
Monterey, California
I C A P S 2 0 0 5

Workshop on the Role of

Ontologies in

Planning and Scheduling

Juan Fernández Olivares

Eva Onaindía

University of Granada, SPAIN

Polytechnical University of Valencia, SPAIN

IC
A

P
S

0
5

WS2

Workshop on the Role of

Ontologies in

Planning and Scheduling

Juan Fernández Olivares

Eva Onaindía

University of Granada, SPAIN

Polytechnical University of Valencia, SPAIN

ICAPS 2005
Monterey, California, USA
June 6-10, 2005

CONFERENCE CO-CHAIRS:
Susanne Biundo

Karen Myers

Kanna Rajan

University of Ulm, GERMANY

SRI International, USA

NASA Ames Research Center, USA

Cover design: L.Castillo@decsai.ugr.es

Workshop on the Role of Ontologies in
Planning and Scheduling

Table of contents
Preface 3

Importing Ontological Information into Planning Domain Models 5
Lee McCluskey and Stephen Cresswell

Planning from rich ontologies through translation between represen-
tations

13

Fiona McNeill, Alan Bundy and Chris Walton

Planning and the Process Specification Language 22
Michael Gruninger and Joseph B. Kopena

A Portable process language 30
Peter E. Clark, David Morley, Vinay K. Chaudhri and Karen L. Myers

Semantic Support for Visualisation in Collaborative AI Planning 37
Natasha Queiroz Lino, Austin Tate and Yun-Heh (Jessica) Chen-Burg

The modeling language of GSOC’s mission planning team 44
Christoph Lenzen and Falk Mrowka

Using ontologies for planning tourist visits 52
Juan David Arias, Laura Sebastiá and Daniel Borrajo

http://icaps05.icaps-conference.org/

Workshop on the Role of Ontologies in
Planning and Scheduling

Preface

Ontologies are becoming increasingly important in several AI fields (such as know-
ledge management and integration, cooperative problem solving, knowledge acquisition
and knowledge-based systems, e-commerce and the Semantic Web) and, at present,
there is also an increasing interest about their use in Planning and Scheduling (P&S)
systems.

In the field of P&S ontologies allow , on the one hand, knowledge exchange bet-
ween intelligent processes (performed both by humans and other intelligent systems) in
real world applications. On the other hand they allow to describe more complex domains
and problems, since they are based on very rich representation languages (for example,
semantic web languages as RDF, OWL,OWL-S). These languages are more expressive
than those presently used in P&S, since they use the Open World Assumption rather
than the planner-friendly Closer World Assumption. However , they are really “static” lan-
guages and do not include (generally) knowledge about states and state change, what
prevents their “direct” application in current P&S systems. In any case, the way the use
of ontologies and such languages impact the field of AI P&S needs to be investigated.

In summary, the integration between ontologies and P&S techniques is demanding
more attention both from theorists and practitioners, and there are many different ap-
proaches in the literature on this issue. Therefore, one of the main topics of this works-
hop will be the study of the benefits that an ontology-based knowledge representation
could bring into current P&S technologies.

The goal of the workshop consists in trying to understand and discuss different ways
of integration between ontologies techniques and intelligent planning. This can be seen
as a different, general approach to bridge the gap that currently exists between the
very efficient P&S technology and its application to real world. Papers accepted in this
workshop present theoretical / practical work and report experiences with applications
on the following topics: definition of planning ontologies that overcome drawbacks de-
tected on the real application of standard planning languages (such as PDDL), use of
ontologies as the basis for knowledge exchange between different components of in-
telligent systems, where planning is a core technology, planning applications that use
ontology concepts for their development and deriving planning domain models from
existing ontological knowledge

Organizers

Eva Onaindı́a, Technical University of Valencia (Spain)

Juan Fdez-Olivares, University of Granada (Spain)

Programme Committee

Jose Luis Ambite, University of Southern California (USA)

Jim Blythe, University of Southern California (USA)

Luis Castillo, University of Granada (Spain)

Lee McCluskey, University of Huddersfield (U.K.)

Christoph Lenzen, German Space Operation Center (Germany)

Falk Mrowka, German Space Operation Center (Germany)

Angelo Oddi, ISTC-CNR (Italy)

Bernd Schattenberg, University of Ulm (Germany)

Evren Sirin, University of Maryland (USA)

Laura Sebastiá, Technical University of Valencia (Spain)

Paolo Traverso, ITC/IRST (Italy)

Ioannis Vlahavas, Aristotle University of Thessaloniki (Greece)

Importing Ontological Inf ormation into Planning Domain Models

T. L. McCluskey and S.N.Cresswell
Schoolof ComputingandEngineering

TheUniversityof Huddersfield,HuddersfieldHD1 3DH, UK
lee,s.n.cresswell@hud.ac.uk

Abstract

We investigatean approachto alleviating the problemsof
knowledge engineeringfor AI Planningby importing ob-
ject structuresandobjectbehavioursfrom sharedknowledge
structures.In thispaperwedescribeourfirst stepsatdevising
a methodto import knowledgefrom anapplicationontology
into a form usablewithin aplanningdomainmodel.Weeval-
uateanimplementedtool calledOWL2OCL whichassistsin
the translationof ontologicalinformationinto a form usable
by aplanner.

Intr oduction
In the field of KnowledgeAcquisition muchattentionhas
beengiven to the idea of re-usingand sharingbodiesof
bothgeneralandapplication-specificknowledgein theform
of ontologies. The benefitsof this within fields such as
eScienceandKnowledgeManagementhave led to therapid
developmentof ontologiesin both scienceandcommerce.
Ontologiesare (formal) vocabularies that relate terms to-
getherin the form of a precisespecification. Thesecan
rangefrom UML diagrams,to concepthierarchies,through
to axiomsin DescriptionLogic (DL). Themajority of pub-
lished,formal, ontologiesappearto berepresentedin a DL
variant,althoughsomearerepresentedin First OrderLogic
usinga standardsyntax. Thereareseveral tools available
for building ontologiessuchas Protege-2000(Gennariet
al. 2003). Superficiallythesearesimilar to GUIs suchas
GIPO(McCluskey, Liu, & Simpson2003)whichareusedto
acquireinformationaboutobjectsin AI Planning.However,
thedominantfocusof ontologicalengineeringis to capture
staticknowledgewhereasplanningis moreconcernedwith
dynamicknowledge.

Our work in KnowledgeEngineeringin AI Planningis
aimedatalleviating thetaskof deploying a planningengine
in a particularapplication,and making planning technol-
ogy in generalmoreaccessible.Experiencein engineering
planningapplicationsindicatea rangeof problemareasre-
latedto thedomainmodellingphase.Theinitial choicesof
how to model the applicationin termsof relationalpredi-
cates,classesandstatesis a major task.Theproblemof re-
inventingmodelsfor every applicationis acute:giventhere
aremany existing domainmodels,how canonere-usepre-
viouslycapturedplanningdomainknowledge?

In the areaof AI Planning, there have beenrapid de-
velopmentof generalplanningengineswhich input PDDL
domainmodels. The problemwith theseplannersis that
for eachapplicationthe userhasto assemblean adequate
knowledgebasein the form peculiarto this type of plan-
ner. This requiresa knowledgeengineeringtaskof trans-
lating and acquiringknowledgein an applicationinto the
input form of PDDL. Onesolutionthatwe areexploring is
to usean existing ontologyif a suitableoneexists. Rather
than a knowledgeengineeror expert crafting the domain
model, they identify the relevant ontologiesto be usedin
theapplication,anda translatorassemblestheknowledgein
a planner-friendly representation.In otherwords,thetrans-
latorwould inducedomainmodelstructureanddynamicsin
anoperationalform suitablefor input to a planningengine.

We speculatethat the future of planning techniquesis
boundup with the semanticweb: progressin the useof
ontologicalinformationcould alsoenhancethe ability of a
web agentto automaticallyassembleadequateknowledge
in orderto solve its own planningproblems.Givenanappli-
cationontologyanda high level goaldescription,anagent
will have to generatea planto achieve this goal. In current
technologicalterms,this amountsto generatinga planning
domainmodel, acquiring,tuning and executinga suitable
planningengine.

In thispaperwedeviseaprocessto importontologiesin a
form thatthey canbeusedasthebasisof aplanningdomain
model. We evaluateits applicationto both contrived and
previouslypublishedontologies,andsummarisethelessons
learnedfrom theexperiments.

The Input Language

Developmentsin the www consortiumhave led to the de-
velopmentof a standardweb ontology languagecalled
OWL (Patel-Schneider, Hayes,& Horrocks2004). There
arethreeversionsof OWL: Lite, DL andFull. For our input
languagewe have chosenthe abstractsyntaxof OWL DL,
whichcanbeoutputfrom Protege-2000.As is commonwith
ontologiesin descriptionlogic, the presentationconsistsof
a setof restrictedfirst orderaxioms,with variablesimplicit.
Thishasanadvantageovergraphicalinput- afteraxiomsare
changed,thebesthierarchycanbeautomaticallyderivedus-
ing a subsumptionreasoningtool. This avoids theneedfor

Workshop on the Role of Ontologies in Planning and Scheduling 5

theuserto try to engineerandre-engineertheapplicationto
fit into neathierarchies.

We input domain modelsusing Protege-2000with the
OWL plug-in, DL reasonerand graphicscability. This
involves formulating the domain in terms of classesand
subclassesof objects,propertiesbetweenclassesandother
classes,propertyrestrictions,propertydomainsandranges,
andsoon. Classhierarchiescanbeautomaticallygenerated
anddisplayedfor validation,andclassdefinitionscanbeau-
tomaticallycheckedfor consistency.

Examplesof OWL ontologiesareshown in AppendixA
and B. As a descriptionlogic, OWL is designedfor cap-
turing theclasshierarchyof objects(classesarelike unary
predicatesin FOL). Statementsin OWL are about con-
cepts/classes,whicharedefinedextensionallyvia theobjects
they contain.Only binarypredicatesareallowed,andthese
areusedto relateclasseswith otherclassesandwith data
typevalues.

The TargetLanguage
According to the OWL literature(Patel-Schneider, Hayes,
& Horrocks2004), a classdefinesa group of individuals
thatbelongtogetherbecausethey sharesomeproperties.We
specialisethisin AI planning- objectsshouldsharethesame
classif they sharethesamedynamicbehaviour, i.e. they are
relatedto eachotherin amoreconcreteway:
� Thesetof propertiesandrelationswhich they canhave is

common.
� They shareacommonsetof states(wherea stateis acol-

lectionof properties/relationsthathold to betrue).
� They sharethe samestate-changebehaviour, that is the

sametransitionsbetweenstates.

The definition above is fundamentalto an
�����

(Liu &
McCluskey 2000)domainmodel,andwe will use

�����
as

thetargetlanguage.In
�����

, objectsaregroupedinto ���
	
���
if they sharethe samebehaviour, andeachpart of a world
statethatdescribesoneparticularobjectis calledasubstate.
A characterisationof thepossiblesubstatesof anobjectin a
sort is calleda substateclassdescription.

�����
is thebase

languageof the GIPO planningenvironment(McCluskey,
Liu, & Simpson2003). This containsa wide rangeof ac-
quisitionandvalidationtoolsfor manipulatingplanningdo-
mainmodels.Oncegenerated,the translatedmodelcanbe
fed into GIPOwhereit canberefined,andoutputasPDDL
if necessary(seefigure1).

Ontology Translation: OWL2OCL
Our taskis to import a pre-existingontologyin orderto use
it asthebasisof aplanningdomainmodelasshown in figure
1. This is similar to thegeneralproblemof ”Contextualis-
ing Ontologies”asdiscussedby Bouquetet al (Bouquetet
al. 2004):changingthe’global’ meaningof anontologyto
a local, subjective view of a domain. Although the object-
structureof OWL and

�����
aresuperficiallylinked, there

aremany problemsto be overcome. Two particularprob-
lemsareasfollows:

– OWL ontologiesare composedunderthe assumption
of open-world reasoning,whereasplanningdomainmodels
tendto assumeclosed-world reasoning.As a simpleexam-
ple, two individuals in an OWL modelarenot necessarily
distinctunlessthey canbeprovedso. In theplanningworld,
weassumethey aredistinctunlessit canbeprovedthey are
thesame.

– thereis noguarenteethatanimportedontologyis going
to be completeor adequatefor the planningtask. In par-
ticular, ontologieswritten in descriptionlogic aretypically
static- they includenoexplicit informationonthedynamics
of theworld.

Our initial solution is thereforeto producea heuristic
transformationfrom anontologylanguage(OWL) to aplan-
ningdomainmodellinglanguage(OCL) andlet theuserfur-
thervalidateandrefinethemodelusingtheGIPOenviron-
ment.As astartingpoint, this transformationshouldbeable
to re-createfaithfully the static information of a planning
domainmodelwhich hasbeenhand-translatedinto an on-
tology. Theexampleontologiesin AppendixA andB below
areexamplesof this asthey areencodingsof familiar plan-
ningworlds.

Our overall methodin this initial work assumesthat a
planningdomainmodelis to begeneratedwhereall objects
belongto auniquedistinctsort.Wewill mapthe(notneces-
sarilydisjoint)descriptionlogic classesof theontologyinto
a setof disjoint classeswhich will beprimitive sortsin the
planningdomain. Eachclasswill have its setof attributes
generated.

The Translation Process
The translationandsubsequentdomainacquisitionprocess
is in threestages.OWL2OCL is aimedat implementingthe
first two of thesesteps:
� Step1: Build up a disjoint setof OCL objectsortssuch

that for eachsort, if an objectbelongsto it thenthe set
of propertiesit canhave arethesameasany otherobject
in that sort. Build up a setof predicatesdescribingand
relatingthesorts.

� Step2: Inducethe individual statedescriptionsthat ob-
jectsof eachsortcaninhabit.

� Step3: Build up a setof operatorschemaandrefinethe
model,using GIPO. Oneeffective way to completethe
modelwith operatorschemawouldbeusedto induceop-
eratordescriptionsfrom training sequencesasexplained
in (McCluskey, Richardson,& Simpson2002).

Aswemayhaveacomplex ontology,how dowechooseat
whatlevel to grouptheOWL objectsinto OCL sorts?If we
chooseonly the leaf classesof theontology, we mayover-
discriminate.Instead,wechooseto basethegroupingonthe
domainandrangedeclarationsof properties.Objectswhich
maytake thesamesetof propertiesaregroupedin thesame
sort. For example,if we have a propertywhich is declared
as:

ObjectProperty(
drives domain(person) range(vehicle))

6 Workshop on the Role of Ontologies in Planning and Scheduling

Protege-2000 GIPO

WWW Planning
Engine

PDDL

USER

OWL2OCL

Racer

OWL Abstract
OWL OCL

Figure1: OWL2OCL in context

then we assumethat this relation can exist betweenany
person andany vehicle , sotheseclasseswill form use-
ful groupingsfor thepurposeof collectingsubstates.

In moredetail,Step1 andStep2 arerefinedasfollows:

1. Collect theset
��

of OWL classeswhich form eitherthe
domainor rangefor someproperty.

2. Collect the set
��

of intersectionsof the classesin
��

whichareinhabitedby at leastoneindividual. In thisway
we createdisjoint classesof objectseachof which can
have propertiesfrom a well-definedset- call this set ���
for each

�����
class� .

3. For eachclassinducethesubstatesclassdescription,that
is a characterisationof eachof thestatesthatanobjectof
a classmayinhabit,asfollows. For eachclass��� ��

:

(a) Collect the ’value’ information for each individual
(property) from

�
. That is collect all the instances

of propertiesin � � . We assumethis an instanceof a
uniquesubstate(that is all the information- the truth
valuesof properties- is given).

(b) For eachobject,generaliseits setof propertyvaluesto
createa new classdescription.Form a setof new class
descriptions(withoutduplicateequivalentclasses).

Whatwill beformedis apartialdomainmodelwhichcon-
tainsstaticandsome(heuristic)dynamicknowledge.

WorkedExamples
To give anideaof thetransformation,we show two worked
examples,usingontologiesthathave beenwritten in OWL
to reflecttheoriginaldomainmodel.

(i) AppendixA: the Rocket World. The input OWL ab-
stractsyntaxis shown togetherwith our auto-generateddo-
main model. For clarity, the namespaceinformation has
beenremoved.

Step1: by examinationof thedomainsandrangesof the
declaredproperties,OWL2OCL establishesthatthefollow-
ing classesarerelevant: � Cargo,Location,Rocket, Level � .

All of theclassesareoccupiedwith individualsandno indi-
vidualoccupiesmorethanoneof theclasses.Hencetheset
of occupiedcombinationsof classesis identical.

Step2: The substatesoccupiedwithin eachsort are in-
duced. In figure 2, eachcargo object has either an ’at’
or ’in’ property, leading OWL2OCL to induce the sub-
statesof theclassCargoto be ������� � ��	������ � �����������
 "!�!#� and
�$�% &� � ��	������('����*),+���!-� .

Object Property Value
C1 at Paris
C2 at London
C3 in R1
C4 at London

Figure2: ObjectPropertiesin theOWL RocketWorld

(ii) Appendix B: the Dockworkers World, taken from
(Ghallab, Nau, & Traverso 2004). As with the Rocket
World, this world was input into the GUI of Protege-2000
usingtheoriginalplanningworld asa basis.The

�����
out-

put in AppendixB shows thatOWL2OCL hassucceededin
translatingtheobjectandpropertyinformationinto themore
compact

�����
formalism. Somedynamic,substatedefini-

tions have beeninducedsuccessfully- for exampleCon-
tainersare in Pilesandmay or may not be at the top, and
Piles, Cranesand Robotshave dynamiclocation informa-
tion. However, thequality andquantityof this is dependent
on theamountandspreadof ’value’ informationaboutindi-
vidualsin theontology.

In the OWL representation,unary predicateswhich are
staticarenaturallyrepresentatedasdefinedclasses.As we
processthis information, it is usedin creatingthe sortsin
OCL. We assumethatdynamictruth-valueddatarelatingto
individualswill berepresentedin theontologyusingboolean
dataproperties.For example,in theDockworkersdomain,
we recordwhethera location is occupied,and this is dy-
namicdatawhichcanbechangedby a planoperator.

DatatypeProperty(a:occupied Functional

Workshop on the Role of Ontologies in Planning and Scheduling 7

domain(a:Location)
range(xsd:boolean))

In the OCL representation, the boolean
data properties are translated into a pair of
unary predicates occupied(Location) and
not_occupied(Location) .

Experimentswith generallyavailable
ontologies

OWL2OCL can translateinformation from any ontology
output in OWL abstractform from Protege-2000. The
discussionbelow draws from the use of Horrocks’ ’peo-
ple+pets’(’mad cows’) ontologyfrom Manchester, not be-
causeit forms the basisof any sensibleplanningdomain,
but becauseit at leastincludesa reasonablylargeontology
whichusesmany of thefeaturesof OWL andincludessome
’value’ information. A generalresultof the experimentsis
thatOWL2OCLwill only work well if theontologycontains
informationaboutthe individualsin the domain(ABox in-
formation),andpreferablyhasthe individualsspreadabout
theirpossiblestates.

Useof Description Logic Reasoners
In somecasesit is possibleto infer a morerefinedclassi-
fication, e.g. by looking at domainand rangerestrictions
for properties. An example is in the people+petsontol-
ogy: theconcept’dog’ hasnodeclaredsuperclass,but a de-
scriptionlogic reasonercaninfer that ’dog’ is a subclassof
’animal’. We have assumedthat all implicit subclassrela-
tionshipsthat canbe foundby a descriptionlogic reasoner
have beenmadeexplicit, and we have usedthe RACER
DL reasoner(Haarslev & Moeller 2001) via Prot́eǵe2000
(Knublauchetal. 2004)for thispurpose(seefigure1).

Inverseroles
OWL allows for rolesto have a declaredinverseform, e.g.
has_pet is theinverseof is_pet_of . Thereis a choice
in theautomatichandlingof inverserolesin thetranslation.
A usefulfactor in makingthis choiceis whetherthe prop-
erty is declaredasfunctionalin oneof its forms. Thefunc-
tionalform is moreconvenientto handle,aswearethenable
to constrainthenumberof occurrencesof thepropertyin a
substateto 0 or 1. For exampletheis_pet_of propertyis
functional(a pethasa singleowner, but anownercanhave
many pets),soit is preferableto associatethepropertywith
thepetclassratherthantheowner.

Property hierarchies
OWL allows for the declarationof hierarchiesof prop-
erties. For example, has_father is a subpropertyof
has_parent . We do not handlesuchpropertiesin the
conversion,aswecannotexpectaplannertodoinferenceus-
ing therole hierarchy. In principle,we couldrepresentsuch
casesby completingthedescriptionsby addingall implied
super-propertiesfor eachinstance.However, if theproper-
tiesin questionareto beconsidereddynamicin theplanning
domain,theplanningoperatorswould berequiredto adjust

thepropertiesappropriatelyatevery level of therolehierar-
chy. Theproblemsof representingtransitivepropertiesare
similar to thosepresentedby hierarchiesof properties.Al-
thoughwe couldcomputetransitive closurein advance,we
cannotexpecttodefineplanningoperatorswhichcanrecom-
puteit. 1

Defining Planning Operators
In summary, the partial domain model created by
OWL2OCL createsa useful startingpoint for domainac-
quisition. Within the currentOWL standardit appearsim-
possibletodefinechangeor action,andhenceit hasnotbeen
possibleto explicitly extractthis informationfrom adomain
model. To completethe planningdomainwe needto use
GIPOto:

1. Refineor alter the structureof the substateclassdefini-
tionswhichhasbeenextractedfrom theontology.

2. Fill in missingclassdefinitions.

3. Defineplanningoperatorsin termsof transitionsbetween
thedefinedclassdefinitions.

RelatedWork
(McNeill, Bundy, & Walton 2004) describesa systemfor
generatinga PDDL planningdomainfrom anontologyde-
scribinganagentsystemrepresentedin theKIF formalism.
Theontologyis not restrictedto staticdomaininformation,
butalreadycontainsdescriptionsof actions.Hencetheprob-
lem tackledis oneof translatingthe planningproblembe-
tweenformalisms,asopposedto our aim of extractingstate
descriptionsasa basisfor definingactions.

PDDAML is a tool which translatesbetweena Web-
PDDL andDAML. As with the work of McNeill et al., it
differs from OWL2OCL in that it assumessimilar ’seman-
tic content’ in its target andsource,anddoesnot propose
to induce or hypothesiseany existing knowledge. Also,
PDDAML was written with the benefitof a PDDL ontol-
ogy definition (McDermott,Dou, & Qi 2004). In contrast
wearetrying to importandextractfrom ontologiesasmuch
planningrelatedinformationaspossible,ratherthanto cre-
atea web-planninglanguage.We recognisethatthecurrent
purposeof ontologiesaregenerallyto recordthe static in-
formationabouta domain; this makesthemunusableasa
planningdefinition. To help the engineeringof a dynamic
domain,existingontologiesarein ourwork usedasthestart-
ing point.

Conclusions
In this paperwehave arguedthatknowledgeavailablefrom
onlineontologiescanbeusefullyimportedinto AI Planning
domainmodelsto act as the first stepto creatinga plan-
ning domainmodel. We have describeda tool that trans-
lates ’OWL abstract’ontologiesinto the

�����
plan lan-

guage.Thesuccessof this tool dependson theamountand
distribution of factualand individual knowledge(that is a

1althoughPDDL 2.2languageallows for axiomscouldbeused
for this.

8 Workshop on the Role of Ontologies in Planning and Scheduling

full ’Abox’). Experimentswith this tool illuminate other
problems. inherentin this approach:OWL ontologiestend
to containsomericher information(suchaspropertyhier-
archies)thanplanningdomainmodelsrequire,but alsonot
sufficient dynamicinformation. It would beusefulto know
whichdatais staticandwhich is dynamicin anOWL ontol-
ogy. Unfortunatelythis is impossibleto detectautomatically
from a staticsnapshotof theontology.

Currently, thereis no explicit way of representingtime
andresourcesin OWL, in sucha way that it canbe trans-
latedinto planningoperatorschema.In this respect,other
commonlanguagesfor representingontologiessuchasKIF
arebettersuited(McNeill, Bundy, & Walton2004).For fu-
turework weplanto furtherdevelopthetechniqueto extract
moreinformationfrom OWL relevant to planning. For ex-
ample,numberrestrictionsrecordedin OWL can usefully
beusedto infer constraintson what is a valid substate,and
OWL’s MinCardinalityrestrictionscouldbeusedto addex-
trapropertiesto a substate.

References
Bouquet,P.; Giunchiglia,F.; van Harmelen,F.; Serafini1,
L.; andStuckenschmidt,H. 2004.Contextualizingontolo-
gies.Journalof WebSemantics1(4):325– 343.
Gennari,J. H.; Musen,M. A.; Fergerson,R. W.; Grosso,
W. E.; Crubezy, M.; Eriksson,H.; Noy, N. F.; and Tu,
S. W. 2003. The evolution of Protege: an environment
for knowledge-basedsystemsdevelopment. Int. J. Hum.-
Comput.Stud.58.

Ghallab,M.; Nau,D.; andTraverso,P. 2004. Automated
Planning: TheoryandPractice. MorganKaufmannISBN
1-55860-856-7.

Haarslev, V., andMoeller, R. 2001. RACER systemde-
scription. In InternationalJoint ConferenceonAutomated
Reasoning, IJCAR’2001.

Knublauch,H.; Fergerson,R. W.; Noy, N. F.; andMusen,
M. A. 2004. Theprot́eǵe OWL plugin: An opendevelop-
mentenvironmentfor semanticwebapplications.
Liu, D., and McCluskey, T. L. 2000. The OCL Lan-
guageManual,Version1.2. Technicalreport,Department
of Computingand MathematicalSciences,University of
Huddersfield.
McCluskey, T. L.; Liu, D.; and Simpson,R. M. 2003.
GIPO II: HTN Planningin a Tool-supportedKnowledge
EngineeringEnvironment.In TheThirteenthInternational
ConferenceonAutomatedPlanningandScheduling.

McCluskey, T. L.; Richardson,N. E.; andSimpson,R. M.
2002. An Interactive Methodfor InducingOperatorDe-
scriptions.In TheSixthInternationalConferenceonArtifi-
cial IntelligencePlanningSystems.
McDermott, D.; Dou, D.; and Qi, P. 2004.
PDDAML: An automatic translator between PDDL
and DAML. http://www.cs.yale.edu/homes/dvm
/daml/pddldaml translator1.html.

McNeill, F.; Bundy, A.; and Walton, C. 2004. An au-
tomatic translatorfrom KIF to PDDL. In Workshopof

the UK Planningand SchedulingSpecialInterestGroup,
PLANSIG2004.
Patel-Schneider, P. F.; Hayes, P.; and Horrocks, I.
2004. OWL web ontology languagesemanticsand ab-
stract syntax W3C recommendation10 February2004.
http://www.w3.org/2004/OWL/.

Appendix A
TheRocketWorld:

Ontology(
Class(Rocket partial)
Class(Location partial)
Class(Cargo partial)
Class(Level partial)

DisjointClasses(Rocket Location Cargo)

ObjectProperty(at domain(Cargo)
range(Location))

ObjectProperty(position
domain(Rocket)
range(Location))

ObjectProperty(fuel domain(Rocket)
range(Level))

ObjectProperty(in domain(Cargo)
range(Rocket))

Individual(R1 type(Rocket)
value(position Paris)
value(fuel full))

Individual(R2 type(Rocket)
value(position Paris)
value(fuel full))

Individual(C1 type(Cargo)
value(at Paris))

Individual(C2 type(Cargo)
value(at London))

Individual(C3 type(Cargo)
value(in R1))

Individual(C4 type(Cargo)
value(at London))

Individual(Paris type(Location))
Individual(London type(Location))
individual(full type(level))
individual(empty type(level))

)

% Domain auto-generated from an OWLontology

domain_name(owl).

% Objects

objects(cargo,[c1,c2,c3,c4]).
objects(level,[empty,full]).
objects(location,[london,paris]).
objects(rocket,[r1,r2]).

% Predicates

predicates(
at(cargo,location),
position(rocket,location),

Workshop on the Role of Ontologies in Planning and Scheduling 9

fuel(rocket,level),
in(cargo,rocket)])./

% Object Class Definitions

substate_class(cargo,Cargo,[
[at(Cargo,Location)],
[in(Cargo,Rocket)]]).

substate_class(rocket,Rocket,[
[position(Rocket,Location),

fuel(Rocket,Level)]]).

Appendix B
TheDockworkersWorld:

Ontology(

Class(a:Container partial)
Class(a:Crane partial)
Class(a:Location partial)
Class(a:Pile partial)
Class(a:Robot partial)

ObjectProperty(a:adjacent Symmetric
domain(a:Location)
range(a:Location))

ObjectProperty(a:at Functional
domain(a:Robot)
range(a:Location))

ObjectProperty(a:attached Functional
domain(a:Pile)
range(a:Location))

ObjectProperty(a:belong Functional
domain(a:Crane)
range(a:Location))

ObjectProperty(a:holding
domain(a:Crane)
range(a:Container))

ObjectProperty(a:in
domain(a:Container)
range(a:Pile))

ObjectProperty(a:loaded
domain(a:Robot)
range(a:Container))

ObjectProperty(a:on
domain(a:Container)
range(a:Container))

ObjectProperty(a:top
domain(a:Container)
range(a:Pile))

DatatypeProperty(a:empty Functional
domain(a:Crane)
range(xsd:boolean))

DatatypeProperty(a:occupied Functional
domain(a:Location)
range(xsd:boolean))

DatatypeProperty(a:unloaded Functional
domain(a:Robot)
range(xsd:boolean))

Individual(a:a
type(a:Container)
value(a:on a:pallet)

value(a:in a:pa))
Individual(a:b

type(a:Container)
value(a:on a:a)
value(a:in a:pa))

Individual(a:c
type(a:Container)
value(a:on a:b)
value(a:in a:pa)
value(a:top a:pa))

Individual(a:d
type(a:Container)
value(a:on a:pallet)
value(a:in a:qa))

Individual(a:e
type(a:Container)
value(a:on a:d)
value(a:in a:qa))

Individual(a:f
type(a:Container)
value(a:on a:e)
value(a:in a:qa)
value(a:top a:qa))

Individual(a:g
type(a:Container)
value(a:on a:pallet)
value(a:in a:pb))

Individual(a:ga
type(a:Crane)
value(a:belong a:la)
value(a:empty "true"

ˆˆhttp://www.w3.org/2001/XMLSchema#b oolean))
Individual(a:gb

type(a:Crane)
value(a:belong a:lb)
value(a:empty "true"

ˆˆhttp://www.w3.org/2001/XMLSchema#b oolean))
Individual(a:gc

type(a:Crane)
value(a:belong a:lc)
value(a:empty "true"

ˆˆhttp://www.w3.org/2001/XMLSchema#b oolean))
Individual(a:gd

type(a:Crane)
value(a:belong a:ld)
value(a:empty "true"

ˆˆhttp://www.w3.org/2001/XMLSchema#b oolean))
Individual(a:ge

type(a:Crane)
value(a:belong a:le)
value(a:empty "true"

ˆˆhttp://www.w3.org/2001/XMLSchema#b oolean))
Individual(a:gf

type(a:Crane)
value(a:belong a:lf)
value(a:empty "true"

ˆˆhttp://www.w3.org/2001/XMLSchema#b oolean))
Individual(a:h

type(a:Container)
value(a:on a:g)
value(a:in a:pb))

Individual(a:i
type(a:Container)
value(a:on a:h)

10 Workshop on the Role of Ontologies in Planning and Scheduling

value(a:in a:pb)
value(a:top a:pb))

Individual(a:j
type(a:Container)
value(a:on a:pallet)
value(a:in a:qb))

Individual(a:k
type(a:Container)
value(a:on a:j)
value(a:in a:qb))

Individual(a:l
type(a:Container)
value(a:on a:k)
value(a:in a:qb)
value(a:top a:qb))

Individual(a:la
type(a:Location)
value(a:adjacent a:li)
value(a:occupied "true"

ˆˆhttp://www.w3.org/2001/XMLSchema#bool ean))
Individual(a:lb

type(a:Location)
value(a:adjacent a:lj)
value(a:occupied "true"

ˆˆhttp://www.w3.org/2001/XMLSchema#bool ean))
Individual(a:lc

type(a:Location)
value(a:adjacent a:lj)
value(a:occupied "true"

ˆˆhttp://www.w3.org/2001/XMLSchema#bool ean))
Individual(a:ld

type(a:Location)
value(a:adjacent a:lj))

Individual(a:le
type(a:Location)
value(a:adjacent a:li))

Individual(a:lf
type(a:Location)
value(a:adjacent a:lj))

Individual(a:li
type(a:Location)
value(a:adjacent a:lj))

Individual(a:lj
type(a:Location))

Individual(a:m
type(a:Container)
value(a:on a:pallet)
value(a:in a:pe))

Individual(a:n
type(a:Container)
value(a:on a:m)
value(a:in a:pe))

Individual(a:o
type(a:Container)
value(a:on a:n)
value(a:in a:pe)
value(a:top a:pe))

Individual(a:p
type(a:Container)
value(a:on a:pallet)
value(a:in a:qe))

Individual(a:pa
type(a:Pile)
value(a:attached a:la))

Individual(a:pallet
type(a:Container)
value(a:top a:pf)
value(a:top a:pc)
value(a:top a:qf)
value(a:top a:qc))

Individual(a:pb
type(a:Pile)
value(a:attached a:lb))

Individual(a:pc
type(a:Pile)
value(a:attached a:lc))

Individual(a:pd
type(a:Pile)
value(a:attached a:ld))

Individual(a:pe
type(a:Pile)
value(a:attached a:le))

Individual(a:pf
type(a:Pile)
value(a:attached a:lf))

Individual(a:q
type(a:Container)
value(a:on a:p)
value(a:in a:qe))

Individual(a:qa
type(a:Pile)
value(a:attached a:la))

Individual(a:qb
type(a:Pile)
value(a:attached a:lb))

Individual(a:qc
type(a:Pile)
value(a:attached a:lc))

Individual(a:qd
type(a:Pile)

value(a:attached a:ld))
Individual(a:qe

type(a:Pile)
value(a:attached a:le))

Individual(a:qf
type(a:Pile)
value(a:attached a:lf))

Individual(a:r
type(a:Container)
value(a:on a:q)
value(a:in a:qe)
value(a:top a:qe))

Individual(a:ra
type(a:Robot)
value(a:at a:la)
value(a:unloaded "true"

ˆˆhttp://www.w3.org/2001/XMLSchema#b oolean))
Individual(a:rb

type(a:Robot)
value(a:at a:lb)
value(a:unloaded "true"

ˆˆhttp://www.w3.org/2001/XMLSchema#b oolean))
Individual(a:rc

type(a:Robot)
value(a:at a:lc)
value(a:unloaded "true"

ˆˆhttp://www.w3.org/2001/XMLSchema#b oolean))
Individual(a:s

Workshop on the Role of Ontologies in Planning and Scheduling 11

type(a:Container)
value(a:on a:pallet)
value(a:in a:pd))

Individual(a:t
type(a:Container)
value(a:on a:s)
value(a:in a:pd))

Individual(a:u
type(a:Container)
value(a:on a:t)
value(a:in a:pd)
value(a:top a:pd))

Individual(a:v
type(a:Container)
value(a:on a:pallet)
value(a:in a:qd))

Individual(a:w
type(a:Container)
value(a:on a:v)
value(a:in a:qd))

Individual(a:x
type(a:Container)
value(a:on a:w)
value(a:in a:qd)
value(a:top a:qd))

)

% Domain auto-generated from an OWLontology

domain_name(owl).

% Objects

objects(container,[a,b,c,d,e,f,g,h,i,j, k,l,
m,n,o,p,pallet,q,r,s,t,u,v,w,x]).

objects(crane,[ga,gb,gc,gd,ge,gf]).
objects(location,[la,lb,lc,ld,le,lf,li, lj]).
objects(pile,[pa,pb,pc,pd,pe,pf,qa,qb,q c,

qd,qe,qf]).
objects(robot,[ra,rb,rc]).

% Predicates

predicates(
adjacent(location,location),
at(robot,location),
attached(pile,location),
belong(crane,location),
holding(crane,container),
in(container,pile),
loaded(robot,container),
on(container,container),
top(container,pile),
empty(crane),
not_empty(crane),
occupied(location),
not_occupied(location),
unloaded(robot),
not_unloaded(robot)]).

% Object Class Definitions

substate_class(container,Container,[
[on(Container,Container2),

in(Container,Pile3)],
[on(Container,Container2),

in(Container,Pile3),
top(Container,Pile4)],

[top(Container,Pile2),
top(Container,Pile3),

top(Container,Pile4),
top(Container,Pile5)]]).

substate_class(crane,Crane,[
[belong(Crane,Location2),empty(Crane)]]).

substate_class(location,Location,[
[],
[adjacent(Location,Location2)],
[adjacent(Location,Location2),

occupied(Location)]]).
substate_class(pile,Pile,[

[attached(Pile,Location2)]]).
substate_class(robot,Robot,[

[at(Robot,Location2),unloaded(Robot)]]) .

12 Workshop on the Role of Ontologies in Planning and Scheduling

Planning from rich ontologies through translation between
representations

Fiona McNeill, Alan Bundy, Chris Walton
Centre for Intelligent Systems and their Applications,

School of Informatics,
University of Edinburgh�

f.j.mcneill,a.bundy,c.d.walton � @ed.ac.uk

Abstract

The richness and expressivity of standard ontology
representations and the limitations on expressivity re-
quired by modern planners have resulted in a situation
where it is hard for an agent both to have a rich ontol-
ogy and be capable of efficient planning. We discuss
how translation between different kinds of represen-
tation can allow an agent to have different versions
of the same ontology, so that it can simultaneously
meet different demands of expressivity. We introduce
our ontology refinement system (ORS), in which these
ideas are implemented.

Using rich ontologies for planning
There is currently a disparity between the richness
of ontological representation used in multi-agent sys-
tems, and ontologies used in Semantic Web like envi-
ronments, and the richness of ontological representa-
tion used in planning. This disparity comes about due
to the different requirements of each domain.

In a multi-agent system and environments such as
the Semantic Web, rich, expressive ontologies are de-
sirable. Such ontologies facilitate the encoding of de-
tailed domain information: information about infinite
domains, meta-information about ontological objects,
complex class hierarchies which allow for slot infor-
mation in classes, use of the open world assumption,
and so on. Some common ontological representations
for multi-agent systems, such as Knowledge Inter-
change Format (KIF) [3], are full first-order, and are
thus extremely expressive. Other common ontological
representations: for example, description logic based
ontologies, such as RDF and OWL, are less expres-
sive than full first-order logic, owing to the tractability
problems associated with inference in full first-order
logic, but, nevertheless, retain a high level of expres-
sivity.

In popular planning representations, much of this
expressivity is removed. Languages such as PDDL
[2], resemble first-order languages; however, this is an
illusion. Most planners that take domain information
from PDDL files are propositional and thus, though

Copyright c
�

2005, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

PDDL provides a first-order window on to the propo-
sitional space, anything that is expressed in PDDL
must be translatable into propositional logic. This
places restrictions on what can be expressed; there are
some ontological objects that are expressible in a first-
order representation but not in a less expressive rep-
resentation: for example, quantification over infinite
domains. Additionally, the closed world assumption
is normally used in planning.

One might argue that this disparity comes about
partly due to the separation of the planning com-
munity and the ontology community: state-of-the-art
planners are usually designed and assessed on how
well they perform purely with respect to planning con-
siderations; there is much less emphasis on how to
balance good plan formation performance with con-
sideration of other issues, such as dealing with richer
ontologies. However, there is a more fundamental is-
sue underlying this disparity. Automated planning is
very difficult, largely because the search problems in-
volved in finding even short plans are vast. The only
feasible way to solve these problems is to reduce the
search space. Thus the most important aspect of plan-
ning representations is that they are not difficult to
search through; this inevitably leads to loss of expres-
sivity.

There are two approaches to this problem. One
approach is to attempt to balance the demands of an
expressive ontological representation with those of a
tractable planning representation. The resulting repre-
sentation will be less expressive than a standard onto-
logical representation and less efficient for producing
plans than a standard planning representation; how-
ever, the advantage of combining both facets in a sin-
gle representation may be thought to outweigh these
problems. However, we believe that the best solu-
tion to the problem is provided by an alternative ap-
proach: allowing ontological knowledge to be repre-
sented in different ways, depending on the current re-
quired functionality, and translating between the dif-
ferent representations as necessary. Inevitably, infor-
mation is lost through translation from a more expres-
sive to a less expressive representation. However, if
the most expressive representation is retained after it

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 13

is translated to a less expressive representation, then
the agent still has access to its complete ontology as
well as to the less expressive representation that can
be used, for example, for planning. We believe that
the demands of a planning representation are incom-
patible with the demands of a standard ontological
representation. The ability to form plans quickly and
efficiently is vital to agents that are attempting to plan
within multi-agent systems, but equally, the ability
to represent complex information within their ontol-
ogy is important. We believe that an attempt to com-
bine the two needs in a single representation requires
too great a loss to both domains, and therefore our
approach is to develop translation processes between
different kinds of ontological representations.

It should be noted that by ontology, we mean both
the representation language of the domain and the
knowledge base expressed in that language. Thus, in
our terms, a PDDL ontology would consist of a do-
main file and one or more problem files; a KIF ontol-
ogy would define the vocabulary but also contain the
facts expressed in that vocabulary. Therefore, an on-
tology can be altered either by changing the represen-
tational language or by changing the facts expressed
in that language (as occurs during plan execution).

In this paper, we describe the translation process
that we have implemented, and explain its role in
ORS. We describe the context that ORS is designed to
work in: that of a multi-agent, service-based architec-
ture, and mention how this context affects the kind of
translation that is necessary in ORS. We discuss how
our evaluation of ORS demonstrates that this transla-
tion process is successful, and show how, as a result,
ORS can be used to dynamically refine ontologies in
a planning environment.

Translating from KIF to PDDL
Currently, we have implemented one such translation
process: translating from KIF ontologies to a PDDL
representation. In translating from KIF, we have al-
ready tackled some of the most severe problems in-
herent in such an approach: KIF is full first-order, and
thus the loss of expressivity in our existing translation
process is at least as severe as the loss of expressivity
in translating any ontological representation to PDDL,
although our system does not currently deal with full
KIF but only with a subset of it; thus not all these is-
sues have been confronted. Certainly, there would be
different implementation issues when translating from
a language such as OWL to PDDL, but the theoreti-
cal problems surrounding loss of expressivity would
be less. Full details of this translation process can be
found in [8]; in this section we briefly discuss some
of the chief issues involved in this process, which is
illustrated in Figure 1.

We have implemented this translation process as
part of our ontology refinement system (ORS), which
is discussed in the following section. The translation
process is important because the system deals with

Planning Agent

KIF Ontology

Translator

PDDL planner

Plan

Goal Translator

Goal

PDDL readable
goal

Problem File Domain File

Figure 1: Architecture of Translation System

agents that are operating within a multi-agent system,
but which also need to form plans. In our system, the
KIF ontology is considered to be the definitive ontol-
ogy: the agent’s true understanding of the state of the
world is represented in the KIF ontology. Other repre-
sentations are used only when this is practically nec-
essary for the agents, and any changes made to these
other representations - for example, by actions being
performed - must be made to the KIF ontology also, so
that the KIF ontology is always up to date with respect
to the agent’s understanding of the world. In particu-
lar, the KIF ontology is translated to PDDL when the
agent wishes to form a plan. ORS uses the planner
Metric-FF [4], but any PDDL planner could be sub-
stituted in with minimal affect to the system. The dif-
ference in expressivity between KIF and PDDL mean
that the PDDL representation is not completely equiv-
alent to the KIF ontology. However, the agent has not
lost information during this translation process, be-
cause it still has access to the original KIF ontology;
it is simply that the agent’s full ontology is not neces-
sarily represented in PDDL. This loss of expressivity
has a disadvantage in that it is possible that there are
valid plans that could be formed from the KIF ontol-
ogy that cannot be found from the more limited PDDL
ontology; however, it has a strong advantage in that it
is now possible to use this knowledge to efficiently
form plans, and, moreover, this loss of information is
concerned only with the formation of this particular

ICAPS 2005

14 Workshop on the Role of Ontologies in Planning and Scheduling

plan and does not affect any other parts of the system.
In terms of expressivity, there are some ontologi-

cal structures that are expressible in a full first-order
representation but not in a representation that must be
translatable into propositional logic; for example:

1. quantification over infinite domains,

2. uninstantiated variables

In our system, the first of these issues is not a concern,
because it does not currently deal with KIF ontologies
that contain quantification over infinite domains. A
complete translation process that dealt with such KIF
ontologies would need some way to represent this in
PDDL, which might be through some kind of finite
abstraction. However, this would create larger expres-
sive differences between the original KIF and the re-
sulting PDDL than we have currently experienced.

The second of these issues, however, is a concern.
Not allowing uninstantiated variables in the represen-
tation constrains a plan to involve only individuals
that are already present in the ontology. In many plan-
ning situations, that is quite acceptable; it is usually
desirable for a plan to be fully instantiated before ex-
ecution commences. However, there are some situa-
tions where this is not the case. Consider, for exam-
ple, a plan which involved booking a flight, for which
a flight reservation number was given, and then auto-
matically checking in for the flight, using this reserva-
tion number. The fact that such a reservation number
exists is important during plan formation; however, it
is not only unnecessary, but impossible, to know the
particular instantiation of the number before plan exe-
cution begins; this can only be instantiated during ex-
ecution. In such situations, the propositional restric-
tions of PDDL present problems. We circumvent this
problem through the use of pseudo-variables, which
are declared as individuals when the PDDL files are
produced, but are then uninstantiated by the agent
when it interprets the plan produced by the planner.
Thus, for example, an action rule that involved buying
a ticket would force this reservation number to be the
individualPV1. The translation process keeps track of
how many pseudo-variables must be declared, which
pseudo-variable refers to which uninstantiated object,
and so on. Details of how this is done are given in [8].

There are many further implementational difficul-
ties in the translation process. Many of these centre
around the fact that PDDL-based planners keep track
of the state whilst the plan is being formed, whereas
such a concept has no meaning for a static ontology.
Thus, for example, the value of numerical functions
is automatically tracked in a PDDL planner and does
not need to be stated explicitly, as it would in a static
ontology. In PDDL, an initial declaration is made (if
appropriate); for example:
(= (Money ?Agent) 1000)
and thereafter (Money ?Agent) can be referred to
without explicit reference to this value; the planner
keeps this information explicitly in its internal knowl-

edge base, and thus this does not need to be rep-
resented explicitly in PDDL. If calculations are per-
formed, these are again done without any explicit ref-
erence to the value; for example:
(> (Money ?Agent) (Price ?Item))
means that the value attached to (Money ?Agent)
must be greater than the value of (Price ?Item).

In a static representation such as KIF, such val-
ues have to be declared explicitly because there is no
mechanism for keeping track of them, as there is in a
planner. Thus instantiated numerical functions are de-
clared in the same way as any other instantiated pred-
icate; for example:
(Money ?Agent 1000).
The function is always referred to in this way. Calcu-
lations such as the one described above must be rep-
resented using these explicit arguments; for example,
the above calculation would be represented as:
(Money ?Agent ?Amount) �
(Price ?Item ?Cost) �
(> ?Amount ?Cost)
Such different requirements force extensive rewriting
of the KIF ontological objects, particularly the action
rules, in order to create valid PDDL ontological ob-
jects.

There are several other issues that need to be dealt
with in such a translation, which are detailed in [8];
for example, dealing with arithmetic operators. How-
ever, most of these are merely a recoding of informa-
tion, and do not affect the expressivity.

As mentioned above, our translation does not deal
with full KIF, but with a constrained version that is
sufficient to express the ontological information re-
quired in our system. A full KIF ontology would
present further translation issues. We believe, how-
ever, that it is possible to produce a PDDL version
even of full KIF that is correct, though not complete,
with respect to the KIF ontology. This translation pro-
cess allows us to take an abstraction of a rich ontology,
so that it can be used in efficient planning.

The way in which ontologies are handled in our
system requires translation only to be one way; we
have not done any work on translating from PDDL
back to KIF. Creating a valid KIF ontology from the
PDDL ontology should not, on the whole, be much
harder than translating from KIF to PDDL; for exam-
ple, instead of folding a numerical predicate (Money
?Agent ?Amount) into (Money ?Agent), this
would be unfolded by adding a variable name. This
variable name could be arbitrarily chosen, but would
need to be consistently used: for example,
(> (Money ?Agent) (Price ?Item))
would first be converted to
(> ?Var1 ?Var2)
and then the meanings of these variables would need
to be declared appropriately:
(Money ?Agent ?Var1) � (Price ?Item
?Var2)

However, since there is usually some loss of expres-

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 15

sivity in the translation process from KIF to PDDL, a
retranslation of the PDDL ontology would result in a
KIF ontology that was likely to be less expressive than
the original ontology. It is thus better, if the situation
allows, to always translate from a more expressive on-
tology to a less. Thus the most expressive version of
the ontology can be considered to reflect the true un-
derstanding of the agent, and less expressive versions
are produced when they are necessary, used to per-
form their role, such as planning, and then discarded.
If any changes produced when using these less expres-
sive ontologies are made directly to the most expres-
sive ontology, rather than completely retranslating the
less expressive ontology, then the most expressive on-
tology retains its full expressiveness, whilst also being
kept up to date.

Example Translation
Consider the situation in which a planning agent (PA)
is given a goal to purchase an on-line plane ticket. In
order to achieve this goal, several steps must be car-
ried out. For example, the agent must locate a ticket-
selling agent, it must ensure it has sufficient funds, it
must work out the correct origin and destination for
the flight, and so on. Clearly, before the agent can act,
it must have a plan for how to achieve the goal. There-
fore, as soon as the agent identifies a goal, it sends the
whole ontology, together with a suitable representa-
tion of this goal, to the translator. PDDL files for the
ontology are produced, which can then be sent to the
planner. Once the PA has the plan, it can then begin to
execute the plan steps. In this short example, we have
the following ontological objects in the original KIF
ontology:
(Define-Frame PA

:Own-Slots ((Instance-Of Agent))
:Axioms ((Money PA 500)))

(Define-Frame Edinburgh
:Own-Slots ((Instance-Of City))
:Axioms ((Flight Edinburgh London 300)))

(Define-Individual London (City))

(Define-Function Flight
(?Place-0 ?Place-1) :-> ?Value
:Def (And (Place ?Place-0)

(Place ?Place-1)
(Number ?Value)))

(Define-Function Money
(?Agent-0) :-> ?Value
:Def (And (Agent ?Agent-0)

(Number ?Value)))

(Define-Class Agent (?X)
:Def (And (Thing ?X)))

(Define-Class City (?X)
:Def (And (Place ?X)))

(Define-Class Place (?X)
:Def (And (Thing ?X)))

(Define-Axiom Book-Flight :=
(=>
(And (Flight ?Agent-Loc ?Conf-Loc

?Price)
(Money ?Agent ?Amount)
(< ?Price ?Amount))

(And (Has-Ticket ?Agent)
(= ?Newamount

(- ?Amount ?Price))
(Money ?Agent ?Newamount)
(Not (Money ?Agent ?Amount)))))

There are objects referred to in the axiom that are not
defined in the ontology section above: these are omit-
ted for brevity.

Our translation would produce the following PDDL
domain file from the above KIF ontology:

(define (domain domain Ont)
(:requirements :strips :fluents :typing)

(:predicates
(Agent ?Agent)
(Place ?Place)
(City ?City)

)

(:functions
(Money ?Agent)
(Flight ?Place1 ?Place2)

)

(:action Book-Flight
:parameters (?Agent ?City1 ?City2)
:preconditions (And

(City ?City1)
(City ?City2)
(< (Flight

?City1 ?City2)
(Money ?Agent))
(Agent ?Agent))

:effects (And
(Has-Ticket ?Agent)
(decrease
(Money ?Agent)
(Flight ?City1 ?City2)))

))

and the following PDDL problem file:

(define (problem problemOnt)
(:domain domainOnt)
(:objects London Edinburgh PA)
(:init
(Agent PA)
(City London)
(City Edinburgh)
(= (Money PA) 500)
(= (Flight Edinburgh London) 300)

)
(:goal

(Has-Ticket PA)))

ICAPS 2005

16 Workshop on the Role of Ontologies in Planning and Scheduling

Ontology refinement in a planning
context

In this section, we briefly introduce our ORS system,
to illustrate the role of the translation process in the
system, and the role of the two different ontologies.
More detailed information about ORS can be found
in [1, 7].

The central function of ORS is to allow agents to re-
fine their ontologies when they discover that they are
incompatible with the ontologies of other agents. It
is common in current multi-agent systems that an as-
sumption is made that agents have the same ontology;
ontological incompatibility leads to failure. However,
this is often not a reasonable assumption. Off-the-
shelf ontologies are frequently updated, as they are
found, during use, to be too limited for the task re-
quired, or to be encoding excessive information that
is found to be unnecessary, or the ontology moder-
ators decide it would be useful to extend or restrict
the domain encoded in the ontology. This results in
off-the-shelf ontologies that exist in several different
versions. Additionally, individual users might take an
off-the-shelf ontology and alter it for their own ends.
Thus it is not uncommon for agents to have ontolo-
gies that are broadly similar, but that are different in
certain respects, and for these differences to result in
failure of the agents to interact successfully.

If two agents have vastly different ontologies, it is
difficult to see how they could interact in a fully au-
tomated manner, since they would have no basis for
understanding one another. However, if two agents
have ontologies that are, for the most part, the same,
but that differ in some respects, then there is potential
for fully automated interaction between these agents,
even when they need to deal with the parts of their
ontologies that are mismatched, because the parts of
their ontologies that they share gives them a basis for
understanding one another, and terms in which to dis-
cuss what their ontological mismatches might be. The
purpose of ORS is to allow agents to use this shared
portion of their knowledge to diagnose how their on-
tologies are mismatched, and to patch their ontologies
so that successful interaction becomes possible.

The way in which two different versions of an on-
tology may differ depends on their representation. A
common difference may be the removal or addition of
complete ontological objects. However, a more inter-
esting difference is when existing ontological objects
are modified in some way. In a first-order ontology,
such as KIF, this may happen in, for example, the fol-
lowing ways:

� changing the arity of a predicate so that it could
encode more or less information;

� changing the name of a predicate: this is most in-
teresting and easier to detect if the name is changed
to a related name, perhaps a subclass or super-
class of the existing name; for example, the pred-
icate Money may be changed to the predicate

Dollars;
� changing the class requirement for an argument of

a predicate: this, again, may involve changing the
class to a sub- or super- or otherwise related class;
a similar alteration is a change in the order of argu-
ments in a predicate;

� an action rule may be altered by adding or remov-
ing a precondition, or by adding, removing or oth-
erwise altering an effect of an action.

Ontological mismatch is not inherently related to
planning; this could occur in any situation where on-
tologies are used by inference. However, we have
been investigating this problem in a planning context.
ORS is used within a multi-agent system, in which the
agents are either planning agents (PAs), or service-
providing agents. Although the system is compatible
with the existence of more than one PA, we make the
assumption that only one plan is being executed at one
time, and thus consider that there can only be a single
active PA in the system at any one time. This assump-
tion is not compatible with complex multi-agent sys-
tems, and future versions of the system will work on
relaxing this assumption. In ORS, plan steps are al-
ways tasks that can be performed by other agents: for
example, a buy-ticket action might be performed
by a ticket-selling agent.

The most significant way in which our system dif-
fers from standard methods of ontology mapping and
merging [5] is that we do not assume that we have
access to all of both ontologies. Instead, we assume
that we have access to all of one of the ontologies (the
PA’s), but that the other ontology, that of the service-
providing agent, which is not usually owned by the
same user as the PA, is only revealed through direct
questions that are put to the service-providing agent
by the PA, and by information gleaned from plan ex-
ecution failure. We believe that this is a more real-
istic approach in situations such as agent interaction
in large multi-agent systems, as not only is it imprac-
tical to completely map two ontologies where only a
small change may be necessary, but also there may be
concerns about secure and commercially sensitive in-
formation that mean agents would be unprepared to
reveal their entire ontologies. Additionally, we as-
sume that any agent operating in such an environment
would be able to answer direct questions and, if it is
a service-providing agent, perform tasks; it is not a
normal part of agent interaction to reveal large sec-
tions of ontology, and we therefore cannot expect it of
agents. Two agents may have very different underly-
ing representations but still be able to interact via an
agent protocol; thus each agent must glean sufficient
information via this protocol; fully mapping the two
ontologies is not helpful.

Exploring ontological mismatch in a planning con-
text is facilitated by the fact that a planning context
provides a clear indication that some kind of ontologi-
cal mismatch has occurred: a service-providing agent

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 17

refuses to perform an action that the PA believed to
be performable in the current situation, thus indicat-
ing that the service-providing agent and the PA are
not using identical ontologies; and a clear indication
that the patching performed has removed the particu-
lar mismatch: the previous point of failure no longer
causes a problem.

The architecture of ORS is illustrated in Figure 2,
and is as follows:

3

Refinement

DiagnosisPlanner

Deconstructor

Planning System

1
2

4

5

Translation

Service−providing Agents

PA

Figure 2: Architecture and interaction of the dynamic
ontology refinement system.

1. The PA sends its KIF ontology to the translation
system. The trigger for this is the PA receiving a
goal that it is required to fulfil. The translation sys-
tem returns appropriate PDDL files, with the goal
correctly inserted, and also returns a version of the
ontology in Prolog readable syntax, which is re-
quired for direct interpretation of the ontology by
the PA, and also in the plan deconstructor (see step
2).

2. The PA sends the PDDL files to the planner, which
produces a plan for achieving the goal. This plan is
interpreted by the agent and translated into a Prolog
readable version, which is then sent, together with
the Prolog readable version of the ontology, to a
plan-deconstructor, whose role it is to link the plan
steps to the underlying ontology. One drawback of
using propositional planners, which we do not dis-
cuss in detail here, is that they cannot provide first-
order level information about how the plan pro-
duced is related to the underlying ontology: what
action-rule was used to perform each action, why

the preconditions of these rules were thought to be
valid in the particular situations, and so on. This
information is sometimes important in linking plan
execution failure to mismatches in the underlying
ontology. The purpose of the plan deconstructor
is to provide this information. The deconstructor
steps through the produced plan, meta-interpreting
it with respect to the ontology, and returns this in-
formation as a justification of the produced plan. It
thus acts in a similar way to a first-order planner,
but circumvents the massive search problem faced
by such planners by using a plan that has already
been produced by an efficient planner. Further in-
formation about this process can be found in [9].

3. The plan, annotated with a justification for each
step, is returned to the PA and execution begins.
This execution occurs in an agent communication
system, where the PA can locate the agents with
which it needs to interact.

4. If failure occurs, information about the communi-
cation thus far, together with the relevant parts of
the justification, are sent to the diagnosis system.
Further agent communication is usually required to
pinpoint the exact source of the problem. In some
situations, it is impossible to accurately diagnose
the source of the mismatch.

5. If an exact, or at least plausible, diagnosis can be
made, this diagnosis is passed to the refinement sys-
tem, which implements the relevant change to the
KIF ontology of the agent.

6. The process is repeated, with the updated KIF on-
tology being retranslated into PDDL, and a new
plan formed. This is repeated until the goal is
achieved, until the diagnosis system fails to return
an applicable diagnosis or until the refinements to
the ontology determined by the diagnostic process
result in an ontology from which it is not possible
to reach the goal.

Example Mismatches
Before a service-providing agent can perform a ser-
vice for a planning agent, it must ensure that all the
preconditions for performing the service are fulfilled.
The value of some of these preconditions it can as-
certain for itself, some must be checked with other
agents, and some must be checked with the PA. For
example, the service-providing agent may need to
check how much money PA has, so that it can ensure
this is enough for providing the service. It might thus
put the following question to PA:
SPA: (Money PA Dollars ?Amount)
By consulting the example ontology in the previous
section, we can see that this does not correspond to
PA’s ontology, where money is represented as a bi-
nary predicate and does not include the Currency
argument. Thus PA cannot appropriately respond to
the service-providing agent’s question, and must re-

ICAPS 2005

18 Workshop on the Role of Ontologies in Planning and Scheduling

ply:
PA: no.

The service-providing agent will then refuse to per-
form the service for PA, because it can see that the
preconditions are not met. PA will then use the
diagnostic system to analyse why failure occurred,
which in this case is fairly clear: there is a mismatch
between the service-providing agent’s representation
of Money and the PA’s. The PA must then refine
its ontology (described above), so that the following
changes are made:
(Define-Frame PA

:Own-Slots ((Instance-Of Agent))
:Axioms ((Money PA MetaVar 500)))

(Define-Function Money
(?Agent-0 ?Currency-0) :-> ?Value
:Def (And (Agent ?Agent-0)

(Currency ?Currency-0)
(Number ?Value)))

(Define-Axiom Book-Flight :=
(=>
(And (Flight ?Agent-Loc ?Conf-Loc

?Price)
(Money ?Agent ?Currency

?Amount)
(< ?Price ?Amount))

(And (Has-Ticket ?Agent)
(= ?Newamount

(- ?Amount ?Price))
(Money ?Agent ?Currency

?Newamount)
(Not (Money ?Agent ?Currency

?Amount))
)))

Note that all the ontological objects mentioned in the
first example but not listed here are those that are not
affected by the change.

Once these refinements have been made, the pro-
cess is repeated. After translation this time, the ontol-
ogy will become:
(define (domain domain Ont)
(:requirements :strips :fluents :typing)

(:predicates
(Agent ?Agent)
(Place ?Place)
(City ?City)

)

(:functions
(Money ?Agent ?Currency)
(Flight ?Place1 ?Place2)

)

(:action Book-Flight
:parameters (?Agent ?City1 ?City2)
:preconditions (And

(City ?City1)
(City ?City2)
(< (Flight

?City1 ?City2)
(Money ?Agent

?Currency))
(Agent ?Agent))

:effects (And
(Has-Ticket ?Agent)
(decrease
(Money ?Agent ?Currency)
(Flight ?City1 ?City2)))

))

and the following PDDL problem file:
(define (problem problemOnt)
(:domain domainOnt)
(:objects London Edinburgh PA)
(:init
(Agent PA)
(City London)
(City Edinburgh)
(= (Money PA Dollars) 500)
(= (Flight Edinburgh London) 300)

)
(:goal

(Has-Ticket PA)))

Note that during refinement of the KIF ontology, the
Money fact changes from (Money PA 500) to
(Money PA MetaVar 500). This MetaVar is
used because we cannot know the correct way of in-
stantiating this new variable. The class of MetaVar
is restricted to being Currency because of the func-
tion definition of Money. However, when this on-
tology is used for planning, this variable must be
instantiated. An appropriate instantiation is there-
fore chosen, and the fact becomes (= (Money PA
Dollars) 500). This creates some risk of error,
as we cannot be sure that Dollars is the correct in-
stantiation.

We may deduce from this refinement that a cur-
rency argument is also relevant to modify the Price
argument of the flight function: this may become
(Flight ?Origin ?Destination ?Price
?Currency)
However, ORS does not make any such deductions,
refining only those ontological objects for which it
has direct evidence of mismatch. If this refinement
were necessary, so would only come to light through
further plan failure.

Evaluation of ORS
The implementation of ORS described above has been
completed, and has been evaluated with respect to off-
the-shelf ontologies for which we have different ver-
sions. We have been somewhat hampered in this en-
deavour by the fact that is not easy to find existing
ontologies for situations such as the ones we are in-
vestigating. Because the system is designed primar-
ily for an environment that is still in development, the
Semantic Web, there are not many existing ontologies
for such situations. Additionally, the planning com-
munity tends not to keep large bodies of ontologies
that have been updated over time, since the ontologies
themselves have not historically been of much interest
to the planning community; they are built to provide

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 19

a basis for testing planners. The continual update and
alteration of ontologies that is found in the more tra-
ditional ontology communities has not been so impor-
tant in planning. The very problem that the system is
attempting to aid: that of closer interlinking between
standard ontologies and planning; has made it diffi-
cult to find suitable ontologies with which to evaluate
the system. The most important requirement for our
evaluation, which is the most difficult to fulfil, is that
different versions of the ontology should be available,
so that we can test our system against mismatches that
agents would really encounter if they were using dif-
ferent versions of the same ontology.

Our solution has been to take existing ontologies,
designed for encoding complex information but not
for planning, and overlay a planning scenario on top
of these. Such ontologies are not immediately appro-
priate for planning, not solely because of the expres-
sivity issues, which ORS is specifically designed to
deal with, but also because they are static, and not de-
signed for use in a dynamic situation. There are very
few, or no, action rules that tell us how to alter the on-
tology, as would be found in an ontology designed for
planning. We have therefore taken these ontologies
and added such information to them, so that we can
use them in a planning domain.

We have tested ORS using six different ontolo-
gies. Three of these are off-the-shelf ontologies: PSL
(Process Specification Language) [11], SUMO (Sug-
gested Upper Merged Ontology) [12] and AKT (Ad-
vanced Knowledge Technologies) [10]. The other
three are planning ontologies for which we have de-
veloped plausible ontological mismatches: a blocks
world ontology, a lift scheduling ontology and a con-
ference booking ontology.

We have demonstrated that the system can be suc-
cessfully used to translate these ontologies, form
plans from the translated ontology, execute these
plans until an ontological mismatch causes plan ex-
ecution failure, diagnose the root of the mismatch,
patch the original ontology accordingly and retrans-
late and replan from this updated ontology. Many of
the mismatches we have encoded between the PA and
the service-providing agents are genuine mismatches
that would occur if they were using different versions
of these ontologies.

Another aspect of ontologies that makes evaluation
of the system difficult is that ontologies are currently
updated on the assumption that these updates will be
read and interpreted by humans. Thus, although many
of these changes can be detected automatically by our
system, many cannot. For example, there is little at-
tempt to describe new ontological objects directly in
terms of existing ontological objects so that an agent
can interpret how they should fit in to its ontology; in-
stead, devices such as using similar names are used,
and commenting is used to describe what has been
done, so that it is immediately obvious to a human
user how these new objects fit into the ontology, but it

is difficult to deduce this in a fully automated manner.
We believe that if systems such as ORS become more
widely used, more effort will be made to update on-
tologies in a way that would facilitate the automated
patching of mismatches, and thus the process of on-
tology refinement will become easier.

Conclusions
The integration of different fields of AI is extremely
important to the development of the subject. The tech-
niques developed in planning and scheduling could be
very useful to many other fields, such as the Seman-
tic Web, e-commerce, multi-agent systems, and so on.
The application of planning to these domains is ham-
pered by the different representational requirements.
We believe that forcing representational constraints
on users to make these fields more compatible will
not be successful: ontologists will not be willing to
lose the current richness of ontologies; planners will
not be willing to make do with less efficient planners.
We suggest, therefore, that the most appropriate solu-
tion to this problem is to allow many different repre-
sentations of the same, or similar, knowledge to exist
simultaneously, and that work must be done on devel-
oping translation processes between these representa-
tions.

In this paper, we have described how we have done
this for two representations: KIF and PDDL; and
how this has allowed us to develop a working sys-
tem where agents have extremely expressive ontolo-
gies, but are also capable of efficient planning. We
have described ORS, which is fully implemented and
can successfully refine ontologies, both in plausible
planning situations and with genuine ontological mis-
matches gleaned from off-the-shelf ontologies that are
available in different versions. An important aspect of
this system is the ability to handle and translate be-
tween different ontological representations, so that an
agent can use different levels of expressivity, depend-
ing on the task at hand.

This approach could be extended to many differ-
ent ontological representations. A translator between
DAML and PDDL has already been developed [6].
There are different implementation issues in the dif-
ferent translation processes, and different degrees of
expressivity loss, but there is no reason why a correct,
though not necessarily complete, version of any onto-
logical representation cannot be rendered in any other.
As well as creating further translation processes, we
are also interested in using these with ORS to allow
ontology refinement for different ontological repre-
sentations. The potential mismatches that would oc-
cur would vary: a representation such as OWL could
not be altered in the same way as a full first-order rep-
resentation, and thus some effort would be required to
adapt ORS to each representation. Nevertheless, the
framework provided by the system is not representa-
tion dependent, and could be used in many different
circumstances.

ICAPS 2005

20 Workshop on the Role of Ontologies in Planning and Scheduling

References
[1] F.McNeill, A. Bundy, and C. Walton. Facilitat-

ing agent communication through detecting, di-
agnosing and refining ontological mismatch. In
Proceedings of the KR2004 Doctoral Consor-
tium. AAAI Technical Report, in press.

[2] Maria Fox and David Long. An ex-
tension to PDDL for expressing tem-
poral planning domains. Available
from Durham Planning Group webpage:.
http://www.dur.ac.uk/computer.science/research/
stanstuff/planpage.html.

[3] M. R. Genesereth and R. E. Fikes. Knowl-
edge Interchange Format, Version 3.0 Reference
Manual. Technical Report Logic-92-1, Stanford,
CA, USA, 1992.

[4] Jorg Hoffmann. FF. http://www.mpi-
sb.mpg.de/ hoffmann/ff.html.

[5] Yannis Kalfoglou and Marco Schorlemmer. On-
tology mapping: the state of the art. The Knowl-
edge Engineering Review, 18:1:1–31, 2003.

[6] Drew V. McDermott, Dejing Dou, and Peishen
Qi. An automatic translator between pddl and
daml. http://www.cs.yale.edu/homes/dvm/daml/
pddl daml translator1.html.

[7] F. McNeill, A. Bundy, and C. Walton. Di-
agnosing and repairing ontological mismatches.
In Proceedings of the second starting AI Re-
searchers’ symposium, Valencia, Spain, August
2004.

[8] Fiona McNeill, Alan Bundy, and
Chris Walton. An automatic transla-
tor from KIF to PDDL, December 2004.
http://planning.cis.strath.ac.uk/plansig/index.php
?page=past22,Cork.

[9] Fiona McNeill, Alan Bundy, Chris
Walton, and Marco Schorlemmer.
Plan execution failure analysis using
plan deconstruction, December 2003.
http://planning.cis.strath.ac.uk/plansig/index.php
?page=past22.

[10] AKT Project. http://www.aktors.org, 2002.
[11] PSL. http://www.mel.nist.gov/psl/.
[12] SUMO. http://ontology.teknowledge.com/.

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 21

Planning and the Process Specification Language

Michael Grüninger
Institute for Systems Research

University of Maryland
College Park, MD 20742
gruning@cme.nist.gov

Joseph B. Kopena
Geometric and Intelligent Computing Laboratory

Dept. of Computer Science
Drexel University

3141 Chestnut Street
Philadelphia, Pa 19104

tjkopena@cs.drexel.edu

Abstract

The ontology of the Process Specification Language
(PSL) has been desgined to address several challenges
posed by planning problems – the integration of plan-
ning systems with other software systems, the formal-
ization of the intuitions underlying existing planning
systems, and the need for a rich language to represent
planning domains. This paper provides an overview
of the theories within the PSL Ontology and illustrate
how it can be used as a framework for the analysis
of planning systems and the specification of planning
problems in complex domains.

Introduction

Representing plans, activities, and the constraints on
their occurrences is an integral aspect of commonsense
reasoning. To facilitate the sharability and reusability
of plans, such a representation is often based on an on-
tology, which explicitly specifies the intended meanings
of the terms being used, either by the planning algo-
rithm or in the representation of the planning problem
itself. This approach to reasoning about plans poses
three challenges in the development of ontologies for
planning systems and domains.

The first challenge is the need to integrate planning
systems with other software applications. However, in-
teroperability is hindered because the applications use
different terminology and representations of the do-
main. These problems arise most acutely for systems
that must manage the heterogeneity inherent in various
domains and integrate models of different domains into
coherent frameworks. Even when applications use the
same terminology, they often associate different seman-
tics with the terms. This clash over the meaning of the
terms prevents the seamless exchange of information
among the applications. Any ontologies for planning
must be capable of explicitly specifying the terminol-
ogy of the applications in an unambiguous fashion.

The second challenge is the need to formalize the in-
tuitions that underly existing planning systems. Any
such formalization would allow the designer to explicitly

Copyright c© 2005, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

reason about the capabilities and limitations of differ-
ent representations and techniques. An axiomatic the-
ory would provide the foundations for reasoning about
plans that can define the capabilities of planning sys-
tems and explain why certain techniques fail when ex-
tended to other domains. Many systems have invisible,
buried assumptions about their domain, not explicitly
documented in publications, which must be rendered
explicit if we are to identify principles on which plan-
ning systems are based.

The third challenge is the role played by knowledge.
System designers need to specify what knowledge is
used in planning algorithms, and how knowledge of the
world influences the generation and analysis of plans.

The Process Specification Language (PSL)
((Grüninger 2003), (Grüninger & Menzel 2003))
has been designed address these challenges. Its pri-
mary function is as a neutral interchange ontology
((Ciocoiu, Grüninger, & Nau 2001)) to facilitate
correct and complete exchange of process information
among manufacturing systems such as scheduling,
process modeling, process planning, production plan-
ning, simulation, project management, workflow, and
business process reengineering software. More recently,
there has been interest in using PSL directly, as a rich
and expressive representation language and as a logical
framework for specifying the semantics of terminology
in informal ontologies.

This paper will provide an overview of the theories
within the PSL Ontology, as well as a survey of the
concepts that are axiomatized in these theories. It will
also illustrate how the PSL Ontology can be used as
a framework for the analysis of planning systems and
for extensions to the specification of planning problems.
The paper concludes with a short example of an appli-
cation of PSL to communication services and planning
on mobile devices.

Process Specification Language
PSL consists of a core ontology which outlines basic ob-
jects that exist in the domain, a partially ordered set
of extensions that axiomatize additional primitive pro-
cess concepts, and a multitude of definitional extensions
that provide a rich terminology for describing process

ICAPS 2005

22 Workshop on the Role of Ontologies in Planning and Scheduling

knowledge. This section will survey both the core theo-
ries and definitional extensions within PSL, illustrating
the breadth of concepts that are definable within the
ontology.

The PSL ontology is a set of theories in the language
of first order logic. Theories that introduce new primi-
tive concepts are referred to as core theories, while theo-
ries containing only conservative definitions are referred
to as definitional extensions1.

All core theories within the ontology are consistent
extensions of PSL-Core, (Tpsl core), which axiomatizes
a set of intuitive semantic primitives that is adequate
for describing the fundamental concepts of manufactur-
ing processes. Specifically, PSL-Core introduces four
disjoint classes: activities, activity occurrences, time-
points, and objects. Activities may have zero or more
occurrences, activity occurrences begin and end at time-
points, and timepoints constitute a linearly ordered set
with endpoints at infinity. Objects are simply those
elements that are not activities, occurrences, or time-
points.

PSL-Core alone is not strong enough to provide defi-
nitions of the many auxiliary notions that become nec-
essary to describe all intuitions about manufacturing
processes. To supplement the concepts of PSL-Core,
the ontology includes a set of extensions that intro-
duce new terminology. Extensions to PSL-Core defining
the core theories include axiomatizations of occurrence
trees, discrete states, subactivities, atomic activities,
and complex activities. An overview of these theories
can be found in the appendix.

Interoperability and Planning Systems

The development of ontologies has been proposed as
a key technology to support semantic integration—
two software systems can be semantically integrated
through a shared understanding of the terminology in
their respective ontologies.

A semantics-preserving exchange of information be-
tween two software applications requires mappings be-
tween logically equivalent concepts in the ontology of
each application. The challenge of semantic integra-
tion is therefore equivalent to the problem of generating
such mappings, determining that they are correct, and
providing a vehicle for executing the mappings, thus
translating terms from one ontology into another.

Generating Semantic Mappings
Translation definitions specify the semantic mappings
between the interlingua ontology and application on-

1The complete set of axioms for the PSL Ontology (writ-
ten in the Knowledge Interchange Format) can be found at
http://www.mel.nist.gov/psl/psl-ontology/. Core the-
ories are indicated by a .th suffix and definitional extensions
by a .def suffix. As of March 2005, Parts 1, 11, and 12 of PSL
have been accepted as an International Standard through
project ISO 18629 within the International Organisation of
Standardisation.

tologies. Within applications of PSL, translation defi-
nitions have a special syntactic form—they are bicon-
ditionals in which the antecedent is a class in the ap-
plication ontology and the consequent is a formula that
uses only the lexicon of the interlingua ontology. For
example, the concept of AtomicProcess in the OWL-S
Ontology 2 (McIlraith, Son, & Zeng 2001) has the fol-
lowing translation definition with respect to the PSL
Ontology (Grüninger & Kopena 2005):

(∀a)AtomicProcess(a) ≡

primitive(a) ∧markov precond(a)∧
(markov effects(a) ∨ context free(a))

Translation definitions can be semiautomatically gen-
erated by using the organization of the PSL Ontology.
Many ontologies are specified as taxonomies or class
hierarchies, yet few ever provide any justification for
the classification. When classifying the models of ax-
iomatic theories of mathematical structures, logicians
use properties of models, known as invariants, that are
preserved by isomorphism. Classes are defined to con-
sist of models with the same value of the invariant. For
some classes of structures, such as vector spaces, in-
variants can be used to classify the structures up to
isomorphism; for example, vector spaces can be classi-
fied up to isomorphism by their dimension. For other
classes of structures, such as graphs, it is not possible to
formulate a complete set of invariants. However, even
without a complete set, invariants can still be used to
provide a classification of the models of a theory.

Following this methodology, the set of models for the
core theories of PSL are partitioned into equivalence
classes defined with respect to the set of invariants of
the models. Each equivalence class in the classifica-
tion of PSL models is axiomatized using a definitional
extension of PSL. In particular, each definitional exten-
sion in the PSL Ontology is associated with a unique
invariant; the different classes of activities or objects
that are defined in an extension correspond to different
properties of the invariant. In this way, the terminol-
ogy of the PSL Ontology arises from the classification
of the models of the core theories with respect to sets
of invariants.

Each definitional extension in the PSL Ontology cor-
responds to a different invariant used in the classifi-
cation of the models of the ontology. Every class of
activity, activity occurrence, or fluent in an extension
corresponds to a different value for the invariant. The
consequent of a translation definition is equivalent to
the list of invariant values for members of the applica-
tion ontology class.

2OWL-S is an OWL (Ontology Web Language) ontology
for describing Web services, created by a coalition of re-
searchers through the support of the DARPA Agent Markup
Language (DAML) program. OWL-S supplies Web service
providers with a core set of markup language constructs for
describing the properties and capabilities of their Web ser-
vices in unambiguous, computer-interpretable form.

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 23

For example, the above translation definition from
OWL-S, is based on intuitions about preconditions and
effects. Within the PSL Ontology, these arise from the
classification of occurrence trees, which characterize all
sequences of activity occurrences. Not all of these se-
quences will intuitively be physically possible within the
domain; consequently, we need to characterize the sub-
tree of an occurrence tree that consists only of possible
sequences of activity occurrences; such a subtree is re-
ferred to as a legal occurrence tree, and elements of this
subtree are referred to as legal activity occurrences.

Preconditions specify the constraints under which ac-
tivities can legally occur in some domain. The most
prevalent class of occurrence constraints is that of
markovian activities, whose preconditions depend only
on the state prior to their occurrences (e.g., to with-
draw money from a bank account, there must be suffi-
cient funds in the account). However, PSL also contains
the definitions of classes of activities that do not have
markovian preconditions. In such cases, the legal occur-
rences may depend on the time (e.g. the activity can
only occur during office hours), or they may depend on
the occurrences of other activities.

Effects characterize the constraints on how activity
occurrences change fluents. Analogous to the notion
of preconditions, the most prevalent class of activities
is that of markovian activities, activities whose effects
depend only on the state prior to their occurrences (e.g.,
the balance in account after a withdrawal depends only
on the amount withdrawn and the account balance prior
to the withdrawal).

Using Semantic Mappings
The set of translation definitions for all concepts in a
software application’s ontology defines a semantic inte-
gration profile for that application.

For example, suppose Alice’s ontology contains a
class of activities Calice

1 (a) which has unconstrained
preconditions (i.e., they are always possible) and whose
effects are either context-free or they depend only on
the state prior to occurrences of the activities. Sup-
pose that Bob’s ontology contains a class of activities
Cbob

1 (a) whose preconditions are either unconstrained
or markovian and whose effects are context-free. Us-
ing the invariants for the PSL Ontology, the following
translation definitions can be generated:

(∀a) Calice
1 (a) ≡

unconstrained(a)
∧(markov effects(a) ∨ context free(a)).

(∀a) Cbob
1 (a) ≡

(unconstrained(a) ∨markov precond(a))
∧context free(a).

Translation between integration targets may be ac-
complished by applying deduction to the axioms of the
interlingua, the semantic mappings, and the input to be
translated. Given the above example mappings from

the two application ontologies of Alice and Bob into
PSL, the following mappings between the two concepts
may be inferred:

Tpsl |= (∀a) context free(a) ⊃ (Calice
1 (a) ⊃ Cbob

1 (a)).

Tpsl |= (∀a) unconstrained(a) ⊃ (Cbob
1 (a) ⊃ Calice

1 (a)).
The antecedents of these sentences can be considered

to be guard conditions that determine which activi-
ties can be shared between the two ontologies. This
can either be used to support direct exchange, or
simply as a comparison between the application on-
tologies. In this example, the alice can export any
unconstrained activity description to bob and bob can
export any context free activity description to alice;
however, alice cannot import markov precond activ-
ity descriptions from bob and bob cannot import any
markov effects activity descriptions from alice.

The objective of this approach is the integration of
planners with other software, such as scheduling and
simulation engines. Translation definitions have been
specified for the composite process control constructs
of OWL-S (Grüninger & Kopena 2005). Based on
a set of translation definitions, syntactic translators
have been implemented that can export IDEF-3 pro-
cess models and import them into Ilog Schedule (Cio-
coiu, Grüninger, & Nau 2001). Future work will include
the specification of translation definitions for planning
formalisms such as PDDL (Ghallab 1998) and O-Plan
(Tate, Drabble, & Kirby 1994), thus providing a first-
order axiomatization of the intended semantics of their
constructs.

PSL as a Semantic Foundation
Recent work has extended the translation definition ap-
proach (in which PSL serves as a mediating ontology
between source and target ontologies) to the problem
of providing a rigorous model-theoretic foundation for
informal ontologies. One of the most promising efforts
in this direction is in applications of ontologies to the
Semantic Web.

The Semantic Web Services Language (SWSL) is
intended to support richer semantic specifications of
Web services, based on a comprehensive representa-
tional framework that spans the full range of service-
related concepts. Such a framework will enable fuller,
more flexible automation of service provision and use,
support the construction of more powerful tools and
methodologies, and promote the use of semantically
well-founded reasoning about services. For example,
richer semantics can support greater automation of ser-
vice selection and invocation; automated translation of
message content between heterogeneous interoperating
services; automated or semi-automated approaches to
service composition; more comprehensive approaches
to service monitoring and recovery from failure; and
fuller automation of verification, simulation, configura-
tion, supply chain management, contracting, and nego-
tiation of services.

ICAPS 2005

24 Workshop on the Role of Ontologies in Planning and Scheduling

SWSL includes an axiomatized ontology of service
concepts (known as FLOWS, First-order Logic On-
tology for Web Services), which provides the concep-
tual framework for describing and reasoning about ser-
vices. FLOWS is built upon OWL-S and PSL as pri-
mary starting points. From the perspective of OWL-S,
FLOWS represents a more comprehensive ontology, ex-
pressed using a more expressive language, and builds on
more mature conceptual models. From the perspective
of PSL, FLOWS may be viewed as a collection of exten-
sions that situate the description of processes within a
larger context of message-based communications across
networks. Each concept in FLOWS has a first-order
definition using PSL terminology; in this sense, the se-
mantics of the process ontology within FLOWS is ex-
plicitly axiomatized using PSL.

Finally, PSL may also be used as the semantic foun-
dation for past efforts to formalize intuitions about
plans in projects such as the Shared Plan and Activ-
ity Representation (SPAR) (Tate 1998).

New Planning Problems in PSL

Typically, a deductive planning problem is specified as
follows:

• a set of atomic activities

• precondition and effect axioms

• initial state

• goal state

A plan is then a sequence of atomic activities whose
effects achieve the goal.

In this section, we will show how this approach can
be generalized by incorporating the classes of activities
and constraints from the PSL Ontology.

Planning with complex activities Rather than re-
strict the set of activities in a plan to be atomic, we
can include complex activities. The specification of the
planning problem must then incorporate the process de-
scriptions for the complex activities, which specify the
subactivities and the constraints on the occurrences of
the subactivities. The plan will itself be a complex ac-
tivity with the property that the effects of the atomic
subactivities on each branch achieve the goal state (re-
call that each branch of an activity is a sequence of
atomic activity occurrences). The notions of precondi-
tion and effect axioms can also be generalized to com-
plex activities. For example, some fluent is an effect of
a complex activity if it is achieved by some atomic sub-
activity, and not falsified by a later atomic subactivity.

More generally, the specification of the planning
problem can incorporate the distinction between pre-
conditions, conditional activities and triggered activi-
ties. In the first case, the fluents determine if an activ-
ity can possibly occur, although the activity does not
necessarily occur. In the second case, the fluents de-
termine which subactivities occur within an occurrence

of the complex activity. However, with triggered activ-
ities we want to capture the intuition that an activity
must occur if the fluents hold, regardless of whatever
other activities are occurring (e.g. if the alarm is ring-
ing, evacuate the building). Other classes of activities
can also be defined with respect to different kinds of
constraints; for example, there may be activities that
are launched at specific times (e.g. send status reports
every hour) and which are not subactivities of any other
complex activity.

Planning with additional constraints In addition
to achieving the goal state, we can generalize the prob-
lem so that plans must also satisfy additional con-
straints. An example of this is planning in the pres-
ence of external activity occurrences; such plans may
either depend on the occurrence of external activities
or prevent the occurrence of external activities that in-
terfere with the plan. An example of a necessary exter-
nal activity is the arrival of FedEx for package pickup,
whereas an example of a forbidden external activity is
the occurrence of an accident that prevents the FedEx
truck from arriving. Within the PSL Ontology, these in-
tuitions are captured by the property that not all occur-
rences of subactivities need be subactivity occurrences
that are elements of an activity tree; complex activi-
ties can therefore be classified by the constraints on the
subactivity occurrences.

There may also be temporal constraints on subactiv-
ity occurrences, so that the complex activity could not
occur on branches of the occurrence tree that violated
such constraints. For example, problems in logistics
planning often require reasoning about the spoilage of
perishable products – given products with a given shelf
life, find a production and delivery plan that prevents
spoilage from occurring. Similarly, a complex activity
may be defined by requiring that state constraints be
satisfied after all occurrences; branches of the occur-
rence tree in which external activities interfered with
the effects of subactivities could not be branches of the
activity tree of such an activity.

Complex activity synthesis Finally, we can gener-
alize the specification of the planning problem so that
we generate a complex activity in some class, rather
than a plan that is only a sequence of activities. In
practice, this arises most prominently in the context of
automated Web service composition; recent work on the
development of SWSL has considered reasoning prob-
lems for web service specifications such as determining
the consistency of a composite web service and deter-
mining whether a set of atomic services are composable.

Restricted versions of this problem can also be con-
sidered. For example, given a partial specification of a
complex activity, generate a complex activity that is a
consistent extension. In this case, a partial specification
is a process description whose models include multiple
activity trees, each of which contain multiple branches.

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 25

Each activity tree of the synthesized complex activity
is a subtree of some activity tree of the initial complex
activity.

Reasoning about Plans
The above generalizations of the planning problem lead
to an approach in which plans are complex activities.
Since complex activities are objects within the PSL On-
tology, we can explicitly reason about plans within the
language of the ontology, and therefore explicitly define
classes of plans.

The PSL Ontology can be used as a formal frame-
work for the characterization of planning algorithms.
As shown above, PSL can be used to identify which
classes of constraints are included in the specification
of the planning algorithm, as well as to characterize the
properties of plans that are generated by the planning
algorithm.

This supports the comparison of different planning al-
gorithms through the explicit characterization of which
algorithms share the same assumptions about con-
straints and plans. For example, HTN methods may
be characterized by process descriptions that axiom-
atize the relationship between complex activities and
their subactivities; the methods used by different al-
gorithms can then be compared by reasoning over the
process descriptions and their corresponding classes of
activities.

Case Study: Communication Services
and Planning on Mobile Devices

Mobile devices such as laptops, PDAs, smart phones,
and other small, network-capable computing platforms
are an increasingly pervasive element of society. Ubiq-
uitous and mobile computing environments as enabled
by these devices are well suited to leverage service-based
computing:
• Software in ubiquitous computing settings will have

to interact with a wide array of services and applica-
tions. Just a few applications include calendar agents
for arranging meetings, web and email gateways, and
kiosks for retrieving menus, historical data, or other
information. These tasks will require discovering and
utilizing available services developed by any number
of organizations, run on different platforms, and fol-
lowing a variety of protocols.

• Mobile computing features a large and growing body
of hardware platforms, accessories, and operating
systems. Current software is generally limited to the
specific product families and systems for which it is
developed. To increase the cost-efficiency and use-
fulness of mobile software development, it must be
able to operate on the variety of platforms on which
it may be installed and adapt to the capabilities of
the hardware present on the device.

• Networking in mobile computing possesses a num-
ber of properties not found in traditional, wired com-

munications. These include substantial latency, low
bandwidth, unreliable links, and poor connectivity.
Even with optimal network layer support, these envi-
ronments necessitate new approaches in creating ef-
fective applications. Software and agents that can
discover and utilize application and infrastructure
services are uniquely suited to address these chal-
lenges (Kopena et al. 2005).

Example: Calendar Agent. Consider a calendar
on a PDA that synchronizes with a base computer as
events are posted, which in turn relays appropriate up-
dates to co-workers, family, and friends. Cellular and
wireless ethernet capabilities exist on the PDA. Wire-
less ethernet can only connect to the base computer
when in range of an access point. The cellular mod-
ule can always contact the base computer via a satellite
Internet connection. However, it consumes substantial
amounts of power and charges a fee.

To contact the base computer in all situations, the
calendar must discover and utilize both interfaces.
However, use of the cellular interface should be min-
imized: it should not be used if wireless is available or
for minor or far-off updates. Instead, updates should be
collected until several may be transmitted or ethernet
can be used. However, if an imminent change is posted,
the cellular connection should be used so that the base
computer may be notified and begin synchronizing cal-
endars of affected friends, family, or co-workers. Fur-
ther, the calendar must determine and execute the pro-
cess for communicating with the synchronization pro-
gram, such as an authentication step followed by an
update.

It is easy to see that this scenario requires the cor-
rect exchange of service descriptions, and the subse-
quent planning and scheduling on those descriptions to
achieve the goals and satisfy other domain constraints.
Furthermore, since the network may include many plan-
ners of varying abilities, we need to characterize their
capabilities with respect to the expressiveness of the
constraints that they can represent.

Formalization
The structure of the different theories involved in this
is shown in Figure 1. System-wide components allow
agents to exchange descriptions, while agent-specific
theories map that into the agent’s behaviors and rea-
soning.

System-wide Theories. Although an ontology such
as OWL-S offers a more expressive language and formal
semantics in comparison to workflow and Web Services
languages such as BPEL4WS and WSDL, the underly-
ing theory of OWL-S is unclear and there are ambigu-
ities present in the language because of its reliance on
natural language definitions. These deficiencies limit
the role of OWL-S as the foundation for the system-
wide theories. With PSL, on the other hand, we have a

ICAPS 2005

26 Workshop on the Role of Ontologies in Planning and Scheduling

Planning
Problemand Extensions

PSL Core

Framework
Planning

Messages
Agents, Hosts, Domain Supports

Costs, Goals
Internal Actions,

Published Service
Descriptions

Agent−Specific Theories

System−Wide Theories

Figure 1: Relationships between theories involved in sharing descriptions and utilizing services. System-wide theories
facillitate knowledge exchange. Agent-specific theories map that knowledge into an agent’s behaviors and reasoning
mechanisms.

rigorously defined language which is strong enough to
define a wide variety of services, and which is able to
explicitly characterize the range of planning capabilities
within realistic software environments.

A basic theory of agents, hosts, and messages that ex-
tends PSL provides a basis for the terminology about
the entities in this domain. also incorporated on top
of PSL. This provides a shared ontology by which an
agent may communicate about, recognize, and utilize
communication resources. A first order theory of be-
lief based on k -accessibility between occurrences is also
included in the theory. It defines KD (see e.g. (Fa-
gin et al. 1995)), the logic of consistent belief, within
the fluent space of PSL. This enables the expression of
agent interfaces in the form of doxastic activity effects,
as well as an agent’s communication goals. Belief, and
specifically KD, was chosen due to its relatively weak
commitments on agent reasoning abilities and trust.

Domain supports provide shared ontologies with
which agents can talk about preconditions and effects—
constraints that are fairly general and well known, such
as power.

Agent-Specific Theories. The planning framework
provides a characterization and mapping into a planner
or other reasoner, e.g. it might characterize its reason-
ing as a classical plan, HTN, conformant planning, or
even map into a probabilistic method such as an MDP.

The agent’s internal actions, costs, goals, etc. spec-
ify its behaviors, preferences, and possible courses of
action. Together, all of these things define a planning
and scheduling problem which may be fed into some
method or tool to solve and then given to the agent to
execute. This may happen as part of a registry or be
part of the agent itself (on mobile devices, it’s probably
part of the registry, which is part fo why it’s impor-
tant to characterize its abilities, so an agent knows the
power of the host its on).

Calendar Agent Axiomatized
Using all this, agents and communication resources may
then describe their interfaces and abilities, e.g. the base
computer in the Calendar Agent scenario.

∀o, a, s, m · occurrence of(o, a) ∧ legal(o)

∧ message-activity(a, s, SYNC, m) ⊃
[∀c · holds(contents(m, c), o) ⊃
holds(believes(SYNC, c), o)] .

The cellular and wireless interfaces may be described
as:

∀o, a, s, d, m · occurrence of(o, a) ∧ legal(o)∧
sat-msg(a, s, d, m) ⊃ message-activity(a, s, d, m)∧
occ-util-summ(o,−0.5).

∀o, a, s, d, m · occurrence of(o, a) ∧ legal(o)∧
radio-msg(a, s, d, m) ⊃ prior(in-range(s, d), o)∧
message-activity(a, s, d, m) ∧ occ-util-summ(o,−0.1).

The agent’s internal communication activities would be:

activity(defer).

∀o, m, d, n · occurrence of(o, attach(m, update(d, n)))∧
legal(o) ⊃ ∧holds(contents(m, update(d, n)), o).

The agent’s behavior may then be captured as the time-
dependent utility of delivering updates to the base com-
puter:

∀o, c, d, n · holds(current-day(c), o)∧
holds(believes(SYNC, update(d, n)), o) ⊃
occ-util-summ(o, 1− ((d− c)/7)).

With the addition of an episode delimiter defined as
occurrences of defer or message-activity, supporting

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 27

axioms not listed above such as the definition of update,
and closure axioms, a plan based on these definitions
will:
◦ Deliver any update if a wireless connection exists.
◦ Use the satellite interface if warranted by an update

or some collection of updates. For example, any
update concerning the next 3.5 days will be posted
immediately.

◦ Otherwise defer until new updates are posted or
conditions change, e.g. wireless contact is made.

A simple agent may use the PSL Core, Occurrence
Trees, and Discrete States theories. A deductive plan-
ning problem (A, I, ψ,C) → ρ is then defined on top of
that as follows3:
◦ A are the activity axioms, preconditions and effects.
◦ I defines initial fluent state: ∀δi · initial(δi) ⊃

δi |= I.
◦ A chain δ is a sequence of successive legal occur-

rences such that initial(δ1) ∧ δn |= the episode
delimiter ψ.

◦ C defines utility summands µ over occurrences, re-
lated by occ-util-summ(δi, µ).

◦ Occurrence utility, occ-util(δi), is defined as
∑
µ

over {µ|occ-util-summ(δi, µ)}.
◦ Utility of a chain, utility(δ), equals∑

occ-util(δi).
◦ A rational chain δ is a chain such that there does

not exist a δ′ such that utility(δ′) > utility(δ).
◦ A rational plan ρ is then the sequence of activities

associated with the occurrences in a rational chain.

Summary

Within the increasingly complex environments of enter-
prise integration, electronic commerce, and the Seman-
tic Web, where process models are maintained in differ-
ent software applications, standards for the exchange
of this information must address not only the syntax
but also the semantics of planning concepts. These en-
vironments are also distinguished by the expressiveness
required to adequately capture the semantics of the con-
cepts. The Process Specification Language draws upon
well-known techniques from mathematical logic to pro-
vide a robust semantic foundation for the representa-
tion of plan information. In this way, PSL can serve as
a framework for the analysis of existing planning sys-
tems, as well as providing the basis for extensions of the
classical planning problem in future planning systems.

References

Bock, C., and Gruninger, M. 2005. Psl: A semantic
domain for flow models. Software and Systems Mod-
eling to appear.

3Axioms and grammars are omitted for brevity but are
avail. at http://edge.cs.drexel.edu/services/; funda-
mental and closure/frame axioms are omitted from the prob-
lem for simplicity.

Ciocoiu, M.; Grüninger, M.; and Nau, D. 2001. On-
tologies for integrating engineering applications. Jour-
nal of Computing and Information Science in Engi-
neering 1:45–60.
Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y.
1995. Reasoning About Knowledge. Cambridge, Mass.:
MIT Press.
Ghallab, M. e. a. 1998. PDDL: The Planning Domain
Definition Language v.2. Technical Report CVC TR-
98-003. Yale Center for Computational Vision and
Control.
Grüninger, M., and Kopena, J. 2005. Semantic inte-
gration through invariants. AI Magazine to appear.
Grüninger, M., and Menzel, C. 2003. The Process
Specification Language (PSL) theory and applications.
AAAI AI Magazine 24(3):63–74.
Grüninger, M. 2003. Ontology of the process spec-
ification language. In Staab, S., and Studer, R.,
eds., Handbook of Ontologies and Information Sys-
tems, 599–618. Springer-Verlag.
Kopena, J. B.; Cicirello, V. A.; Peysakhov, M.; Malfet-
tone, K.; Mroczkowski, A.; Naik, G.; Sultanik, E.;
Kam, M.; and Regli, W. C. 2005. Network aware-
ness and the Philadelphia-Area Urban Wireless Net-
work Testbed. In AAAI Spring Symposia on AI for
Homeland Security (to appear).
McIlraith, S.; Son, T.; and Zeng, H. 2001. Semantic
web services. IEEE Intelligent Systems, Special Issue
on the Semantic Web 16:46–53.
Tate, A.; Drabble, B.; and Kirby, R. 1994. O-plan: An
open architecture for command, planning, and control.
In Fox, M., and Zweben, M., eds., Intelligent Schedul-
ing. Morgan Kaufmann.
Tate, A. 1998. Roots of spar - shared planning and ac-
tivity representation. Knowledge Engineering Review
13(1):121–128.

Appendix: Overview of PSL Theories

PSL-Core alone is not strong enough to provide defini-
tions of the many auxiliary notions that become nec-
essary to describe all intuitions about manufacturing
processes. To supplement the concepts of PSL-Core,
the ontology includes a set of extensions that intro-
duce new terminology. Extensions to PSL-Core defining
the core theories include axiomatizations of occurrence
trees, discrete states, subactivities, atomic activities,
and complex activities.

Occurrence Trees The occurrence trees that are ax-
iomatized in the core theory Tocctree are partially or-
dered sets of activity occurrences—for a given set of
activities, all discrete sequences of their occurrences are
branches of a tree. An occurrence tree contains all oc-
currences of all activities, not simply the set of occur-
rences of a particular (possibly complex) activity. As

ICAPS 2005

28 Workshop on the Role of Ontologies in Planning and Scheduling

each tree is discrete, every activity occurrence in the
tree has a unique successor occurrence of each activity.

There are constraints on which activities can possibly
occur in some domain. This intuition is the cornerstone
for characterizing the semantics of classes of activities
and process descriptions. Although occurrence trees
characterize all sequences of activity occurrences, not
all of these sequences will intuitively be physically pos-
sible within the domain. We will therefore want to con-
sider the subtrees of the occurrence trees that consist
only of possible sequences of activity occurrences; such
a subtree is referred to as a legal occurrence tree.

Discrete States The core theory Tdisc state intro-
duces the notion of fluents (state). Fluents are changed
only by the occurrence of activities, and fluents do
not change during the occurrence of primitive activi-
ties. In addition, activities have preconditions (fluents
that must hold before an occurrence) and effects (flu-
ents that always hold after an occurrence).

Subactivities The PSL Ontology uses the
subactivity relation to capture the basic intuitions for
the composition of activities. This relation is a discrete
partial ordering in which primitive activities are the
minimal elements.

Atomic Activities The core theory Tatomic axiom-
atizes intuitions about the concurrent aggregation of
primitive activities. This is represented by the occur-
rence of concurrent activities, rather than concurrent
activity occurrences.

Complex Activities The core theory Tcomplex char-
acterizes the relationship between the occurrence of a
complex activity and occurrences of its subactivities.
Occurrences of complex activities correspond to sets of
occurrences of subactivities; in particular, they form
subtrees of the occurrence tree. An activity tree con-
sists of all possible sequences of atomic subactivity oc-
currences beginning from a root subactivity occurrence.
In a sense, activity trees are a microcosm of an occur-
rence tree, in which we consider all of the ways in which
the world unfolds in the context of an occurrence of the
complex activity.

Each activity tree is composed of a set of isomor-
phic copies of a unique minimal activity tree consisting
only of subactivity occurrences. Not every occurrence
of a subactivity is a subactivity occurrence; there may
be other external activities that occur during an oc-
currence of an activity, or subactivity occurrences may
need to satisfy temporal constraints. Within models of
Tcomplex, these constraints on subactivity occurrences
are captured by different ways of embedding the mini-
mal activity tree into the activity tree.

Subactivity Occurrence Ordering This extension
axiomatizes different partial orderings over subactivity

occurrences within a complex activity. In general, or-
dered activities have the property that any branch of
the activity tree of an ordered activity satisfies the or-
dering constraints, although there may be sequences of
subactivity occurrences that satisfy the ordering con-
straints yet which do not correspond to branches of
the activity tree. The Subactivity Occurrence Or-
dering theory captures a stronger notion of ordering
that is typically captured by flow diagrams ((Bock
& Gruninger 2005)) and workflow control constructs
((McIlraith, Son, & Zeng 2001)). For example, the
subactivity occurrences of a Split activity in OWL-S
are partially ordered, such that every linear extension
of the ordering corresponds to a branch of the activity
tree. Similarly, the subactivity occurrences of a Un-
ordered activity in OWL-S are partially ordered, such
that all subactivities are incomparable and every linear
extension of the ordering corresponds to a branch of the
activity tree.

Duration The timeline axiomatized within PSL-Core
is simply an infinite linear ordering. The Duration core
theory augments PSL-Core with a metric over the time-
line, and the ability to identify the timepoint that is
some duration after some other timepoint. Since each
activity occurrence has a unique beginof timepoint and
endof timepoint, the notion of duration can be extended
to activity occurrences. Furthermore, it become possi-
ble to specify new classes of duration-based constraints,
such as duration-dependent effects and notions such as
spoilage (in which it is not possible for an activity occur
within some duration of another activity occurrence).

Resource Requirements This core theory specifies
the conditions that must be satisfied by any object that
is a resource for an activity. The axiomatization of re-
sources centers on the notion of interacting activities.
Two activities are interacting if there exist properties
of activities that are no preserved by their composi-
tion into a more complex activity. For example, the
effects of two activities that occur in isolation may not
be preserved if they are performed concurrently. Two
activities may possibly occur separately, but the com-
plex activity that contains both as subactivities may
not possibly occur because the effects of one falsify the
preconditions of the other. The axioms of the Resource
Requirement core theory state that for any set of inter-
acting activities there exists a resource that is shared
by the activities. This supports a higher level of ab-
straction for reasoning about interactions between sub-
activities.

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 29

A Portable Process Language

Peter E. Clark1, David Morley2, Vinay K. Chaudhri2, Karen L. Myers2

1
M&CT, Boeing Phantom Works, PO Box 3707, Seattle, WA 98124

2
Artificial Intelligence Center, SRI International, Menlo Park, CA 94025

peter.e.clark@boeing.com, {morley,chaudhri,myers}@ai.sri.com

Abstract
Process representation languages designed to support execution
have evolved to support specialized reasoning capabilities like
action selection and task decomposition, but do not readily
support inferences that one might need for explanation or
question answering. In this paper, we report on a process
language, PPL, that we have designed to serve as a bridge
between a representation designed for execution and a
representation designed for applications such as question
answering and explanation generation. Through its use of a
propositional-style representation of process structure, PPL can
enable the use of generalized reasoning methods for those
purposes. PPL is novel in that it directly encodes the process
"flow chart" in a neutral, KIF-like syntax, allowing other modules
to introspect on the process structure.

Introduction
SPARK (SRI Procedural Agent Realization Toolkit)
[Morley and Myers 04] is an agent framework that builds
on a Belief-Desire-Intention (BDI) model of rationality.
SPARK provides a flexible plan execution mechanism that
interleaves goal-directed activity and reactivity to changes
in its execution environment. SPARK's procedural
language has a clear, well-defined formal semantics that
can support reasoning techniques for procedure validation,
synthesis, and repair. The SPARK representation language
(called SPARK-L) is an extended form of Hierarchical
Task Network (HTN) representation [Erol et al. 04].
Extensions beyond standard HTN include iteration,
conditional branching, and certain runtime-specialized
constructs (WAIT, TRY).

SPARK includes a comprehensive API for monitoring
executing procedures—called procedure instances—
allowing external modules to view the "trace" of a
procedure's execution. For example, by using this API an
external module can find the specific task(s) currently
being executed, and trace back to find specific previously
executed tasks and their details. However, while allowing
access to how a general procedure is playing out, this API
does not allow access to the general "flow chart" of the
procedure itself, for example, to find possible future tasks,
choice points, cycles, and alternative ways the procedure

may play out. However, many tasks require that a system
be able to introspect on its own general procedures, in
particular language understanding, question answering,
and explanation. This has been particularly true in the
context of CALO, an integrated cognitive assistant.1 As a
result, we have enhanced SPARK with a second API
allowing it to export (an abstraction of) its general
procedures also. These exported procedures are expressed
in logic in Portable Process Language (PPL), a language
we have designed for this purpose, complementing
SPARK-L, the native process language of SPARK. The
goals of PPL are to make explicit the steps, their
arguments, and their relationships in the procedures, and to
abstract away some of the details critical for execution but
not needed for introspection.

As a close analogy, consider a system wanting to
introspect on a piece of software, but only having an API
to the trace of that software executing. The system could,
of course, literally try to parse the source code
representation of the software and try to work out what it
did (in fact, some software analysis tools do exactly this),
but this requires the system to have a complete internal
model of the programming language, both syntax and
semantics. Instead, it would be nice if the software could
export a high-level summary of its behavior—literally, a
flow-chart-like data structure—that other systems could

1 See http://www.ai.sri.com/project/CALO

ICAPS 2005

30 Workshop on the Role of Ontologies in Planning and Scheduling

then manipulate, expressed in some relatively
implementation-independent language. Our goal is that
PPL be such a language, in the specific context of SPARK-
like planning systems.

In this paper, we describe a simplified version of the
SPARK language and how it is executed, the reasoning
requirements, PPL, and experiences in using the language
in the context of an agent system. We conclude with
directions for future work.

Description of SPARK Process Language
The SPARK process language provides a hierarchical
representation of processes. A library of procedures
provides declarative representations of activities for
responding to events and for decomposing complex tasks
into simpler tasks. Each procedure has a precondition
stating conditions under which it can be applied, and a task
network expression describing how to respond to an event
or to decompose a non-primitive action. The hierarchical
decomposition of tasks bottoms out in primitive actions
that bring about some change in the outside world or the
internal state of the agent. A SPARK agent specification
includes declarations of predicate and task symbols, facts
about the initial state, and a library of procedures. The key
syntactic structures include term expressions, logical
expressions, actions, task expressions, and procedures.

A term expression represents a value. Atomic term
expressions are constants such as 42 and "Hi", and
variables of the form $x. These are combined to form
compound term expressions, including lists such as [1 2
3].

Logical expressions are constructed from predicate (fluent)
symbols applied to term expressions, e.g., (= 1 $x),
(True), logical operators, and quantifiers. These
expressions can be used to alter the flow of execution or to
bind variables for use later in the procedure.

An action is constructed from an action symbol and term
expressions as parameters, for example, (laptop_query
$criteria $quotes). The action may be primitive,
which is performed by executing some procedural
attachment, or nonprimitive, which is hierarchically
expanded into subtasks using procedures. The parameters
of an action may include free variables that are not bound
at the time the action is attempted. These variables are
bound by the successful execution of the action and
provide a means of returning values from executing the
action.

A task network expression is a pattern of activity that when
attempted may either succeed or fail. Task network
expressions include such constructs as

[set: V T] - Set variable V to the value T.
[do: A] – Perform action A.
[seq: N1 N2 …] – Attempt task networks N1, N2, …
sequentially.
[parallel: N1 N2 …] – Attempt task networks N1, N2,
… in parallel.
[select: P1 N1 P2 N2 …] – Execute the task expression
Ni corresponding to the first logical expression Pi that has
a solution. Fail if none has a solution.
[wait: P1 N1 P2 N2 …] – As select, but wait instead of
failing.
[while: P N] – While P has a solution execute N.

At its simplest, a SPARK procedure has the form
{defprocedure name cue: trigger precondition: P
body: N}

This indicates that if P is true when trigger occurs, then
executing N is a valid way of responding. The cue may be
of the form [newfact: P] to respond to the fact P being
added to the KB, or [do: A] to expand the action A.

For example, the following procedure, Get_Bid, describes
one way of expanding the task of performing action
find_bids. It is applicable if the condition (Online
"DM4QR") holds. It performs a laptop_query action that
binds variable $temp_quotes and then depending upon
whether or not this list is empty, either performs
relax_and_redo_query, binding $quotes, or binds
$quotes to $temp_quotes.

{defprocedure Get_Bid
 cue:
 [do: (find_bids $item $criteria $quotes)]
 precondition: (Online "DM4QR")
 body:
 [seq:
 [do: (laptop_query $criteria
 $temp_quotes)]
 [select:
 (= $temp_quotes [])
 [do: (relax_and_redo_query $criteria
 $quotes)]
 (True)
 [set: $quotes $temp_quotes]]]}

SPARK Process Execution
Figure 1 shows the architecture of each SPARK agent.
Each agent is embedded in the world and interacts with the
world though sensors and effectors. Each agent has its own
knowledge base of beliefs and library of procedures. The
initial state of the beliefs and procedure library are initially
loaded from files written in the SPARK language. The
beliefs are updated by the agent's sensors and through the
agent executing procedures. The set of procedure instances
that the agent is executing at a given time form the
intentions of the agent. At any time an agent may be
executing multiple intentions. At SPARK's core is the

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 31

executor whose role is to manage the execution of
intentions. The executor can post procedure subtasks as
actions. Primitive actions cause effects through the
effectors. Non-primitive actions are expanded by the
executor according to the procedures the agent has
available.

SPARK process execution proceeds as follows: (1)
Sensors update the agents beliefs. (2) These belief changes
trigger the instantiation of procedures - those with a cue
that matches the event and a precondition that is satisfied
with respect to the agent’s beliefs. (3) A subset of these
applicable procedures is selected to be added to the
intentions. (4) The executor selects one intended procedure
instance to progress by executing a single step. (5) This
may cause updates to the beliefs or the posting of new
subtasks. (6,2) This in turn triggers the instantiation of
procedures, and so on.

The step by step execution of each procedure instance
results in the binding of values to variables in the
procedure instance. Each predicate that is tested or action
that is executed results in all free variables becoming
bound. Usually when a logical expression (such as may
appear in a context: or select: task network expression) is
tested, SPARK needs to commit to a single solution
without the possibility of backtracking.

The approach that SPARK and many other BDI agent
systems take to the hierarchical expansion of tasks is based
on an expectation that the agent is working in a highly
dynamic environment: the expansion of tasks is performed
at the time the task is to be executed and the choice of the
procedure to use is based on the current state of the agents
beliefs. BDI agent systems have been integrated with
planning systems (e.g., [Myers 99, Lemai and Ingrande
04]) however SPARK currently has no planning
component.

Reasoning Requirements

We consider here the reasoning requirements for three
applications, and how introspection on the process model
itself is necessary to support them: (1) dialog
interpretation, (2) question answering, (3) explanation
generation.

Reasoning Requirements for Dialog Interpretation
Robust language processing is challenging in that what the
user says can be ambiguous, incomplete, and erroneous. In
the context of the CALO system that we are developing,
one class of dialogs (between the user and computer) that
we have been studying is "purchase dialogs", where the
user is directing CALO to purchase an item on the user’s
behalf. In these dialogs, these problems can all occur, and
resolution of them requires the system to have strong
expectations, hence requiring knowledge of the processes
themselves.

For example, while instructing CALO to buy a computer,
if the user says "Find me an appropriate machine", the user
actually means "You have authorization to start retrieving
quotes from vendors for the laptop I want to purchase" (as
opposed to, for example, start physically searching the
building to find machines). To find the correct
interpretation, CALO needs to have strong expectations
about what sort of activities may occur in the future, and
then match the user's utterance with those expectations. In
this case, CALO contains a process model of how to
purchase items, and as this process model is currently
active (triggered by earlier statements by the user, such as
"I want to purchase a laptop"), CALO should be able to
look at future steps that could be construed as "finding a
machine" to identify what the user is referring to. In this
case, a subsequent step in the process is to retrieve quotes
for the to-be-purchased computer, and a matching
algorithm can identify this as the most likely thing to
which the user is referring [Yeh et al. 03]. To do this, the
system needs to introspect on its general purchase plan
(procedure), to identify that a future step that can be
construed as "finding" will occur.

Reasoning Requirements for Question Answering
As a general-purpose assistant, CALO is expected to field
answers to a wide variety of questions from a user,
including about its (CALO's) own knowledge of how to do
things. While SPARK's execution trace API allows CALO
to answer questions about specific things it has done (e.g.,
"When you purchased the laptop, did you request
authorization?"), CALO also needs knowledge of the
procedural flow chart itself for more general questions
about procedures, for example,

1. How do you purchase a laptop?

Figure 1: The Architecture of each SPARK agent.

ICAPS 2005

32 Workshop on the Role of Ontologies in Planning and Scheduling

2. Will you need to access to the Web during the
purchase?

3. Is authorization required [i.e., is there an
authorization step] to purchase a laptop over
$2000?

4. What will happen if the authorizing manager is
unavailable?

5. Email the quotes you find to my home email
address.

6. Get authorization from Joe, not Steve.

The first four of these questions are independent of any
specific execution of the procedure, and necessarily
require access to the general procedure itself to answer the
questions. The last two questions are in the context of a
partially executed procedure, in which the user is making
reference to a to-be-executed future step. Again with these
two questions, the system needs a representation of the
general procedure to identify the future step to which the
user is referring (these are not in the execution trace, as
they have not yet happened).

Requirements for Supporting Explanation
In a related piece of work reported elsewhere, we are
working on explaining processes. Answering "why"
questions particularly requires introspecting not just on
what happened, but the specific tests and conditions that
caused those things to happen, a particular form of meta-
reasoning. Again, knowledge of the structure of the
process flow chart is often required to answer these
questions, including details of tests directing flow of
execution at branch points, and details of how earlier steps
support later steps. (In its current form PPL does not
capture all this knowledge, but it is a step toward this.)
Example questions from the user to CALO include

1. Why didn't you ask for authorization?
2. Why did you send the purchase request to Dallas?
3. Why haven't you started searching yet?

Portable Process Language (PPL)

Overview
To meet the reasoning requirements already identified, we
must be able to introspect SPARK processes to obtain
information as follows: What tasks are involved in task X?
What task comes after task Y? Might task Z occur in
process W? The goal of the Portable Process Language
(PPL) is to represent just this kind of "flow chart"
information. PPL captures a filtered view of the SPARK
process models to include tasks, subtasks, task parameters,
and task ordering. It does not currently capture the
semantics of conditional tests, context, and other logical
evaluations. Such extensions can be added in the future.

We now describe PPL, and then describe how it
complements PSL (Process Specification Language), a
language that captures the semantics but not the explicit
structure of a process flow chart.

Consider a toy example of a two-step process—namely,
going to work—with a trivial two-step flow chart
consisting of (i) entering a car and then (ii) driving the car
to work:

The PPL for a skolem instance process is follows:

;;; Steps in the flow chart
(instance-of goto-work1 goto-work-step)
(instance-of enter1 enter-step)
(instance-of drive1 drive-step)

(possibleTask goto-work1 enter1)
(possibleTask goto-work1 drive1)
(followedBy enter1 drive1)

;;; Parameters to those steps
(instance-of person1 person-var)
(instance-of car1 car-var)

(agent goto-work1 person1)
(object goto-work1 car1)

(agent enter1 person1)
(object enter1 car1)

(agent enter1 person1)
(object drive1 car1)

In PPL, each of the steps in the flow chart is denoted by a
specific individual. Note that these individuals are not
instances of events in the world (e.g., the specific event of
entering the car at a certain time); rather, they are instances
of steps in a flow chart. Similarly, each parameter (e.g., the
person, the car) for a flow chart step is denoted by a
specific individual. Again, note that these individuals are
not instances of objects in the world (e.g., a specific person
or car); rather, they are instances of parameters (variables)
in the flow chart. In other words, PPL is a somewhat literal
logical depiction of flow chart steps, rather than of event
sequences. We can relate flow chart steps to event types

Goto Work

Enter Drivethen
substeps

Person Car
agent

agent
object

object

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 33

(classes), and flow chart parameters to object types
(classes), with some simple correspondence statements:

(event-type-for goto-work-step goto-work)
(event-type-for enter-step enter)
(event-type-for drive-step drive)
(object-type-for person-var person)
(object-type-for car-var car)

where goto-work, enter, drive are types (classes) of actual
events in the world, and person, car are types (classes) of
actual objects in the world.

Given a PPL flow chart, in principle one could "execute" it
to perform the plan it denotes. However, the AI planning
community has long matured beyond these kinds of "toy"
executions—in the real world, plan execution also involves
plan monitoring, recovery in the case of failure,
consideration of time and resource constraints, and so on.
To adequately represent such executable processes, much
richer languages are needed, and this is precisely the role
of SPARK. Rather, one should view PPL as capturing a
simple abstraction of a complex executable process, in a
language-neutral form suitable for introspection, to support
the kinds of tasks discussed earlier.

For contrast, a simple SPARK representation of the above
procedure would be

{defprocedure Goto_Work_by_Car
 cue: [do: (goto_work $person $car)]
 precondition: (True)
 body:
 [seq: [do: (enter $person $car)]
 [do: (drive $person $car)]]}

While suitable for execution, this syntactic structure is
more difficult to manipulate for introspection. Note also
that some information in this SPARK representation is
implicit: PPL makes explicit the step ordering (implicit in
the ordering of lines of SPARK-L representation) and step-
substep relations (implicit in the grouping of tasks within a
single procedure in SPARK-L). This allows other tools
easy access to the process itself.

Conditionals
PPL denotes conditional branches in a flow chart using a
predicate

(conditionalFollowedBy <step> <test> <next-step>)

meaning that if execution is at <step>, and <test> evaluates
to true, then the next step will be <next-step>. At present,
<test> is the opaque (quoted) logical expression copied
from the SPARK-L test itself, but our plan is to replace
this with a transparent logical expression, whose variables
include the parameter instances in the rest of the PPL. For
example, from the SPARK procedure for purchasing a

laptop, the step "relax-and-redo" follows "laptop-query"
only if no quotes were found. This appears in PPL as

(conditionalFollowedBy laptop-query1
 (and "(= $temp_quotes [])")
 relax-and-redo1)

This allows the external systems to see that relax-and-
redo1 is a possible next step in the plan, but not at present
to understand details of conditions under which it will be
executed (unless it was to parse the quoted logical
expressions).

Additional Representational Properties
While it is not our intention that PPL capture the full
details of the original SPARK process models, it is clear
that there are additional details that should be captured.
These include preconditions, "cue" conditions, and better
handling of logical assertions and tests in the original
SPARK. These are all items for future work.

How PPL is Generated
The PPL is generated by introducing specific individual
names for each variable, for the cue task, and for each
atomic step, such as [do: A] in the procedure. SPARK
action symbols, such as enter, become event types. Type
and role declarations for the actions are translated into
object type statements and role statements. Thus, for an
action enter with parameter roles agent of type person and
object of type car, we translate

[do: (enter $person $car)]
into

(instance-of enter1 enter-step)
(event-type-for enter-step enter)
(agent enter1 person1)
(instance-of person1 person-var)
(object-type-for person-var person)
(instance-of car1 car-var)
(object-type-for car-var car)
(object enter1 car1)

Each of the specific individuals corresponding to the
atomic steps is related to the individual corresponding to
the cue by possibleTask. These tasks are considered only
“possible” because conditional branching or unexpected
failures may prevent the tasks from being attempted:

(possibleTask goto-work1 enter1)

Of more interest is the ordering relationship between the
atomic steps, represented by the followedBy and
conditionalFollowedBy predicates. Determining this
relationship requires walking over the body task network
expression, and keeping track of all the possible prior

ICAPS 2005

34 Workshop on the Role of Ontologies in Planning and Scheduling

atomic steps and the sequences of conditions that must be
satisfied for the current step to follow each of these. We
have to consider multiple prior atomic steps when
considering a step following a parallel or select construct.
An atomic step following a context construct or within a
select or wait will be executed only if the appropriate
conditions holds, and there may be multiple conditions
between the execution of one atomic step and another. To
translate iterative constructs, we need to introduce “null”
tasks to link the start and end of the loop.

For simplicity, we have ignored the possibility of
alternative procedures for the same action. However, this
can be represented by making each procedure a subtype of
the event type for the action, and the making the cue an
instance of a step of that subtype.

PPL and other Languages

PPL and PSL
A well-known standard for process representations is the
Process Specification Language (PSL) [Gruninger 04], a
logic-based standard for capturing the semantics of
processes.
PPL is intended as a complement to, rather than competitor
of, PSL, as it captures process knowledge in a different
way. The most significant difference between PPL and
PSL is that PSL's representation of the ordering of steps is
in terms of actual events ("activity occurrences"), while
PPL orders the abstract flow chart steps ("activities")
themselves. For example, in PSL the above toy plan for
going to work would be

% enter is a subactivity of going to work
(forall (?person ?car)
 (subactivity (goto-work ?person ?car)
 (enter ?person ?car)))

% driving is a subactivity of going to work
(forall (?person ?car)
 (subactivity (goto-work ?person ?car)
 (drive ?person ?car)))

% In all occurrences of going to work, a driving
occurrence
% follows a entering occurrence.
(forall (?occ ?person ?car)
 (implies (occurrence_of ?occ (goto-work ?person ?car))
 (exists (?occ1 ?occ2)
 (and (occurrence_of ?occ1 (enter ?person ?car))
 (occurrence_of ?occ2 (drive ?person ?car))
 (subactivity_occurrence_of ?occ1 ?occ)
 (subactivity_occurrence_of ?occ2 ?occ)
 (successor ?occ1 ?occ2)))))

The last axiom states that for all occurrences of going to
work, there will be an occurrence of entering followed by
an occurrence of driving. While this makes the semantics
of the original flow chart explicit, the actual structure of
the flow chart has been lost (the simple relationship “enter
→ drive” is expressed as a complex quantified logical
expression).

In principle one could perhaps recover the original flow
chart by reverse-engineering it from these PSL axioms,
either by parsing the axioms themselves1 or by theorem
proving the general relationships (e.g., proving that driving
always follows entering in goto-work). However, neither
of these options is particularly easy. In contrast, our goal
with PPL is to preserve the original flow chart structure so
that it is directly accessible for other agents. One could
imagine extending PSL to include some predicate
"macros" that would allow the general flow chart
relationships to be made explicit, and which would also
expand to the traditional PSL axioms such as those shown
above. Conversely, PSL makes explicit the actual
semantics of the flow chart, and PSL could be generated
from PPL if one wanted to make these semantics explicit
(indeed, PPL could be a “straw man” candidate for such
PSL “macros”).

PPL and OWL-S
OWL-S is a OWL-based Web service ontology, which
supplies Web service providers with a core set of markup
language constructs for describing the properties and
capabilities of their Web services in an unambiguous,
computer-interpretable form. Like PPL, OWL-S represents
generic procedures themselves, and similarly uses
individuals to denote process objects and parameters used
by those processes (In this sense, PPL is more similar to
OWL-S in approach than to PSL). Generally speaking,
OWL-S process is not a program to be executed. It is a
specification of the ways a client may interact with a
service. A process can generate and return some new
information based on information it is given and the world
state, or it can produce a change in the world. This
transition is described by the preconditions and effects of
the process. Processes can be atomic or composite. The
composite processes may have control structure such as
sequence, parallel, split, join, if-then-else, etc.

Clearly, the scope and the applicability of OWL-S is much
different from either SPARK-L or PPL. In terms of
expressiveness, OWL-S is comparable to SPARK-L as
both are expressive process description languages. OWL-
S, PPL, and SPARK-L all use similar representations for

1 Mike Gruninger reports that a group has done this for a
database application, but that this relies on an assumed
syntactic regularity in the axioms in order to make parsing
feasible [personal communication].

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 35

inputs, outputs, and results. Over and above this shared
core, PPL provides a representation for the control
structure in a process by using the followedBy relation.
The current design of PPL is limited to just that. PPL is a
subset of SPARK-L designed to support the requirements
of reasoning applications. If one were to perform a similar
reasoning over OWL-S processes, a PPL-like subset will
need to be identified in order to avoid the potential overkill
of using OWL-S in its entirety. In a similar vein, PPL has a
simple KIF-like syntax, intended to be easily generated
and processed by sending/receiving applications, both
abstracting out some details and making some implicit
semantics of SPARK-L explicit (e.g., event ordering). In
contrast, OWL-S is specifically designed to support Web-
based services, and hence uses an RDF-based syntax,
clearly appropriate for Web-based applications but
possibly more cumbersome to deal with in the wider
context of process communication. Conversely, OWL-S
(and similarly BPEL4WS, the Business Process Execution
Language for Web Services) has gone further than PPL in
defining different types of process ordering and
parallelism. Some of these constructs would be useful to
incorporate in PPL as it matures.

Experience Using PPL
PPL directly represents the steps in a procedure, the
parameters of those steps, and their ordering. This
representation allows a user's ambiguous utterances (e.g.,
”find me”) to be matched against expected tasks in the
procedure (e.g., ‘‘find_computer”) to identify the user's
intent.

We have implemented a translator from the SPARK
representation language to PPL. Using this translator, we
exported SPARK process models. Using the exported
process model, we ran a suite of tests on a dialog
interpretation module, and for answering questions. In both
cases, the system was able to resolve the user's utterances
correctly in a simple, scripted dialog, illustrating proof of
concept. Obviously, this is only a first step, but the
demonstrated feasibility of the mechanism is encouraging.

Future Plans
The work we have reported here is just an initial attempt at
developing a representation that will bridge the
requirements of executing a process, and being able to
answer questions about it. Clearly, more work needs to be
done. First, the language needs to be extended to capture a
larger subset of SPARK-L representation. The current
PPL ignores many of the details of a process model, for
example, the conditions. Second, we would also like to
use PPL for specifying and/or modifying existing
processes, e.g., through interaction with the user. This
latter goal requires reversing the information flow so that

PPL is used to generate SPARK-L, rather than the reverse.
Currently PPL is too impoverished to support this, but with
some small extensions this should be possible, so that
either the PPL contains enough information to
generate/modify a SPARK process, or suitable software
can be written to “fill in the gaps” appropriately (and
perhaps interactively) when passing information back to
the execution environment.

Although PPL is still preliminary, the general idea of
distinguishing representations for execution and
representations for introspective reasoning has proved
fruitful in our work, and one which we believe will
continue to have value as our project progresses further.

Acknowledgement
This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under
Contract No. NBCHD030010. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the Defense Advanced Research Projects Agency
(DARPA), or the Department of Interior-National Business
Center (DOI-NBC).

References
Myers, K. L. CPEF: A Continuous Planning and Execution
Framework. AI Magazine, vol. 20, no. 4, 1999.

Lemai, S., Ingrande, F. Interleaving Temporal Planning
and Execution in Robotics Domains, AAAI 2004, July 25-
29, 2004, San Jose, California, USA.

Morley, D. and Myers, K. The SPARK Agent Framework,
in Proc. of the Third Int. Joint Conf. on Autonomous
Agents and Multi Agent Systems (AAMAS-04), New York,
NY, pp. 712-719, July 2004.

Yeh, P., Porter, B., and Barker. K. Using Transformations
to Improve Semantic Matching. Second International
Conference on Knowledge Capture, October 23-25, 2003.

Gruninger, Michael. Ontology of the Process Specification
Language, in Handbook of Ontologies, pp575-592, Ed: S.
Staab, R. Dtuder, Berlin: Springer (2004).

Erol, K., Hendler, J., and Nau, D. Semantics for
Hierarchical Task-Network Planning. Technical Report
CS-TR-3239, Computer Science Department, University
of Maryland, 2004.

ICAPS 2005

36 Workshop on the Role of Ontologies in Planning and Scheduling

Abstract
In the last decades, many advances have been made
in intelligent planning systems. Significant im-
provements related to core problems, providing
faster search algorithms and shortest plans have
been proposed. However, there is a lack in re-
searches allowing a better support for a proper use
and interaction with planners, where, for instance,
visualization can play an important role.
This work proposes a general framework for visu-
alisation of planning information using an ap-
proach based on semantic modelling. It intends to
enhance the notion of knowledge-based planning
applying it to other aspects of planning, such as
visualisation. The approach consists in an inte-
grated ontology set and reasoning mechanism for
multi-modality visualisation destined to collabora-
tive planning environments. This framework will
permit organizing and modelling the domain from
the visualisation perspective, and give a tailored
support for presentation of information.

1 Introduction
The need for a broader use of knowledge-based planning
has been discussed in recent years. In [Wilkins and desJar-
dins, 2001] it is advocated that the use of knowledge-based
planning will bring many advantages to the area, mainly
when focusing in solving realistic planning problems. Com-
plex domains can benefit from methods for using rich
knowledge models. In this perspective, among the existing
planning paradigms, hierarchical task network (HTN) [Erol
et al., 1994] is the one more appropriate to this proposition,
in contrast to methods that use a minimal knowledge ap-
proach, such as the ones using a simple knowledge repre-
sentation such as these based on STRIPS [Fikes and Nils-
son, 1971]. However, despite the HTN paradigm having
many advantages, it also has limitations. So, there are many
researches opportunities in order to improve and permit a
broader use of knowledge models in real world planning
problems.

According to [Wilkins and desJardins, 2001] and based on
their experience in planning for military and oil spill do-

mains, the following capabilities are needed to solve realis-
tic planning problems: (1) numerical reasoning, (2) concur-
rent actions, (3) context –dependent effects, (4) interaction
with users, (5) execution monitoring, (6) replanning, and (7)
scalability. However, the main challenges in real-world do-
mains are that they cannot be complete modelled, and con-
sequently they raise issues about planner validation and cor-
rectness. So, in order to make AI planning technology useful
for realistic and complex problems there is a need of im-
provement of the use of knowledge models in several as-
pects related to planning; and the development of methods
and techniques able to process and understand these rich
knowledge models.

Three types of planning knowledge are identified by [Kautz
and Selman, 1998]: (1) knowledge about the domain; (2)
knowledge about good plans; and (3) explicit search-control
knowledge. [Wilkins and desJardins, 2001] extended this
list about planning knowledge mentioning that knowledge-
based planners also deal with: (4) knowledge about interact-
ing with the user; (5) knowledge about user’s preferences;
and (6) knowledge about plan repair during execution.

Recent researches are following these principles to develop
more expressive knowledge models and techniques for
planning. For instance [McCluskey and Simpson, 2004] is
proposes work in this perspective of knowledge formulation
for AI planning, in a sense that it provides support to
knowledge acquisition and domain modelling. GIPO
(Graphical Interface for Planning with Objects) consists of a
GUI and tools environment to support knowledge acquisi-
tion for planning. GIPO permits knowledge formulation of
domains and description of planning problems within these
domains. It can be used with a range of planning engines,
since that the planners can input a domain model written in
GIPO and translate into the planner's input language. GIPO
uses an internal representation that is a structured formal
language for the capture of classical and hierarchical HTN-
like domains. Consequently it is aimed at the classical and
hierarchical domain model type. The advantages of GIPO
are that it permits opportunities to identify and remove in-
consistencies and inaccuracies in the developing domain
model, and guarantees that the domains are syntactically
correct. It also uses predefined “design patterns”, that are

Semantic Support for Visualisation in Collaborative AI Planning

Natasha Queiroz Lino, Austin Tate and Yun-Heh (Jessica) Chen-Burger
Centre for Intelligent Systems and their Applications
School of Informatics - The University of Edinburgh

Appleton Tower - Room 4.12, Crichton Street, Edinburgh, EH8 9LE, UK
{natasha.queiroz, a.tate, jessicac}@ed.ac.uk

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 37

called Generic Types, that gives a higher level of abstraction
for domain modelling. To permit a successful use of AI
planning paradigms GIPO has an operator induction proc-
ess, called opmaker aimed at the knowledge engineer that
doesn't have a good background in AI planning technology.
The GIPO plan visualiser tool allows engineers to graphi-
cally view the output of successful plans generated by inte-
grated planners. However it assumes knowledge about the
domain.

Based on these ideas of a knowledge enrichment need in AI
planning, in this paper we argue that this vision should be
even more augmented in other aspects of planning. Our
claim is that knowledge enhancement can bring benefits to
other areas, and we highlight the planning information visu-
alisation area. Knowledge models developed from the in-
formation visualisation perspective will permit modelling
and reasoning about the problem, and in this paper we con-
tribute present our approach of semantic support for visuali-
sation in planning systems

The remainder of this document is organised as follows.
Section 2 presents the approach overview and architecture.
Section 3 details the knowledge models in which our ap-
proach is based. Section 4 discusses an information visuali-
sation reasoning motivation in the I-Rescue domain. Finally,
we draw some conclusions on Section 5.

2 Framework Approach Overview and Ar-
chitecture

This work proposes a way to address the problem of visuali-
sation in intelligent planning systems via a more general
approach. It consists in the development of several semantic
models which when used together permit the construction of
a reasoning mechanism for multi-modality visualisation
destined for collaborative planning environments. This
framework will permit organizing and modelling the domain
from the visualization perspective, and give a tailored sup-
port of information presentation.

The framework is divided in two main parts: a knowledge
representation aspect and a reasoning mechanism. In the
knowledge representation aspect of this work, a set of on-
tologies permits organising and modelling the complex
problem domain from the visualisation perspective. The
reasoning mechanism will give support to reasoning about
the visualisation problem based on the knowledge base
available and designed for realistic collaborative planning
environments.

The main aspects considered in the semantic modelling in-
clude: the nature of planning information and the appropri-
ate tailored delivery and visualisation approaches for differ-
ent situations; collaborative agents that are playing different
roles when participating in the planning process; and the use
of mobile computing and its devices diversity. This needs a
powerful approach with great expressive power and flexibil-

ity. The semantic model is composed by the following (sub)
models: Visualisation Modalities, Planning Information,
Devices, Agents, and Environment.

Section 3 will be presenting these models in more details,
but here we give an introductory explanation:

• Visualisation Modalities: Permits the expression
of the different modalities of visualisation
considered in the approach;

• Planning Information: Representation of plan-
ning information at a higher level of abstrac-
tion, and it is partially based on the I-X <I-N-
C-A> (Issues-Nodes-Constraints-
Annotations) ontology [Tate 2001];

• Devices: Permits description of features of the
mobile devices types being targeted, such as,
cell phones, PDAs, pocket computers, etc;

• Agents: Allows the representation of agents' or-
ganisations, including different aspects, such
as agents' relationships (superiors, subordi-
nates, peers, contacts, etc.), agents' capabili-
ties and authorities for performing activities,
and also, agents' mental states;

• Environment: This model allows the representa-
tion of information about the general sce-
nario. For instance, position of agents in
terms of global positioning (GPS), etc.

Figure 1 illustrates the framework architecture. Using se-
mantic modelling techniques (ontologies), several knowl-
edge models complement each other to structure a planning
visualisation information knowledge model. This knowl-
edge model permits modelling and organising collaborative
environments of planning from an information visualisation

perspective. Then, a reasoning mechanism based on the
knowledge available, outputs visualisation plans tailored for
each situation.

Figure 1- Framework Architecture

ICAPS 2005

38 Workshop on the Role of Ontologies in Planning and Scheduling

The following sections explain the framework in more de-
tails; where Section 3 is concerned with the semantic model-
ling aspect, while Section 4 exemplify how the reasoning
mechanism would work in a search and rescue scenario (I-
Rescue domain).

3 Semantic Modelling
In the proposed approach, the definition of the Planning
Visualisation Framework [Lino and Tate, 2004] is ex-
pressed through five different models that define the main
aspects of the problem. The next subsections will explain
each of them in detail.

3.1 Multi Modal Information Visualisation Ontol-
ogy

Information Visualisation (IV) is defined by [Card et al.,
1999] as the use of computer-supported interactive visual
representation of abstract data to amplify cognition. Many
classifications of visual representation exist on the literature.
[Shneiderman 2004] classifies data types of information
visualisation in: 1-Dimensional, 2-Dimensional, 3-
Dimensional, Multi-Dimensional (more then 3 dimensions),
Temporal, Tree, and Network data. [Lohse et al., 1994] pro-
pose a structural classification of visual representations. It
makes classification of visual representations into hierarchi-
cally structured categories. This classification is divided in
six groups: graphs, tables, maps, diagrams, networks and
icons. Another classification of visualisation types is pro-
posed in [Burkhard 2004] from a perspective of architects.
The visualisation types described are: sketch, diagram, im-
age, object, and interactive visualisation.

These classifications are relevant in many aspects, including
help to construct the framework categorisation, to under-
stand how different types of visualisation communicate
knowledge, and help identifying research need. Further-
more, the existing development of prototypes for each cate-
gory offers design guidance.

However, despite the power of information visualisation, in
certain circumstances it is not sufficient to transmit knowl-
edge to users. People assimilate information in different
manners, and have distinct limitations and requirements. For
instance, deaf or hearing impaired people have different
needs related to information acquisition. Therefore, different
modalities of visualisation and interaction are needed for
different users. For this reason, to permit broad possibilities
of planning information delivery, it has been included in the
framework not only visual representations but also others
forms of user interaction, such as natural language interfac-
ing, sonification and use of sounds, etc., as other forms for
communicating knowledge. These concepts are modelled in
the 'Multi Modal Information Visualisation and Communi-
cation Ontology'.

Therefore, this model and ontology definition is derived
from previous work as classifications of information visu-

alisation, and furthermore, in requirements for planning
information visualisation to real problems [Wilkins and des-
Jardins, 2001], which is representative of the type of scenar-
ios that is being targeted. Then, the core of the semantic
definition of this model is based on multi modal visualisa-
tion and interaction definitions and also on user tasks that
can be performed upon the visualisation modalities.

The ontology includes the following main categories and
concepts:
• 1-D Textual: This category is based on textual represen-

tation of information. This modality is appropriated for
simple devices that doesn't have many computational re-
sources to present elaborated visual representations;

• 2-D Tabular/GUI/Map: In this category, it is consid-
ered abstractions of information that are represented in
two dimensions. For instance, tabular, GUI and map rep-
resentation. Tabular defines a more structural way to
present text (but not only) information, and together with
GUI and map based, these representations requires de-
vices with more computational capabilities to present in-
formation then text based ones;

• 3-D World: This modality considers three-dimensional
representations of the world for information presenta-
tion. Due to the more sophisticated nature of information
structure, this category is suitable for more powerful de-
vices;

• Complex Structures: In this category it is included
complex abstractions of data representation for informa-
tion visualisation, such as: Multi Dimensional, Tree and
Network representations. Multi-Dimensional concerns
about representations considering more then 3 dimen-
sions. One example of abstractions of this type is the use
of parallel coordinates [Macrofocus, 2004] that represent
several dimensions, via a vertical bar for each dimen-
sion. Tree and Network visualisation are also included in
this category of complex structures. In the literature
there are many approaches to address these structures,
and the nature of some data types can benefit from these
forms of representation;

• Temporal: Many solutions for temporal data visualisa-
tion is proposed on the literature. Temporal data needs a
special treatment. For instance, works such as LifeLines
[Alonso at al., 1998] addresses the problem. In the on-
tology, this modality abstracts the concepts involved in
the presentation of temporal data.

• Sonore (Audio/voice): In this category audio and voice
solutions are incorporated in the ontology. Audio and
voice aid can be very useful in certain situations, where
the user agent is incapacitated of making use of visual
information;

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 39

• Natural Language: Finally, natural language concepts
are also considered in the semantic modelling. Although
it is claimed that natural language cannot completely
substitute graphical interfaces [Shneiderman, 2000], it is
suitable for many situations as it is going to be discussed
on Section 4 of this paper.

Other aspects also included the conceptual modelling of this
ontology, for instance the user tasks that can be performed.
The user tasks are classified as follows:

• Obtain Details;
• Extract;
• Filter;
• Obtain History;
• Overview;
• Relate; and

• Zoom.

Depending on the information visualisation and
communication modality, the same user task can involve
different mechanisms and components to be accomplished.

3.2 Planning Information Ontology
The 'Planning Information Ontology' categorises, at a high
level, planning information of the following nature:
• Domain Modelling: In this category it is included con-

cepts of planning information related to domain model-
ling;

• Plan Generation: Here, the semantic modelling is con-
cerned with plan generation information concepts and
abstractions;

• Plan Execution: In this category the ontology includes
vocabulary regarding plan execution;

• Plan Simulation: Finally, this category models abstrac-
tions regarding plan simulation information.

Initially, the main focus of this ontology is the conceptuali-
sation of plan generation information, however the concep-
tualisation is generic.

Apart from the core planning information definition of this
ontology, another important aspect modelled is the aspect of
planning for which the information is going to be manipu-
lated. These concepts permit the understanding of planning
information from a visualisation perspective. It helps, for
instance, in defining strategies for information delivery,
based on the aim.

In this way, for the modelling of this idea, the following
concepts are considered in the ontology:
• Planning Information Aim: Here it is considered that

planning information can be used for different aims,
which can be domain modelling, plan generation, plan
execution and plan simulation. According to the litera-

ture and existing planning systems, depending on the
aim, planning information is approached in different
ways. So, delivering information for domain modelling
is not the same to delivering for plan generation.

• Planning Information: The conceptual definition of
planning information for the purpose of the visualisation
framework is based on the I-X <I-N-C-A> [Tate, 2001]
model for collaborative planning processes.

• Planning Information Delivery Strategies: Based on
the literature and existing planning systems it is possible
identify that each one of the planning information aim
categories (domain modelling, plan generation, plan
execution and plan simulation), in general, they deal
with different types of information. So for each one can
be identified different delivery strategies, because there
are different requirements of data presentation, summa-
risation, etc.

Therefore the main aim of this ontology is to abstract and
model these concepts regarding planning information re-
garding the framework objective of information visualisa-
tion.

3.3 Devices Ontology
In the 'Devices Ontology' [Lino at al., 2004] we investigated
an approach of knowledge representation of devices capa-
bilities and preferences concepts that will integrate the
framework proposed.

CC/PP [W3 Consortium, 2004a] is an existing W3C stan-
dard for devices profiling. The approach of CC/PP has many
positive aspects. First, it can serve as a basis to guide adap-
tation and content presentation. Second, from the knowledge
representation point of view, since it is based on RDF, it is a
real standard and permits to be integrated with the concepts
of the Semantic Web construction. For our work, the Se-
mantic Web concepts will also be considered. We envisage
a Semantic Web extension and application of the framework
that will be addressed in future publications. Third, another
advantage of CC/PP is the resources for vocabulary exten-
sion, although extensibility is restricted.

On the other hand, CC/PP has some limitations when con-
sidering aplying it to the realistic collabortative planning
environment we are envisaging. It has a limited expressive
power, that doesn’t permit a more broaden semantic expres-
siveness. Consequently it restricts reasoning possibilities.
For example, using CC/PP it is possible to express that a
particular device is Java enabled. However this knowledge
only means that it is possible to run Java 2 Micro Edition
(J2ME) on that device. But, it can have a more broaden
meaning, for example, when considering ‘what really means
be Java enabled?’ or ‘what is J2ME supporting?’. Having
the answers for questions like these will permit a more pow-
erful reasoning mechanism based on the knowledge avail-
able for the domain. For instance, if a device is Java enable,
and if J2ME is supporting an API (Application Program

ICAPS 2005

40 Workshop on the Role of Ontologies in Planning and Scheduling

Interface) for Java 3D, it is possible consider delivering in-
formation in a 3D model.

For that there is a need to develop a more complex model
for devices profiling that will be semantically more power-
ful. It is necessary to incorporate in the model other ele-
ments that will permit enhance knowledge representation
and semantic.

The 'Devices Ontology' proposes a new model approach that
intends to enhance semantics and expressiveness of existing
profiling methods for mobile and ubiquitous computing.
Consequently, reasoning capabilities will also be enhanced.
But, how will semantics be improved? In many ways, as we
will categorise and discuss below.

Semantic improvement can be categorised as follow in the
new model being proposed:

• Java Technology Semantic Enhancement: In this

category is intended to enhance semantic related to the
Java world. It is not sufficient to know that a mobile de-
vice is Java (J2ME) enabled. On the other hand, provid-
ing more and detailed information about it can improve
device’s usability when reasoning about information
presentation and visualisation on devices. For that, in
this new model proposed is included semantic of infor-
mation about features supported by J2ME, such as sup-
port to 3D graphics; J2ME APIs (Application Program
Interface), for instance, the Location API, that intends to
enable the development of location-based applications;
and also J2ME plug-inns, such as any available Jabber
[5] plug in that will add functionalities of instant mes-
saging, exchange of presence or any other structured in-
formation based on XML.

• Display x Sound x Navigation Semantic Enhance-
ment: One of the most crucial things in development of
mobile devices interfaces is the limited screen space to
present information that makes it a difficult task. Two
resources most used to by pass this problem are sound
and navigation approaches. Sound has been used instead
of text or graphic to present information; for example,
give sound alerts that indicate a specific message to the
user. Indeed, it can be very useful in situation where the
user is on the move and not able to use hands and/or
eyes depending on the task he is executing. In relation to
navigation, this resource can be used sometimes to im-
prove user interface usability, if well designed. How-
ever, good navigation design has some complexity due
to: devices diversity and because in some devices navi-
gation is closely attached to the devices characteristics
(special buttons, for example). So, this category intends
to enhance semantic related to these aspects, that will
permit a good coordination and reasoning through these
resources when presenting planning information to mo-
bile device’s users participating in collaborative proc-
esses.

• Open Future New Technologies Semantic Enhance-
ment: This category of semantic enhancement is the
more challenging one in this new model proposition.
Mobile computing is an area that is developing very in-
tensely. New devices and technologies are been created
every day. In this way it’s easy to create technologies
that will be obsolete in few years time. Trying to over-
pass this problem, we envisage that will be possible to
provide semantic to future new technologies in mobile
computing via a general classes and vocabulary in the
model and framework proposed.

3.4 Agents Ontology
This ontology is used to model and organise agents (soft-
ware and human) regarding their mental states, capabilities,
authorities, and preferences when participating in a
collaborative process of planning.

The development of this ontology is based on BDI [Rao and
Georgeff, 1995] concepts, and also on the I-X ideas. I-Space
[Tate et al., 2004] is the I-X concepts for modelling collabo-
rative agents’ organisations. Techniques such as agent pro-
filing are being developed to permit adaptation of planning
information presentation, since it permits to adapt the type
of information delivery to the agent requirements.

3.5 Environment Ontology
The environment ontology is responsible for permitting ex-
pression of environment awareness. In particular, location
based awareness is being considered, where this type of
information is based on GPS (Global Positioning System).
Dealing with location-based information will allow the
guidance of presentation of information.

4 Motivating Scenario: Reasoning on the I-
Rescue Domain

In this section an application of the framework will be moti-
vated. The domain used for that is the I-Rescue [Siebra and
Tate, 2003] domain.

The reasoning component of the framework will permit do
adjustment of the visualisation and interfacing modalities to
agents, devices, environment conditions and type of plan-
ning information requirements. In this way, planning infor-
mation will be delivered in a tailored way.

The kind of reasoning that is performed is based on some
principles designed from a study about information visuali-
sation in existing AI planning systems. These principles are
based on:
(1) The identification of the type of plan representation

that differs depending on the planning approach
adopted by the planners;

(2) Understanding of which kind of information is need to
be presented and interacted with users;

(3) Classification of the different types of users involved in
the planning process;

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 41

(4) Identification of most common visual structures
(graphical and non-graphical) used in AI planning sys-
tems to present information, and;

(5) To which nature of planning information these struc-
tures are used to in the planners approaches of informa-
tion visualisation; and

(6) Finally, in the attempts reported in the literature of add-
ing new forms of interaction with the user, for instance,
via natural language processing techniques.

Based on these principles described above and in addition in
new requirements desired in collaborative planning informa-
tion visualisation, rules are being created, in which the rea-
soning will be based on. For instance, an example of such
new requirements is the need of a feedback of human agents
that are collaborating on the move in the planning process.
Regarding planning information visualisation, this feedback
concerns the human agent setting his/hers preferences about
change of current conditions while on the move (making use
of mobile devices) that will affect the desired planning in-
formation visualisation modality for him/her. For example,
if the human agent is engaged in an activity that requires
extreme visual attention, a visualisation modality based only
on graphical representation will not be useful for him/her,
because can cause distraction from the main activity being
performed. On the contrary, modalities that don’t need only
visual interaction can suit the situation requirements; such
as the ones based on natural language processing and that
are sound supported.

The framework is aimed at realist domains of collaborative
planning, and the I-Rescue domain fits the requirements of
such domains. On I-Rescue scenarios, human and software
agents work together and share knowledge and capabilities
to solve mutual goals in a coalition support systems fashion.
An important feature in systems like that is their ability to
support collaborative activities of planning and execution.
During planning processes, joint agents share knowledge so
that a plan can be built in accordance with the perspectives
of each agent. Then the activities in the execution are as-
signed to specific agents, which will use their individual
capabilities to perform the allocated tasks. I-Rescue scenar-
ios consist of relief situations in natural disasters or adversi-
ties caused by humans. Situations like that need an immedi-
ate response of joint forces with the main objective of sav-
ing people lives and minimising suffering. The Kobe Earth-
quake of January 1995 is an example of how disasters have
a tragic effect in urban areas. Most recently the tragedy of
The Indian Ocean Tsunami in December 2004 shows the
unseen proportions of effects. Situations like that need an
immediate response to relief human loss and suffering, and
the use of AI techniques and applications can help provide
assistance.

5 Conclusions
In this paper it is proposed an integration of ontologies and
reasoning mechanism for multi-modality visualisation in
collaborative planning environments. The set of ontologies

and its integration will permit the expressiveness of several
aspects related to real world applications in environments of
mixed initiative planning. The reasoning mechanism will
allow a tailored delivery and visualisation of planning in-
formation. The main contributions of the framework are: (1)
it consists in a general framework; (2) the ontology set will
permit organising and modelling the domain from the visu-
alization perspective; (3) the reasoning mechanism will give
support to presentation of information tailored for each
situation; (4) the framework will serve as base for imple-
mentations, and (5) the framework is based on real stan-
dards (W3C) that will ease communication and interopera-
bility with other systems and services, such as web services.

In addition, we would like to highlight the originality aspect
of this work. A semantic modelling approach has not yet
been applied to planning visualisation as far as we are
aware. The use of ontologies is becoming a trend in the in-
formation visualisation field, where an increasing number of
works related to this subject have appeared in recent interna-
tional conferences on the topic. However its use in an intel-
ligent planning context has not been explored yet. This work
is an attempt to apply semantic modelling techniques, more
specifically via ontologies to a complex collaborative
environment of planning.

Furthermore the framework discussed in this paper consists
in a high level abstract model that is based, on an implemen-
tation level, on W3C standards, which permits the possibil-
ity of easy extension and application on the Semantic Web
[W3 Consortium, 2004b].

Acknowledgments
The first author is sponsored by CAPES Foundation under
Process No.: BEX1944/00-2. The University of Edinburgh
and research sponsors are authorised to reproduce and dis-
tribute reprints and on-line copies for their purposes not
withstanding any copyright annotation here on. The views
and conclusions contained here in are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either express or implied,
of other parties.

References
[Alonso at al., 1998] D. Alonso, A. Rose, C. Plaisant, and

K.Norman.Viewing Personal History Records: A Com-
parison of Tabular Format and Graphical Presentation
Using LifeLines. In Behavior and Information Technol-
ogy, pages 249-262, 17, 5, 1998.

[Burkhard, 2004] R. A Burkhard. Learning from Architects:
The Difference between Knowledge Visualisation and
Information Visualisation. In Proceedings of the Eight
International Conference on Information Visualisation
(IV-04). London, England, UK, 2004.

[Card et al., 1999] S. K. Card, J. D. Mackinlay, and B.
Shneiderman. Readings in Information Visualization;

ICAPS 2005

42 Workshop on the Role of Ontologies in Planning and Scheduling

Using Vision to Think. Los Altos, CA, Morgan Kauf-
mann, 1999.

[Erol et al., 1994] K. Erol, J. Hendler and D. S. Nau. HTN
Planning: Complexity and Expressivity. In Proceedings
of the Twelfth National Conference on Artificial Intelli-
gence AAAI-94, Seattle, Washington, USA, 1994.

[Fikes and Nilsson, 1971] R. E. Fikes and N. J. Nilsson.
STRIPS: a new approach to the application of theorem
proving to problem solving. In Artificial Intelligence,
2(3-4):189-208, 1971.

[Kautz and Selman, 1998] H. Kautz and B. Selman. The
Role of Domain-Specific Knowledge in the Planning as
Satisfiability Framework. In Proceedings in the 4th In-
ternational Conference on Artificial Intelligence Plan-
ning Systems (AIPS 1998), Pittsburgh, PA, USA, 1998.

[Lino and Tate, 2004] Lino, N. and Tate, A. A Visualisation
Approach for Collaborative Planning Systems Based on
Ontologies, in Proceedings of the 8th International Con-
ference on Information Visualisation (IV 2004), London,
UK, 14-16 July 2004, IEEE Computer Society Press,
2004.

[Lino at al., 2004] Lino, N., Tate, A., and Chen-Burger, Y.
(2004) Improving Semantics in Mobile Devices Profil-
ing: A Model Conceptual Formalisation and Ontology
Specification, Workshop on Semantic Web Technology
for Mobile and Ubiquitous Applications at the 3rd Inter-
national Semantic Web Conference, Hiroshima, Japan,
7-11 November 2004.

[Lohse et al., 1994] G. Lohse, K. Biolsi, N. Walker, H.
Rueter. A Classification of Visual Representations. In
Communications of the ACM, 37 (12), pp. 36-49.1994.

[Macrofocus, 2005] Macrofocus. SurveyVisualizer. Url:
http://www.macrofocus.com/solutions/market_research.
html, 2005.

[McCluskey and Simpson, 2004] T. L. McCluskey and R.
Simpson. Knowledge Formulation for AI Planning. In
Proceedings of 4th International Conference on Knowl-
edge Engineering and Knowledge Management (EKAW
2004), pages 459-465, Whittlebury Hall, Northampton-
shire, UK, 2004.

[Rao and Georgeff, 1995] Rao, A. S., Georgeff, M. P.
(1995). BDI Agents: From Theory to Practice. In Pro-
ceedings of the First International Conference on Multi-
agent Systems}, San Francisco, EUA.

[Shneiderman, 2000] Shneiderman, B. The Limits of Speech
Recognition. In Communications of the ACM, Vol. 43,
No. 9, pp. 63-65, 2000.

[Shneiderman, 2004] B. Shneiderman. Information Visuali-
sation: Research Frontiers and Business Opportunities.
Course Notes in the 8th International Conference in In-
formation Visualisation, London, England, 13 July 2004.

[Siebra and Tate, 2003] Siebra, C. and Tate, A. I-Rescue: A
Coalition Based System to Support Disaster Relief Op-
erations. Proceedings of the Third International Confer-

ence in Artificial Intelligence and Applications}, Benal-
madena, Spain, 2003.

[Tate, 2001] Tate, A. I-X and <I-N-C-A>: an Architecture
and Related Ontology for Mixed-Initiative Synthesis
Tasks, In Proceedings of the Workshop on Planning/
Scheduling and Configuration/Design, Vienna, Austria.

[Tate et al., 2004] A. Tate, J. Dalton, J. M. Bradshaw, and
A. Uszok. Agent Systems for Coalition Search and Res-
cue Task Support, in Knowledge Systems for Coalition
Operations (KSCO-2004), Czech Technical University
Press, Prague, Czech Republic, 2004.

[Wilkins and desJardins, 2001] D. Wilkins and M. desJar-
dins. A call for knowledge-based planning. AI Maga-
zine, vol. 22, no. 1, Winter 2001.

[W3 Consortium, 2004a] W3 Consortium. (2004). CC/PP
Information Page. In http://www.w3.org/Mobile/CCPP.

[W3 Consortium, 2004b] W3 Consortium. (2004). Semantic
Web Information Page. In http://www.w3.org/2001/sw/.

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 43

The modeling language of GSOC’s mission planning team

Christoph Lenzen, Falk Mrowka

DLR - German Space Operation Center (GSOC)
Christoph.Lenzen@dlr.de

Falk.mrowka@dlr.de

Abstract
This paper deals with the classical scheduling problem,
assigning certain tasks to a timeline. The tools Pinta and
Plato are developed by the mission planning team of the
GSOC to support both, automated scheduling as well as
interactive scheduling by the operator. Our aim is to provide
a flexible and expressive modeling language, which on the
one hand allows reusing the software in future missions and
on the other hand enables the operator to provide relevant
information for the scheduling engine, which can improve
the computer generated result.
The resulting model has become quite descriptive.
Nevertheless an operator needs to know all details of the
model and the given scheduling problem. No effort has
been done to implicitly define constraints to ‘make life
easier’, as proposed by [6].

The Modeling Language
A scheduling problem consists of tasks, which shall be
assigned to the timeline, the timeline itself and the
environment, which allows expressing constraints on the
assignments. Besides the algorithm can be supported by
supplying a certain structure:

The Structure
Tasks
The most basic entity of a scheduling problem is the task.
It can be given an assignment on the timeline. The main
properties of a task are:

• Minimum-duration
a real number, the minimum duration of each
assignment of this task

• Maximum-duration
a real number or plus infinity, the maximum
duration of each assignment of this task

• Scheduled-when
a real number which indicates, how big the sum
of the durations of all assignments of this task
must be until this task is considered to be
scheduled

• Desired-duration
a real number which indicates how big the sum of

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

the durations of all assignments of this task shall
become. (It is not considered to be a conflict in
case this time is exceeded, but the algorithm
won’t do any effort to schedule the task when this
number is reached.)

Groups
Some scheduling engines consider all tasks equal. They
may supply functionalities, which analyze the tasks with
respect to their properties and constraints and use
algorithms, which take these analyses into account. But
usually a lot more information on a scheduling problem is
known than the mere information on certain tasks and its
constraints. The simplest one is that some tasks ‘belong
together’: for example a certain activity can’t be
represented by a single task, so several tasks have to be
defined. One might think of taking a satellite photo, where
one has to schedule the uplink (tell the satellite what to do)
the data take itself and the downlink (get the photo to the
earth). Obviously it may be an advantage to schedule these
tasks as a unity. Furthermore it might need a certain
algorithm to schedule these tasks (in our example this
might be the simple approach ’first schedule the data take,
next schedule the uplink as late as possible, at last schedule
the downlink as early as possible’). Therefore we allow the
tasks to be grouped in the following way:

• Each group can contain tasks and groups, but no
cycles are allowed. This means, a group mustn’t
contain itself as a direct or an indirect element.
The direct and indirect elements of a group G are
all elements of G and all direct and indirect
elements of all groups, which are element of G
(i.e. no group G may contain itself and G mustn’t
contain any group H, which contains G, and so
on).

• Tasks and groups may belong to more than one
group – in this case the algorithm will usually
consider them multiple times.

• Each group may be given a special planning
strategy.

• Each group may be given the values
o Scheduled-when

a non-negative integer which indicates,
how many elements of this group must
be scheduled until this group is
considered to be scheduled.

ICAPS 2005

44 Workshop on the Role of Ontologies in Planning and Scheduling

o Desired-number-to-schedule
a non-negative integer which indicates,
how many elements of this group shall
be scheduled by the algorithm

Picture 1: Grouping of Tasks – each group can be given a special
planning strategy, which is applied when scheduling the group’s
elements.

 Resources
A resource is a collection of functions in time, which
describes a part of the environment, e.g. the amount of
energy which is stored in a battery. A resource has the
following properties:

• fill-level : a function in time, which describes the
state of the resource, in our example the amount
of mAh left in the battery

• upper-bound : a function in time, which
constitutes an upper bound for the fill-level (may
be plus infinity), in our example the capacity of
the battery

• lower-bound : a function in time, which
constitutes a lower bound for the fill-level (may
be minus infinity), in our example 0

• upper-bound-causes-conflict-p : either true or
false, in our example false

• lower-bound-causes-conflict-p : either true or
false, in our example true

In case upper-bound-causes-conflict-p is set to true, the
fill-level may exceed the upper-bound, but this is
considered to be a conflict. Otherwise the fill-level is
forced to stay below the upper-bound (which means that
no conflict exists) and the surplus increase is lost. In our
example, this value is false, because in case we are able to
supply more energy than we can store in the battery, this
surplus energy can be discarded. [Of course this ‘lost
supply’ mustn’t be forgotten, otherwise we would forget
information: In case the fill-level has reached its upper
bound and in case we schedule another supplier (i.e. we try
to increase the fill level once more), we actually don’t
modify the fill-level function. Yet this further supply can
be consumed when scheduling another consumer at the
same time. For example, the battery is full and the solar
panels are switched on. The fill-level of the battery is not

modified by the solar panels, but in case one switches on
any consumer, this consumer will first use the former lost
energy from the solar panels instead of lowering the fill-
level. To cope with this lost supply, the scheduling engine
will have to keep another function in time rather than only
the Boolean value upper-bound-causes-conflict-p.]
Lower-bound-causes-conflict-p is the respective value for
the lower bound. In our example, this value is set to true,
because any attempt, to lower fill-level below the lower-
bound, indicates that we try to use more energy than the
battery can supply, which is a conflict. [In this case we
need no further function in time to store the surplus
consumption, because the fill-level may exceed the bound
and thus reflects all consumptions of this resource.]

Picture 2: A resource with conflict causing lower bound and non-
conflict-causing upper bound

Remark: As you can see, there are different types of
resources, but these types are not distinguished by the way
the tasks interact with them, but they are distinguished by
the way they react, when the fill-level reaches one of the
bounds. So one does not have ‘equipment’, ‘opportunity’
or ‘depletable’ resources any more. This distinction will be
supplied by the different resource constraints and allows a
resource to have multiple roles. In our example there might
be a task which does not consume any battery power, but
for some reason (e.g. to be able to switch into a safe mode
in case of some failure) the battery power must exceed a
certain amount. In this case the battery power would act as
an opportunity to this task, nevertheless with respect to all
other tasks it is a replenishable resource.

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 45

Constraints
Resource Constraints

Picture 3: A resource as medium for interactions between
multiple tasks, where each task can use the resource in its own
way (as opportunity, equipment, consumable, etc)
Until now we didn’t distinguish between equipment,
opportunity and depletable resources. We won’t do this
now either, because the resource itself shall not determine
how tasks may interact with it. Instead we introduce the
following constraints C, which all concern one resource R
and one task T:

• Comparing Resource Dependency:
This constraint is mainly given by the value of its
properties upper-bound and lower-bound. These
are functions in time periods, which transform to
functions in time when the start-time of an
assignment is given. The time-period ‘0sec’ will
represent the start-time of the assignment. The
constraint is that T may only be scheduled at
times where the fill-level of R takes values in
between upper-bound and lower-bound during the
assignment of T. It is considered to be a conflict
in case this rule is violated.

Picture 4: The red lines represent the bounds of the fill-
level (green line) caused by an assignment, which has a
comparing resource dependency.

• Allocating Resource Dependency:
This constraint is mainly given by the value of its
property change-function, which again is a
function in time-period, transforming to a
function in time by identifying time-period ‘0sec’
with the start-time of an assignment of T.
During the assignment of T, the fill-level of R is
modified by adding this change-function.
In case the resource has a conflict causing bound,
this constraint is considered to cause a conflict in

case there exists a time t where the fill-level of R
exceeds this bound by a bigger extent than it
would without the given assignment.
In case the resource has a bound which can’t
cause a conflict, any exceeding of the fill-level is
flattened by reducing the value of the respective
bound. The lost increase or decrease of the fill-
level must be remembered in a certain way.
This constraint may model the usage of an
equipment resource, e.g. crew member allocation.

Picture 5: The red line represents the consumption
profile of the assigned task. The original fill-level of
the resource (the green line in the upper part of the
picture) is lowered during the assignment. Result is the
fill-level as given in the lower part of the picture.

• Accumulating Resource Dependency:
Similar to allocating resource dependency, but the
value of the change function at the end-time of
the assignment is taken to modify the fill-level in
all future times after the end-time of the
assignment.
This constraint may model the usage of a
(non)depletable resource, e.g. the usage of battery
energy.

Picture 6: The fill-level is reduced during the
assignment and after it.

• Dynamic Resource Dependency
Sometimes the value of a resource must be
modified depending on the fill-level of some other
resource or of the resource itself. The problem
here is that this results in very complex problems
to find suitable places where the assignment can
start. Therefore we restrict to the following
functionality:
The bounds of the resource must be constant.
A change-formula is given. This formula takes a
real number and returns a real number. When an

ICAPS 2005

46 Workshop on the Role of Ontologies in Planning and Scheduling

assignment of T is made, the fill-level of R at the
start-time of the assignment is handed over to this
formula. The resulting value then is added to the
whole fill-level function, starting with the start-
time of the assignment.
To be able to find suitable start times for the
assignments, one needs a further formula, namely
the inverse-formula, which must be the inverse to
the change-formula.
Remark: This construct will be implemented,
mainly because we can’t handle non affine-linear
functions (for details see section ‘How to Handle
Functions in Time’).
For example to model the temperature of a
machine, which increases punctually when
starting some task and which falls exponentially
all the time, one has to model the logarithm of the
temperature, which falls linear. The punctual raise
can be calculated, depending on the current value
of the log-temperature, via the change-formula as
soon as an assignment is given. To find such an
assignment, one will need the reverse-formula,
the bounds and the fill-level of the resource.
This construct shall serve as a first analytic
approach into more complex dependencies and it
is not yet elaborated thoroughly. I therefore
expect that there exists a better (i.e. more general)
possibility to handle special non-linear functions

The comparison resp. change of the fill level of R need not
start exactly at the assignment’s start time, but within all
resource dependencies one may specify offsets and one
may also specify whether the start-time or the end-time of
the assignment shall serve as reference to this offset.

Interactions
Of course one must be able to formulate constraints like ‘It
is a conflict to schedule A without scheduling B’ or ‘at
least 5, but not more than 10 tasks out of a certain group of
tasks must be scheduled’. These constraints are called
Interactions and should be kept separate from other
constraints like time-dependencies. Some scheduling
systems mix up the terms time-dependency and interaction
and therefore they try to compensate the lack of model
flexibility by supplying loads of time dependency types.
The two types of interactions are:

• Demand
a task, called ‘dependant’ mustn’t be scheduled
unless one of a given set of tasks and/or groups,
called ’destinations’, is scheduled

• Interacting Group
Let G be a group. One can define an interaction
on this group by supplying

o a minimum number to schedule and
o a maximum number to schedule.
In case one of the elements of G is scheduled,
it is considered to be a conflict in case the
number of scheduled elements of G is smaller
than the minimum number to schedule or

bigger than the maximum number to
schedule.

Time Dependencies
A time dependency concerns two tasks A and B and
constitutes a relation between the temporal occurrences of
the assignments of A with the assignments of B. In case
only one of the tasks is assigned, no conflict may occur. To
include the constraint ‘Task A mustn’t be scheduled unless
Task B is scheduled’, additionally use the interaction
constraints above.

1. Ordered-time-dependencies

Picture 7: Time dependency ‘end-before-start’. The
successor may start at any time in the green interval.
Task A is called predecessor and task B is called
successor. One may specify whether to compare
the start or end time of task A with either the start
or end time of task B and one may specify the
minimum delay and the maximum delay, which
must lie between the predecessor A and the
successor B. Observe that when using negative
delays or when using ‘start-before-end’, the
predecessor might be scheduled after the
successor.
This time dependency type might be modeled
using resource dependencies:
A resource AMayStartP initially is one. An
accumulating resource dependency on task B is
defined such that adding an assignment of B
results in decreasing AMayStartP by 1, beginning
with the assignment of B. Task A mustn’t be
scheduled at places where AMayStartP is <=0.
Nevertheless we introduce this time-dependency
type, because it is one of the most common
constraints and the explicit definition allows the
implementation of much faster scheduling
methods and time-dependency analyzing
algorithms. Besides the time dependency is a
‘symmetric’ constraint, but the representation via
resource dependencies results in two constraints,
which treat the two tasks completely different –
one of them uses the resource as opportunity and
the other one refers to it as if it was a renewable. I
therefore expect that any good algorithm needs to
recalculate the original time dependencies from
the resource dependencies to be able to handle
these constraints appropriately.
In case of multiple assignments of individual
tasks, we restrict to the interpretation ‘all
assignments of A and all assignments of B must
satisfy the given time-dependency’. Any other

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 47

interpretation may be modeled similar to the one
mentioned above anyway.

2. Overlap-constraint
This type of constraint shall once model time-
dependencies of the type ‘In case A and B are
scheduled, their assignments must overlap at least
5 minutes’ or ‘In case Task A and Task B are
assigned, all assignments of A must be included
in the assignments of B’. We didn’t implement
these constraints yet, because we didn’t need
them, therefore we didn’t elaborate the modeling
of them either.

Pools and Combos
A combo is a set of constraints. These constraints initially
are ignored, i.e. no resource modifying resource
dependency is applied and it does not matter in case there
exists a conflict on any of them. To consider a combo
means to unignore its constraints (i.e. resource modifying
constraints are applied and conflicts on constraints are
considered to be conflicts of the timeline).
A pool is a set of combos together with a number ‘n’,
which indicates, how many combos of the pool must be
considered. Switching between the selected combos is
allowed at any time (but this can result in significant
calculation effort). Although the combo selection must be
done from the moment the pool is defined, the combo
selection of a pool won’t make any difference unless one
of the following happens:

• The dependant of a demand of a combo of P is
scheduled

• An element of a group G is scheduled, and there
exists an interaction on G, which is part of a
combo of P

• A task is scheduled, which has a resource-
dependency D, which is part of a combo of P

• Both tasks of a time-dependency D are scheduled
and D is part of a combo of P

Picture 8: Only one combo of constraints will be selected. The
constraints of this combo will be considered, the constraints of
the other combo will be ignored.

Usually a combo is defined to model something like
alternative equipment usage.
Example 1: Task ‘check timeline for inconsistency’ can
either be performed by an operator or by a computer.
Which option to choose will depend on the availability of

the operator and of the computer. In this case the
constraints of one pool all refer to one specific task.
Nevertheless no restriction is made on what constraints
may be combined.
Example 2: One has to buy two items from a person, which
is willing to give away one item for free. One might model
this by adding two constraints ‘reduce amount of money’,
one for each task ‘buy A’ and ‘buy B’. These constraints
are wrapped by a combo each and put into the same pool.
Then the model reflects that one can choose which item
has to be paid.
The feature ‘pool and combo’ may be considered
redundant, since one can model alternatives in constraints
by creating clones of tasks, each having the constraints of
one specific combo. When collecting these clones in a
group, where only one element needs to be scheduled, the
algorithm can choose between the different constraint
combos by selecting the respective task. In example 1, this
would result in the tasks ‘check timeline by operator’ and
by task ‘check timeline by computer’, which are gathered
in a group with maximum number to schedule = 1.
More general, the alternative modelling introduces
multiple tasks, groups and interactions as follows:
Let P denote a pool. The set M shall contain

• All tasks and groups, which are part of an
interacting group, which is part of a combo of P

• All tasks, which are dependants of demands,
which are part of a combo of P

• All tasks, which have a resource dependency,
which is part of a combo of P

• For each time-dependency, which is part of a
combo of P:
Either the predecessor or the successor

The pool P and its combos can be removed as follows:
• Remove all tasks T of M from the planning

problem and remove all groups G of M from the
planning problem, including G’s direct and
indirect elements (i.e. remove all elements of G
and in case the element is a group H, do the same
with all elements of H)

• For each combo C of P and for each element E of
M, add a clone E(C) of E to the planning problem,
where all constraints of E are copied to E(M),
except for the pool P. Instead of P, the constraints
of C are added directly to E(C).

• For each combo C, collect all clones E(C) in a
new group G(C)

• Collect all groups G(C) inside a new group Q
with the interaction ‘not more than one element of
Q shall be scheduled’.

In this way, Q replaces the pool P. In case there exist
multiple pools, this procedure has to be iterated.
Nevertheless some information gets lost, which needs to be
recovered by an algorithm, which compares the different
choices to find the best one, e.g. with respect to balanced
resource usages. This information is the set of all
constraints, which the different groups G(C) have in
common. For example, the analysis of resource usages
may ignore the constraints which are outside the pool P,

ICAPS 2005

48 Workshop on the Role of Ontologies in Planning and Scheduling

but since P has been replaced by Q, this set of common
constraints is not known any more. Besides this
replacement of pools can increase the number of tasks
significantly, especially when there are more than one
pools defined on the same task: As soon as one has
replaced the first pool P, one single task has been cloned to
n tasks, which all have all remaining pools as constraints.
Each of these n clone-tasks must be multiplied when
replacing the remaining pools and so on.
I therefore suppose that it should be a desired feature to
implement pools and combos not only as a ‘user interface’,
but also as a feature of the scheduling engine.

The Timeline
The timeline contains all assignments of the tasks of the
planning problem. An assignment consists of a start time
and a duration and can either be defined by the operator or
by the algorithm. The start times and the durations can be
restricted to a certain resolution, but this restriction is
optional. By default, the timeline can take any rational
value.

How to Include Advanced Scheduling
Techniques

The previously described modeling language has been
designed to follow a scheduling approach of the type ‘Fill
up a timeline’, where one can define sophisticated variable
(= task) and value (= assignment) choice strategies (such
as in [2]) and include further move-mechanisms (as done
in [5]). ‘Repair an existing timeline’, as described in [4],
can be done as well. This approach can also be used with
techniques like network analysis (as done in [1]). In this
case the main algorithm would be the process of mapping
the pre-calculated network of tasks to the timeline.
Furthermore consider the use of a set of agents, each trying
to reach its own goal and all following the rules of a
common environment (as described in [3]). This
environment (and therefore the internal modeling of each
agent) may be described by this modeling language. This
approach sounds especially interesting when using multi-
processor systems.

How to Handle Functions in Time
The most difficult task of our scheduling engine is to cope
with functions in time and functions in time periods.
Consider the following situation:
Let TPF denote a function in time periods, which is
defined on the interval [0 tp]. Let TF denote a function in
time. When selecting a time t, TPF can be transformed to a
function in time TPF(t) by identifying a point of time pot
with the time period (pot – t). TPF(t) shall be defined on
the interval [t (t + tp)]. The restriction of TPF(t) to the

interval [t (t + dur)] with dur < tp shall be denoted by
TPF(t , dur).
In order to find suitable assignments for the tasks, the
algorithm must at least be able to answer the following
questions:

1. What times t result in TPF(t) <= TF on the
interval [t , (t + tp)] ?

2. What times t and time periods dur result in
TPF(t dur) <= TF on the interval [t , (t + dur)] ?

Remarks:
• The problem is not only to avoid rounding, but to

calculate the result for all rational times
simultaneously.

• When working with resources, which have one
non-conflicting and one conflicting bound, one
has to take into account the lost-supply resp. the
lost-consumption. The questions above therefore
actually have to be extended to include these
cases, too.

When starting the work on our new scheduling engine, we
tried to find some tool, which can calculate the answer to
these questions, but we didn’t find anyone. (In case you
know one, please let us know.☺) Therefore we created our
own functions mechanism:

Our solution: Affine Linear Functions
To be able to cope with these questions, we restrict to
affine-linear functions. (It should be possible to extend this
to polynomial functions of degree 2, but as soon as the
sum of the degrees of TPF and TF is > 4, our approach
can’t work any more for certain theoretic reasons.)
A function F in time resp. in time period is represented by
a list of triples, which we call function pieces:

(start-time start-value interval-values)
Here start-time denotes a point of time (may be infinite),
start-value is a real number or +∞ or -∞ and interval-values
is either a polynomial of degree 1 or +∞ or -∞.
This list of triples is ordered increasingly in the start-times,
no two start-times may be equal and the first start time
must be -∞ and the last start-time must be +∞.
To determine the value of F at a given time or time-period
X, find the function piece FP with greatest start-time ST,
which is not bigger than X.
In case ST=X: F(X) = start-value of F
Otherwise: F(X) = interval-values(X)
To answer the questions above, one only needs to answer
the questions, when restricting to each of the function
pieces of TPF, compared to each of the function pieces of
TF (each restricted to their respective interval – wherever
they don’t overlap, no restriction takes place). The
intersection of these answers is the result.
The extension to the cases with lost supply resp. lost
consumption needs some effort, especially with respect to
question 2.

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 49

Unsolved Problems and Missing Features
1. The following situation can not be handled:

Task A modifies Resource R1. Task B modifies
Resource R2 in a way, which depends on the state
of R1.
The dynamic resource dependency is a first step
in this direction, but a lot has to be done to
generalize this. For example the following
situation can’t be handled directly:
A cross country vehicle can switch between 4 by
4 and normal drive (Resource R1 models these
two states by interpreting values 1 as ‘vehicle is in
4 by 4 gear’ and 0 as ‘vehicle is in normal gear’).
The fuel consumption is bigger when using 4 by
4, so switching between these modes affects the
fuel consumption of task ‘drive’. (R2 is the
amount of fuel left in the tank, A is the task
‘switch to the other gear’ and B is the task
‘drive’.)

2. As mentioned above, our time profiles (=
functions in time resp. functions in time period)
are restricted to piecewise affine linear functions.
Although they can be used to approach any
practically relevant function, this would result in a
deficit in the scheduling performance, since the
time needed for calculation on time functions
raises with the complexity (i.e. the number of
function pieces) of the time functions.
A workaround for one specific non-linear type of
resource dependency has been sketched above
(again the dynamic resource dependency), but I
can’t see any general solution to this problem.

3. A timeline is completely deterministic. An event
which will be fired during execution of the
timeline (see for example [1]) can not yet be
modelled.

Summary
The following remarks on our features shall outline the
benefits and lacks of our modelling language.

• The structure
Activities, which are too complex to be modelled
by a simple task, must be represented by multiple
tasks (which not always have time dependencies,
demands etc.). To face the algorithmic problems,
which result in this splitting, we allow the tasks to
be grouped together (which usually means that
they will be scheduled together) and to be
scheduled using a special algorithm. Nevertheless
a group specific scheduling algorithm must be
determined separately and an optimization by
varying the algorithm should also include these
group specific planning algorithms.
Besides one can define alternative tasks by

supplying the values ‘desired-number-to-
schedule’ and ‘scheduled-when’ or by adding an
interaction on the group.

• Resources
Resources are not divided into different types,
according on how tasks can interact with them.
They only differ in how they react when the
bounds are reached. This does not only allow
different tasks to interact with one resource in
different ways, it also saves a lot of resource types
and thus a lot of coding.

• Constraints
o Resource dependencies

the most descriptive property of a
resource is how tasks can interact with
them. But not always do all tasks interact
with a given resource in the same way,
therefore this distinction has been moved
to the constraint. In this way, the
resource type of a resource R is mainly
specified by the resource dependencies
which point to R.

o Time dependencies
the time dependencies do not involve
any constraint of the type ‘A can only be
scheduled when B is scheduled’ any
more. This safes a lot of time
dependency types and thus a lot of
coding. To add such a constraint, use
demands.

o Interactions
 Demands

see ‚time dependencies’ above
 Group interactions

this constraint allows to model
alternative sets of tasks

• Timeline
By default, the timeline has no resolution. This
means on the one hand that the scheduling
problem has an infinite value domain, which
makes it impossible to use certain algorithms,
such as brute force. In case one wants to apply
such an algorithm, one first has to find a suitable
resolution.
On the other hand, no time profiles should be
handled as arrays of constant length, where one
element represents the value of the ith time
section on the timeline, because this would
restrict the application of the scheduling engine to
cases where the duration of all tasks is
comparable with the time horizon. For example in
our satellite mission ‘Terra-Sar-X’, we have to
cope with data takes of a few seconds length (the
difference in lengths is even lower) and a time
horizon of years. The resulting opportunity profile
of a single data take for example would be
represented by loads of 0s with a few interrupting
1s. So why restrict to a certain resolution when

ICAPS 2005

50 Workshop on the Role of Ontologies in Planning and Scheduling

the time profiles are represented dynamically
anyway?

Not all features described in this document have already
been implemented in our tools Pinta and Plato and some
details may differ. But all main features have already been
implemented and we found that the power of a common
today’s personal computer can handle this modelling in an
acceptable time. (A strict performance test has not yet been
done, mainly because of lack of time, but also because
some features to speed up the algorithm have not yet been
implemented.)

References
[1]A. Barrett, R. Knight, R. Morris, R. Rasmussen:
Mission Planning and Execution within the Mission Data
System, Proceedings of the 4th International Workshop on
Planning and Scheduling for Space (IWPSS-04), page 13
WPP-228, Noordwijk, Netherlands: ESTEC - ESA
Publications Division

[2]H.M. Calvani, A.F. Berman, W.P. Blair, J.R. Caplinger,
M.N. England, B.A. Roberts, R. Hawkins, N. Ferdous, T.
Krueger: The Evolution of the FUSE Spike Long Range
Planning System, Proceedings of IWPSS-04, page 25
WPP-228, Noordwijk, Netherlands: ESTEC - ESA
Publications Division

[3]B. Clement, A. Barrett S. Schaffer: Argumentation for
Coordinating Shared Activities, Proceedings of IWPSS-04,
page 44
WPP-228, Noordwijk, Netherlands: ESTEC - ESA
Publications Division

[4]A.S. Fukunaga, G. Rabideau, S. Chien: Robust Local
Search for Spacecraft Operations using Adaptive Noise,
Proceedings of IWPSS-04, page 78
WPP-228, Noordwijk, Netherlands: ESTEC - ESA
Publications Division

[5]L.A. Kramer and S.F. Smith: Task Swapping: Making
Space in Schedules for Space, Proceedings of IWPSS-04,
page 107
WPP-228, Noordwijk, Netherlands: ESTEC - ESA
Publications Division

[6]J. Jaap, E. Davis, L. Richardson: Maximally Expressive
Model, Proceedings of IWPSS-04, page 86
WPP-228, Noordwijk, Netherlands: ESTEC - ESA
Publications Division

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 51

Using ontologies for planning tourist visits

Juan David Arias
Departamento de Informática

Universidad Carlos III de Madrid
Avda. de la Universidad, 30. Leganés (Madrid). Spain

jdarias@inf.uc3m.es

Laura Sebastiá
Univ. Politecnica de Valencia

Valencia, Spain
lstarin@dsic.upv.es

Daniel Borrajo
Departamento de Informática

Universidad Carlos III de Madrid
Avda. de la Universidad, 30. Leganés (Madrid). Spain

dborrajo@ia.uc3m.es

Abstract

In order to let software applications use planning tech-
nology, one of the needs consists on the knowledge ex-
change between the planner component and the rest
of components. Currently, one of the most widely used
means of supporting this exchange in a declarative way
is through the use of common ontologies. In this pa-
per, we present our on-going work on trying to build
one such systems, SAMAP. 1 The aim of this project
is to build a software tool to help people visit different
cities. This tool integrates modules that dinamically
capture user models, determine lists of activities that
can provide more utility to a user given past experi-
ence of the system with similar users, and generates
plans that can be executed by the user. This system is
intended to work in portable devices (mobile phones,
pdas, etc,) with internet connection. In this paper, we
focus on the common knowledge representation, which
is modeled by means of an ontology, and the planning
component of the project.

Introduction
During the last years, global networks, such as the In-
ternet, have experimented an important growth. This
is causing a social and economic impact in many as-
pects. For example, from the commercial point of view,
we can buy a different range of products through the
Internet, i.e., books and films, and we can even buy a
plane ticket or book a hotel. The success of these new
commercial activities is related with the fact that we
can ubiquitously use hardware devices with connection
capabilities, such as Personal Digital Assistants (pdas)
or mobile phones with access to the Internet, so that we
can compare prices, and buy products we are interested
in.

Electronic tourism is one of the activities that have
enjoyed of an important success in the Internet, not only
from the commercial point of view but also from a so-
cial perspective. Many sites provide information about
hotels, plane tickets, etc. There are also recommender

Copyright c© 2005, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

1This work has been partially supported by the Spanish
MCyT under project TIC2002-04146-C05-05

systems that tell us which destination is more suitable
according to our preferences (Delgado & Davidson 2002;
Fesenmaier et al. 2003). Once selected a destination,
we can find many sites which give us information about
places to visit in a city, activities to do during the travel,
restaurants, etc. But this information is static in most
cases; that is, it is presented to all users in the same
way. Also, the quantity of available information can be
large and, therefore, the user must select which pieces
of information are interesting for him/her. Finally, and
most importantly with respect to the goals of this pa-
per, they do not automatically provide plans and sched-
ules, according to user needs and sites schedules. So,
from the user point of view, it is useful to have a rec-
ommender system that tells him which places may be
interesting to visit in a certain city taking into account
his/her profile, computing a tourist daily plan, with in-
dications about which places to visit in the given time-
frame, and also how to go from one place to another.

We have partially developed a system which provides
this functionality. It dynamically captures and updates
a user model about different city visits, analyses past
planning behavior of the user and similar users in the
same type of visit, and selects a list of places that have
a high probability to be interesting for the user. Then,
taking into account distances, places timetables, etc., it
computes a plan, and also shows how to go from one
place to the next in the plan. In order to store all
the information the system needs, we have defined an
ontology.

Nowadays, the use of ontologies in the internet is in-
creasing, specially motivated by the Semantic Web ef-
forts. Ontologies are being also used when building mul-
tiagent systems, in order to share their common knowl-
edge in a declarative way. samap has been built as
a multiagent system, consisting of three main agents:
user modelling and interface agent, case-based agent,
and planning agent. In (Heflin & Muñoz-Avila 2002),
Heflin and Muñoz-Avila present another example of this
kind of system that integrates HTN planning and Se-
mantic Web ontologies for defining agents capable of
solving complex information integration tasks. Other
related work are the trip planning systems for book-
ing flights or hotels, renting cars, etc. though most of

ICAPS 2005

52 Workshop on the Role of Ontologies in Planning and Scheduling

this work does not report in-city planning/scheduling
and/or the use of ontologies (Ambite et al. 2002;
Knoblock & Minton 1998; Camacho et al.). There are
other proposals of tourism ontologies, like for example
Harmonise2. The goal of Harmonise is that participat-
ing tourism organisations keep their proprietary data
format while cooperating with each other. Harmonise
focuses on obtaining the interoperability between differ-
ent organizations with different standards so that they
can share information with others.

In contrast, samap does not solve the problem of
travelling to a specific place. Therefore, it does not need
to know anything about flights, travel agencies or other
elements related to travelling from a city to another
one. samap focuses on facilitating the activities that
a tourist can perform in a city, also considering the
transport means that can be used to move within the
city that is visited.

The following section details the ontology defined in
samap. Next section introduces the architecture of
our system, in particular, it details the planning agent
whereas the next section describes how this agent uses
the information stored in the ontology. We finish with
some conclusions.

samap ontology

The system relies on an ontology that is shared by all
agents, where each agent uses part of it. The main
classes and their relationship appear in Figure 1.

In order to define this ontology we have used
Protégé which is an ontology editor developed at
Stanford University.3 This editor helps on the cre-
ation of ontologies and exports the information about
created ontologies in many different ontology formats,
such as clips, which is the format used samap because
it is more suitable for our system. However, other lan-
guages, such as OWL (Ontology Web Language), which
is very powerful and considered the standard in Web
services, could be used in the future as Protégé has a
set of extensions or plugins that allow to load, to edit
and to save ontologies in OWL format.

The samap ontology consists on three main classes:
user, activities and city information. The User class
has attributes about the personal information of the
user like name, profession, mobility, language, sex, etc,
but it also references other classes where other user in-
formation is considered (see Figure 1). These attributes
as well as the captured user model are used for deter-
mining which visits the system should recommend to
the user. For example, if samap knows that a user has
a reduced mobility (s/he needs a wheelchair), then the
planner will not offer plans with places that are not
prepared to receive visitors in a wheelchair. The same
applies to other attributes. The user model with his/her
preferences are also used for proposing the user plans

2www.harmonise.org
3http://protege.stanford.edu

with activities that were performed by people similar
to the user on that same city.

The User class is related to the User-Context class.
This class has context-dependent information, such as
user localization, if the user has car on that visited city,
money available, residence, etc. The user localization is
useful for planning the itinerary whereas knowing how
much money is available is used for computing price-
dependent plans. There are other attributes in this
class as the ones referring to the type of connection
device that help on performing device dependent in-
teraction (but we do not focus on this aspect in this
paper). An important attribute in this class is current-
visit that is a reference to one instance of the Visit class.
The Visit class has the information on the city that
is being visited, the reasons of the visit, the free time
the user has, as well as the activities (plans) that the
user performed in the past, the activities (plans) that
s/he rejected, etc. The ontology also accepts storing
multiple past visits of the same or different users, so it
can deduce new user preferences by performing machine
learning or case-base (CB) reasoning on past visits.

A city is represented by the City class together with
classes that describe transport means, places that can
be visited, as well as the streets that compose the map
of a city. For instance, streets are represented in terms
of intersections and street sections, and contain infor-
mation about the district they belong to, type of street,
or traffic in that section (in case we can connect to on-
line traffic information resources). Using these classes,
we can define the graph that represents the map of a
city, so samap can perform path planning to know how
to go optimally from one place to another, according to
a given user defined quality metric.

The Place class defines specific sites within a city
that can be visited, such as restaurants, museums,
generic buildings, bars, open-spaces, or theaters. It
contains information related to the user, such as ac-
cessibility, price, or ways of payment, as well as infor-
mation needed for planning, such as timetables, which
will be used to schedule the plan. The location in a
street section is also specified for each place.

The transport means are represented by the Trans-
port class and its subclasses, which denote specific
transportation means: underground, railway, bus, taxi
and walking. Some of them contain information on the
graphs related to their itineraries.

Activities, which are represented in the Activity
class, can be of two types: generic and specific. A
generic activity is, for example, going to a museum,
without specifying which one. This is useful when a
user likes visiting museums in general. A specific activ-
ity relative to museums would be to visit the Hermitage
museum. Therefore the system can recommend to visit
several museums if “going to a museum” appears in the
list of generic activities, or to visit an specific museum
if it is in the list of specific activities. Planning goals
will be automatically generated from the set of activ-
ities that the user has selected to perform within the

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 53

USER
+personal_preferences
+similar_user
+user_type
+......

ACTIVITY
+preference_level
+activity_type
+tipical_duration
+......

PLACE
+timetable
+activity_hour
+accesibility
+......

TRANSPORT
+hour_frecuency
+price
+accesibility
+......

ADDRESS
+number
+localization
+position
+......

USER_CONTEXT
+user_interface
+money_available
+companions
+......

VISIT
+accepted_activities
+rejected_activities
+user_context
+......

CITY
+transport
+places
+activities
+......

PERSONAL_PREFERENCES
+language
+daily_rhythm
+daily_budget
+......

Figure 1: High level view of the ontology developed for samap.

city, as well as the ones that samap has selected auto-
matically from the user preferences and from previous
visits of similar users to the same city. Examples of the
activities that can be performed in a city are to visit a
museum, a church, eat in a restaurant, go to a concert,
attend a show, go to the cinema or theatre, etc. Each
one of these types of activities is defined in a separate
subclass.

While some of the attributes of the Activity class are
useful for the planning process, others are important to
select which places will be recommended to the user.
For example, the attribute that determines the type of
food helps the system to recommend a restaurant ac-
cording to the user preferences. On the other hand, the
attribute that indicates the typical duration of an activ-
ity helps to decide which activities could be performed
taking into account the available time of the user.

The Movement class is a special subclass of Ac-
tivity, given that it represents the action of going from
one place to another. It provides a uniform way of rep-
resenting the output of the planning agent, plans that
contain performing activities of visiting places, as well
as activities for going from one place to another. The
system admits several types of transport means, includ-
ing walking, and represents and computes several qual-
ity metrics related to them, as price, duration, distance,
or utility for the user (related to preferences).

One of the advantages of having an explicit knowl-
edge model such as the ontology we are using is that
some elements of the ontology are recovered from In-
ternet by means of wrappers. Information relative to
cinemas, theaters, restaurants or museums is updated
from Internet addresses, which can improve the robust-
ness of the plans. We plan to study in the future the
relationship between the continuous access to updated
information and reliability of plans.

samap

We have developed a prototype called samap, whose
goal is to compute a tourist plan for a user with Inter-
net access via a ubiquitous device, such as a PDA or a
mobile phone. This system needs to have access to the
information represented in the ontology:

• Information about the city, that is, the context that
surrounds the user (i.e. monuments and interesting
places in a city, etc.)

• Personal data, interests and preferences of the user,
that is, type of activities that this user likes to do
when s/he visits other cities (user model)

• Places that other people similar to our current user
liked when they visited the same city (plans of other
users)

• Basic services that this user requires to perform
his/her activities (i.e. payment with credit card, use
only taxi for movements, etc.)

Once we have all this information, the application
computes a plan that contains the following elements:

• a selection of the most interesting places for this user
according to his/her model

• indications about which transportation means s/he
should take to move between different places includ-
ing walking

• recommendations about where to have lunch or din-
ner (restaurants, bars, etc.)

• proposals of places of leisure such as cinemas or the-
atres

The following subsections detail the architecture of
this system, specially with respect to its architecture.

samap Architecture
Figure 2 shows a high level view of the architecture
of samap. The first step consists of building the
user model. This requires the user to enter informa-
tion about him/herself, that is, personal data, interests
and preferences about, i.e., art, monuments, meals, etc.
Also, the user should specify which city is s/he is going
to visit, under which schedule, etc. This information
can be gathered by using any device with Internet con-
nection. In order to obtain more interesting data about
the user, the system (by means of learning techniques)
can use past information about the same user (provided
s/he has used the application before). This information
will be stored in the User and Visit related classes.

ICAPS 2005

54 Workshop on the Role of Ontologies in Planning and Scheduling

ONTOLOGY

USER

User Model
 Visit model reasoning

Case−based User model

Enriched
 Visit model

User model
Planning

Set of plans

Figure 2: High level view of the architecture of samap.

The second step consists of the generation of a list of
activities that s/he might like to perform in the current
visit according to the preferences. As explained be-
fore, the activities might come directly from the user,
or automatically generated by CB reasoning from sim-
ilar users plans in the city or similar cities. Each activ-
ity will also be described with the expected utility that
performing this activity might have for the user. This
utility can be directly specified by the user, or computed
by samap from knowledge about similar users.

The last step is the computation of the tourist plan
by taking into account the previously computed list of
activities. One of the questions that arises here is why
not use a CB reasoning mechanism throughout the sys-
tem. We prefer to use a planning approach with “clas-
sical” operators because (a) there is not a CB planning
tool that allows to develop appplications quickly and
(b) in big cities where there are a number of differ-
ent goals and ways to go from one place to another, we
would need a very rich adaptation agent. Therefore, we
think we have adopted the easiest solution: the planner
takes this information as input together with informa-
tion about the city (streets and intersections, situation
of each place, etc.) to compute the plan for the user.
The next section describes the architecture of the plan-
ning system and Section Using the ontology within the
planning agent details how this information is used in
the planning system.

Planning agent Architecture

One of the inputs of the planning agent is the list of
activities selected by the CB reasoning agent. This list
is not directly the goal of the planning problem, as it can
contain more places than the user will be able to visit.
Therefore, the planner must select which of them should
be included in the plan. Moreover, the planner must

schedule each visit according to the place timetable,
deal with the city map, etc. This planning task has
several features that make it hard for current planners:

• Time management: each visit should be scheduled
according to the opening hours of each place and the
expected duration of the visit according to the user
model. Also, it should consider the time to go from
a place to another.

• Management of numerical values: the prices of
the visits, meals and transports must not exceed the
available budget.

• Locations: the plan indicates how to go from one
place to another, that is, which transport the user
should take. In case it is preferable to walk, the plan
indicates which route the user should follow.

• Goals: we can specify three types of goals:

– totally instantiated goals, i.e., visit a specific mu-
seum

– partially instantiated goals, i,e., generic goals like
visiting any museum

– a metric indicating that the plan must maximize
its utility

Moreover, not all the available places must be visited,
that is, not all goals will be achievable, because of
scheduling constrains related to timetables (one can-
not enter Prado’s museum at night) or to the avail-
able time of the user (s/he cannot visit five places if
s/he only has time to visit two).

Most of these features can be handled by most tem-
poral planners. However, we will focus on the ones that
are more specific:

1. Each visit is scheduled according to the open-
ing hours of each place. This implies that we need

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 55

an explicit management of the current time. In addi-
tion to the restrictions that existing temporal plan-
ners take into account when scheduling an action,
our system must consider the current time because a
place cannot be visited if it is closed. This also causes
that there can be empty time points, that is, time
points when no action is executed (from the point of
view of the user, an empty time point is free time).
This free time is not handled by temporal planners;
every time point has an associated action.

2. The plan indicates how to go from one place to
another. This task can be performed (theoretically)
by any planner. But our system has to deal with all
the transport means (subway, bus, taxi, ...) in a city
and the routes one can take to walk from one place
to another.

3. The objective of the problem contains par-
tially instantiated goals. This means that the
planner must select only one specific place whose type
is equal to the partially instantiated goal.

4. The plan is computed in order to maximize the
utility of the visits. In a general planning problem,
even when we deal with durative actions and numeri-
cal values, we specify the goal as a set of literals that
must be true at the end. However, in our case, there
is not such a set of literals; our goal is to maximize
the utility of the plan. This kind of problems were in-
troduced in the International Planning Competition
held in 2003 in the hard numeric track, but only few
planners (MIPS (Edelkamp 2002), SHOP2 (Nau et
al. 2003) and TLPlan (Bacchus & Ady 2001)) were
able to solve them, two of them require manual cod-
ification of the domain.

As it is difficult to use a simple planner for solving
the planning part of the application, we propose a hy-
brid system composed by a planner and other modules.
As we said above, the input of the system is an original
list of activities that represents the places of interest of
the user (including eating and leisure places) together
with a number indicating their utility, i.e the satisfac-
tion degree that visiting such site provides to the user
(remember that this satisfaction degree is calculated
by the CB reasoning agent). Each activity can be to-
tally or partially instantiated, as in visit museum of
Modern Art or visit a museum. The output is one or
more tourist plans which contain a list of scheduled vis-
its along with the indications about how to move from
one place to another. The system also computes the
cost of the plans trying to maximize its quality accord-
ing to the established metric. By default, the quality
metric is to maximize the total utility, but it could be
to diminish the cost, a combination of both or any other
one. The ontology stores all the information:

• about the city: streets and intersections, public
transport networks, etc.

• about the places the user can visit: situation,
timetable, price, etc.

• about the user model: a list of activities together
with the corresponding utility

The final step of the planning system is to store the
generated plans into the ontology. Figure 3 shows an
schematic view of the proposed architecture. It is com-
posed of five modules:

• Translator module: it transforms the original list
of activities into the predicates required by the plan-
ner. The ontology stores all necessary information.
The output is the initial state of the problem, the
goals (list of activities) and the transport graph, i.e,
all the information related with the transportation
(buses, underground, users preferences . . .). It also
transforms the generated plans into the correspond-
ing instances of the ontology. This module will be
deeply studied in Section Using the ontology in the
planning module.

• Control module: it coordinates the rest of modules
providing the input that they need in the suitable
format and gathering their output. It can invoke the
Transport module or let the Planner module do it

• Selector of activities module: the aim of the sys-
tem is to maximize the utility of the plan and/or to
satisfy some specific or generic goals, but not to fulfill
all the available activities. This module selects the
most appropriate actions to be solved by the planner
each time. This module has been designed to have
a similar behaviour to a tourist. For example, it can
select first those activities which are near places with
the highest utility.

• Planner module: it generates the plans. Its input
is a domain theory (set of operators and types hier-
archy), planning problem (initial state and goals, list
of activities), a quality metric, a cost bound and a
time bound. It tries to generate one or more plans
that solve the problem during the time bound. The
cost of the solutions cannot be greater than the cost
bound, according to the quality metric. There can be
more than one Planner module each with a different
planning technique. The Control module compiles all
the results. This module can directly communicate
with the Transport module.

• Transport module: it receives an origin and a des-
tination point and returns the transport subplan for
moving a person from the origin to the destination.
It also returns the cost and time of the itinerary.

Using the ontology in the planning
agent

Once we have defined the architecture of the planning
component of samap, we describe here the interfaces
needed to translate the knowledge contained in the on-
tology that is relevant for planning, and translate back
the resulting set of plans into the ontology, for further
use by other components. Figure 4 shows how the trans-
lation is performed in samap.

ICAPS 2005

56 Workshop on the Role of Ontologies in Planning and Scheduling

ONTOLOGY

TRANSLATOR CONTROL
MODULE

PLANNER
TRANSPORT

MODULE

SELECTOR
OF

ACTIVITIES

Planning
system

Figure 3: Planning System Architecture.

The input knowledge to the planner component is
stored in the ontology spread in different classes as it
was described earlier. In particular, from the point
of view of planning, the most relevant knowledge con-
tained in the ontology refers to the city and the user.
Every specific city contains instances of city related
classes in a file with the pins extension (clips extension
for knowledge about instances of classes). As we said
above, the planning agent is interested in those classes
that refer to the places the user can visit, to the list
of activities recommended by the CB reasoning agents
and to the topology of the city and transports, that is,
streets, intersections, buses, underground, places, etc.
The knowledge about streets and transports is trans-
lated into a path planning problem (how to go from
one place of the city into another one). The path plan-
ning problem can be solved by the planner at the same
time as solving the planning problem (what activities to
perform and when), or solved by the transport module
described in the previous section.

The first solution is adopted if we use a planner such
as ff (Hoffmann & Nebel 2001) given that it does not
easily allow to plug-in other problem solving compo-
nents. So the whole transport (or path planning prob-
lem) gets translated into pddl (Fox & Long 2002) as
part of the initial state. In this case the path planning
graph (nodes are intersections, and addresses and arcs
are transport means that move one person from one
node or another) is represented with two predicates:

coordinates that represent where nodes in the graph
are; and arc that contains information about the type
of arc (walk, bus, underground, . . .), origin and destina-
tion, utility (for some people walking is better than tak-
ing the bus, but worse than taking the underground),
distance, time, price, and cost (we can represent and
reason about any other type of cost).

The second solution (a separate transport problem)
is the one we use with prodigy, given that it is quite
easy to plug-in new execution components to this plan-
ner. In this case, the translator generates before plan-
ning a path planning graph from the knowledge about
the city in the ontology. Then, at planning time, ev-
ery time prodigy tries to apply a transport operator
(such as walk from A to B), it calls a path planner
(for instance, an ida∗ algorithm) with the origin and
destination. And the path planner will use the plan-
ning graph to compute a solution, which returns to the
planner.

On the other side, the translator is also in charge
of building the initial state and goal of the planning
problem. The initial state contains all those predicates
that refer to the situation, schedule, price, . . . , of each
place together with the available schedule and the cur-
rent location of the user, etc. The goal of the problem
represents, in our context, the list of activities that the
previous two modules have selected as relevant (useful)
for the user. However, as we explained above, the ex-
isting planners try to satisfy all the predicates specified

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 57

coordinates
addresses
intersections
places
street−sections

city.pins

user
goals

visit−schedule

visit.pins

translatortranslator

translator translator

Path−planner IPSS

translator PDDL
problem

Planner

transport
predicates predicates

planner

CLIPS rules

only places info. related to goalsarcs
coordinates

problem
IPSSPath−planning

graph

path−planning problem

path−planning solution planning and
path−planning

solution

CLIPS rules

Figure 4: Translation between ontology instances and the planners within samap.

in the goal. For this reason, the selector of activities
first shrinks the list of recommended activities to those
most appropriate according to some criteria (proximity,
etc.).

We have used clips for this translation given that
it provides a declarative and easy way of performing
the translation. We also used clips in a previous ver-
sion of the transport problem translator, but due to the
size of path planning graphs for medium size cities such
as Valencia (Spain), it took way too long to translate
it. Consider that our current map of Valencia has over
7600 nodes and over 22000 arcs (only for walking, with-
out considering buses or underground for now). So, this
part of the translator has been re-programmed in Com-
monLisp, although it could have been easily done with
more appropriate tools, such as yacc and bison.

Once the transport and planning translators gener-
ate the initial state and goals of the planning prob-
lem (possibly also a path planning problem), planning
can start. We are using now two planners, prodigy
and ff (we are also working on adapting a HTN plan-
ner, but this requires more effort in the domain defi-
nition). The translators generate pdl (prodigy De-
scription Language) problems, but we have also built a
pdl to pddl translator, so we can also use ff for solv-
ing planning problems. After the planning process, the
planners can either return no solution (when all goals
cannot be scheduled in the given time frame), or a list
of plans (in the case of ff only one). If no solution
was found, then the control module calls the activities
selector module to return a new sublist of goals and the

planner is called again with the same initial state and
the new subset of goals. If a set of solutions was found,
it is translated back to ontology instances in a solution
file. Every planning solution is a list of instantiated op-
erators. These operators can be either visit some place,
attend some event (cinema, theatre, concert, . . .) or
perform a move operator (walk from one place to an-
other, take a bus from one stop to another, . . .). The
solutions file is sent to the user module for further pro-
cessing (selection of a plan by the user, modification of
conditions and replanning, or execution of the plan).

Conclusions
The application of AI Planning&Scheduling to real
world problems is a growing area that attracts more
researches each day. Also, the development of global
networks such as Internet, together with new hardware
devices with good connection capabilities, is causing a
social and economic impact in many aspects. Here, we
have described our on-going work on building an ap-
plication for assisting any tourist for planning the visit
to a city, using a PDA or a third generation mobile
phone. These plans are adapted to the user preferences
proposing only a list of activities that could be really
interesting and achievable for him/her.

samap has been built as a multiagent system, con-
sisting of three main agents: user modelling and inter-
face agent, CB reasoning agent, and planning agent. In
order to facilite the information exchange among these
agents, we have developed an ontology. It stores in-
formation about the user and his/her preferences, the

ICAPS 2005

58 Workshop on the Role of Ontologies in Planning and Scheduling

activities that can be performed in a city and the city
itself. In this paper, we have focused on how this infor-
mation is used in the planning agent.

References
Ambite, J. L.; Barish, G.; Knoblock, C. A.; Muslea,
M.; Oh, J.; and Minton, S. 2002. Getting from here to
there: Interactive planning and agent execution for op-
timizing travel. In Fourteenth Innovative Applications
of Artificial Intelligence Conference (IAAI). Edmon-
ton, Alberta, Canada: AAAI.
Bacchus, F., and Ady, M. 2001. Planning with
resources and concurrency: A forward chaining ap-
proach. In International Joint Conference on Artificial
Intelligence (IJCAI-2001), 417–424.
Camacho, D.; Aler, R.; Borrajo, D.; and Molina, J. M.
A multi-agent architecture for intelligent gathering
systems. AI Communications. In Press.
Delgado, J., and Davidson, R. 2002. Knowledge bases
and user profiling in travel and hospitality recom-
mender systems. In Proceedings of the ENTER 2002
Conference, 1–16. Innsbruck, Austria: Springer Ver-
lag.
Edelkamp, S. 2002. Symbolic pattern databases in
heuristic search planning. In AIPS’02. AAAI Press.
Fesenmaier, D. R.; Ricci, F.; Schaumlechner, E.;
Wöber, K.; and Zanellai, C. 2003. DIETORECS:
Travel advisory for multiple decision styles. In Proceed-
ings of the ENTER 2003 Conference, 29–31. Helsinki,
Finland: Springer Verlag.
Fox, M., and Long, D. 2002. PDDL2.1: An Extension
to PDDL for Expressing Temporal Planning Domains.
University of Durham, Durham (UK).
Heflin, J., and Muñoz-Avila, H. 2002. LCW-based
agent planning for the semantic web. In Ontologies
and the Semantic Web. Papers from the 2002 AAAI
Workshop WS-02-11, 63–70. Menlo Park, CA,: AAAI
Press.
Hoffmann, J., and Nebel, B. 2001. The FF planning
system: Fast plan generation through heuristic search.
Journal of Artificial Intelligence Research 14:253–302.
Knoblock, C. A., and Minton, S. 1998. The ariadne
approach to web-based information integration. IEEE
Intelligent Systems 13(5).
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Mur,
J. W.; and Wu, D. 2003. SHOP2: An HTN plan-
ning system. Journal of Artificial Intelligence Re-
search 20:379–404.

ICAPS 2005

Workshop on the Role of Ontologies in Planning and Scheduling 59

