchildren.

On the first iteration through the loop, any of the local
domains ofτ or one or moreτi may be tightened by the
consistency restoration ofA in line 11. As a result, any of
the children may potentially be re-added toL.

On the second iteration through the loop,SR-PC is in-
voked on every child inL. Considerτi ∈ L. The only
change toτi’s distance matrixAi as formed bySR-PC on
the recursive call, compared toAi at theendof the previous
call (i.e. during iteration 1), is that the local domaindτi of
τi may be narrowed. But by the inductive hypothesis and
Lemma 1, thenSR-PC affects no change todτi . Since this
is true for every childτi ∈ L, there are no changes to update
toA when all the recursive calls have completed. Hence no
children ofτ are re-added toL on the second iteration, and
sinceL = ∅ in line 16, the algorithm thus terminates with
λ(Π) ≤ 2.

Theorem 2 tells us that, in the STN tree, we haveλ = 0
for leaf nodes,1 for nodes without grandchildren, and at
most2 otherwise.

With termination established, we can prove that the in-
ference obtained bySR-PC is exactly the same asPC, i.e.
Algorithm 1 is sound and complete.

Theorem 3. Algorithm 1 invoked onτ0 reports inconsis-
tency iffP is inconsistent; otherwise it computes identical
minimal domains asPC onP .

Proof. Soundness is straight-forward, sinceSR-PC invokes
PC on a set of submatrices ofAτ0 , whereAτ0 is the dis-
tance matrix ofτ0. Any inference it obtains is a subset of
the inference produced byPC onAτ0 .

Completeness is shown by examining the submatrices
considered. Again, we use induction on the tree of sub-
STNs. The sibling-restriction condition on temporal con-
straints means thatAτ0 contains (non-trivial) entries only for
constraints between a parent taskτ and its childrenτi, and
between the children. All such constraints are considered
by SR-PC. Moreover, on each pass through the loop, Algo-
rithm 1 updatesAτ with any changes that can occur byPC
from such constraints. Since the loop terminates only when
these constraints imply no further change (or are found in-
consistent), the domains resulting must be the same as that
computed byPC on the distance matrixAτ0 .

Theoretical Complexity
For an HTN with approximately uniform branching from
the top-level objective, we characterise an initial theoreti-
cal measure of expected time and space complexity ofSR-
PC. While recognising that many HTN plans are not uni-
form in this way, suppose a mean branching factor (i.e. num-

ber of children for each expanded task)f , and mean depth
(i.e. number of expansions from root to primitive action)d.
For example, Figure 1 hasf = 7/3 andd = 2. Suppose
a likelihoodp that some child of a task updates a domain
(lines 9 and 11 of Algorithm 1).

Our complexity analysis depends onλ(Π), the number of
iterations through the loop in lines 6–16. Theorem 2 proved
λ ≤ 2. The mean value ofλ for a plan depends onp and
on the entries of the distance matrices, i.e. on the temporal
constraints. In practice, we findλ is often closer to1 than
2. We are working to obtain a more precise characterisa-
tion by considering commonly-occurring structures of STN
constraints.

At each level of the tree, if the current node is not a leaf,
SR-PC creates a distance matrix with1+2(1+f) = h time-
points. It runsPC, then recurses on each child and possibly
runsPC incrementally, repeating the last two stepsλ times.
Let SRtime(d) be the average time complexity ofSR-PC with
depthd below the current node. Then we have:

SRtime(d) = PCtime(h)+

λ
(
pfPCincr

time(h, f) + fSRtime(d− 1)
)

= (1 + λf)
(
PCtime(h) + λpfPCincr

time(h, f)
)

+

(λf)2SRtime(d− 2)
= · · ·

=
(λf)d − 1
λf − 1

(PCtime(h) + λpfPCincr
time(h, f)) + 0

since SRtime(0) = 0 at a leaf node. PCtime(k) denotes the
complexity ofPC on a matrix of sizek, and PCincr

time(k, j) is
its incremental complexity ifj time-points are updated.

The total expected space, if the transversal of the tree
is implemented depth-first, is PCspace(dh). In comparison,
naivePC creates a single distance matrix with1+2fd time-
points and runsPC on it.

Now recall that for dense matrices, PCspace(k) = Θ(k2),
PCtime(k) = Θ(k3), and PCincr

time(k, j) = jΘ(k2). Expand-
ing and dropping lower order terms gives expected time for

SR-PC of orderΘ(2λpf4 (λf)d−1
λf−1 ), and for naivePC time

Θ(8(df)3). For both the expected space isΘ(4(df)2).
Now sinceλ ≤ 2 andp ≤ 1, an upper bound on the time

ratio of naivePC to SR-PC comes down tod3 to f(2f)d
when f is large. Being exponential compared to polyno-
mial, SR-PC dominates asd increases. In practice, however,
we findλ andf are small enough thatd is never sufficiently
large in actual plans forSR-PC to dominate. In this region
d ∈ [1, d∗] of practical interest, this theoretical comparison,
albeit crude, in fact suggestsSR-PC will have increasing ad-
vantage untild nearsd∗.

Experimental Results
We have implementedSR-PC in the PASSAT system, with
encouraging results. For an existing, real-world Special
Operations Forces (SOF) domain,2 Table 1 comparesSR-

2The results are for a number of scenarios, including the
hostage rescue scenario described in Myerset al. (2002).
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plan tasks, d f SR-PC naivePC cpu ratio
vars time space cpu time space cpu

airfield-1 40, 27 3.15 2.62 2200 169 0.01 531000 6560 0.49 49
airfield-2 108, 27 8.66 3.19 80600 6500 0.4 10200000 47100 5.21 13.02

recon-1 61, 15 3.73 1.96 31900 2980 0.24 1860000 15100 1.08 4.50
hostage-1 48, 16 3.66 3.91 23700 1910 0.07 913000 9400 0.62 8.86
hostage-2 59, 27 3.23 4.58 36900 2690 0.1 1690000 14200 1.092 10.92
hostage-3 169, 82 4.58 3.67 90800 6890 0.331 42500000 122000 21.73 65.65

Table 1:SR-PC and naivePC on SOF domain plans

PC and naivePC on a selection of complete and partial
plans. Unless stated, the STN solver used forPC wasPC-
1 (Bessìere 1996). The experiments were conducted on a
1.6GHz Pentium M with 512MB of memory, using Allegro
Lisp 6.2.

The columns of Table 1 display, respectively, the name of
the plan, the number of tasks and non-ground variables, the
mean depthd and branching factorf of the HTN3; and for
each method, measures of the number of operations for time
and space (as in the earlier example), and the actual CPU
runtime (in seconds). Note that all three measures are em-
pirical: the time and space are counted operations during the
experimental runs. The final column shows the ratio of CPU
runtimes; greater than1 is favourable toSR-PC. Overall, on
these real plans,SR-PC outperformsPC by approximately
an order of magnitude.

Figures 3, 4 and 5 present a comparison ofSR-PC and
naivePC on randomly generated plans from an abstract do-
main. The random generator accepts the parameters: mini-
mum and maximum bounds on the depthd; the meanf and
the maximum of a geometric distribution for the number of
children of each node; and bounds on the number of tempo-
ral constraints in each expansion. The temporal constraints
are chosen uniformly from a predefined set. The top-level
objective was co-identified withTR, i.e.Xτ0 − TR= 0.

Figure 3 shows counted operations for time and space,
and the empirical runtime, as HTN depthd increases. The
ratios between the two methods plotted are forf = 1.4;
they axis is shown with a log-scale. Note how the observed
runtime ratio (denoted CPU) closely correlates with the time
and space measures. Even for the plans of greatest depth,
SR-PC performs propagation within user reaction time. For
instance, whend = 16, SR-PC requires 0.21s compared to
73s for naivePC. Indeed, the runtime forSR-PC increases
approximately linearly withd, while PC exhibits exponen-
tial growth. This behaviour is characteristic across other val-
ues off asd varies.

Figure 4 shows the effect of varying the mean branching
factor f . The ratios plotted are ford = 5; the y axis is
a log-scale. Again we observe that the CPU runtime ratio
lies between the time and space ratios. In contrast with the
depth, as the branching factor increases, the advantage of
SR-PC over PC begins to display a possibility of leveling

3Note that the complexity analysis of the last section considered
an HTN tree with all leaves at depthd, rather than a general tree
with mean depthd.
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Figure 3: Mean time, space, and runtime ratios vs depth

off. Further experiments are needed to observe the trend at
greater depths.

Figure 5 shows the impact of the temporal consistency
of the plan. The ratios are plotted as the probability that
the global STN is consistent varies from0 to 1. Note that
no phase transition is observed.SR-PC has the greatest ad-
vantage when the probability of consistency is lower; for
inconsistent problems,SR-PC is able to diagnose the incon-
sistency earlier. We conjecture this is because the cause of
the inconsistency often arises from local interactions within
a task network.

Discussion PASSAT is designed to assist the user in a
mixed-initiative fashion. In such a user-interactive context,
responsiveness of the system is crucial for effective plan au-
thoring, even when developing significant plans with many
temporal constraints. Thus, although the difference in ab-
solute runtime for the SOF domains are in the order of sec-
onds, temporal propagation withSR-PC makes the system
noticeably and crucially more responsive.

The theoretical complexity of naivePC is cubic in the
number of time-points. In practice as the plan size grows,
our results suggest that the space required comes to dom-
inate; this explains whyPC exhibits exponential runtime
growth in Figure 3. Our preliminary characterisation of the
complexity ofSR-PC in the last section indicates, in terms
of f , a complexity ofΘ(f4fd) versusΘ(f3) for PC. As
Figure 4 suggests, this implies that the deeper the HTN tree
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Figure 5: Time, space, and runtime ratios vs consistency

compared to its width, the greater the advantage (or the
lesser the disadvantage, at least) ofSR-PC if other factors
are held constant. However, the influence of other factors
is relevant, as shown by Table 1; consistency of the global
STN is one of these.

By its operation,SR-PC automatically decomposes the
global STN into sub-STNs based on the HTN structure.
This is similar to decomposition of STN via its articula-
tion points into biconnected components, which is known
to be effective in speeding up propagation (Dechter, Meiri,
& Pearl 1991). In our case, however, the global STN is a
single biconnected component due to the implied HTN con-
straints. ThusSR-PC also propagates information between
sub-STNs, via the parent task’s distance matrix.

The STN solver is a black-box inSR-PC (in fact, within
SR-PC, multiple methods forPC can be used on different
occasions); the specific STN solverS parameterisesSR-PC
to the algorithm instanceSR-S. BesidesPC-1, we imple-
mented the STN solverPC-2 in PASSAT, and comparedPC-
1, PC-2, SR-PC-1 andSR-PC-2. We found that building the
queue of time-point triples inPC-2 quickly dominates the
runtime, even for modest size plans. At least in our LISP im-

plementation,PC-1 is much more practical thanPC-2, and
SR-PC-1 easily outperformsSR-PC-2.

As future work, the sophistication of4STP can be lever-
aged inSR-4STP (similar to how it can be leveraged as a
black-box in a TCSP solver (Xu & Choueiry 2003)). For
naivePC,4STP would be expected to outperformPC-1 be-
cause the initial distance matrices are relatively sparse —
compare Figure 2. On the other hand,4STP is expected to
bring a smaller benefit toSR-PC because the sub-STNs are
smaller and more dense.

Conclusion and Future Work

We have presented an algorithm to efficiently perform tem-
poral propagation on the Simple Temporal Network under-
lying a temporal hierarchical plan. Sibling-restricted prop-
agation exploits the restricted constraints due to the HTN
structure, decomposing the STN into a tree of sub-STNs.
The SR-PC algorithm has been implemented in the PAS-
SAT planning system, and empirical results demonstrate the
effectiveness of the algorithm. Ongoing work is to provide a
more precise theoretical characterisation of the average- and
worst-case complexity.

While the results in PASSAT forSR-PC are favourable
over naivePC, we have several improvements to make to
the implementation. As noted, the present implementation
usesPC-1 as the STN solver. Despite the small average size
of the STNs solved bySR-PC, better performance is likely
with a stronger solver, such as4STP. Second, there may
be value in employing a sparse array representation. Third,
coincidence of time-points is not actively exploited.

The reasoning problem addressed in this paper is deter-
mining the consistency and computing the minimal domains
of time-points, for an STN underlying a plan. In both HTN
and non-HTN planning, the plan is built incrementally; thus
the associated STN is also built incrementally, and inference
on it should exploit incremental constraint addition (and re-
moval on backtracking). Incremental versions of classical
STNs algorithms are widely used (Cesta & Oddi 1996). An
important next step for us is therefore to extendSR-PC to
an incremental version of the algorithm. In HTN planning,
constraints are added (removed) when a task network is ex-
panded (expansion backtracked). Besides making use of in-
cremental STN solver, incrementalSR-PC thus involves de-
termining the highest task in the HTN tree that has changed,
and considering the STN tree rooted at this task rather than
at the top-level objective.

At present we are also implementing and experimenting
with several orthogonal ideas to accelerate temporal propa-
gation in an HTN planner. UnlikeSR-PC, these ideas forgo
completeness of the inference; in common with the method
described here, they seek to exploit the HTN plan structure
to do so in a principled way.
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