
Monterey, California
I C A P S 2 0 0 5

Workshop on

Mixed-Initiative

Planning and Scheduling

George Ferguson

Caroline Hayes

Greg Sullivan

University of Rochester, USA

University of Minnesota, USA

BAE Systems Advanced Information Technologies

IC
A

P
S

0
5

WS3

Workshop on

Mixed-Initiative

Planning and Scheduling

George Ferguson

Caroline Hayes

Greg Sullivan

University of Rochester, USA

University of Minnesota, USA

BAE Systems Advanced Information Technologies

ICAPS 2005
Monterey, California, USA
June 6-10, 2005

CONFERENCE CO-CHAIRS:
Susanne Biundo

Karen Myers

Kanna Rajan

University of Ulm, GERMANY

SRI International, USA

NASA Ames Research Center, USA

Cover design: L.Castillo@decsai.ugr.es

Workshop on Mixed-Initiative Planning and
Scheduling

Table of contents
Preface 3

A Framework for Designing and Evaluating Mixed-Initiative Optimiza-
tion Systems

5

A. Kirkpatrick, B. Dilkina, W. Havens

Mixed-Initiative Issues for a Personalized Time Management Assis-
tant

12

P. Berry, M. Gervasio, T. Uribe, Neil Yorke-Smith

Weasel: A MIPAS System to Assist in Military Planning 18
C.C. Hayes, A.D. Larson, U. Ravinder

PLAYBOOKS & POLICY FOR KEEPING OPERATORS IN CHARGE 28
C. Miller

A Mixed-Initiative Approach to Huma-Robot Interaction in Rescue
Scenarios

36

A. Finzi and A. Orlandini

Metatheoretic Plan Summarization and Comparison 44
K.L. Myers

Mixed-Initiative Planning in MAPGEN: Capabilities and Shortcomings 54
J. Bresina, A. Jonsson, P. Morris, K. Rajan

http://icaps05.icaps-conference.org/

Workshop on Mixed-Initiative Planning and
Scheduling

Preface

The goals of mixed initiative planning and scheduling (MIPAS) systems are to com-
bine the strengths of humans and computers so as to produce joint systems that exhibit
better performance than either alone. A wide variety of domains, including manufactu-
ring, military logistics, space, and transportation are finding both manual and automa-
ted approaches to planning and scheduling inadequate. A manual approach, involving
large teams of highly trained experts, does not scale well to increasingly complex sce-
narios, and remains expensive, time consuming and error-prone. Automated planning
and scheduling systems, though long a focus of AI research, are difficult to integrate in-
to human-centric activities, for both technical and psychological reasons. Thus there is
increasing interest in mixed-initiative planning and scheduling systems, where humans
can apply their expertise, intuition, and exercise an appropriate level of control, while
computing resources can be leveraged to assist, learn, verify, generate options, and
control resources, using ever more sophisticated algorithms and more powerful hard-
ware. However, few successful MIPAS systems have been fielded to date. Challenges
include identifying the parts of a complex task where MIPAS systems might have the
greatest added value; developing planning and scheduling algorithms that can simul-
taneously meet humans’ requirements for speed, feasibility and quality; presenting and
communicating concepts effectively between human and computer, gaining user accep-
tance, and assessing impact on overall planning and scheduling performance.

This workshop will address the challenges of mixed-initiative planning and schedu-
ling, discussing past work, current needs and future directions.

Organizers

George Ferguson (U. Rochester)

Caroline Hayes (UMN)

Greg Sullivan (BAE Systems)

Programme Committee

John Bresina (NASA ARC)

Mark Burstein (BBN)

George Ferguson (co-chair) (U. Rochester)

Caroline Hayes (co-chair) (UMN)

Karen Myers (SRI)

Dana Nau (U. MD)

Debra Schreckenghost (NASA JSC)

Stephen Smith (CMU)

Greg Sullivan (co-chair) (BAE Systems)

A Framework for Designing and Evaluating
Mixed-Initiative Optimization Systems

Arthur E. Kirkpatrick, Bistra Dilkina and William S. Havens
School of Computing Science

Simon Fraser University
Burnaby, British Columbia

Canada V5A 1S6
{ted, bnd, havens}@cs.sfu.ca

Abstract

Mixed-initiative approaches are being applied in com-
binatorial optimization systems such as planning and
scheduling systems. Mixed-initiative optimization sys-
tems are based upon collaboration between the sys-
tem and the user. Both agents possess unique and
complementary abilities which can be jointly applied
to intractable optimization problems. Yet current ap-
proaches to designing and evaluating these systems re-
main ad hoc. In this short paper, we give a pre-
cise definition of a mixed-initiative optimization sys-
tem. We identify the salient characteristics of combi-
natorial problems which make them suitable candidates
for mixed-initiative reasoning. We provide a frame-
work which informs both the design and evaluation of
these systems. Using this framework, we characterize
the functional requirements of any mixed-initiative op-
timization system. These requirements can help to es-
tablish suitable evaluation criteria for these systems. We
conclude by situating recent work in this area within our
framework.

Introduction
Mixed-initiative optimization (MIO) systems are systems in
which the user and system collaborate to solve combinato-
rial optimization problems, such as planning and scheduling
(Howe et al. 2000; Kramer & Smith 2002; Scott, Lesh, &
Klau 2002). The benefits of MIO systems have been broadly
claimed in the literature. The arguments are based upon sev-
eral subordinate claims. Two experts ought to be better than
one for solving complex combinatorial optimization prob-
lems. The system and the user possess unique expertise, and
each complements the other. The division of labour between
these experts should reflect their inherently different capa-
bilities. The automated solving methods deal with the com-
binatorics of optmization problems, while users have differ-
ent kinds of expertise. Often the user of a MIO system will
be a professional in the field of application and consequently
will know aspects of the problem not adequately modelled
by the system. For example, some important constraints may
not be part of the model, or some preferences on solutions
may not be coded in the objective function. Furthermore, the

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

user’s experience may suggest directions for finding good
solutions in the search space. Mixed-initiative designs allow
this expertise to be incorporated into the problem solving
process.

We share the general enthusiasm for mixed-initiative sys-
tems. Yet we are concerned that beneath this large tent is
hidden a broad range of systems with potentially quite differ-
ent properties. Blanket statements about “mixed-initiative
systems” may only apply to some fraction of these systems.
The methods for evaluating these systems remain ad hoc and
there is little advice available on such issues as the functional
components of an effective MIO system, or the performance
evaluation of these systems. A common ground is needed
for discussions of design and evaluation.

Such a common ground is particularly important for eval-
uation. There have been several recent evaluations of mixed-
initiative systems. Most of these studies have aimed to
demonstrate that mixed-initiative systems can be advanta-
geous. For example, Klau et al. (2002a) write,“our goal is to
show that some people can guide search, not that most peo-
ple can” (p. 46, emphasis in original). The specific mech-
anisms by which mixed-initiative systems enhance perfor-
mance remain poorly-understood, although Scott, Lesh, &
Klau (2002) have made a promising start. We locate seven
limitations in current ad hoc approaches to evaluation:

• We lack precise terminology to distinguish mixed-
initiative systems and applications. This makes it difficult
to generalize results from one study to a broader class of
situations.

• We have a multiplicity of goals, which may overlap or
contradict one another.

• We lack clear metrics of progress.

• We have limited means of systematically organizing re-
sults to date and those of the near future.

• The lack of precise terms and clear metrics makes it diffi-
cult to state clearly falsifiable hypotheses for our research.

• We have no conventional protocols that researchers can
use to evaluate a new system.

• Researchers have to account for too many variables when
constructing a study.

The systems are being built, and the need is acknowledged.

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 5

However, we lack a bigger picture in which to locate specific
studies.

Our overall goal is to suggest more precise definitions
for the mixed-initiative optimization systems community.
Specifically, we make the following contributions in this pa-
per:

• We define the scope of mixed-initiative optimization
(MIO) systems.

• We present a general framework that can inform both the
design and evaluation of effective MIO systems and iden-
tify the main parameters of the problem space and use
them to categorize the functional requirements of a MIO
system.

• We situate other research results in MIO within our frame-
work. The framework suggests the range of applicabil-
ity of previous work and can be used to identify potential
confounds.

We end with a description of how this framework might be
used to structure future research in MIO systems.

Overview of the Framework
We call our proposal a framework rather than the more de-
manding terms “model” or “theory”. We have in mind an
analogy with the framework of a house, which provides a
structure to support both the work in progress and the fin-
ished product. Parts of a framework may be modified as
construction proceeds and parts may be thrown away when
they are no longer needed. We suggest the mixed-initiative
optimization community can benefit from undertaking de-
velopment and evaluation in this coordinated way—a com-
mon framework for developing tasks and protocols, and for
interpreting results.

Within such a framework, researchers can begin detailed
analysis, extending questions of evaluation beyond, “Is
mixed-initiative optimization possible?”, to “When and how
does it help, and by how much?”, and extending systems
design beyond “I think this will be useful”, to “Previous re-
search gives this a high likelihood of being useful for these
applications”.

Evaluation is key to this process, but it is hard to get
right and requires great effort. As a practical matter, we
must break the evaluation process down into smaller pieces.
Given the high dimensionality of the design space, experi-
mental manipulations requires separable research questions.
Generalization from evaluations of individual designs re-
quires the ability to locate each design within a larger space.
By suggesting the questions to ask about a specific design,
the framework provides that generalizability and the inter-
connection of these results with others. In particular, the
community will benefit from standardized evaluation proto-
cols. This allows us to build and extend research systems
without doing a full evaluation every time.

Definition of MIO Systems
We begin with a definition of a MIO system. A mixed-
initiative optimization system is an optimization system fea-
turing both:

• interleaved contributions by the user and the system, to-
gether converging on a solution to a single problem.

• asymmetric division of labour such that the contributions
made by the computer and the user are distinct.

This definition identifies the characteristics of systems for
which a common technology can be developed. It circum-
scribes our shared field of interest. In particular, it sepa-
rates the goals of this community from the goals of the user
modeling community, which emphasizes different aspects of
mixed-initiative systems. We are not arguing that user mod-
eling is incompatible with MIO systems, nor that it is irrel-
evant to some applications of those systems. We are simply
emphasizing that user modeling addresses issues that are in-
dependent of the issues common to all mixed-initiative op-
timization. A given application my need one, the other, or
both.

Framework Top Level
At the highest level, our framework describes the context in
which the system is used and the system itself. Optimization
systems ultimately serve human needs, and thus the context
describes the system operators and the social context of their
work. It includes such issues as who interacts with the sys-
tem, what others expect from them, and how they do their
job. The context introduces requirements that the resulting
system must satisfy. We break the context into two parts, the
problem domain and the operator expertise.

For our purposes, the mixed-initiative system can also be
considered to have two fundamental parts, the interactive vi-
sualization and the solver. We emphasize that this is not
intended to be a full description of the architectural options
available to designers. Rather, our purpose is to list the high-
level system components which will most directly be evalu-
ated. Designers devote most of their attention to the system,
and evaluations are likely to compare instantiations of var-
ious combinations of them, with little consideration of the
context. This is fine—in fact, there is no practical way to
cover all possible contexts in a single evaluation. We simply
recommend that evaluations explicitly specify the details of
their intended context. This will permit readers to determine
the range of contexts to which the evaluation results may be
generalized.

Properties of Context
The framework’s elaboration of social influences on a
mixed-initiative system emphasizes that the requirements
for that system are strongly shaped by the needs and nature
of the organization employing it. Each social component has
several properties, and the system requirements are derived
from the properties (see Table 1). We will describe each
property in turn.

Domains with synchronous collaboration feature teams of
individuals working in the same room to solve the problem.
The classical (and widespread) example would be several
individuals standing at a large whiteboard, discussing, writ-
ing, and annotating. Mixed-initiative optimizers for such do-
mains will benefit from having interactive displays that per-

ICAPS 2005

6 Workshop on Mixed-Initiative Planning and Scheduling

Area Property Derived Requirement
Domain Synchronous collaboration Simultaneous review and update

Asynchronous collaboration Traces left for handoff to others
Unmodellable aspects Adding specific constraints and revising solution
Level of constrainedness Choice of optimization algorithm
High dynamism Rapid solution revision
Answerability Explanation
High stakes High scrutiny, human approval, explanation
Task givens and goals Data model chosen
Task flow Activity design

Operator expertise
Domain-independent Visual grouping Display proximity, object similarity

Conceptual models of other programs Compatibility with other programs
Domain-specific Models of objects and relationships Data model

Heterogeneity of approaches Diversity of representations and interaction styles

Table 1: Contextual properties in the mixed-initiative optimization framework.

mit simultaneous review and update of the current solution
by multiple users, in the same way that a whiteboard can.

By contrast, asynchronous collaboration features team ef-
fort, but with individual team members working at different
times. For example, there may be only a single operator, but
the work is turned over from one shift to the next. In these
cases, the interactive display will not need simultaneous re-
view and update, but will instead benefit from providing a
mechanism for the first shift to leave traces of their choices
and pointers to ongoing problems.

Domains with unmodellable aspects have problems that
are difficult or impossible to completely represent in the
model. There are a wide variety of reasons why a prob-
lem feature may be missing from the model. Amongst other
reasons, the feature may be so specialized that the mod-
ellers forget to include it until they see a “solution” that vi-
olates it, the feature may not be representable in the mod-
eling formalism, or the feature may be so specific that it
would be impractical to represent its many permutations in
the model. Indeed, given the considerable mixed-initiative
folklore about incomplete models, it might be argued that
every domain has unmodellable aspects. In any event, do-
mains with unmodellable aspects will benefit from systems
that allow the operator to add specific constraints and call
for a revised solution.

The level of constrainedness of the domain imposes
requirements on the system. If the domain is highly-
constrained, the system should use a more sophisticated op-
timization algorithm. If the domain instead is only weakly
constrained, the choice of solver might be different or almost
irrelevant.

If the domain is dynamic, with requests frequently added
and withdrawn, the system will be required to generate re-
vised schedules rapidly.

If the operator is answerable to others for the choice of
plan, the system should provide features that facilitate expla-
nation. These could take the form of annotations and other
tools that highlight specific aspects of the plan.

High stakes domains have outcomes that are considered

critical by the participants. For such domains, the system
should support high levels of operator scrutiny and a final
human approval before the plan is carried out. These do-
mains will likely also have high answerability as well, and
so the system should also facilitate explanation.

The task statement imposes givens (initial conditions) and
goals (the form of the desired solution) upon a domain.
Different sets of givens and goals will often apply at dif-
ferent times for a single domain. For example, an airport
gate scheduling system may be used in two different modes.
First, the system could prepare a master schedule by allo-
cating planes to gates under the assumption that every flight
arrives exactly on time. In this case, the givens are the com-
plete plane list and the goal is a complete schedule. Then,
on a specific day, the plan would be revised as notices of
delays arrived. This second task has different givens (just
the planes whose schedules have changed, together with the
original master schedule) and a more specific goal (accom-
modate the delays with minimal disruption to the original
plan). Different tasks may require different data representa-
tions in the interactive display.

The final domain property is the task flow. Operators will
often perform a task in a sequence of steps. For example,
they may review all assignments of low-priority items be-
fore all high-priority ones (or vice versa). The operator task
flow imposes requirements on the system’s activity design,
the steps that the system requires the user to perform. For
example, a system that presented items to the operator in
random order would be extremely frustrating for an opera-
tor who wished to review them in priority order.

Operator Expertise
Arguments for the use of mixed-initiative optimization
systems often emphasize the unique expertise offered
by the user. We suggest that this expertise has both
domain-independent and domain-dependent properties. The
domain-independent expertise consists of the human percep-
tual skills. The primary interactive display of most MIOS
is visual, capitalizing on human skills of grouping visually-

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 7

related objects. An effective MIOS should display the prob-
lem in a way that allows the operator to draw useful conclu-
sions from object proximity and similarity. Note that even
within a given domain, different tasks, with their different
givens and goals, might be best served by different displays.

A second form of domain-independent expertise is the
operator’s experience with the conceptual models of other
systems. If the MIOS has a conceptual model that matches
that of other software commonly used by the operator pop-
ulation, the operators will find the system congenial. Al-
though this form of expertise is unlikely to have a strong
positive impact on the effectiveness of a MIOS, it can have a
strongly negative impact. System effectiveness can be sub-
stantially reduced if the operators are practiced with a con-
ceptual model that is incompatible with the MIOS they are
using.

The domain-specific expertise of the operators will also
impose strong requirements on the system design. From
both training and experience, operators will think in models
of objects and relationships. The structure of these models
is highly domain-specific, making it difficult to give specific
details. We simply note that the data model presented by
the MIOS should be well-matched to the models used by the
operators.

The final property in our categorization of expertise is the
heterogeneity of solution approaches. An operator may have
several ways of solving a problem and different operators
within the same community may use different approaches.
This is often domain-specific. Some operations communi-
ties have strong conventions that all operators are trained
to observe, while other communities may be more diverse.
We caution designers not to rely too strongly on perceived
homogeneity in a community, as even within highly-trained
groups there is often subtle variation. In general, an effective
MIOS should provide a diversity of views, representations,
and interaction styles, to support a diversity of solution ap-
proaches.

We have described these contextual properties in detail to
emphasize the diversity of contexts in which MIOS might
be applied. The effectiveness of a mixed initiative system
depends upon how well it is matched to the specifics of the
domain and the expertise of the operators. Interpretation of
evaluation results must take these factors into account. An
otherwise perfectly effective system may have poor perfor-
mance if it is evaluated on a domain whose requirements are
ill-matched to the system’s. Results from an evaluation will
best generalize to applications whose domains and operator
expertise are similar to those of the evaluation.

Properties of Systems
Our model of system properties is deliberately simpler than
our model of context. For purposes of summarizing the
properties of a system that have the largest effect on eval-
uation, we break the system down into two parts, the inter-
active display and the solver (see Table 2).

It is not our intent to list all possible features and proper-
ties of mixed-initiative optimization systems. Defining these
features and properties is a significant part of the overall re-

search program in these systems. We offer this list as a start-
ing point.

The interactive display has three main properties. The vi-
sualization is the visual representation used to display the
problem statement and the current solution. An essential
outcome of this design is the data model presented to the
user.

The second property is the chosen interaction techniques.
These will have specific speeds and place certain attentional
loads on the operators. An ideal interaction technique will
be fast and require so little explicit attention that the oper-
ator’s reasoning about the problem will not be disrupted.
Actual interaction techniques require some compromise of
these ideals.

The third property of the interactive display is the de-
tailed visual display design. These choices will determine
where and how much the operators can apply their domain-
independent expertise to the problem. This includes choices
of which aspects of the problem will be represented in close
proximity and how data values will be encoded.

The second component of the system highlighted in our
framework is the solver. There are many ways of catego-
rizing solvers, and development of new variations is an ac-
tive area of research. Given that MIOS researchers typi-
cally have a strong understanding of the properties of var-
ious solvers, we only present here two example properties,
showing how they may be connected to the contextual issues
described earlier.

Solvers are often categorized as implementing either sys-
tematic or local search. Seen in terms of their relationship to
the contextual properties described above, the main outcome
of this distinction is their suitability for dynamic problem
domains. Systematic search, while offering the potential for
higher optimization, is less likely to be responsive to shifting
requirements. Local search is more likely to apply in these
domains.

A second property of a solver is how close its solutions lie
to the optimal. Optimality is likely to be of higher value in
domains that are capital-intensive , but may not be a possibil-
ity for highly dynamic domains, whose volatile constraints
make it difficult to even define optimality.

Previous Work
The framework provides a structure for organizing discus-
sion of the research results to date on mixed-initiative op-
timization. In this section, we review many of these re-
sults and locate common threads and unexplored areas in
the field.

We start by considering the user modeling community’s
work on mixed-initiative systems. This literature is con-
cerned with rather different issues than mixed-initiative op-
timization.

Horvitz (1999) proposed 12 principles for the effective
integration of automated reasoning and direct user control.
The goal of this integration was an agent that could act as
a “benevolent assistant” (p. 160) to the user. The parame-
ters of such an agent are rather different from those of the
mixed-initiative optimization systems described in this pa-

ICAPS 2005

8 Workshop on Mixed-Initiative Planning and Scheduling

Component Property Outcomes
Interactive display Visualization Data model

Interaction techniques Speed, attentional load
Visual display Proximity of views, coding of values

Solver Systematic vs. incremental Suitability for volatile domains
Optimality Quality of solution in highly subscribed domains

Table 2: System properties in the mixed-initiative optimization framework.

per. Assistive agents are expected to have transparent algo-
rithms that perform actions the user also has the resources
and representations to perform. The goal is to relieve the
user of tedious, repetitive actions. From this perspective, the
system has the initiative most of the time and needs to de-
cide when to engage the user based on a user model—a set
of beliefs about the abilities, goals and intentions of the user.

Fleming & Cohen (2001) develop guidelines for the de-
sign and evaluation of mixed-initiative systems. However,
they start with the assumption that the central problem is
how the system will take the initiative to request assistance
from the user. They propose an approach similar to Horvitz,
based on having an explicit model of the user’s intentions
and abilities.

The work on assistive agents is explicitly excluded by our
definition, because such systems do not have an asymmet-
ric division of labour between user and system. In con-
trast to assistive agents, mixed-initiative optimization sys-
tems are designed to produce degrees of optimization that
the operator simply could not achieve unaided. Their algo-
rithms are unlikely to be transparent, and their choices may
require considerable effort for the operator to understand.
The scheduling task is a primary focus of the operator’s job
and is likely to be her highest priority task. Indeed, the de-
scription of the human partner as an “operator” rather than a
“user” emphasizes this primacy of the task.

Rich, Sidner, & Lesh (2001) cast human-computer inter-
action in terms of a collaborative dialogue process between
the user and an intelligent interface agent. The authors base
their approach to mixed initiative on human collaboration.
They argue for an interface agent that engages in a discourse
with the user in a similar way that the user would engage
with another human. In particular, they argue that an intelli-
gent user interface has to support the following questions:

• Who should/can/will do ?

• What should I/we do next ?

• Where am/was I ?

• When did I/you/we do ?

• Why did you/we (not) do ?

• How do/did I/we/you do ?

Rich et al. propose an intermediate level of software explic-
itly concerned with managing these questions.

We consider Rich et al.’s questions complementary to our
framework, as they are more abstract and at a much higher
level. We believe that many of the crucial elements for effec-
tive MIO system design lie in its rich, specific context. The

questions will best be framed in that context, which may
be difficult or impossible if the algorithm that generates the
question is insulated from the context.

Howe et al. (2000) present a study on mixed initiative
scheduling for the Air Force satellite control network. This
scheduling problem is oversubscribed—no feasible sched-
ule can satisfy all the requests. They propose a MIO system
where the system finds a good but infeasible solution and
lets the user negotiate the infeasibilities. A mixed-initiative
approach is appropriate for this application because it is hard
to express the true objective with a weighted linear sum of
criteria, and because the dynamic arrival of emergency re-
quests changes the problem specification as the solver runs.
The authors point out the limited number of designs in the
research literature mixed-initiative systems. They incorpo-
rate in their prototype some of these designs: providing an
interactive Gantt chart where the user can interact with a
schedule at an abstract, graphical level that hides schedule
implementation and optimization details to an appropriate
degree; and allowing the user to change the schedule, then
call the scheduler to propagate the effects and to optimize,
if possible. In terms of our framework, this paper empha-
sizes the dynamism and highly constrained nature of their
domain. Their comments about the limited number of avail-
able design ideas and their use of Gantt charts demonstrate
the importance of domain-specific models of objects and re-
lationships.

Kramer & Smith (2002) describe the AMC Barrel Alloca-
tor, a mixed-initiative resource allocation tool for airlift and
air-refueling management. They argue that a dynamic envi-
ronment is not the only reason for using the mixed-initiative
approach. It is also necessary to achieve the transition from
manual to fully automated system. Kramer & Smith em-
phasize that a mixed-initiative optimization system allows
a continuum of automation. In deploying their research to
production, they found that operators must first gain trust
and understanding of the system by inspecting solutions and
performing what-if scenarios trust a system before they will
accept it in a mission-critical workflow. Kramer and Smith
point out that one of the main functional requirements for
a mixed-initiative system is to provide explanations for sys-
tem decisions. In terms of our framework, this paper empha-
sizes the dynamism, high stakes, and answerability of their
problem domain, and argues that the MIO system must be
well-matched to the task flow.

Klau et al. (2002b) present the HuGS Platform, a toolkit
that supports development of human-guided search systems.
They discuss four different applications built in the HuGS
platform: a graph layout problem that minimizes edge cross-

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 9

ings between nodes, a modified version of the travelling
salesperson problem, a simplified version of the protein fold-
ing problem, and a jobshop application.

They present several motivations for mixed-initiative op-
timization. First, users need to understand and trust the
generated solutions in order to effectively implement, jus-
tify and modify them, what we would call the answerabil-
ity of the system. Second, the problem model usually in-
cludes only partially specified constraints and criteria, what
we call the unmodellable aspects of the domain. They ar-
gue that a mixed-initiative system also leverages on hu-
man abilities that outperform the systems: visual perception,
learning from experience, and strategic assessment. These
strengths range over properties of both domain-dependent
and domain-independent expertise.

Each application in the HuGS platform provides visual-
izations to display the current solution to the user for in-
spection and modification. Klau et al. argue that the use-
fulness of the system depends highly on the quality of vi-
sualization and recommend visualizations that highlight dif-
ferences from the previous solution. They suggest an eval-
uation of the quality of the visualization by running a se-
ries of experiments on the same problems for the same time,
and using two different visualizations. They propose a visu-
alization quality metric of the number of optimal solutions
that users are able to produce. In terms of our framework,
these evaluation methods are focused on the interactive dis-
play component. Klau et al. end by highlighting some ongo-
ing challenges for the mixed-initiative systems: large-scale
problems where the whole solution cannot be viewed at once
(again, located within the interactive display component of
our framework), and mixed-initiative systems where there is
more than one human user (synchronous collaboration).

Scott, Lesh, & Klau (2002) give a lucid outline of the
benefits of using a mixed-initiative optimization system.
Their research focuses on evaluating a specific aspect of
mixed-initiative optimization systems. The authors argue
that the design of interactive optimization systems needs in-
put from experiments focused on determining which opti-
mization subtasks are best suited to the strengths of the hu-
man and which are most appropriate for the computer. Their
study examines several user tasks within a mixed-initiative
optimization system for vehicle routing and compares users’
performance in these tasks to the performance of the com-
puter on the same tasks. They evaluate the users’ contri-
bution on three different subtasks: focusing search through
mobilities, finding targets that guide the search towards bet-
ter solutions, and controlling computational effort by halting
the search. Their studies suggest that people are especially
effective at managing how computational effort is expended
in the optimization process and at focusing short searches.
However, the experiments showed that humans were some-
what less effective at visually identifying promising areas of
the search space.

In terms of our framework, the work of Scott et al. is
motivated by the contextual concerns of answerability and
the unmodellable aspects of the domain. Because their
experimental participants were not vehicle routing special-
ists, the evaluation focused on HuGS’ support for domain-

independent expertise. Their project is a carefully-done,
substantial study with strong controls and high validity.
However, their paper itself does not specify the context.
By providing a context, our framework allows more precise
generalization from these results.

Conclusion
The potential benefits of mixed-initiative optimization sys-
tems are suggested by informal reasoning from basic princi-
ples and has been demonstrated by initial research. Having
established its basic feasibility, we can now turn to questions
of how much, and under what circumstances, and through
which mechanism we can benefit from a MIO system. We
have argued that context is rich and diverse, and that the ef-
fectiveness of a MIO system is determined by the degree
to which it is matched to the requirements of its context.
Key MIO system design decisions should be evaluated in
terms of the context in which the system will be used, or in
terms of requirements that are shared across multiple con-
texts. Our framework highlights this role of context and
provides a more detailed language for describing the rela-
tionship between context and system. We hope that these
more precise descriptions can support the construction of a
more consistent and solid structure of mixed-initiative opti-
mization research.

Acknowledgments
The work in this paper was supported by grants from Pre-
carn, Inc. and the National Sciences and Engineering Coun-
cil of Canada (NSERC).

References
Fleming, M., and Cohen, R. 2001. A user modeling ap-
proach to determining system initiative in mixed-initiative
AI systems. In UM ’01: Proceedings of the 8th In-
ternational Conference on User Modeling 2001, 54–63.
Springer-Verlag.
Horvitz, E. 1999. Principles of mixed-initiative user inter-
faces. In CHI’99: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, 159–166. ACM.
Howe, A. E.; Whitley, L. D.; Barbulescu, L.; and Wat-
son, J.-P. 2000. Mixed initiative scheduling for the air
force satellite control network. In Proceedings of Second
NASA International Workshop on Planning and Scheduling
for Space.
Klau, G. W.; Lesh, N.; Marks, J.; and Mitzenmacher, M.
2002a. Human-guided tabu search. In AI’02: Proceed-
ings of Eighteenth National conference on Artificial intel-
ligence, 41–47. American Association for Artificial Intel-
ligence.
Klau, G.; Lesh, N.; Marks, J.; Mitzenmacher, M.; and
Schafer, G. 2002b. The HuGS platform: A toolkit for inter-
active optimization. In AVI’02: Proceedings of Advanced
Visual Interfaces (AVI).
Kramer, L., and Smith, S. 2002. Optimizing for change:
Mixed-initiative resource allocation with the AMC Barrel
Allocator. In Proceedings of the 3rd International NASA

ICAPS 2005

10 Workshop on Mixed-Initiative Planning and Scheduling

Workshop on Planning and Scheduling for Space. Houston:
The Institute for Advanced Interdisciplinary Research.
Rich, C.; Sidner, C. L.; and Lesh, N. 2001. Collagen: Ap-
plying collaborative discourse theory to human-computer
interaction. AI Magazine 22(4):15–25.
Scott, S. D.; Lesh, N.; and Klau, G. W. 2002. Investigating
human-computer optimization. In CHI ’02: Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems, 155–162. ACM.

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 11

Mixed-Initiative Issues for a Personalized Time Management Assistant

Pauline M. Berry, Melinda T. Gervasio, Tomás E. Uribe,
Neil Yorke-Smith

Artificial Intelligence Center

SRI International
333 Ravenswood Avenue

Menlo Park, California 94025
{berry,gervasio,uribe,nysmith}@ai.sri.com

Abstract
This paper explores the mixed-initiative issues arising in the
Personalized Time Manager (PTIME) system. PTIME is a
persistent assistant that builds on our previous work on a
personalized calendar agent (PCalM) (Berry et al. 2004). In
order to persist and be useful, an intelligent agent that
includes collaborative human/agent decision processes must
learn and adapt to the user’s changing needs. PTIME is
intended to support a richer dialogue between the user and
the system, which should be useful to both. If the system
can reliably lean the user's preferences and practices, trust
between user and assistant will be established, decreasing
the system's reliance on mundane user interaction over time.
The enabling technologies include soft constraint
satisfaction, multicriteria optimization, a rich process
framework, learning, and advice.

Introduction
 The human time management problem is intensely
personal. Many people—especially busy workers—are
reluctant to relinquish control over the management of
their own time. Moreover, people have different
preferences and practices regarding how they schedule
their time, how they negotiate appointments with others,
and how much information they are willing to share when
doing so. They also have different needs and priorities
regarding the reminders they should receive.
 We are developing the Personalized Time Manager
(PTIME) assistant, with the goal of managing an
individual’s temporal commitments in a consistent,
integrated framework over an extended period of time,
while recognizing the differences between individuals and
adapting to these differences. The interaction between the
human user and the system is central to this goal. To
maximize the continued usefulness of this interaction, both
the user and the system should benefit from it. The
scheduling solutions found by the system should be
informative and proactive, and the dialogue should
improve the quality of future interactions.
 The PTIME project is part of a larger, ambitious
automated assistant called CALO. CALO is a cognitive
assistant that supports its human user in a variety of ways.
For example, project and task management, information
collection, organization and presentation and meeting
understanding. However, the focus of CALO is its ability

to learn and persist. Our hypothesis is that for mixed-
initiative systems to succeed in the long term, the dialogue
between human and system must evolve over time. To
achieve this, we are designing PTIME so that

1. PTIME will unobtrusively learn user preferences,

using a combination of passive learning, active
learning, and advice-taking;

2. As a result, the user will become more confident of
PTIME’s ability over time, and will thus let it make
more decisions autonomously; and

3. As autonomy increases, PTIME will learn when to
involve the user in its decisions.

 Background
Tools and standards for representing, displaying, and
sharing schedule information have become common. A
generally adopted standard for calendar representation is
iCalendar (RFC2447).
 There are also many calendar tools to organize, display,
and track commitments. However, most people still spend
a considerable amount of time managing the constant
changes and adjustments that must be made to their
schedules. Desktop tools have dramatically improved the
administration of our calendars, but their scheduling
capabilities are limited. Automated meeting scheduling
assistants have shown promise, but their use tends to be
fleeting, since they do not evolve over time. People also
use a variety of other tools, such as to-do lists, to keep
track of workload and deadlines not supported in the
typical calendar tools.

The emphasis in the research community has been on
automated meeting scheduling: finding feasible time slots
for meetings given a set of requirements on participants,
times and locations. Work in this area can be generally
divided into Open and Closed scheduling systems (Ephrati
et al. 1994). In Open systems, individuals are autonomous,
and responsible for creating and maintaining their own
calendar and meeting schedules, perhaps selfishly. They
can operate in an unbounded environment without constant
obligation to one organization. In a Closed system, the
meeting mechanisms are imposed on each individual, and a

ICAPS 2005

12 Workshop on Mixed-Initiative Planning and Scheduling

consistent and complete global calendar is maintained.
Closed systems are more common because preference
measures can be normalized across users, participant
availability is known at all times, and the problem can be
formulated as constraint optimization. Not all closed
systems are centralized, and there is interesting work in
distributed solutions to the closed scheduling problem
(Ephrati et. al.1994, Sandip and Durfee 1998).

Closed systems are rarely adopted because the users
seldom live in a truly closed environment, and need to
retain more personal control of their calendars. Open
scheduling systems pose additional challenges, such as
privacy: an individual may not wish to share all, part, or
any of his schedule, or may choose not to participate in a
meeting, but not divulge this information.
 CALO exists in an open, unbounded environment where
issues of privacy, authority, cross-organizational

scheduling, and availability of participants abound. PTIME
is similar in approach to RCAL (Payne et. al. 2002) but
extends the notion of collaboration with the user. The
scheduling task is viewed as a shared goal of the user and
the agent. The collaborative scheduling process is
separated from the constraint reasoning algorithms to
enable interaction with the user and other PTIME agents.
This interaction forms the framework for learning and
adjustable autonomy. PTIME considers finding the best
solution as a dialogue between user and agent, and treats
the underlying scheduling problem as a soft Constraint
Satisfaction Problem (CSP). PTIME also addresses the
problems of individual preference and scheduling events
within the context of the user's workload and deadlines.
 Figure 1 is a screenshot of the current PTIME interface,
and illustrates the collaborative nature of the dialogue
between PTIME and the user.

Figure 1: A screenshot from PTIME.

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 13

Architecture

The PTIME architecture, illustrated in Figure 2, includes a
number of components that make it personalized and
adaptive. Key features of the architecture include:
• A Process Framework (PTIME-Control), which

captures possible interactions with users and other
agents, in the form of structured decision points.

• Preference Learning (PLIANT), which lets the
system evolve over time by learning process
preferences, scheduling preferences, and, eventually,
new processes from the user. Currently, we have
developed PLIANT to learn temporal scheduling
preference, e.g. time of day, day or week,
fragmentation of schedule.

• Advisability (PTIME-Control), which enables direct
instruction by the user at various levels of abstraction.
Exploiting the explicit decision points in the process
framework lets the user make choices and give advice.
Choices may involve selecting an alternative
scheduling process, e.g. negotiate a new time for the
meeting vs. relax an existing constraint to accept the
current time; or they may involve expressing simple
temporal preferences, e.g. don’t schedule meetings just
before lunch.

• Constraint Reasoning (PTIME-Engine), which
permits reasoning within a unified plan representation.
The representation used by PTIME unifies temporal
and non-temporal constraints, soft and hard

constraints, and preferences. The constraint reasoner
(PTIME-Engine) considers workload issues and task
deadlines when scheduling typical calendar events,
such as meetings. The PTIME-Engine uses a hybrid
solver that manages the application of temporal CSP
algorithms, e.g., to handle Simple Temporal Problems
(STPs) (Dechter et al. 1991) and Disjunctive Temporal
Problems (DTPs) (Stergiou and Koubarakis 1998,
Tsamardinos and Pollack 2003), to address complex
constraint space and preference handling, and to
enable partial constraint satisfaction. The PTIME-
Engine can also explore alternative conflict resolution
options via relaxation, negotiation, and explanation
techniques, (Junker 2004).

• Personalized Reminder Generation (PTIME-RG),
which reasons intelligently about if, when, and how to
alert the user of upcoming events or possible conflicts
amongst events. This work builds on the Autominder
system (Pollack et al. 2003) and the learning
algorithms to create reminders that are context-
sensitive and personalized.

• Adjustable Autonomy (PTIME-Control), which
modulates control over decision points as the user’s
preferences and normal practices are learned, and trust
between the user and the system is established. The
goal is to decrease the system’s reliance on user
interaction over time.

Figure 2: PTIME functional architecture

ICAPS 2005

14 Workshop on Mixed-Initiative Planning and Scheduling

Persistence and Learning
Central to persistence are the application of learning
technology and a framework for advisability. Through
continual active learning and advice taking, PTIME
constructs a dynamic preference profile containing two
types of guidance:
(1) Scheduling: Preferences over schedules (when to
reserve time and with whom), relaxations (which
constraints, or constraint sets, are more readily relaxed)
and reminders (when, how and about which events the user
should be alerted).
(2) Process selection and application: preferences over
existing process descriptions (e.g., negotiate or relax) and
learned processes.
Both types of information can be actively asserted using a
policy specification language, building on work on
advisability and adjustable autonomy (Myers and Morley
2003). They can also be learned passively by monitoring
the user’s decisions.
 PTIME uses a suite of tools to learn various kinds of
preferences. A Support Vector Machine (SVM) module,
supplemented with active learning strategies, learns user
preferences about schedules in the form of an evaluation
function over schedule features (e.g., day of week, start
time, fragmentation) (Gervasio et al. 2005). The features
were selected to capture the temporal characteristics of a
scheduling decision. We are adding features that capture
whether or not constraints are satisfied by a candidate
schedule; this will let PTIME learn preferences over
relaxations in the case of over-constrained schedules as
well. We are also exploring the problem of procedural
learning, where the performance task is to determine what
to do under a particular situation rather than to evaluate the
goodness of a candidate schedule. Along similar lines, we
are using procedural learning to handle situations that arise
after an event is scheduled: for example, if the host cannot
make it or if the scheduled venue suddenly becomes
unavailable. Finally, PTIME uses reinforcement learning
schemes to learn both reminder strategies that are tailored
to individual users and strategies for determining the
amount of autonomy to take in different situations. By
observing the effects of different reminder strategies on a
user, PTIME can adjust its reminder strategy to account for
personal traits as well as different schedule situations. A
similar process occurs with the learning of adjustable
autonomy decisions.
 In all cases, PTIME learns online (or from the execution
traces of the user’s actual interactions with PTIME), so it
can continually adjust to changing user preferences and
situations. Concept shift—the phenomenon of users
exhibiting drastic changes in preferences—is a known
issue in the calendar domain. We plan to address this
problem more directly by designing a learning approach

that is sensitive to sharp changes as well as a period of
stabilization of user preferences over time.

Mixed-Initiative Research Directions
PTIME has demonstrated its initial calendar management
software within the CALO project, and is currently
undergoing a test phase, conducted by an external agency,
to assess its capability to learn user preferences and
therefore retain a high level of usefulness to the user.
PTIME development has four principal research goals for
2005, and all relate to its ability to adapt to the user’s
needs. This section describes our research into hybrid
constraint satisfaction, partial constraint satisfaction with
preferences, negotiation and advice-taking. The result is a
framework for negotiation between agents and with the
user. We will also describe our ongoing work to learn
preferences and accept advice from the user.

Using Preferences in Scheduling
The constraint problem in PTIME is a combination of three
factors: the user's existing schedule, the meeting request,
and the interactive collaboration between PTIME and the
user. The user may interact with PTIME to explore
possible relaxed solutions to the problem, leading to a
sequence of related soft Constraint Optimization Problems
(COPs) to solve. For example, the user may initially
specify a strong preference against meetings on Monday
mornings. Later, she may weaken this preference but
increase the importance of the specified meeting room.
 Critical to the mixed-initiative goals of PTIME is the
ability to use the learned knowledge of user preferences
within the underlying constraint satisfaction problem.
(Berry et al. 2005) describes our approach to constraint
satisfaction for PTIME, which involves a combination of
disjunctive and finite-domain constraint solvers with
preferences. Since it is relevant to this discussion, we now
briefly discuss the representation of schedule preferences
and relaxations within soft CSPs.
 User preferences are mapped into the shape and height
of specific preference functions for each of the relevant
soft constraints. The shape models how much and in what
way the constraint may be relaxed, and the height models
the importance of the constraint. This builds on the work
by (Peintner and Pollack 2004) and (Bistarelli, Montanari,
and Rossi 2001).
 For example, suppose a meeting with Bob must occur
before a seminar. If

!

S
M
(S

S
)and

!

E
M
(E

S
) are the start

and end of the meeting (resp. seminar), the constraint is

!

c : E
M
" S

S
0 . Figure 3 shows the shape of the

preference functions on

!

c from left to right, if the
constraint is hard, a little relaxable, and very relaxable.

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 15

Figure 3: Example Preference Functions

To solve soft CSPs that include such preference functions,
we combine existing solvers for the temporal and non-
temporal constraint subproblems in a hybrid formulation.
Constraint solving in PTIME is implemented in ECLiPSe
(Cheadle et al. 2003), and is also compatible with SICStus
Prolog; such Constraint Logic Programming systems are
well-suited to hybrid solving. We are exploring search
techniques that can produce not only a single optimal
solution, but also a good set of qualitatively different
solutions to present to the user. A good set of solutions has
three characteristics: to include the most desirable solution,
to give the user qualitatively different choices and to
promote future learning.

Negotiation: Process Design for Conflict
Resolution
The work on extending the constraint representation and
relaxation framework of our CSP is to enable more
informative dialogue between the human user and the
agent. The motivation behind PTIME is to facilitate a
collaborative assistant for time management. Taking note
of research in collaboration (Grosz and Kraus 1999) and
collaborative interfaces (Babaian, Grosz, and Shieber
2002), we view conflict resolution as a joint task to be
undertaken between the human and his agent, or between
agents. Currently, the interaction is explicitly captured in
the highly reactive process descriptions offered by
SPARK-L (Morley 2004) and applied within a framework
of advice. We would like to abstract and possibly learn the
applicability conditions of the processes within the context
of the dialogue.
Figure 4 presents a typical dialogue that might take place
between a user and PTIME. To enable this type of
dialogue, the processes capture the key decision points.
Future research will construct a collaborative framework
within which these processes will operate.
Figure 5 illustrates an example process in SPARK-L. Each
decision point offers the choice to automate the decision,
ask the user for advice or decision, postpone the decision,
or take another action. For example, when the goal is:

[do: (select_solution $resultset $result)],

a set of different actions might be intended, including
asking the user to select an option or automatically
selecting the highest valued one. The choice of action
depends on the user’s preference (learned or told), the
physical context (such as the user’s current activity), and

the cognitive context. Learning how and when to apply
each activity is a highly personalized and evolving
problem.

User Helen: “Please schedule a group
meeting early next week”
PTIME Agent: “Your specific request
conflicts with your current workload
and meeting constraints”
PTIME Agent: “May I suggest some
possible alternatives”
1. Meet Monday at 10am without “Bob”
2. Meet Tuesday at 4pm overlapping

the seminar
3. Meet Monday at 10am warning your

report deadline may be in jeopardy
4. Meet Tuesday at 11 and reschedule

your meeting with the boss
User Helen: I don’t mind overlapping
some meetings – show me more
possibilities like 2.
PTIME Agent: “Ok How about”
1. Meet Monday at 11:30 running into

lunch by 15 minutes
2. Meet Tuesday at 9:30 but Bob may

have to leave early
User Helen: “Ok go ahead with 2”

Figure 4. Example user-agent dialogue

{defprocedure “schedule”
 cue: [do: (schedule $event_type $constraints $attributes)]
 preconditions (Event_Type “meeting”)
 body: [context (and (User $self)
 (Participants $constraints $pset))
 seq:
 [do: (retrieve_availability $pset $constraints)]
 [do: (solve_schedule $constraints $resultset)]
 [do: (select_solution $resultset $result)]
 [select: (= $result [])
 [do: (resolve_conflct $constraints $result)]
 [do: (confirm_meeting $result $attributes)]]
 }

Figure 5. Example SPARK-L process

Advice
The PTIME-Controller can take user advice and conform
to organizational policies. Advice is defined as an
enforceable, well-specified constraint on the performance
or application of an action in a given situation. In general
advice can be considered to be a type of policy, often

ICAPS 2005

16 Workshop on Mixed-Initiative Planning and Scheduling

personalized. (Sloman 1994) defines two types of policy:
authorization and obligation. For our advisable system, we
extend this categorization to include preference:
1. Authorization defines the actions that the agent is either

permitted or forbidden to perform on a target.
2. Obligation defines the actions that an agent must

perform on a set of targets when an event occurs.
Obligation actions are always triggered by events,
since the agent must know when to perform the
specified actions.

3. Preference defines a ranking in the order or selection of
an action under certain conditions.

Advice can both apply to the application of strategies, the
conditions under which a strategy is applicable, or the
instantation of a variable. Advice may be conflicting, can
be long-lived, and their relevance may decay over time.
Advice can be used to influence the selection of procedures
and strategies for problem solving and also to influence
adjustable autonomy. The management of advice is an
active research focus for the CALO project. The
application of advice is central to both PTIME for
influencing preference and for controlling adjustable
autonomy strategies.

Summary
The concept of a persistent useful interaction motivates the
mixed-initiative design of PTIME. It has an extended
notion of collaboration with the user, which forms the
framework for learning and adjustable autonomy. The time
management process is represented using context-sensitive,
hierarchical procedures, which provide hooks, via the
structured decision points, into the user’s decision process
at multiple levels of abstraction. These hooks can be used
to passively learn the user’s preferences or to facilitate the
specification of advice from the user. The resulting agent
will let the user retain control of decisions when necessary,
and relinquish control to the assistant at other times.
Meanwhile, the agent will be sensitive to the user’s wishes
and preferences.

Acknowledgments. This material is based upon work
supported by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. NBCHD030010.
Any opinions, findings and conclusions, or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
DARPA or the Department of Interior-National Business
Center (DOI-NBC).

References
Berry, P.M., Gervasio, M., Uribe, T., Myers, K., and Nitz, K.
(2004). A personalized calendar assistant, In proceedings of the
AAAI Spring Symposium Series, Stanford University.
Berry, P.M. Gervasio, M., Uribe, T., and Yorke-Smith, N. (2005).
Multi-Criteria Constraint Solving and Relaxation for
Personalized Systems, Technical Report, SRI International.
Babaian, T., Grosz, B. and Shieber, S.M. (2002). A writer's
collaborative aid. In proceedings of the Intelligent User Interfaces
Conference, San Francisco, CA. January 13-16. ACM Press, pp.
7-14.
Bistarelli, S., Montanari, U., and Rossi. F. (2001). Solving and
learning soft temporal constraints: Experimental scenario and
examples, In proceedings of the CP'01 Workshop on Modelling
and Solving Problems with Soft Constraints.
Cheadle, A.M., Harvey, W., Sadler, A.J., Schimpf, J., Shen, K.
and Wallace, M.G. (2003). ECLiPSe: An Introduction, Technical
Report IC-Parc-03-1, IC--Parc, Imperial College London.
Dechter, R., Meiri, I., and Pearl. J. (1991). Temporal constraint
networks. Artificial Intelligence, 49(1– 3):61–95.
Ephrati, E., Zlotkin, G., and Rosenschein, J.S. (1994). A non
manipulable meeting scheduling system, In proceedings of the
Thirteenth International Distributed Artificial Intelligence
Workshop, Seattle.
Gervasio, M.T., Moffitt, M.D., Pollack, M.E., Taylor, J. and
Uribe, T.E. (2005). In proceedings of the International
Conference in Intelligent User Interfaces (IUI), San Diego.
Grosz, B. and Kraus, S. (1999). The evolution of SharedPlans. In
Foundations and Theories of Rational Agencies, A. Rao and M.
Wooldridge, eds. pp. 227-262.
Junker, E. (2004). QuickXplain: Preferred Explanations and
Relaxations for Over-Constrained Problems. In proceedings of
AAAI-04.
Morley, D. (2004). Introduction to SPARK. Technical Report,
Artificial Intelligence Center, SRI International, Menlo Park, CA.
Myers, K. L. and Morley, D. N. (2003). Policy-based Agent
Directability. In Agent Autonomy, Kluwer Academic Publishers.
Payne, T. R., Singh, R., and Sycara, K. (2002). Rcal: A case study
on semantic web agents, In proceedings of the First International
Conference on Autonomous Agents and Multi-agent Systems.
Peintner B. and Pollack, M.E. (2004). Low-cost addition of
preferences to DTPs and TCSPs, In proceedings of AAAI-04,
pages 723-728.
Pollack, M.E., Brown, L., Colbry, D., McCarthy, C.E., Orosz, C.,
Peintner, B., Ramakrishnan, S., and Tsamardinos, I. (2003).
Autominder: An intelligent cognitive orthotic system for people
with memory impairment, Robotics and Autonomous Systems,
44:273-282, 2003.
Sandip, S., and Durfee, E.H. (1998). A formal study of distributed
meeting scheduling. Group Decision and Negotiation, vol. 7, pp.
265-298.
Sloman, M. (1994). Policy driven management for distributed
systems. Plenum Press Journal of Network and Systems
Management, vol.2, no. 4, pp. 333-360.
Stergiou, K., and Koubarakis, M. (1998). Backtracking
algorithms for disjunctions of temporal constraints, In
proceedings of AAAI/ IAAI-98, p.248-253, Madison.
Tsamardinos, I., and Pollack, M.E. (2003). Efficient Solution
Techniques for Disjunctive Temporal Reasoning Problems,
Artificial Intelligence, 151(1-2):43-90.

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 17

1

Weasel: A Mixed-Initiative System to Assist in Military Planning

C. C. Hayes, Capt. A. D. Larson, U. Ravinder

University of Minnesota, United States Air Force Academy, NASA Ames Research Center
111 Church Street. S. E 2354 Fairchild Drive, Suite 6L101B Mail Stop 262-4
Minneapolis, MN 55455 USAF Academy CO 80840 Moffet Field, CA 94035
hayes@me.umn.edu adam.larson@usafa.af.mil uravinder@mail.arc.nasa.gov

Abstract
This paper describes a mixed initiative planning system,
called Weasel and its evaluation. Weasel was developed to
assist military decision makers in the task of enemy course
of action generation. The evaluation assesses Weasel's
impact on the decision making performance of two potential
user groups. When designing Weasel, we aimed to
maximize benefits delivered by the software by focusing
support functions on key areas in which expert analysts
exhibited difficulties. We also aimed to minimize
development, training and maintenance costs by designing
displays to reflect expert analysts' representations and
relying on human problem solving skills where possible.
The goals of the evaluation are to 1) assess whether Weasel
increases users' problem solving performance, where
performance is measured in terms of overall solution
quality, 2) identify the most appropriate user group by
assessing whether domain intermediates are helped or
hindered more than domain experts, and 3) identify possible
negative consequences that may occur when Weasel
generates a "brittle" solution. The issues explored in
Weasel's development and evaluation are common to many
mixed initiative systems.

Introduction
This work describes the development and evaluation of
Weasel, a mixed-initiative system which assists military
planners in exploring possible enemy courses of action
(ECOAs). An enemy course of action is an arrangement of
enemy forces which very abstractly define a very abstract
"plan" which may be followed by enemy forces. There is
great interest in possible use of decision support tools to
assist in military planning; the increased complexity and
tempo of modern military operations combined with
increased pressure to reduce staff sizes makes it difficult
for people to keep up with the demands of operations
planning. Mixed initiative systems tend to be more
appealing than automated systems in complex, safety
critical domains such as this one because of the
opportunity to benefit from human judgment. However,
before employing mixed initiative systems in decisions
with life and death consequences, it is important to first

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

understand both the positive and negative impacts they
may have on human problem solving performance.

The design goals behind Weasel were to improve decision
making performance in this task for military planners with
an intermediate level of experience (i.e. 2 to 5 years
training), and possibly for experts (6+ years of training and
practice) as well. The evaluation assessed whether use of
Weasel changed (improved or decreased) planning
performance for two user groups: intermediates and
experts, and explored whether there were situations in
which use of Weasel might decrement performance.

Mixed-initiative planning and scheduling systems (MIPAS)
are computer tools which work jointly with humans to
create plans or schedules. MIPAS can be viewed as
examples of a larger class of tools called decision support
systems (DSSs).

Decision support systems are computer tools which assist
human decision makers to make better decisions in any
type of task (e.g. medical diagnosis, manufacturing plant
layout, product design, etc.) without necessarily making
those decisions for them. DSSs may provide support in
many ways, for example by providing task-specialized
editors, generating whole or partial solutions, or providing
solution evaluation and comparison tools. A key
philosophical assumption behind DSSs, which is not
necessarily shared by all MIPAS, is that the human is the
one that should be in control of the decision making
process. Weasel is both a DSS and a MIPAS.

High criticality decision making tasks are those in which
decisions can result in large costs or catastrophic
consequences. Examples of high criticality domains
include military planning, search and rescue, and medical
diagnosis. They are of interest because they represent areas
where problem solving improvements, gained through
introduction of DSSs or other means, can yield great value.
However, because decisions made in these domains may
impact human safety or have political ramifications, it is
important to clearly understand how DSS tools impact
human decision making before adopting such tools. The
possibility of over-reliance, i.e. inappropriate trust
(Parasuraman, 1997) on a DSS is a major concern in safety
critical domains.

ICAPS 2005

18 Workshop on Mixed-Initiative Planning and Scheduling

In general, DSSs can have both positive and negative
impacts on human decision making, possibly improving
performance in many situations while degrading it in
others. In particular, Smith, McCoy and Layton (1997)
describe an experiment exploring a situation in which a
DSS, The Flight Planning Testbed (FPT) improved users'
average problem solving performance in finding fuel-
optimal routes for commercial jets, but also occasionally
degraded some users' performance when FPT exhibited
brittle behavior. Brittle behavior occurs when parameter
not modeled by the system impact the solution. Brittle
behavior results in generation of inappropriate or
inadequate suggestions. Unfortunately, in complex,
context dependant domains, it can be difficult to predict
when brittle behavior may occur. In FTP's case, brittle
solutions were fuel-optimal but unnecessarily risky by
human-decision makers' standards. However, the
researchers also found that this effect appeared to be
mitigated if subjects did their own exploration of the
problem before seeing the computer's solution(s). They
further hypothesized (but did not test) that additional
strategies might also mitigate the impact of system
brittleness, such as simultaneous presentation of multiple
computer generated solution options, and computer
critiquing of human generated options,

All DSSs, simulations, or mathematical models will
sometimes exhibit brittleness because they are necessarily
simplifications of the real world's richness. Therefore their
solutions will produce some degree of error which may or
may not be predictable. Given that some degree of
brittleness is inevitable, it is important to consider how
brittle behavior may impact decision makers in many tasks,
and if it can be mitigated. One of the goals of this work is
to assess whether Layton's findings were generally true for
other domains; could one expect the similar results in the
domain of ECOA planning? Would brittle solutions
generated by Weasel also produce a similar performance
decrement? If so, could the effect be mitigated by a similar
strategy?

The Task Domain: ECOA Generation
Weasel is part of a trio of tools: CoRaven (Jones at al.
1999), Weasel and Fox (Schlabach, Hayes and Goldberg,
1997), which support a range of problem military planning
and intelligence activities, shown as ovals in Figure 1. All
steps may be conducted in parallel, and all are repeated
many times during the course of a battle. The decision
makers who engage in this problem solving cycle include
both military operation planners and intelligence analysts.
The overall goal of this reasoning cycle is to identify what
action(s) the friendly forces should take next, based on
continual assessments and re-assessments of the current
battlefield and enemy situation. Although the direct
output of Weasel is a set of possible (and likely) enemy
courses of action, it supports the assessment of friendly
courses of action by providing a set of foils. Friendly

courses of action are assessed based on their performance
against multiple enemy courses of action which might
occur.

There is no specific starting or ending point to the cycle in
Figure 1. However, before the onset of a battle,
intelligence analysts often start at oval 1 (Figure 1)
"Plan/Schedule Intelligence Collection." They create a
plan for gathering key pieces of information pertaining to
the enemy such as the type of unit, likely resources, and
location of key elements. This information is gathered by
scouts, satellites and surveillance devices (step 2), then it is
analyzed (step 3) to produce hypotheses and constraints on
enemy resources and location.

Weasel assists analysts in step 4 with the systematic
generation of enemy courses of action that are consistent
with the intelligence conclusions developed in step 3, and
the observed rules of behavior for that enemy. ECOAs,
developed jointly by Weasel and the analyst, are passed on
to the Fox system, which uses a genetic algorithm and war
gaming simulator to generate friendly courses of action
(FCOAs) that perform well against those ECOAs. This
cycle is continually repeated throughout the battle as the
situation changes. Plans for friendly actions must
continually be reassessed as the battle unfolds.

Fox Weasel

CoRaven

5. Generate
Friendly

Courses of Action
(FCOAs)

4. Identify
possible enemy
Courses of Action

(ECOAs)

2. Gather
Intelligence

1.Plan/Schedule
Intelligence
Collection

3. Analyze
Intelligence Data

Figure 1: The intelligence collection and planning cycle.

Weasel

Considerations in the Design of Weasel
 Intelligence analysts must consider many ECOAs since
there are many actions which an enemy might take.
Unfortunately, there are an infinite number of possible
ECOAs, so even with extensive computational resources
one cannot consider them all. Fortunately, most ECOAs
are neither useful nor interesting. Analysts typically focus
their search on a few most likely and a few most dangerous
(but possibly unlikely) ECOAs.

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 19

 3

Weasel is designed to assist military analysts in thoroughly
and systematically considering the most likely ECOAs. In
this context, the most likely ECOAs refers to ECOAs that
are consistent with current data and assumptions about
most likely enemy position and resources. Terrain
constraints and intelligence assumptions provide strong
constraints on the search. The likely ECOAs are usually a
very small subset of the total possible.

Note that Weasel does not currently assist users with
identifying most dangerous ECOAs. Analysts must also
identify ECOAs that are not necessarily consistent with
intelligence assumptions, but which could pose a
considerable threat if they were to occur. This is an
important task in which analysts would probably welcome
assistance. However, outside of brute force exhaustive
search and evaluation, we do not currently have an
efficient algorithm which could feasibly address this task.
Future work may explore approaches to focus dangerous
but unlikely ECOAs.

Weasel was developed through cognitive engineering
(Smith and Geddes, 2003) and human-centered system
development methods. Many design decisions were guided
by the objectives to minimize develop, training and
maintenance costs, while maximizing benefits to users. In
designing a system to meet these objectives, we were very
conscious of the fact that ECOA generation is a task at
which domain experts already do relatively well, and it is
usually performed under time pressure. The majority of
computer tools require some overhead to learn and to use,
thus, what ever tool we developed had better offer clear
benefits to users in areas where they desire assistance.
Otherwise there would be little chance they would be
willing to take the time required to learn and use them.

With this understanding, we observed analysts performing
the ECOA generation in laboratory studies, during which
we took "protocol" transcripts (Ericsson and Simon, 1984),
and in training exercises such as the Prairie Warrior
exercises held in Ft. Leavenworth, KA. Through these
observations, we observed that even experts sometimes
over looked relevant ECOAs for a variety of reasons. For
example, it was often difficult for them to systematically
think through all the possible options while simultaneously
keeping track of all the current relevant constraints. In
other cases, they because fixated on particular assumptions
(which were often implicit in their reasoning), forgetting to
question them when the context changed.

Based on these findings, we designed Weasel to assist
analysts by providing 1) an engine that can systematically
enumerate possible ECOAs consistent with a given set of
assumptions, and 2) an interface in which they can express
and manipulate those constraints. Together these
capabilities allow "what-if" scenarios to be described and
assessed rapidly. Lastly, we provided an interface
displaying hard constraints used by Weasel in order to

provide users with insight into (and possibly trust) in the
reasoning engine. Making such these constraints
observable and explicit may provide an added training
benefit to domain novices and intermediates.

Other principles guiding design of Weasel were "computer
in the loop" and "minimalist intervention" philosophies.
Usually, developers of mixed-initiative technologies view
the challenge as bring the "human in the loop." However,
for most complex cognitive tasks such as planning, design
and medical diagnosis the human is in the loop already.
Not only are they in the loop, humans are the loop -- and
have been for thousands of years. Thus we feel the
challenge should be to bring the "computer in the loop" in
a way that is acceptable to humans.

Several design implications follow from a "computer in the
loop" philosophy. One is: when in doubt, leave a task and
to the human; focus on minimal introduction of computer
assistance. A simple computer tool which has been well
executed interfaces is more likely to be useful than a more
complex one. It will probably also be easier to maintain.
We explicitly decided not to intervene (at least initially) in
tasks such as identifying relevant constraints, or selecting
ECOAs for further consideration since these tasks require
complex, experience-based judgments which may best be
left to humans.

Lastly, Weasel's representations and displays had to fit
with analysts' way of thinking about the task. Many of
Weasel's representations and displays are based directly on
sketches made by analysts on paper or acetate map
overlays while doing their work.

Considerations in Weasel's Evaluation
An important part of a human-centered design approach is
to evaluate the system early and often. Frequent
evaluations provide valuable feedback to system
developers as to whether the approach is meeting the
design goals so adjustments can be made. There are many
properties of mixed-initiative systems that are important to
evaluate including ease of use, accuracy of software
generated results and overall impact on joint
human/computer problem solving performance. The latter
is the "bottom line" in many mixed-initiative systems. If
users do not derive tangible benefits from the system they
won't use it; the computer will be left "out of the loop."

The evaluation aims to address several questions pertaining
to users' problem solving performance when using Weasel:

1. Does Weasel actually increase users' average
problem solving performance? In this evaluation,
performance is measured in terms of overall
solution quality,

2. If Weasel does result in a performance change,
does it impact performance of domain
intermediates more (or less) than domain experts?

ICAPS 2005

20 Workshop on Mixed-Initiative Planning and Scheduling

3. Are there negative consequences that may occur
when Weasel generates a "brittle" solution?

4. Can negative impacts of brittle solutions be
reduced by presenting computer solutions after
the human has generated some of their own
solutions?

From a development standpoint, these questions will help
us to assess whether our basic approach is reasonable, what
users groups should be considered as "customers," ways in
which the system may sometimes hurt performance, and
possible strategies to avoid pitfalls.

ECOA Representations
 An example of an ECOA is shown in Figures 2 and 3.
Figure 2 shows an ECOA on the terrain; friendly forces are
attacking the enemy (but only enemy forces are shown. In
this context, an ECOA is an assignment of battlefield
locations and fighting roles to enemy units. Battlefield
locations are specified in terms of intersections on a grid
formed by markers on the map called avenues of approach
and lines of defensible terrain. Avenues of approach (AAs)
are shown in Figure 2 as large horizontal arrows; they
represent corridors between mountains and other obstacles
through which troops can move. The direction of the AA
arrows indicates the direction of attack (and the friendly
movement). Lines of defensible terrain (LDTs) are shown

in Figure 2 as thin vertical lines which are placed across
narrow parts of the AAs; the represent areas where
defenses tend to be setup and where fire fights occur. The
diamonds placed at the intersections of AAs and LDTs
represent specific enemy units.

Figure 3 shows an ECOA sketch, which is an abstracted
version of the ECOA in Figure 2. All the details of the
terrain have been abstracted except for the AAs and LDTs.
The labels, "Def" "Del" and "R" represent the roles of the
various units: defense, delay and reserve, respectively.

LDT1 LDT2 LDT3 LDT4 LDT5

Axis
White

Axis
Red

Def

R

Del

Def

Figure 3: An enemy course of action (ECOA) sketch.

Figure 2: An enemy course of action (ECOA) in the context of the terrain.

Direction
of friendly
movement
(attacking)

Direction of
enemy
movement
(defending)

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 21

 5

ECOAs can be thought of as the first step in a plan for
future enemy actions. Alternatively, one can think of each
ECOA as a specific layout of the enemy's chess pieces (i.e.
units). However, the board is only partially observable, so
many possible board layouts must be considered based on
the little you can directly observe or indirectly guess.

System Description
 There are several steps by which Weasel generates the
most likely enemy COAs, as shown in Figure 4. Each of
these steps will be described below.

Specification
of

Assumptions
and

Constraints

Constraint
Based
ECOA

Generator

Enemy
Intelligence
Hypotheses

ECOA 1
ECOA 2
ECOA 3
Ö

ECOA
Editor

Figure 4: A System diagram of Weasel's components.

Weasel uses several types of intelligence hypotheses as

inputs to constrain enemy position. These hypotheses may
be generated by the analyst from intelligence reports, or in
this case, by a decision support tool called CoRaven.
CoRaven uses a belief network to compute the
probabilities of various hypotheses from intelligence
reports (in the form of SALUTE messages), and then it
visually displays its conclusions. Figure 5 shows the
display of one type of intelligence hypothesis: depth of the
enemy defense. The depth of defense indicates how far
west the enemy has penetrated from their starting point,
which in this example is near LDT 5. Thus, there are 4
hypotheses under current consideration which are: the
enemy has penetrated as far as LDT1, LDT2, LDT3 or
LDT4. The color of each LDT indicates the probability of
each hypothesis, where black is less than a 5 % probability.
As the probability increases, the LDT becomes brighter
(whiter).

CoRaven computes these probabilities based on current
intelligence reports. Each report is shown as a small
symbol on the map in Figure 5. The black symbols
indicate places where intelligence observations have been
made, and nothing of interest was seen, while the gray (or
red in the color version) symbols indicate observations of
enemy activity. As new observations are reported, the
intensities (i.e. probabilities) of the LDTs shift. In this

Direction
of friendly
movement

Direction
of enemy
movement

Figure 5: Partial results from Co-Raven's intelligence analysis.

ICAPS 2005

22 Workshop on Mixed-Initiative Planning and Scheduling

example, the depth of enemy defense is most likely at
LDT3, indicated by LDT3's light color. LDT4 is a close
second. The analyst can choose how many of these
hypotheses to consider. In our example we will focus on
the assumption that the enemy has penetrated to LDT3.

Additional intelligence hypotheses (not shown) address the
question "Where is the main defense?" In this example,
reports cumulatively indicate that the main defense is most
probably in the southern AA, Axis Red. This is also given
as a constraint to Weasel.

Specification of Assumption and Constraints. Further
information which the analyst must specify is: the enemy
mission: attack or defend; the size and composition of the
enemy forces (battalion, company, platoon, etc) and
assumed rules of enemy behavior. Figure 6 shows that,
for our example, the analyst has specified the enemy
mission as "defense." The enemy unit under consideration
is an armor battalion. The analyst further assumes that the
battalion is composed of the sub-units shown as red
diamonds in the lower left of Figure 6.

Three "soft" rules of enemy behavior are shown in the
lower right of Figure 3: "Do not leave a Defense Unit alone
in an avenue of approach (AA)," "Do not leave a delay unit
alone on an AA," and "Cover all avenues of approach"
(with defending units). These are rules which the enemy
may or may not follow when planning their COAs. The
user can state his or her assumptions about whether or not
the enemy will follow these rules by checking (or not
checking) the boxes next to the rules. Checking a box
turns that rule on. Un-checking it turns the rule off. In the
example in Figure 6, the user has chosen assume that the
enemy might leave a defense unit alone on an AA, but will
not leave a delay unit alone, and will cover all AAs.
Weasel's planner uses the checked rules as constraints
when constructing enemy COAs.

Additionally, there are "hard" rules of behavior which the
enemy will (almost) always follow. These rules are shown
in Figure 7. For example, "The leading unit in an AA must
be a delay or defense unit." The rules are divided into two
sets which apply respectively to enemy offensive (attack),
and defensive maneuvers. The rules in Figure 7 are
treated as hard constraints because they represent either

Terrain
constraints

Intelligence
constraints

Enemy
resource
assumptions

Enemy
behavior
assumptions

Mission

Figure 6: Weasel's Interface for Specifying Enemy Constraints and Assumptions

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 23

 7

definitions which are relatively fixed, or they represent
maneuvers that cannot be easily modified without
endangering the unit or requiring lengthy preparation on
the enemy's part (i.e. training and field exercises). Since
few constraints (rules) in any domain can be said to be
truly fixed, future work will examine whether to make
some of the rules which are currently hard constraints into
user settable constraints. Some of these considerations
include determining who should be allowed to make
changes to relatively hard constraints (e.g. domain
intermediates, experts or only special system maintainers?)
and weighing the utility of adding flexibility (which may
be used infrequently) against the possibility that errors will
be introduced when users accidentally change relatively
hard constraints.

Because these rules considered to be fixed, the user is not
permitted to turn them on or off. However, these rules
have been made available in Weasel's interface for users to
examine should they wish to do so. We feel it is important
to make the rules controlling the planner's behavior

accessible to the users, and to express them in the users'
domain vocabulary, thus de-mystifying the software
engine. All too frequently, automated planners and
problem solvers are effectively "black boxes" from the
users' perspective.

Constraint-Based ECOA generator. Once all constraints
and assumptions have been entered, the user can request
that Weasel generate all ECOAs consistent with those
assumptions. The planner is a simple constraint-based
planner that generates all permutations of the resources
consistent with the constraints. Although the planner is not
complex, it is more systematic about generating all
combinations than most humans are, particularly when
there are many combinations.

For this example, there are 6 possible ECOAs shown in
Figure 8, consistent with the assumptions specified. These
ECOAs have been rotated so that they are in the same
orientation as they would appear when displayed on the
terrain shown in Figure 2.

Figure 7: Users can view Weasel fixed constraints

ICAPS 2005

24 Workshop on Mixed-Initiative Planning and Scheduling

ECOA Editor. Once ECOAs have been generated,
analysts can view them in the plan editor (Figure 8). If he
or she is mostly satisfied with the ECOAs but wishes to
change a few of their properties, the enemy units can be
repositioned by dragging and dropping them.
Additionally, specific ECOAs can be selected and viewed
in the context of the terrain as shown in Figure 2.

Changing assumptions, repeating the cycle. An
important part of the annalist's problem solving is to
consider what the enemy might do under a variety of
different assumptions. For example, what might the enemy
do if they decided not to leave a defense unit alone on an
AA, or not to defend all AAs? Weasel's interface allows
users to try different "what-if" scenarios defined by sets of
assumptions and intelligence constraints, and rapidly see
the impact on the likely ECOAs. This is an important

function of Weasel's interface because it makes a specific
and important task easier.

Next problem solving steps. The analyst's work is not yet
complete even after a satisfactory set of ECOAs have been
developed. They must select a small set of ECOAs (for
computational reasons -- usually between 3 and 6) which
they judge to be most relevant or important. This selected
set of ECOAs will be used while generating friendly COAs
(step 5 in Figure 1) to assess the appropriateness and
possible performance of each FCOA considered.

Evaluation Method
Subjects. Eighteen subjects participated in the experiment
(9 Air Force and 9 Army subjects). All had between 1 and
21 years of experience in the U.S. armed forces. Five
subjects were categorized as experts, and 13 as
intermediates; experts were those having at least 6 years of
military experience on active duty, in the National Guard
or Reserves. Domain novices (those having less than a
year experience with the domain) were not used in the
evaluation because they lacked sufficient knowledge to
perform the task even with Weasel's assistance. The
average length of experience of all 18 subjects was 5.03
years.

Scenarios. Subjects were asked to generate ECOAs for 3
different scenarios. Scenario 1 was designed to be
difficult, requiring subjects to generate many possible
ECOAs. Scenario 2 was designed to be relatively easy,
and Scenario 3 was one for which Weasel generated a
"brittle" solution set, in that it was incomplete. Solutions
in which the enemy protected all possible approaches were
not included. Weasel generated eight ECOAs for
Scenarios 1, two for Scenario 2, and four for Scenario 3.

Solution Methods. Subjects were asked to generate
solutions by three different methods, A, B and C. In
Method A, subjects first generated ECOAs by hand, then
were shown the ECOAs generated by Weasel and asked to
pick between their own solution set and Weasel's. In
Method B, subjects again generated solutions first by hand,
and then were shown Weasel's solutions. However, this
time they could revise their solution set if they so desired.
Examples of revisions include copying one of Weasel's
ECOAs or incorporating elements of it in one of their own.
In Method C, subjects were shown Weasel's solutions first,
and then they were asked to generate their own, which
could include Weasel's ECOAs, or ECOAs based on them.

Design. All subjects solved all scenarios, and applied all
methods. However, to eliminate learning effects, the order
in which subjects saw the scenarios and applied the
methods was counter-balanced. Given that there are 6
permutations of three items, this suggests a 6x6 experiment
requiring 36 subjects. Instead we applied a lattice design

Figure 8: Six ECOAs generated by Weasel which are
consistent with the constraints and assumptions in Figure 6.

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 25

 9

(Montgomery 1991) which reduced the required subjects
by half (to 18).

Evaluators. Two evaluators assessed the quality of the
ECOA sets generated by the subjects. The evaluators were
selected for their expertise in Army battlefield strategy as
well as their specific knowledge of current battlefield
simulations used in the U.S. Army. One had 9 years U.S.
Army experience, and the other 5 years.

Procedure. First, subjects were given familiarization
training by the experimenter on a computer workstation.
Materials given to subjects included: a scenario instruction
page, three pages each describing the scenario, pen, and a
one-page list of "required" (hard) constraints used by
Weasel to generate ECOAs so that they may understand
the computer's behavior.

Next, subjects were given scenario descriptions and asked
to generate a set of ECOAs appropriate for each of the
three scenarios. An experimenter was present at all times to
answer questions. When a subject finished each scenario,
they were then asked to provide verbal explanations of
their solution choices. Upon completion of all three
scenarios subjects, they completed a short questionnaire.
Lastly, after all subjects had completed all scenarios,
evaluators "scored" all solutions sets (including Weasel's)
for each scenario, where best was 10 and worst was 1.

Results
The first steps in analysis were to check 1) the level of
agreement between the evaluators and 2) whether there
was a significant performance difference between the
intermediate and expert subjects when they generated
ECOAs by hand, without Weasel's assistance. The purpose
of the first check was to assess whether evaluators had
been chosen appropriately, the assumption being that there
is a very low probability that independent evaluators will
produce similar quality rankings for many solutions unless
they have sufficient experience to assess quality. The
purpose of the second check was to assess whether the
division between the intermediates and experts was a
meaningful one. The correlation for scenario 1 was 0.94,
for scenario 2: 0.90 and for scenario 3: 0.99, indicating a
high level of agreement between evaluators. In the second
check, we compared the average quality ranking given by
the evaluators to the intermediate and the expert groups.
An ANOVA indicated that the difference between average
expert and intermediate quality rankings was very
significant, p = 0.001, indicating the experts performed
significantly better than intermediates. Once these two
issues had been established, we investigated the four
questions posed in the introduction:

1. Did use of Weasel improve the quality of ECOAs
generated? Yes. Overall there was a significant

improvement in quality scores when ECOAs generated
without Weasel's assistance were compared to ECOAs
generated with Weasel's assistance (p = 0.018). Figure 9
shows the average quality scores received by users without
and with Weasel's assistance, as well as the computer's
quality scores. As expected, the quality score on the brittle
scenario (Scenario 3) was very poor.

2

3

4

5

6

7

8

Scenario 1 Scenario 2 Scenario 3

Av
er
ag
e
EC
OA

Qu
al
ity
 S
co
re

Computer ECOA Quality

With Weasel

Without Weasel

 Figure 9: Ave quality scores received by subjects without and
with Weasel's assistance (where 10 is best and 1 is worst score).

2. Did use of Weasel change intermediates' performance
more than experts'? Yes. It improved intermediates'
quality scores significantly (p = 0.0002), but did not
significantly change experts' quality scores (p = 0.251).
Furthermore, differences between experts and
intermediates were leveled when both groups used Weasel;
there was no significant difference between intermediate
and expert quality scores when using Weasel (p = 0.366).
This implies that use of Weasel elevates intermediates'
ECOA quality to closer to the level of experts.

3. Did ECOA quality decline when Weasel exhibits brittle
behavior? No. For scenario 3, there was no significant
difference in the quality of ECOAs generated without or
with Weasel's assistance (p = 0.51). In fact, ECOA quality
scores increased on average for all scenarios when users
employed Weasel's assistance. However, closer
examination of individual subjects performances revels
that there is more to the story. When using Weasel's
assistance on Scenario 3, more subjects' (three out of 18)
tended to repeat the mistake made by Weasel on Scenario 3
(i.e. omission of ECOAs that "cover" all avenues of
approach). Furthermore, three of the five who made the
omission were experts. In contrast, only one subject (an
intermediate) made this same mistake when producing
solutions manually. This implies that use of Weasel may
have "biased" some users towards flawed solution sets
when it exhibited brittle behavior, just as FTP biased users
towards unnecessarily risky solutions when it exhibited
brittle behavior.

4. Did presentation order change users' the tendency to
repeat Weasel's mistakes? In Smith, McCoy and Layton's
study of FPT, they reduced the tendency of users to adapt

ICAPS 2005

26 Workshop on Mixed-Initiative Planning and Scheduling

the computer's flawed solutions by delaying presentation of
the computer's solution until they had explored the problem
on their own. However, we did not find a similar effect in
this domain. Of the five users who "copied" the
computer's mistake on Scenario 3, four generated their own
solutions first and only one saw Weasel's solutions first.

Future Work
 This work represents a positive start in the right
direction. However, we are not going to declare victory
yet; there is still much maturation of Weasel that needs to
occur (through further development and evaluation) before
Weasel can be installed and assessed in the context of a
daily work environment. Many issues still need to be
investigated and incorporated into system designs. For
example, does explicit display of the ECOA generators'
fixed constraints allow users to better understand Weasel's
behavior, results and limitations? Or do they persist in
ascribing highly-nuanced human-like reasoning to the
computer, possibly leading to failure to recognize brittle
behavior. To what extent does allowing users to
manipulate Weasel's soft constraints increase its utility, or
decrease its usability? Would allowing users to control
more constraints add to Weasel's utility or is there a point
where the added complexity of the interface becomes more
of a burden than a help to users?

Discussion and Conclusion
We have first examined what we view as the most
important "bottom-line" issue: does Weasel improve
decision making performance, and if so, for what users?
Results show that Weasel results in solution quality gains
for users with an intermediate level of domain experience
(i.e., 1 ñ 6 years). Based on this result we see potential for
use of Weasel in providing practice and training for
analysts with an intermediate level of domain experience.
However, with supervision from domain experts and with
training on how to interpret Weasel's results; users of
Weasel, and probably most MIPAS systems, should be
trained to regard them as sometimes fallible suggestion
generators rather than as oracles, just as they should regard
their human counterparts. How successful this training is
likely to be is yet another question: will it always be an
uphill battle to prevent users from inappropriately
regarding computer systems as infallible oracles?

Weasel may also provide benefits to domain experts, for
example by reducing the number of times they are
"surprised" by unexpected enemy actions. However,
further evaluations are needed to determine what, if any
benefits domain experts may derive. Lastly, when Weasel
exhibited brittle behavior, it still resulted in an average
solution quality increase, not a decrease as in the Layton, et
al. experiment with FTP. We conclude from this that not
all brittle solutions are created equal; the brittle solution

examined in the Weasel study was an incomplete solution
set. The one examined in the FTP study was a risky point
solution. The latter may be a more dangerous form of
brittleness than the former.

Decision support systems, of which MIPAS systems are an
example, can have both positive and negative impacts on
users' performance. The point for readers to take away is
that it is that designers and users of MIPAS systems need
to be aware that even the best designed system will
sometimes exhibit brittle behavior, and both the positive
and negative impacts of such systems must be carefully
weighed in considering how the system should be used.

References
Ericsson, K. A. & H. A. Simon, "Protocol Analysis: Verbal
Reports as Data" 1984, MIT Press, Cambridge, MA.

Hayes C.C.; and U. Ravinder, "Weasel: An Automated
Planner that Users Can Guide," IEEE Systems, Man and
Cybernetics (Washington, D.C.; October 5-8, 2003) Paper
No. HMS Special P1-5,

Jones, P.M.; C.C. Hayes, D.C. Wilkins, R. Bargar, J.
Sniezek, P. Asaro, O. Mengshoel, D. Kessler, M. Lucenti,
I. Choi, N. Tu, O. Chernyshenko, M. Liang and J.
Schlabach, "CoRAVEN: Modeling and Design of a
Multimedia Intelligent Infrastructure for Collaborative
Intelligence Analysis," Federated Laboratories Annual
Research Symposium (Aberdeen, MD; Feb 1999) pp. 3-8.

Montgomery, D. C. (1991). Design and Analysis of
Experiments. Wiley and Sons, pp. 176-194.

Parasuraman, R. (1997). "Humans and Automation: Use,
Misuse, Disuse and Abuse," Human Factors, 39(2): 230-
253.

Schlabach, J.L.; C.C. Hayes, and D.E. Goldberg, "FOX-
GA: A Genetic Algorithm for Generating and Analyzing
Battlefield Courses of Action," Evolutionary Computation,
7(1), pp. 45-68 (1998).

Smith, P. J. and N. D. Geddes, "A Cognitive Systems
Engineering Approach to the Design of Decision Support
Systems, in "The Human-Computer Interaction Handbook:
Fundamentals, Evolving Technologies and Emerging
Applications," Jacko, J. A. and A. Sears (Eds) 2003,
Lawrence Erlbaum Associates, Inc, pp. 656 ñ 676.

Smith, P. J., McCoy, C. E., & Layton, C. (1997).
"Brittleness in the Design of Cooperative Problem-Solving
Systems: The Effects on User Performance." IEEE
Transactions on Systems, Man, and Cybernetics ñ Part A:
Systems and Humans, 27(3): 360-371.

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 27

Delegation Architectures:

Playbooks and Policy for Keeping Operators in Charge

Christopher A. Miller

Smart Information Flow Technologies

1272 Raymond Ave

St. Paul, MN 55108 U.S.A.

cmiller@sift.info

Abstract

We argue that as Unmanned Military Vehicles become more
intelligent and capable, and as we attempt to control more of
them with fewer humans in the loop, we need to move
toward a model of delegation of control rather than the
direct control (that is, fine grained control with, generally,
tight and fast control loops) that characterizes much current
practice. We identify and describe five delegation methods
that can serve as building blocks from which to compose
complex and sensitive delegation systems: delegation
through (1) providing goals, (2) providing full or partial
plans, (3) providing negative constraints, (4) providing
positive constraints or stipulations, and (5) providing
priorities or value statements in the form of a policy. We
then describe two implemented delegation architectures that
illustrate the use of some of these delegation methods: a
“playbook” interface for UAV mission planning and a
“policy” interface for optimizing the use of battlefield
communications resources.

UMV Control as Human-Automation

Delegation

While Unmanned Military Vehicles (UMVs—that is, any
unmanned vehicle, whether ground, air, sea, undersea or
space, used for military purposes) hold the promise of
radical change and improvement for a wide range of
military applications they also pose a host of challenging
problems. Chief among these is how to enable a human
operator, who may well be heavily engaged in other tasks
of his or her own (such as exploring a building, maintaining
radio contact with headquarters or even avoiding fire), to
retain sufficient control over the UMV(s) to ensure safe,
efficient and productive outcomes. This problem is, of
course, magnified when the UMVs may be responsible for
the lives of many soldiers or civilians, may be capable of
unleashing lethal force on its own, and when a single
human may be striving to control groups or even swarms of
potentially autonomous and independent actors and may be
concurrently engaged in other, high tempo and criticality
tasks of his or her own.

Yet this problem is not completely novel. Humans have
been striving to retain control and produce efficient
outcomes via the behavior of other autonomous agents for
millennia. It just so happens that those “agents” have been
other humans. Not surprisingly, we have developed many
useful methods for accomplishing these goals, each
customized to a different domain or context of use. When
we have some degree of managerial authority over another
human actor and yet will not be directly commanding
performance of every aspect of a task, we call the
relationship (and the method of commanding task
performance) delegation. Delegation allows the supervisor
to set the agenda either broadly or specifically, but leaves
some authority to the subordinate to decide exactly how to
achieve the commands supplied by the supervisor. Thus, a
delegation relationship between supervisor and subordinate
has many requirements:

1. The supervisor retains overall responsibility for
the outcome of work undertaken by the
supervisor/subordinate team and retains the
authority commensurate with that responsibility.

2. The supervisor has the capability to interact very
flexibly and at multiple levels with the
subordinate. When and if the supervisor wishes to
provide detailed instructions, s/he can; when s/he
wishes to provide only loose guidelines and leave
detailed decision making up to the subordinate,
s/he can do that as well—within the constraints of
the capabilities of the subordinate.

3. To provide useful assistance within the work
domain, the subordinate must have substantial
knowledge about and capabilities within the
domain. The greater these are, the greater the
potential for the supervisor to offload tasks
(including higher level decision making tasks) on
the subordinate.

4. The supervisor must be aware of the subordinate’s
capabilities and limitations and must either not
task the subordinate beyond his/her abilities or

ICAPS 2005

28 Workshop on Mixed-Initiative Planning and Scheduling

must provide more explicit instructions and
oversight when there is doubt about those abilities.

5. There must be a “language” or representation
available for the supervisor to task and instruct the
subordinate. This language must (a) be easy to
use, (b) be adaptable to a variety of time and
situational contexts, (c) afford discussing tasks,
goals and constraints (as well as world and
equipment states) directly (as first order objects),
and (d) most importantly, be shared by both the
supervisor and the subordinate(s).

6. The act of delegation will itself define a window
of control authority within which the subordinate
may act. This authority need not be complete
(e.g., checking in with the supervisor before
proceeding with specific actions or resources may
be required), but the greater the authority, the
greater the workload reduction on the supervisor.

Items 4 and 6 together imply that the space of control
authority delegated to automation is flexible—that the
supervisor can choose to delegate more or less “space,” and
more or less authority within that space (that is, range of
control options), to automation. Item 5 implies that the
language available for delegation must make the task of
delegating feasible and robust—enabling, for example, the
provision of detailed instructions on how the supervisor
wants a task to be performed or a simple statement of the
desired goal outcome.

Types of Delegation

We have developed a variety of architectures within which
to support human delegation interactions with automation.
Of particular interest as a core enabling technology is the
“language” or representation for delegation described in
item #5 above. As Klein (1996) points out, without

successfully sharing an understanding of the tasks, goals
and objectives in a work domain, there can be no
successful communication of intent between actors. We
believe there are five kinds of delegation actions or
delegation methods that should be supported within such a
representation, as described in Table 1 below. Note that
each method forms a building block, and they can be
combined into more effective and flexible composite
delegation interactions. Note also that the subordinate has
a specific responsibility in response to each method, as
articulated below.

In the remainder of this paper, I will described two
delegation architectures we are developing. While neither
system enables all of the types of delegation described
above, and neither is fully implemented yet, collectively
they illustrate the five types of delegation and provide a
rich and highly flexible set of interactions for human-
automation delegation.

Playbook—Delegation of Goals, Plans and

Constraints

The first architecture is based on the metaphor of a sports
team’s playbook. A playbook works because it provides
for rapid communication about goals and plans between a
supervisor (e.g., a coach) and a group of intelligent actors
(the players) who are given the authority to determine how
to act within the constraints inherent in the coach’s play.
Our Playbook architecture supports delegation action types
1-4 in principle and has been implemented in prior
prototypes to include action types 2 and 4.

The basic Playbook system architecture is presented in
Figure 1. The Playbook ‘proper’ consists of a User
Interface (UI) and a constraint propagation planner known
as the Mission Analysis Component (MAC) that
communicate with each other and with the operator via a

Table 1. Five types of delegation.

Supervisor’s Delegation Action Subordinate’s Responsibility

1. Stipulation of a goal to be achieved—where a goal is

a desired (partial) state of the world.

Achieve the goal(s) if possible (via any means

available), or report if incapable.

2. Stipulation of a plan to be performed—where a plan

is a series of actions, perhaps with sequential or

world state dependencies.

Follow the plan if possible (regardless of

outcome) or report if incapable.

3. Provide constraints in the form of actions or states to

be avoided.

Avoid those states or actions if possible, report

if not.

4. Provide “stipulations” in the form of actions or states

(i.e., sub-goals) to be achieved.

Achieve those states or perform those actions if

possible, report if not.

5. Provide an “optimization function” or “policy” that

enables the subordinate to make informed decisions

about the desirability of various states and actions

Work to optimize value within the

“optimization function” or “policy”.

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 29

Shared Task Model. The operator communicates
instructions in the form of desired goals, tasks, partial plans
or constraints, via the UI, using the task structures of the
shared task model. The MAC is an automated planning
system that understands these instructions and (a) evaluates
them for feasibility and/or (b) expands them to produce
fully executable plans. The MAC may draw on special
purpose planning tools (e.g., an optimizing path planner) to
perform these functions, wrapping them in its task-sensitive
environment. Outside of the tasking interface, but essential
to its use, are two additional components. An Event
Handling component, itself a reactive planning system

capable of making momentary adjustments during
execution, takes plans from the Playbook. These
instructions are sent to control algorithms that actually
effect behaviors.

Operator interaction with the Playbook can be via a variety
of user interfaces customized to the needs of the work
environment, but operator commands are ultimately
interpreted in terms of the Shared Task Model. To date,
we have developed prototype playbooks for Unmanned
Combat Air Vehicle (UCAV) teams (Miller, Pelican,
Goldman, 2000), and Tactical Mobile Robots (Goldman,
Haigh, Musliner, Pelican, 2000), and prototypes for the
RoboFlag game (Parasuraman, Galster, Squire, Furukawa
and Miller, in press) and for real-time interaction with
teams of heterogeneous UMVs (Miller, Funk, Goldman and
Wu, 2004; Goldman, Miller, Wu, Funk and Meisner,
2005). Below, we provide a description of user interaction
with one playbook interface we developed with Honeywell
Laboratories to illustrate the general concept.

We developed the playbook illustrated in Figure 2 to
enable a human leader to create a full or partial mission

Event

Handling

Control
Algorithms

Playbook

GUI

Tasking

Instructions Provably correct

plans

Provably safe

reactions

Feedback

System control

Mission

Analysis

Shared Task Model

Special Purpose

Tools

Figure 2. General Playbook Architecture.

Figure 1. Prototype Playbook User Interface for UCAV Mission Planning.

ICAPS 2005

30 Workshop on Mixed-Initiative Planning and Scheduling

plan for UCAVs. This initial work was intended as a
ground-based tasking interface to be used for a priori
mission planning, but current Playbook work is exploring
interface modifications to enable real-time and in-flight
tasking and task performance monitoring as well.

Figure 2 shows five primary regions of this Playbook UI.
The upper half of the screen is a Mission Composition
Space that shows the plan composed thus far. In this area,
the operator can directly manipulate the tasks and
constraints in the plan. The lower left corner of the
interface is an Available Resource Space, currently
presenting the set of aircraft available for use. The lower
right corner contains an interactive Terrain Map of the area
of interest, used to facilitate interactions with significant
geographic information content. The space between these
two lower windows (empty at startup) is a Resource in Use
Space—once resources (e.g., UCAVs, munitions, etc.) are
selected for use, they will be moved here where they can be
interacted with in more detail. Finally, the lower set of
control buttons is always present for interaction. This
includes options such as “Finish Plan” for handing the
partial plan off to the MAC for completion and/or review
and “Show Schedule” for obtaining a Gantt chart timeline
of the activities planned for each actor, etc.

At startup, the Mission Composition Space presents the
three top-level plays (or ‘mission types’) the system
currently knows about: Interdiction, Airfield Denial, and
Suppress Enemy Air Defenses (SEAD). The mission
leader would interact with the Playbook to, first, declare
that the overall mission “play” for the day was, say,
“Airfield Denial.” In principle, the user could define a new
top-level play either by reference to existing play structures
or completely from scratch, but this capability has not been
implemented yet.

This action is an example of type 2 delegation—providing
a specific task for subordinates to perform. But because
this is a very high level task in a hierarchical task network,
the supervisor has left a great deal of freedom to the
subordinates (in this case, the MAC and the UAVs
themselves) to determine exactly how a “Airfield Denial”
mission is to be performed. If this were the only delegation
information the supervisor provided, the subordinates
would be obligated to do their best to perform that action
(an Airfield Denial mission), but would have a great deal of
authority as to how best to accomplish it.

At this point, having been told only that the task for the day
is “Airfield Denial,” a team of trained pilots would have a
very good general picture of the mission they would fly.
Similarly, the tasking interface (via the Shared Task
Model) knows that a typical airfield denial plan consists of
ingress, attack and egress phases and that it may also
contain a suppress air defense task before or in parallel
with the attack task. But just as a leader instructing a
human flight team could not leave the delegation
instructions at a simple ‘Let’s do an Airfield Denial
mission today,’ so the operator of the tasking interface is

required to provide more information. Here, the human
must provide four additional items: a target, a homebase, a
staging and a rendezvous point. Each of these is a
stipulation, or positive constraint, telling the subordinates
that whatever specific plan they come up with to
accomplish the higher level mission must include these
attributes—and thus, they are examples of type 4
delegation interactions. Most of these activities are
geographical in nature and users typically find it easier to
specify them with reference to a terrain map. Hence, by
selecting any of them from the pop up menu, the user
enables direct interaction with the Terrain Map to designate
an appropriate point. Since the Playbook knows what task
and parameter the point is meant to indicate, appropriate
semantics are preserved between user and system. As for
all plans, the specific aircraft to be used may be selected by
the user or left to the MAC. If the user wishes to make the
selection, s/he views available aircraft in the Available
Resource Space and chooses them by clicking and moving
them to the Resources in Use Area.

The mission leader working with a team of human pilots
could, if time, mission complexity or degree of trust made
it desirable, hand the mission planning task off to the team
members at this point. The Playbook operator can do this
as well, handing the task to the MAC via the “Finish Plan”
button. The leader might wish, however, to provide
substantially more detailed delegation instructions. S/he
can do this by progressively interacting with the Playbook
UI to provide deeper layers of task selection, or to impose
more stipulations on the resources to be used, waypoints to
be flown, etc. For example, clicking on “Airfield Denial”
produces a pop-up menu with options for the user to tell the
MAC to “Plan this Task” (that is, develop a plan to
accomplish it) or indicate that s/he will ‘Choose airfield
denial’ as a task that s/he will flesh out further. The pop-up
menu also contains a context-sensitive list of optional
subtasks that the operator can choose to include under this
task. This list is generated by the MAC with reference to
the existing play structures in the play library, filtered for
current feasibility.

After the user chooses ‘Airfield Denial’ the system knows,
via the Shared Task Model, that this task must include an
Ingress subtask (as illustrated in Figure 2). The supervisor
does not have to tell intelligent subordinates this; it is a part
of their shared knowledge of what an ‘Airfield Denial’ task
means—and how it must be performed. To provide
detailed instructions about how to perform the Ingress task,
however, the user can choose it, producing a “generic”
Ingress task template or “play”. This is not a default
method of doing “Ingress” but a generic, uninstantiated
template—corresponding to what a human expert knows
about what constitutes an Ingress task and how it can or
should be performed. A trained pilot knows that Ingress
can be done either in formation or in dispersed mode and,
in either case, must involve a “Take Off” subtask followed
by one or more “Fly to Location” subtasks. Similarly, the
user can select from available options (e.g., formation vs.

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 31

dispersed Ingress, altitude constraints on takeoff, etc.) on
context-sensitive, MAC-generated menus appropriate to
each level of decomposition of the task model. One of our
current challenges in creating Playbooks

TM
 for real-time

interactions is to enable them to be sensitive to the current
state of affairs and of task performance so as to make
intelligent assumptions about task performance possible—
for example, if the supervisor wishes to command a
currently airborne UAV, perhaps in a holding pattern, to
perform an ‘Airfield Denial’ mission, both supervisor and
subordinate should know that the Takeoff portion of an
Ingress task is no longer necessary and should either be
eliminated or be shown as already accomplished.

The user can continue to specify and instantiate tasks down
to the “primitive” level where the sub-tasks are behaviors
the control algorithms (see Figure 1) on the aircraft can be
relied upon to execute. Alternatively, at any point after the
initial selection of the top level mission task and its
required parameters, the supervisor can hand the partly
developed plan over to the MAC for completion and/or
review. In extreme cases, a viable “Airfield Denial” plan
for multiple aircraft can be created in our prototype with as
few as five selections and more sophisticated planning
capabilities could readily reduce this number. But
potentially more important, the operator (like a human
supervisor dealing with intelligent subordinates) can also
provide more detailed instructions whenever s/he deems
them necessary or useful to mission success and in the way
s/he sees fit.

This Playbook illustrates delegation interactions 2 and 4
(plans and stipulations). The subordinates’ role in these
types of interaction are described in the table above—to
perform the plan through any set of sub-methods that
adhere to the stipulations provided by the supervisor, or to
report that this is infeasible. One of the MAC’s roles in the
above example is to report when it is incapable of
developing a viable plan within the constraints imposed,
(e.g., if the user has stipulated distant targets that exceed
aircraft fuel supplies). In a real-time delegation system, the
MAC will be responsible for continual monitoring of
performance to report when world states mean that plan
performance is no longer capable of (or likely to)
accomplish the user’s parent plan (e.g., because of
equipment failures, adverse head winds, enemy
countermeasures, etc.)

The Playbook architecture is, we believe, also capable of
supporting delegation interaction types 1 and 3 (goals and
negative constraints) as well. Supporting goal-based
delegation interactions would require a slight modification
to the shared task representation. Currently, we have used
a representation that explicitly includes only hierarchically
organized and sequenced tasks (i.e., actions to be
performed). Tasks implicitly encode the goals they
accomplish, but there are representations (such as Geddes
Plan-Goal Graphs—Sewell and Geddes, 1990) that
explicitly interleave both plans and goals and a linked
hierarchy. Use of such a representation, along with related

modifications to the UI and MAC, would enable the
supervisor to say, effectively, “Today we’re going to
achieve a State” (e.g., the destruction of a given airfield)
rather than or in addition to, the plan-based representation
used above which allows only the issuing of task-based
delegation commands (e.g., “Today we’re going to fly an
airfield-denial mission”). The incorporation of negative
constraints into the interaction (delegation interaction
method #3), would require a less substantial modification
to the Playbook architecture—potentially requiring only a
UI addition to enable the supervisor to incorporate negative
commands about task types and state parameters (e.g., “do
NOT fly through this valley or use this type of munition”)
and then requiring the MAC to create plans which avoid
those negative constraints.

Policy—Delegation via Abstract Policy

Statements

The final type of delegation interaction offers the ability to
provide priorities between alternate goals and states and to
do so more abstractly than the above methods. Sometimes
supervisors don’t have a single, concrete world state goal in
mind, much less a specific plan for accomplishing it.
Sometimes supervisors must issue commands well in
advance to cover a wide range of largely unanticipatable
circumstances. In these cases, the delegation instructions
will be less a specific statement of actions to take or world
states to be sought or avoided, but rather a general
statement of outcomes that would be more or less good or
valuable (or, conversely, bad or to be avoided) than others.
We refer to the set of such abstract value statements that a
supervisor might provide as his or her “policy” for
performance in the domain.

We have developed policy-based architectures for two
applications: providing commanders’ guidance to a
resource controller for battlefield network communications
(prioritizing communications bandwidth in accordance with
the commander’s intent—Funk, Miller Johnson and
Richardson, 2000), and providing visualization and
feedback to dispatchers in upset contexts in commercial
aviation (Dorneich, Whitlow, Miller and Allen, 2004). We
will describe the first of these below.

A policy statement is an abstract, general, a priori statement
of the relative importance or value of a goal state in the
domain. In its simplest form, policy provides a method for
human operators to mathematically define what constitutes
“goodness.” Once defined, a policy statement can be
treated as a rule and evaluated against a current or
hypothetical context—if the rule is true in the context, then
the context incurs the “goodness” (or badness) value
stipulated by the rule. Alternate contexts (which could be
tied to the expected outcomes of alternate decisions) can
then be evaluated against each other by examining the set
of policy rules that are satisfied or violated and the
resulting set of goodness/badness values accrued. A set of

ICAPS 2005

32 Workshop on Mixed-Initiative Planning and Scheduling

individual policy statements can be bundled together, and
these policy bundles can be used to flexibly define the
priorities that apply in a given situation (priorities can
change given different circumstances).

A policy-based delegation system requires at least three
components: (1) a representation for specifying the
“policy” in terms of the value of various partial world
states, (2) a user interface for allowing one or more users to
input their policies and, if desired, view results of policy
application, (3) a computational framework that allows
evaluation of a current situation or hypothetical proposed
situation against the expressed policy, and (4) an engine
that allows application of the policy either to the control of
resource application or to a visualization of sensed data
about a current situation or projected data about a future or
simulated situation.

In the development of a policy-based delegation system for
communications resource usage, we were striving to
provide a means for commanders to tell an automated
network management system their “policies” for how to
prioritize the use of communications bandwidth in order to
satisfy the most important requests most fully. Note,
however, that “most important” was not a static concept but
rather changed across commanders and situations. For this
application, we developed a policy representation that
allowed commanders to assign, a priori and abstractly, a
value to various kinds of communications requests. As
communications requests then came in from various field
units or operators, they could be matched against the
commander’s policy statements and a value assigned to
each of them. This value was then used by a resource
optimizing controller to determine which requests should
get network bandwidth with what priority.

This process is conceptually illustrated in Figure 3. Each
commander’s policy is created as a set of statements (as
illustrated at the top of the figure) each of which assigns an
importance (or value) function to a defined sub-region in a
multidimensional space. In this case, individual policy
statements are illustrated abstractly as defined by the
dimensions: owner (Wi) who is the originator of an
information request, source (Si) which is the location of the
information to be transmitted, destination (Di) which is the
destination to which the information is to be transmitted
(i.e., a specific machine or IP address, which need not be
that of the owner), and description of the information
content (Ci) to be transmitted, along with an importance
assigned to that policy statement. For example, policy
statements might be based on a single dimension
(‘Requests for weather information [Content] get
Importance 0.2’) or on a combination of dimensions
(‘Requests owned by the Zone Reconnaissance task
[Owner] for weather information [Content] from Satellite
476B [Source] to 3rd Air Calvary Division [Destination]
get Importance 0.8). If the policy element regions are
allowed to overlap, then they must be sequenced (typically
from most to least specific) to indicate the order of
precedence.

In practice, the commander’s policy is then used to assign
an importance value to any incoming request for
communication resources (illustrated conceptually in the
lower portion of Figure 3). Each policy statement defines a
region within the multidimensional space defined by the
parameters from which policy statements can be built.
We’ve represented that multidimensional space as a simple
plane in the figure, and then defined multiple regions
within that space with an assigned value for each to
represent the valuation contained in each separate policy
statement. Each incoming request is matched against the
sequenced series of policy statements the commander has
made. The first policy element that matches the request
determines the importance of that request and informs an
automated resource manager about the relative value of
satisfying that request.

While conceptually simple, many useful functions can be
performed within this framework. First, it is not necessary
that importance be construed as an all-or-nothing value as it
is depicted in Figure 3. Instead, we have explored more
sophisticated representations that allow the requestor to
provide a description of how s/he wants the information
requested along several dimensions (e.g., freshness,
reliability, initiation-time, accuracy, resolution, scope, etc.)
Then the resource management system can treat the
importance value as a maximum number of value “points”
to be awarded for satisfying the request perfectly, while
still awarding itself points for partial satisfaction. This
permits more sensitive management of resources to be
performed.

Second, it is rarely the case that a single commander or
supervisor is the only one who may have an interest in
dictating policy about how subordinates behave. Rather,
each commander must allocate his/her resources in
accordance with the policies of those above. We support
this requirement (Figure 4) by modeling policies that exist
at nodes in a command hierarchy. As requests come in,
they are matched against the commander’s policy that
governs them (command node N1.2.2 in Figure 4), but
must then also be matched against his/her commander’s
policy (i.e., the command node in charge of node N1.2.2 in

.1

Cmdr N’s Policy

Request with
importance .5

Match

Owner Source Destination Content Importance

({W1} {S1} {D1} {C1} .9)
({W2} {S2} {D2} {C2} .8)
({W3} {S3} {D3} {C3} .5)
(* * * * .1)

.9

.8
.5

Incoming request

Separate Policy Elements in Cmdr N’s Policy

Figure 3. Representation for a policy for network
bandwidth prioritization.

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 33

Figure 4—node N1.2)—and so on, up the chain of
command (i.e., node N.1 in Figure 4). We allow each
commander to stipulate how this matching policy element
should be resolved with the subordinate commander’s
matching policy element: as a ceiling or floor value, or
linear or weighted combination of the values. Even when a
single well-defined chain of command does not exist the
policies of different “interest groups” may be represented
with relative weights on the importance values that each
would assign to a potential outcome. We have used this
approach (Dorneich, et al., 2004) in representing the many,
varied interests which impact the decisions of a commercial
airline’s dispatch operators (e.g., crew scheduling,
maintenance scheduling, marketing, passengers, finance,
etc.).

Folding this policy-based form of delegation interaction
(method 5) into an overall architecture that includes the
other methods is not as difficult as it might first appear.
While we have not yet developed a system that
accomplishes this, the way forward is clear. Policy is
simply an assignment of value or priority to the goal states
and tasks in the other delegation interaction types.
Priorities for resource usage and the desirability of various
outcomes stem, after all, from a superior’s goals and plans
for subordinates (whether human or machine). If, for
example, I task a given unit under my command to perform
an Airfield Denial task, and I know that their task is the
most important of all concurrent tasks to me, then I have
effectively said that giving them the resources they require
to perform that task (specific aircraft, munitions, fuel,
communications bandwidth, etc.) represents the highest
value to me. In other words, delegation interactions that
provide specific goals, plans, stipulations and constraints to
subordinates carry with them specific policy implications.
Whenever a commander can provide more specific
delegation instructions, this will generally get him/her
closer to the results desired from his/her subordinates, but
this will not always be the case. Hence, the ability to
stipulate more abstract policies should probably be
preserved in a complete delegation system as a means of
covering unexpected and unfamiliar situations.

Conclusions and Future Work

While the work described above represents a general
framework for delegation interactions suitable for human
interaction with smart automation of various kinds and,
perhaps uniquely, suitable for the tasking of multiple
UMVs, our work has thus far progressed only to the proof
of concept stage. As noted above, we have currently
implemented only portions of the various methods of
delegation that a fully flexibly delegation interface might
benefit from, and have done so in disparate systems.
Furthermore, our proof of concept implementations have
not yet afforded us the opportunity to do rigorous human in
the loop evaluations to demonstrate improved performance,
if any.

These situations are changing, however. We are currently
engaged in exploration of human interaction with Playbook
-like interfaces (Parasuraman, et al., in press) and are
performing work on a Playbook interface for real-time
interactions with heterogeneous UMV assets by operators
who may be concurrently involved in other critical tasks
(under a DARPA-IXO SBIR grant-- cf. Miller, et al., 2004;
Goldman, et al., 2005). One of the goals of this work will
be to develop task libraries and task construction tools and
interface concepts to move the delegation interface work
along toward implementation and utility.

Of course, anyone who has worked with a poorly trained,
or simply mismatched, subordinate is well aware that it is
possible for delegation to cause more work than it saves.
Our challenge, and that of others who adopt a delegation
framework for human interaction with complex and largely
autonomous automation, will be to ensure that this does not
happen--through judicious use of technology and
substantial usability analysis and testing. On the positive
side, however, we benefit from the knowledge that
delegation approaches to interaction with intelligent yet
subordinate actors have worked repeatedly throughout
history and, particularly, the history of warfare. As
automation in the form of UMVs increasingly takes its
place as one of those actors we want to be intelligent,
capable and effective yet remain subordinate, we will
increasingly need methods for enabling it to interact with
us in the ways that we trust and are familiar with. Since
delegation is the primary method that fits that bill, it only
makes sense to pursue delegation approaches to human
interaction with automation.

Acknowledgements

An earlier version of this paper was presented at the NATO

Research and Technology Organization Special Workshop
on Uninhabited Military Vehicles, June 10-13, 2003;

Leiden, Holland.

N1.2

N1.2.1 N1.2.2

N1.1

N1

su
pports

Assigned Importance =.9

Assigned Imp. =.5
Resolved Imp. (use superior) = .5

Assigned Imp. =.7
Resolved Imp. (average) = .6

Request

Figure 4. Applying and resolving policy across echelons
in a command hierarchy.

ICAPS 2005

34 Workshop on Mixed-Initiative Planning and Scheduling

Many people have contributed to the ideas presented

above. A partial list includes Robert Goldman, Harry

Funk, Michael Pelican, Dave Musliner, Karen Haigh,

Michael Dorneich, Stephen Whitlow, John Allen, and Jim

Richardson.

References

Dorneich, M.C., Whitlow, S. D., Miller, C. A., Allen, J. A.

2004. A Superior Tool for Airline Operations. Ergonomics

in Design, 12(2). 18-23.

Funk, H., Miller, C., Johnson, C. and Richardson, J. 2000.

Applying Intent-Sensitive Policy to Automated Resource

Allocation: Command, Communication and Most

Importantly, Control. In Proceedings of the Conference on

Human Interaction with Complex Systems. Urbana-

Champaign, Ill. May.

Goldman, R.P., K. Haigh, D. Musliner, & M. Pelican.
2000. MACBeth; A Multi-Agent, Constraint-based
Planner. In Notes of the AAAI Workshop on Constraints

and AI Planning, Austin, TX, pp. 1-7.

Goldman, R., Miller, C., Wu, P., Funk, H. and Meisner, J.
2005. Optimizing to Satisfice: Using Optimization to
Guide Users. In Proceedings of the American Helicopter

Society’s International Specialists Meeting on Unmanned

Aerial Vehicles. January 18-20; Chandler, AZ.

Klein, G. 1998. Sources of Power: How People Make
Decisions. Cambridge, MA; MIT Press.

Miller, C., Pelican, M. and Goldman, R. 2000. “Tasking”
Interfaces for Flexible Interaction with Automation:
Keeping the Operator in Control. In Proceedings of the
Conference on Human Interaction with Complex Systems.
Urbana-Champaign, Ill. May.

Miller, C., Funk, H., Goldman, R. and Wu, P. 2004. A
“Playbook” for Variable Autonomy Control of Multiple,
Heterogeneous Unmanned Air Vehicles. In Proceedings of

the 4th Conference on Human Performance, Situation

Awareness and Automation. Daytona Beach, FL; March
22-25.

Parasuraman, R., Galster, S., Squire, P., Furukawa, H. and

Miller, C. In press. A Flexible Delegation-Type Interface
Enhances System Performance in Human Supervision of
Multiple Robots: Empirical Studies with RoboFlag.

Accepted for inclusion in J. Adams, guest ed. IEEE

Systems, Man and Cybernetics—Part A, Special Issue on

Human-Robot Interactions.

Sewell, D. and Geddes, N. 1990. A plan and goal based

method for computer-human system design. In D. Diaper,

ed. Human-Computer Interaction—INTERACT ’90.
Elsevier Science; North-Holland. pp. 283-288.

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 35

A Mixed-Initiative Approach
to Human-Robot Interaction in Rescue Scenarios

Alberto Finzi
Dipartimento di Informatica e Sistemistica

Università degli Studi di Roma “La Sapienza”
Via Salaria 113, 00198 Roma Italy

finzi@dis.uniroma1.it

Andrea Orlandini
Dipartimento di Informatica e Automazione

Università degli Studi di Roma TRE
Via della Vasca Navale 79, 00146 Roma Italy

orlandin@dia.uniroma3.it

Abstract

In this paper we present a mixed-initiative planning approach
to human-robot interaction in a rescue domain. We deploy a
model-based executive monitoring system to coordinate the
operator’s interventions and the concurrent activities of a res-
cue rover. We show that this approach can enhance both oper-
ator situation awareness and human-robot interaction for the
execution and control of the diverse activities needed in res-
cue missions. We have implemented this control architecture
on a robotic system (DORO) and tested it in rescue arenas
comparing its performances in different settings.

Introduction
Urban search and rescue (USAR) deals with response ca-
pabilities for facing urban emergencies, and it involves the
location and rescue of people trapped because of a struc-
tural collapse. Starting in 2000, the National Institute of
Standard Technology (NIST) together with the Japan Na-
tional Special Project for Earthquake Disaster Mitigation
in Urban Areas (Tadokoro et al. 2000; Tadokoro 2000;
Maxwell et al. 2004; Jacoff, Messina, & Evans 2001) has
initiated the USAR robot competitions. NIST, in particular,
features future standards of robotics infrastructures, pioneer-
ing robotics participation to rescue missions. RoboCup Res-
cue contests are a test-bed of the technology development
of NIST project, and are becoming a central international
event for rescue robots, and a real challenge for the robotics
community. Rescue robots uphold human operators explor-
ing dangerous and hazardous environments and searching
for survivors.

A crucial aspect of rescue environments, discussed in
(Burke et al. 2004) and (Murphy 2004) concerns the op-
erator situation awareness and human-robot interaction. In
(Murphy 2004) the difficulties in forming a mental model
of the “robot eye” are endorsed, pointing out the role of the
team. Differently from real tests, like the one in Miami (see
(Burke et al. 2004)), during rescue competitions the oper-
ator is forced to be alone while coordinating the robot ac-
tivities, since any additional team member supporting the
operator would penalize the mission. The operator can fol-
low the robot activities only through the robot perception of

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the environment, and its internal states. In this sense, the
overall control framework has to capture the operator atten-
tion towards “what is important” so as to make the correct
choices: follow a path, enter a covert way, turn around an
unvisited corner, check whether a visible victim is really
reachable, according to some specific knowledge acquired
during the exploration. In this setting, a fully manual con-
trol over a robot rescue is not effective (Bruemmer et al.
2003): the operator attention has to be focused over a wide
range of activities, losing concentration on the real rescue
mission objective, i.e. locating victims. Moreover, a sig-
nificant level of training is needed to teleoperate a rescue
rover. On the other hand, fully autonomous control systems
are not feasible in a rescue domain where too many capabil-
ities are needed. Therefore, the integration of autonomous
and teleoperated activities is a central issue in rescue scenar-
ios and has been widely investigated (Kiesler & Hinds 2004;
Yanco & Drury 2002; Drury, Scholtz, & Yanco 2003;
Michael Baker & Yanco 2004; Yanco & Drury 2002).

In this work we describe a mixed-initiative planning
approach (Ai-Chang et al. 2004; Myers et al. 2003;
Allen & Ferguson 2002; Burstein & McDermott 1996) to
Human-Robot Interaction (HRI) in a rescue domain and il-
lustrate the main functionalities of a rescue robot system1.
We deploy a model-based executive monitoring system to
interface the operators’ activities and the concurrent func-
tional processes in a rescue rover. In this setting, the user’s
and the robot’s activities are coordinated by a continuos re-
active planning process which has to (i) check the execution
status with respect to a declarative model of the system; (ii)
provide proactive activity while mediating among conflict-
ing initiatives. In particular, we show that this approach can
enhance both the operator situation awareness and human-
robot interaction for the execution and control of the diverse
activities needed during a complex mission such as the res-
cue one.

The advantage of this approach can be appreciated con-
sidering the HRI awareness discussed in (Drury, Scholtz, &
Yanco 2003):

• robot-human interaction: given a declarative model of
the robot activities, the monitoring system can be “self-
aware” about the current situation, at different levels of

1Doro is the third award winner in Lisbon contest (2004)

ICAPS 2005

36 Workshop on Mixed-Initiative Planning and Scheduling

Figure 1: The mobile robot DORO, in a yellow arena.

abstraction; in this way, complex and not nominal inter-
actions among activities can be detected and displayed to
the operator;

• human-robot interaction: the operator can take advantage
of basic functionalities like mapping, localization, learn-
ing vantage points for good observation, victim detection,
and victim localization; these functionalities purposely
draw his attention toward the current state of exploration,
while he interacts with a mixed initiative reactive planner
(Ai-Chang et al. 2004).

Finally, the humans’ overall mission can take advantage of
the model, that keeps track of the robot/operator execution
history, goals, and subgoals. Indeed, the proposed control
system provides the operator with a better perception of the
mission status.

Rescue Scenario
NIST has developed physical test scenarios for rescue com-
petitions. There are three NIST arenas, called yellow, or-
ange, and red, of varying degrees of difficulty. A yel-
low arena represents an indoor flat environment with mi-
nor structural damage (e.g. overturned furniture), an orange
arena is multilevel and has more rubble (e.g. bricks), a red
one represents a very damaged unstructered environment:
multilevel, large holes, rubber tubing etc. The arenas are
accessible only by mobile robots controlled by one or more
operators from a separated place. The main task is to locate
as many victims as possible in the whole arena.

Urban search and rescue arena competitions are very hard
test-beds for robots and their architectures. In fact, the
operator-robot has to coordinate several activities: exploring
and mapping the environment, avoiding obstacles (bumping
is severely penalized), localizing itself, searching for vic-
tims, correctly locating them on the map, identifying them
through a numbered tag, and finally describing their own
status and conditions.

For each mission there is a time limit of 20 minutes, to
simulate the time pressure in a real rescue environment. In
this contest human-robot interaction has a direct impact on
the effectiveness of the rescue team performance.

We consider the NIST yellow arena as the test-bed for
our control architecture. It is mounted on our robotic plat-
form (DORO) whose main modules are: Map, managing
the algorithm of map construction and localization; Navi-
gation, guiding the robot through the arena with exploration
behaviour and obstacle’s avoidance procedures; Vision, used
in order to automatically locate victims around the arena.

In this context, (Murphy 2004) propose a high level se-
quence tasks cycle as a reference for the rescue system be-
haviour: Localize, Observe general surroundings, look spe-
cially for Victims, Report (LOVR). Our interpretation of the
cycle corresponds to the following tasks sequence: map con-
struction, visual observation, vision process execution and
victim’s presence report.

Human Robot Interaction and Mixed
Initiative Planning in Rescue Arenas

There have been several efforts to establish the essential
aspects of human-robot interaction, given the current find-
ings and state of the art concerning robot autonomy and
its modal-abilities towards humans and environments (see
e.g.(Dautenhahn & Werry 2000; Kiesler & Hinds 2004;
Burke et al. 2004; Sidner & Dzikovska 2002; Lang et al.
2003) and the already cited (Murphy 2004; Michael Baker &
Yanco 2004; Yanco & Drury 2002; Drury, Scholtz, & Yanco
2003), specifically related to the rescue environment. It is
therefore crucial to model the interaction in terms of a suit-
able interplay between supervised autonomy (the operator is
part of the loop, and decides navigation strategies according
to an autonomously drawn map, and autonomous localiza-
tion, where obstacle avoidance is guaranteed by the robot
sensory system) and full autonomy (e.g. visual information
is not reliable because of darkness or smoke etc., and the
operator has to lean upon the robot exploration choices).

In order to allow the tight interaction described above, we
designed a control system where the HRI is fully based on
a mixed-initiative planning activity. The planning process is
to continuously coordinate, integrate, and monitor the oper-
ator interventions and decisions with respect to the ongoing
functional activities, taking into account the overall mission
goals and constraints. More precisely, we developed an in-
teractive control system which combines the following fea-
tures:

• Model-based control. The control system is endowed
with declarative models of the controllable activities,
where causal and temporal relations are explicitly rep-
resented (Muscettola et al. 2002; Williams et al. 2003;
Muscettola et al. 1998). In this way, hard and soft con-
straints can be directly encoded and monitored. Further-
more, formal methods and reasoning engines can be de-
ployed either off-line and on-line, to check for consis-
tency, monitor the executions, perform planning or diag-
nosis. In a mixed-initiative setting the aim of a model-
based system is twofold: on the one hand the operator ac-

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 37

tivities are explicitly modeled and supervised by the con-
trol system; on the other hand, the model-based monitor-
ing activity exports a view of the system that is intuitive
and readable by humans, hence the operator can further
supervise the robot status in a suitable human robot inter-
face.

• Reactive executive monitoring. Given this model, a re-
active planning engine can monitor both the system’s low-
level status and the operator’s interventions by continu-
ously performing sense-plan-act cycles. At each cycle the
reactive planner has to: (i) monitor the consistency of the
robot and operator activities (w.r.t. the model) managing
failures; (ii) generate the robot’s activities up to a planning
horizon. The short-range planning activity can also bal-
ance reactivity and goal-oriented behaviour: short-term
goals/tasks and external/internal events can be combined
while the planner tries to solve conflicts. In this way,
the human operator can interact with the control system
through the planner in a mixed initiative manner.

• Flexible interval planning. At each execution cycle a
flexible temporal plan is generated. Given the domain
uncertainty and dynamics, time and resources cannot be
rigidly scheduled. On the contrary, it is necessary to ac-
count for flexible behaviours, allowing one to manage dy-
namic change of time and resource allocation at execution
time. For this reason the start and end time of each sched-
uled activity is not fixed, but the values span a temporal
interval.

• High-level agent programming. The high-level agent
programming paradigm allows one to integrate procedu-
ral programming and reasoning mechanisms in a uniform
way. In this approach, the domain’s first principles are
explicitly represented in a declarative relational model,
while control knowledge is encoded by abstract and par-
tial procedures. Both the system’s and the operator’s pro-
cedural operations can be expressed by high-level partial
programs which can be completed and adapted to the ex-
ecution context by a program interpreter endowed with
inference engines.

Control Architecture
In this section, we describe the control system we have de-
fined to incorporate the design principles introduced above.
Following the approach in (Muscettola et al. 2002; Williams
et al. 2003; Volpe et al. 2001; Finzi, Ingrand, & Muscet-
tola 2004) we introduce a control system where decision
processes (including declarative activities and operator’s in-
terventions) are tightly coupled with functional processes
through a model-based executive engine. Figure 2 illus-
trates the overall control architecture designed for DORO.
The physical layer devices are controlled by three functional
modules associated to the main robots activities (mapping
and localization, visual processing, and navigation). The
state manager and task dispatcher in the figure are designed
to manage communication between the executive and func-
tional layers.
The state manager gets from each single module its current
status so that any module can query the state manager about

Executive
Layer

Physical
Layer

Functional
LayerMapping

and
Localization Vision Navigation

Sonars

Inertial
Platform

Pantilt

Laser CCD
Cameras

Wheels

System Model

Task Library

Reactive Planner

Sense Act

Plan

Task ManagerState Manager

U
s
e
r

Figure 2: Control architecture

the status of any another module. The state manager updates
its information every 200 msec., the task dispatcher sends
tasks activation signals to the modules (e.g. map start)
upon receiving requests from the planner or the human op-
erator. The overall computational cycle works as follows:
the planner gets the modules status querying the state man-
ager. Once the state manager provides the execution context,
the planner produces a plan of actions (planning phase about
0.5 sec.) and yields the first set of commands to the task dis-
patcher. In the execution phase (about 0.5 sec.), each module
reads the signals and starts its task modifying its state. At the
next cycle start, the planner reads the updated status through
the state manager and can check whether the tasks were cor-
rectly delivered. If the status is not updated as expected, a
failure is detected, the current plan is aborted and a suitable
recovery procedure is called.

Functional Modules. As mentioned above, the functional
layer is endowed with three main modules: Mapping and
Localization, Navigation, and Vision. These modules pro-
vide different tasks that can be activated or stopped accord-
ing to the start or end actions communicated by the task
dispatcher.

A functional module is a reactive component that changes
its internal status with respect to the action received from
the task dispatcher. Nevertheless, it can also provide some
proactiveness, by suggesting the planner/operator an action
to be executed. For instance, the Slam module assumes a
particular mode in order to communicate to the system that
a map’s construction cycle is ended, and then the control
system can decide an action to stop the mapping phase. Mo-
rover, some modules can directly interact among them by
communicating some low-level information bypassing the

ICAPS 2005

38 Workshop on Mixed-Initiative Planning and Scheduling

state manager (and the executive layer), e.g. Slam devises to
Navigation the coordinates of the nearest unexplored point
during the exploration phases.

User interaction. The human operator can interact with
the control loop both during the plan and the act phase. In
the planning phase, the operator can interact with the control
system by: (i) posting some goals which are to be integrated
in the partial plan already generated; (ii) modifying the gen-
erated plan through the user interface; (iii) on-line changing
some planning parameters, like the planning horizon, the
lenght of the planning cycle, etc.. In the executive phase,
the user can directly control some functional modules (e.g.,
deciding where the rover is to go, or when some activities
are to stop). In this case, the human actions are assimilated
to exogenous events the monitoring system is to manage and
check. Finally, the operator’s actions can be accessed by the
state manager, and, analogously to the functional modules,
can be monitored by the model-based control system.

Model-Based Monitoring
The role of a model-based monitoring system is to enhance
both the system safeness and the operator situation aware-
ness. Given a declarative representation of the system causal
and temporal properties, the flexible executive control is
provided by a reactive planning engine which harmonizes
the operator activity (commands, tasks, etc.) with the mis-
sion goals and the reactive activity of the functional mod-
ules. Since the execution state of the robot is continuously
compared with a declarative model of the system, all the
main parallel activities are integrated into a global view and
subtle resources and time constraints violations can be de-
tected. In this case the planner can also start or suggest re-
covery procedures the operator can modify, neglect, or re-
spect. Such features are implemented by deploying high-
level agent programming in Temporal Concurrent Golog
(Reiter 2001; Pirri & Reiter 2000; Finzi & Pirri 2004) which
provides both a declarative language (i.e. Temporal Concur-
rent Situation Calculus (Pinto & Reiter 1995; Reiter 1996;
Pirri & Reiter 2000)) to represent the system properties and
the planning engine to generate control sequences.

Temporal Concurrent Situation Calculus. The Situation
Calculus (SC) (McCarthy 1963) is a sorted first-order lan-
guage representing dynamic domains by means of actions,
situations, i.e. sequences of actions, and fluents, i.e. situ-
ation dependent properties. Temporal Concurrent Situation
Calculus (TCSC) extends the SC with time and concurrent
actions. In this framework, concurrent durative processes
(Pinto & Reiter 1995; Reiter 1996; Pirri & Reiter 2000) can
be represented by fluent properties started and ended by du-
rationless actions. For example, the process going(p1, p2)
is started by the action startGo(p1, t) and it is ended by
endGo(p2, t

′).

Declarative Model in TCSC. The main processes and
states of DORO are explicitly represented by a declarative

dynamic-temporal model specified in the Temporal Con-
current Situation Calculus (TCSC) . This model represents
cause-effect relationships and temporal constraints among
the activities: the system is modeled as a set of components
whose state changes over time. Each component (including
the operator’s operations) is a concurrent thread, describing
its history over time as a sequence of states and activities.
For example, in the rescue domain some components are:
pant-tilt, slam, navigation, visualPerception, etc.

Each of these is associated with a set of processes, for in-
stance some of those are the following: SLAM can perform
slmMap to map the environment and slmScan to acquire
laser measures; visualPerception can use visProcess(x) to
process an image x. navigation can explore a new area
(nvWand) or reach a target point x (nvGoTo); pan-tilt
can deploy ptPoint(x) (moving toward x) and ptScan(x)
(scanning x). The history of states for a component over a
period of time is a timeline. Figure 3 illustrates a possible
evolution of navigation, slam, and pan-tilt up to a plan-
ning horizon.

WANDERING GOTO GOTO

MAPIDLEMAP

IDLE POINT SCAN

STOP

PTU

NAV

SLAM

IDLEPOINT

current
time

Execution history planning
horizon

Figure 3: Timelines evolution

Hard time constraints among activities can be defined
by a temporal model using Allen-like temporal relations,
e.g.: ptPoint(x) precedes ptScan(x), ptScan(x) during
nvStop, etc..

Temporal Concurrent Golog. Golog is a situation
calculus-based programming language which allows one to
define procedural scripts composed of primitive actions ex-
plicitly represented in a SC action theory. This hybrid
framework integrates procedural programming and reason-
ing about the domain properties. Golog programs are de-
fined by means of standard (and not so-standard) Algol-like
control constructs: (i) action sequence: p1; p2, (ii) test: φ?,
(iii) nondeterministic action choice p1|p2, (iv) condition-
als, while loops, and procedure calls. Temporal Concurrent
Golog (TCGolog) is the Golog version suitable for durative
and parallel actions, it is based on TCSC and allows parallel

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 39

action execution: a‖b. An example of a TCGolog procedure
is:

proc(observe(x),
while (nvStop ∧ ¬obs(x)) do π(t1, start(t1)? :
[if (ptIdle(0)) do π(t2, startPoint(x, t1) : (t2 − t1<3)?)|
if (ptIdle(x)) do π(t3, startScan(x, t3) : (t3 − t1<5)?))).

Here the nondeterministic choice between startPoint and
startScan is left to the Golog interpreter which has to de-
cide depending on the execution context. Note that, time
constraints can be encoded within the procedure itself. In
this case the procedure definition leaves few nondetermistic
choices to the interpreter. More generally, a Golog script can
range from a completely defined procedural program to an
abstract general purpose planning algorithm like the follow-
ing:

proc(plan(n),
true? | π(a, (primitive action(a))? : a) : plan(n− 1))

The semantics of a Golog program δ is a situation calculus
formula Do(δ, s, s′) meaning that s′ is a possible situation
reached by δ once executed from the situation s. For exam-
ple, the meaning of the a|b execution is captured by the log-
ical definition Do(a|b, s, s′) .= Do(a, s, s′) ∨ Do(a, s, s′).

Flexible behaviours. Our monitoring system is based on a
library of Temporal Concurrent Golog scripts representing a
set of flexible behaviour fragments. Each of them is associ-
ated to a task and can be selected if it is compatible with the
execution context. For example a possible behaviour frag-
ment can be written as follows:

proc(explore(d),
[π(t1, startMap(t1))‖π(t2, startWand(t2) :
π(t3, endWand(t3) : π(x, startGoto(x, t3)) : (t3 − t2<d)?))].

This Golog script is associated with the exploration task, it
starts both mapping and wandering activities; the wandering
phase has a timeout d, after this the rover has to go some-
where. The timeout d will be provided by the calling process
that can be either another Golog procedure or a decision of
the operator.

Reactive Planner/Interpreter As illustrated before, for
each execution cycle, once the status is updated (sensing
phase), the Golog interpreter (planning phase) is called to
extend the current control sequence up to the planning hori-
zon. When some task ends or fails, new tasks are selected
from the task library and compiled into flexible temporal
plans filling the timelines.

Under nominal control, the robot’s activities are sched-
uled according to a closed-loop similar to the LOVR (Local-
ize, Observe general surroundings, look specially for Vic-
tims, Report) sequence in (Murphy 2004). Some of these
activities can require the operator initiative that is always al-
lowed.

Failure detection and management Any system mal-
functioning or bad behaviour can be detected by the reactive
planner (i.e. the Golog interpreter) when world inconsisten-
cies have to be handled. In this case, after an idle cycle a
recovery task has to be selected and compiled w.r.t the new
execution status. For each component we have classified a
set of relevant failures and appropriate flexible (high-level)
recovery behaviours. For example, in the visual model, if the
scanning processes fails because of a timeout, in the recov-
ery task the pan-tilt unit must be reset taking into account
the constraints imposed by the current system status. This
can be defined by a very abstract Golog procedure, e.g.

proc(planToPtuInit,
π(t, time(t)? : plan(2) : π(t1, P tIdle(0) :

time(t1)? : (t1 − t < 3)?))).

In this case, the Golog interpreter is to find a way to compile
this procedure getting the pan-tilt idle in less than two steps
and three seconds. The planner/Golog interpreter can fail
in its plan generation task raising a planner timeout. Since
the reactive planner is the engine of our control architecture,
this failure is critical. We identified three classes of recov-
eries depending on the priority level of the execution. If the
priority is high, a safe mode has to be immediately reached
by means of fast reactive procedures (e.g. goToStandBy).
In medium priority, some extra time for planning can be ob-
tained by interleaving planning and execution: a greedy ac-
tion is executed so that the interpreter can use the next time-
slot to end its work. In the case of low priority, the failure
is handled by replanning: a new task is selected and com-
piled. In medium and low level priority the operator can be
explicitly involved in the decision process in a synchronous
way. During a high-priority recovery (i.e. goToStandBy)
the autonomous control is to manage the emergency, unless
the operator wants to take care of it disabling the monitoring
system.

Mixed-Initiative Planning
The control architecture introduced before allows us to de-
fine some hybrid operative modalities lying between au-
tonomous and teleoperated modes and presenting some ca-
pabilities that are crucial in a collaborative planning setting.
In particular, following (Allen & Ferguson 2002), our sys-
tem permits incremental planning, plan stability, and it is
also open to innovation.

The high-level agent programming paradigm, associated
with the short-range planning/interpretation activity, permits
an incremental generation of plans. In this way, the user at-
tention can be focused on small parts of the problem and the
operator can assess local possible decisions, without losing
the overall problem constraints.

Plan stability is guaranteed by flexible behaviours and
plan recovery procedures, which can harmonize the modi-
fication of plans, due to the operator’s interventions or ex-
ogenous events. Minimal changes to plans lead to short re-
planning phases minimizing misalignments.

Concerning the open to innovation issue, the model-based
monitoring activity allows one to build novel plans, under
human direction, and to validate and reason about them.

ICAPS 2005

40 Workshop on Mixed-Initiative Planning and Scheduling

Depending on the operator-system interaction these fea-
tures are emphasized or obscured. We distinguish among
three different mixed-initiative operational modalities.
• Planning-based interaction. In this setting, the planning

system generates cyclic LOVR sequences and the oper-
ator follows this sequence with few modifications, e.g.
extending or reducing process durations. Here task dis-
patching is handled in an automated way and the oper-
ator can supervise the decisions consistency minimizing
the interventions. The human-operator can also act as an
executor and manually control some functional activities
scheduled by the planner. For example, he can decide to
suspend automated navigations tools and take the control
of mobile activities, in this way he can decide to explore
an interesting location or escape from difficult environ-
ments. In this kind of interaction the operator initiative
minimally interferes with the planning activity and plan
stability is emphasized.

• Cooperation-based interaction. In this modality, the
operator modifies the control sequence produced by the
planner by skipping some tasks or inserting new actions.
The operator’s interventions can determine a misalign-
ment between the monitoring system expectations (i.e.
the control plan) and the state of the system; this is cap-
tured at beginning of the next execution cycle when the
state monitor provides the current state of the modules. In
order to recover the monitor-system adherence, the plan-
ner has to start some recovery operations which are pre-
sented to the operator. Obviously, these activities are to
be executed in real-time by verifying the satisfiability of
the underlaying temporal and causal constraints.
This modality enables maximal flexibility for the plan-
ner’s and operator’s initiatives. Indeed, they can dialogue
and work in a concurrent way contributing to the mis-
sion completion (incremental planning): while the opera-
tor tries to modify the plan in order to make it more effec-
tive (i.e. the system is open to innovation), the monitoring
system can validate the operator’s choices. Moreover, in
the case of safety constraints violations, it warns the user
and/or suggests suitable corrections.

• Operator-based interaction. This modality is similar
to teleoperation, the system activities are directly man-
aged by the operator (some minor autonomy can always
be deployed when the operator attention is to be focused
on some particular task, e.g. looking for victims). The
operator-based interaction is reached when the operators’
interventions are very frequent, hence the planner keeps
replanning and cannot support the user with a meaningful
proactive activity. In this operative scenario, the planner
just follows the operators’ choices playing in the role of
a consistency checker. The monitoring system can no-
tify the user only about safety problems and, in this case,
recovery procedures can be suggested (incremental plan-
ning can be used only to generate non-critical planning
procedures).

Each of these modalities is implicitly determined by the way
the operator interacts with the system. Indeed, in a mixed-
initiative setting, if the operator is idle, the monitor works

Figure 4: DORO graphical interface showing the current
global map, the victims detected and localized, the path-
history: in blue the whole history, and in yellow the most
recent one.

in the planner-based mode. Instead, the operator’s interven-
tions can disturb such a status bringing the system toward
the operator-based interaction. However, the operator can
always directly set the latter interaction mode by setting to
zero the planning horizon and disabling the planner proac-
tive activity. Note that for each mixed-initiative mode, the
monitoring system continuously checks the activities per-
formed, including human-operator actions, and when nec-
essary it replans or provides suggestions to the operator.

Mixed-initiative approach at work
The architecture discussed in this article is implemented on
our robotic platform (DORO) and here we present some tests
performed in a yellow rescue arenas.

Robotic Platfrom. The hardware platform for DORO is
a two wheeled differential drive Pioneer from ActivMedia
with an on-board laptop hosts navigation, map building, re-
active planning routines and the on-board sensors control
processing. An additional PC, for remote control, is also
used for image processing. The two PCs running Windows
XP are linked with an Ethernet wireless LAN (802.11a) to
enable remote control and monitoring of the mobile robot.
Two color cameras are mounted on top of the robot on a
pant-tilt head. A laser range finder DISTO pro is mounted
on the pan-tilt between the two cameras.

Robot Software. The robot motion control (speed and
heading) and sonar readings are provided by a serial connec-
tion to the Pioneer controller using the Aria API facilities.
Video streaming and single frames are acquired through the
Image Acquisition Toolbox from Matlab (TM). Inertial data
and laser measurements are acquired through dedicated C++
modules that manage the low level serial connections.

Experiences in our domestic arenas. We tested the con-
trol architecture and the effectiveness of the mixed-initiative
approach in our domestic arenas comparing three possible
settings: (i) fully teleoperated: navigation, slam, and vision

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 41

disabled; (ii) mixed-initiative control: the monitoring sys-
tem was enabled and the operator could supervise the rover
status and take the control whenever this was needed; (iii)
autonomous control.

During mixed-initiative control tests, we considered also
the percentage of time spent by the operator in operator-
based mode (see operator in the table below). We deployed
these three settings on yellow arenas considering increasing
surface areas, namely, 20 m2, 30 m2, 40 m2 (see surface
in the table below), associated with increasingly complex
topologies. For each test, there were 4 victims to be discov-
ered. We limited the exploration time to 10 minutes. We
performed 10 tests for each modality. Different operators
were involved in the experiments in order to avoid an opera-
tor visiting the same arena configuration twice.

For each test class we considered: (i) the percentage of
the exlored arena surface; (ii) the number of visited and
inspected topological environments (rooms, corridors, etc.)
w.r.t. the total number; (iii) the overall number of encoun-
tered obstacles (i.e. arena bumps); (iv) the number of de-
tected victims; (v) the operator activity (percentage w.r.t. the
mission duration). The results are summarized in the Table
1 reporting the average values of each field.

Fully Teleop Supervised Autonomous
Surface (m2) 20 30 40 20 30 40 20 30 40

Explored (%) 85 78 82 85 82 79 49 80 75
Visited env. 5/6 7/9 7/9 6/6 8/9 7/9 3/6 7/9 6/9
Bumps (tot.) 11 7 9 3 2 2 2 1 2
Victims (x/4) 3.0 2.1 2.2 2.5 2.6 2.1 1.3 1.4 1.2
Operator (%) 100 100 100 10 15 15 0 0 0

Table 1: Experimental results for the three operational
modalities.

Following the analysis schema in (Scholtz et al. 2004) here
we discuss the following points: global navigation, local
navigation and obstacle encountered, vehicle state, victim
identification.

Concerning global navigation, the performance of the
mixed-initiative setting are quite stable while the au-
tonomous system performs poorly in small arenas because
narrow environments challenge the navigation system which
is to find how to escape from them. In greater and more
complex arenas the functional navigation processes (path
planner, nearest unexplored point system, etc.) start to be
effective while the fully teleoperated behaviour degrades:
the operator gets disoriented and often happens that already
visited locations and victims are considered as new ones,
while we never experienced this in the mixed-initiative and
autonomous modes. The effectiveness of the control sys-
tem for local navigation and vehicle state awareness can be
read on the bumps row; indeed the bumps are significantly
reduced enabling the monitoring system. In particular, we
experienced the recovery procedures effectiveness in warn-
ing the operator about the vehicle attitude. E.g. a typical
source of bumping in teleoperation is the following: the vi-
sual scanning process is interrupted (timeout) and the op-
erator decides to go on in one direction forgetting the pan-

tilt in a non-idle position. Enabling the monitor, a recov-
ery procedure interacts with the operator suggesting to re-
set the pan-tilt position. The victim identification effective-
ness can be assessed considering the founded victims in the
autonomous mode; considering that visual processing was
deployed without any supervision, these results seem quite
good (we experienced some rare false-positive).

Our experimental results show that the system perfor-
mances are enhanced with the presence of an operator super-
vising the mission. It seems that the autonomous activities
are safely performed, but the operator can choose more ef-
fective solutions in critical situations. For instance, the num-
ber of visited environments in supervised mode (see Table 1)
is greater than that one in the autonomous mode, while the
victims detected are approximately the same. Furthermore,
the number of bumps in teleoperated mode is greater than
in both supervised and autonomous settings, and this can be
explained by the cognitive workload on the operator during
the teleoperation. Thus, we can trade off high performances
and low risks by exploiting both human supervision and ma-
chine control .

Conclusion
Human-robot interaction and situation awareness are crucial
issues in a rescue environment. In this context a suitable
interplay between supervised autonomy and full autonomy
is needed. For this purpose, we designed a control system
where the HRI is fully based on a mixed-initiative planning
activity which is to continuously coordinate, integrate, and
monitor the operator interventions and decisions with re-
spect to the concurrent functional activities. Our approach
integrates model-based executive control, flexible interval
planning and high level agent programming.

This control architecture allows us to define some hybrid
operative modalities lying between teleoperated mode and
autonomous mode and presenting some capabilities that are
crucial in a collaborative planning setting.

We implemented our architecture on our robotic platform
(DORO) and tested it in a NIST yellow arena. The com-
parison between three possible settings (fully teleoperated,
mixed-initiative control, autonomous control) produce en-
couranging results.

References
Ai-Chang, M.; Bresina, J.; Charest, L.; Chase, A.; Hsu,
J.-J.; Jonsson, A.; Kanefsky, B.; Morris, P.; Rajan, K.;
Yglesias, J.; Chafin, B.; Dias, W.; and Maldague, P. 2004.
Mapgen: mixed-initiative planning and scheduling for the
mars exploration rover mission. Intelligent Systems, IEEE
19(1):8– 12.
Allen, J., and Ferguson, G. 2002. Human-machine collab-
orative planning. In Proceedings of the 3rd international
NASA Workshop on Planning and Scheduling for Space.
Bruemmer, D. J.; Boring, R. L.; Few, D. A.; Marble, J. L.;
and Walton, M. C. 2003. ”i call shotgun!”: An evaluation
of mixed-initiative control for novice users of a search and
rescue robot. In Proceedings of IEEE International Con-
ference on Systems, Man and Cybernetics.

ICAPS 2005

42 Workshop on Mixed-Initiative Planning and Scheduling

Burke, J.; Murphy, R.; Coovert, M.; ; and Riddle, D. 2004.
Moonlight in miami: A field study of human-robot inter-
action in the context of an urban search and rescue dis-
aster response training exercise. Special Issue of Human-
Computer Interaction 19(1,2):21–38.
Burstein, M., and McDermott, D. 1996. Issues in the de-
velopment of human-computer mixed-initiative planning.
Cognitive Technology 285–303. Elsevier.
Dautenhahn, K., and Werry, I. 2000. Issues of robot-human
interaction dynamics in the rehabilitation of children with
autism.
Drury, J. L.; Scholtz, J.; and Yanco, H. A. 2003. Awareness
in human-robot interaction. In Proceedings of the IEEE
Conference on Systems, Man and Cybernetics.
Finzi, A., and Pirri, F. 2004. Flexible interval planning
in concurrent temporal golog. In Working notes of the 4th
International Cognitive Robotics Workshop.
Finzi, A.; Ingrand, F.; and Muscettola, N. 2004. Model-
based executive control through reactive planning for au-
tonomous rovers. In Proceedings IROS-2004, 879–884.
Jacoff, A.; Messina, E.; and Evans, J. 2001. A reference
test course for urban search and rescue robots. In FLAIRS
Conference 2001, 499–503.
Kiesler, S., and Hinds, P. 2004. Introduction to the special
issue on human-robot interaction. Special Issue of Human-
Computer Interaction 19(1,2):1–8.
Lang, S.; Kleinehagenbrock, M.; Hohenner, S.; Fritsch, J.;
Fink, G. A.; and Sagerer, G. 2003. Providing the basis for
human-robot-interaction: a multi-modal attention system
for a mobile robot. In Proceedings of the 5th international
conference on Multimodal interfaces, 28–35. ACM Press.
Maxwell, B. A.; Smart, W. D.; Jacoff, A.; Casper, J.; Weiss,
B.; Scholtz, J.; Yanco, H. A.; Micire, M.; Stroupe, A. W.;
Stormont, D. P.; and Lauwers, T. 2004. 2003 aaai robot
competition and exhibition. AI Magazine 25(2):68–80.
McCarthy, J. 1963. Situations, actions and causal laws.
Technical report, Stanford University. Reprinted in Seman-
tic Information Processing (M. Minsky ed.), MIT Press,
Cambridge, Mass., 1968, pp. 410-417.
Michael Baker, Robert Casey, B. K., and Yanco, H. A.
2004. Improved interfaces for human-robot interaction in
urban search and rescue. In Proceedings of the IEEE Con-
ference on Systems, Man and Cybernetics. ”To appear”.
Murphy, R. 2004. Human-robot interaction in rescue
robotics. IEEE Transactions on Systems, Man and Cyber-
netics, Part C 34(2):138–153.
Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B. C.
1998. Remote agent: To boldly go where no AI system has
gone before. Artificial Intelligence 103(1-2):5–47.
Muscettola, N.; Dorais, G. A.; Fry, C.; Levinson, R.; and
Plaunt, C. 2002. Idea: Planning at the core of autonomous
reactive agents. In Proc. of NASA Workshop on Planning
and Scheduling for Space.
Myers, K. L.; Jarvis, P. A.; Tyson, W. M.; and Wolverton,
M. J. 2003. A mixed-initiative framework for robust plan

sketching. In Proceedings of the 2003 International Con-
ference on Automated Planning and Scheduling.
Pinto, J., and Reiter, R. 1995. Reasoning about time in the
situation calculus. Annals of Mathematics and Artificial
Intelligence 14(2-4):251–268.
Pirri, F., and Reiter, R. 2000. Planning with natural actions
in the situation calculus. Logic-based artificial intelligence
213–231.
Reiter, R. 1996. Natural actions, concurrency and continu-
ous time in the situation calculus. In Proceedings of KR’96,
2–13.
Reiter, R. 2001. Knowledge in action : logical foundations
for specifying and implementing dynamical systems. MIT
Press.
Scholtz, J.; Young, J.; Drury, J.; and Yanco, H. 2004. Eval-
uation of human-robot interaction awareness in search and
rescue. In Proceedings of the 2004 International Confer-
ence on Robotics and Automation.
Sidner, C., and Dzikovska, M. 2002. Human-robot interac-
tion: Engagement between humans and robots for hosting
activities. In The Fourth IEEE International Conference on
Multi-modal Interfaces, 123–128.
Tadokoro, S.; Kitano, H.; Takahashi, T.; Noda, I.; Mat-
subara, H.; Shinjoh, A.; Koto, T.; Takeuchi, I.; Takahashi,
H.; Matsuno, F.; Hatayama, M.; Nobe, J.; and Shimada, S.
2000. The robocup-rescue project: A robotic approach to
the disaster mitigation problem. In ICRA-2000, 4089–95.
Tadokoro, S. 2000. Robocuprescue robot league. In
RoboCup-2002, 482–484.
Volpe, R.; Nesnas, I.; Estlin, T.; Mutz, D.; Petras, R.; and
Das, H. 2001. The claraty architecture for robotic auton-
omy. In IEEE 2001 Aerospace Conference.
Williams, B.; Ingham, M.; Chung, S.; Elliott, P.; Hofbaur,
M.; and Sullivan, G. 2003. Model-based programming of
fault-aware systems. AI Magazine.
Yanco, H., and Drury, J. 2002. A taxonomy for human-
robot interaction. In Proc. AAAI Fall Symposium on
Human-Robot Interaction, 111–119.

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 43

Metatheoretic Plan Summarization and Comparison
Karen L. Myers

AI Center, SRI International
333 Ravenswood Ave.

Menlo Park, California 94025
myers@ai.sri.com

Abstract
We describe a domain-independent framework for plan
summarization and comparison that can help a human
understand both the key elements of an individual plan and
important differences among plans. Our approach is
grounded in the use of a domain metatheory, which is an
abstract characterization of a planning domain that specifies
important semantic properties of templates, planning
variables, and instances. The metatheory provides a
semantic framework for guiding the choice and description
of concepts used in summarizing and comparing plans, thus
enabling results that are grounded in semantically
significant concepts rather than syntactic constructs whose
meaning or import is unclear. We define three specific
capabilities grounded in the metatheoretic approach: (a)
summarization of an individual plan, (b) comparison of
pairs of plans, and (c) analysis of a collection of plans. Use
of these capabilities within a rich application domain shows
their value in facilitating the understandability of complex
plans by a user.

Introduction
AI planning technology is being applied in increasingly
more challenging application domains, resulting in the
generation of plans with rich sophistication and
complexity. In these complex domains, it is generally the
case that a wide range of solutions is possible; part of the
challenge for a human decision maker is to analyze the
relative merits of various candidates before deciding on a
final option. Given these advances, the development of
tools that can help users understand complex plans and
tradeoffs among them presents an important technological
challenge.
 In this paper, we describe an approach to plan
summarization and comparison that is designed to help a
human understand both the key elements of an individual
plan and important differences among alternative plans.
Our approach is grounded in the use of a domain
metatheory. The domain metatheory is an abstract
characterization of a planning domain that specifies
important semantic properties of templates, planning
variables, and instances. The abstraction provides the
means to describe and compare plans in high-level,
semantically meaningful terms.

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

 Previous work on plan summarization and explanation
has been grounded in methods that are tightly linked to
either the syntactic characteristics of a plan’s structure or
the underlying reasoning processes used to generate it.
Such approaches suffer from the problem that these
structures and processes match the system’s
conceptualization of the domain rather than that of the
user. As such, their outputs have limited explanatory value.
 The concept of the domain metatheory was introduced
originally to provide a language that would enable a user
to advise a planning system, without requiring detailed
knowledge of its internal workings [Myers 1996]. Advice,
which describes high-level characteristics of desired
solutions, is operationalized into structures and
mechanisms that guide an automated planning system at
runtime. Subsequently, the metatheory was also used as
the basis for generating qualitatively different plans, by
using structure within the metatheory to direct a planning
system toward solutions with distinct semantic traits
[Myers & Lee 1999].
 A key insight underlying the work reported here is that
the metatheory can be used as the basis for identifying and
communicating important explanatory information about a
plan. In particular, the metatheory provides a semantic
framework for guiding the choice of concepts used in
summarizing and comparing plans. The resultant
comparisons and summaries are thus grounded in
semantically significant concepts rather than syntactic
constructs whose meaning or import are unclear.
 Within our metatheoretic framework, we define
techniques for (a) summarization of an individual plan, (b)
comparison of pairs of plans, and (c) analysis of a
collection of plans. These techniques look for regularities
or interesting exceptions relative to key aspects of the
domain metatheory. For example, a metatheory role
corresponds to an important actor or object within a plan.
In comparing two plans, one interesting dimension to
consider is whether the plans fill key roles in different
ways. Two plans may be similar in structure but one uses a
cheap and abundant resource while the other relies on an
expensive and more exotic resource.
 Our approach embodies the spirit of reconstructive
explanation [Wick and Thompson 1992], whereby an
explanation is produced not by the system's own internal
knowledge, but by a separate store of explanatory
knowledge designed specifically with the user in mind. We
believe that this style of approach is critical to ensuring
that the results are of value to a user, rather than driven by
the syntactic structure of the plan.
 The plan summarization and comparison methods have
been implemented within the PASSAT mixed-initiative

ICAPS 2005

44 Workshop on Mixed-Initiative Planning and Scheduling

planning framework [Myers et al. 2002]. To assess their
effectiveness in facilitating user understandability of
complex plans, we applied the methods to a test suite from
an extensive special operations domain. This usage shows
that our techniques can help a user understand subtle
aspects of individual plans, important differences among
plans, and the structure of the overall solution space.

Domain Metatheory
Our plan summarization and comparison work assumes a
hierarchical task network (HTN) paradigm for
representing plans, similar to that described in [Erol et al.
1994]. An HTN domain theory consists of four basic types
of element: individuals corresponding to real or abstract
objects in the domain, relations that describe
characteristics of the world, tasks to be achieved, and
templates that describe available means for achieving
tasks. (Templates are alternatively referred to as methods
or operators in the literature.) We assume a type hierarchy
for terms within the domain model. Thus, each individual
has an associated type Type(v), and there is a unique most-
specific supertype MinSupertype(V) defined for any set of
individuals V.
 A domain metatheory defines semantic properties for
domain theory elements that abstract from the syntactic
details of the domain knowledge. The metatheory for plan
summarization and comparison is similar to that introduced
for the work on advisable planning. To support
summarization and comparison, however, we introduce a
few extensions and refinements that provide a somewhat
richer and more structured framework. The main
metatheoretic concepts that we use are template features,
task features, and roles.

Template Features
A template feature designates a characteristic of a template
that distinguishes it from other templates that could be
applied to the same task. For example, among templates
that could be applied to a transportation task, there may be
an air-based template that is fast but expensive with a
land-based alternative that is slow but cheap. Although
the two templates are functionally equivalent in that they
accomplish the same task, they differ significantly in their
approaches. Template features provide the means to
distinguish among such functionally equivalent
alternatives by capturing these characteristics explicitly.
 We model template features in terms of a feature
category (e.g., COST) and a feature value (e.g.,
expensive). Feature values are drawn from a predefined
set that constitutes the domain of the feature category. For
this work, we require that the domain for a template
feature be totally ordered (that need not be true in general).
 We say that a template feature f with value v occurs in
plan P iff there is some template T applied to a task t in P
such that T has the feature f with value v. In general, a
plan may have multiple occurrences of a given template
feature that cut across templates used to accomplish a

range of tasks. Different occurrences may have different
values associated with them; duplication of values is also
possible. The term TemplFeatureInsts(f,P) denotes the
collection of values (including duplicates) for occurrences
of template feature f in plan P.
 The value of template features for plan summarization
and comparison is that they provide the means to identify,
abstract, and contrast important evaluational properties of
different strategies, such as speed or cost. In particular,
template features can be used as a kind of ‘quick and dirty’
proxy for deeper, more significant evaluations of a plan.

Task Features
Task features capture important semantic attributes of a
task. As with template features, task features are modeled
in terms of a feature category and feature value. Here, we
focus on task features that designate types of activities, and
restrict categories to have the domain [false true].
For example, there may be several types of reconnaissance
task: satellite reconnaissance, ground reconnaissance, and
aircraft reconnaissance. Each of these tasks can be
assigned the feature RECON with value true, thus
providing a mechanism for abstracting over that set of
tasks. (A similar sort of grouping could be achieved
through the use of a class hierarchy for tasks.)
 We say that a plan P has a task feature f iff some task t
in P has the feature f with value true. The term
TaskFeatures(P) denotes the set of task features for P.

Roles
A role describes a capacity in which an individual is used
within a template or task; it maps to a template or task
variable. For instance, a template for transporting
materials may contain variables location.1 and
location.2, with the former corresponding to the START
role and the latter the DESTINATION role for the move.
Roles provide a semantic basis for describing the use of
individuals within templates and tasks that abstracts from
the details of specific variable names. Roles also provide
the means to reference a collection of semantically linked
variables that span different templates and tasks (i.e.,
START roles may occur in multiple templates and tasks).
 We say that a role r with fill v occurs in plan P iff either:
• there is some task t(a1, … an) in P such that t has the

declared role r for its ith argument, and ai = v, [Task
Role] or

• some template T with role r declared for local variable
xi is applied to a task t(a1, … an) in P, and xi is bound
to v [Template Role]

The term Roles(P) denotes the set of roles that occur in
plan P, while RoleFills(r,P) denotes the collection of
values (including duplicates) that occur as fills for role r in
plan P.

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 45

Experimental Framework
We evaluated the effectiveness of our plan summarization
and comparison techniques on a suite of nine test plans
drawn from a special operations forces (SOF) domain.
(This domain was created as part of an earlier project
focused on mixed-initiative planning technology.) The
SOF domain constitutes a sizable and rich test environment
for evaluating our work on plan summarization and
comparison: the base-level domain contains 65 predicates
modeling key world properties, more than 100 tasks, and
more than 50 templates spanning a hierarchy of five
abstraction layers.
 The original SOF domain included a limited metatheory
designed to showcase advice-taking within the PASSAT
system [Myers et al. 2002]. For this work, we extended
the domain to include a fairly comprehensive metatheory
with 13 template features, 12 task features, and more than
75 roles. The task features (see Figure 3) use the domain
[false true]; the template features (see Figure 4) use
the domain [low medium high].
 The test plans address the high-level task of extracting a
set of hostages held by a guerilla team in an urban
environment. More specifically, this task requires rescuing
a set of hostages being kept at Mogadishu-Town-Hall
using forces based at Riyadh Airport, and then evacuating
the hostages to a safe haven at Riyadh Stadium.
 The SOF domain includes a number of templates that
reflect different strategies for rescuing the hostages.
Variations among solutions result from three sources. The
first is whether the plan contains certain types of strategic
and tactical activities; depending on a given situation, the
commander may or may not decide to include such
activities within the plan. For example, while it is not
necessary to create diversions to distract the guerillas,
doing so may be desirable in some circumstances. The
second relates to the selection of resources to be used. In
some cases, for example, it may be appropriate to use
satellites to gather intelligence information while in others
it may be preferable to rely on ground forces. The third
relates to decisions about key parameters within a plan,
such as where to establish a forward base or the drop point
for inserting the assault team.
 Figure 1 summarizes the nine test plans used in our
evaluation. These plans were created by the developer of
the SOF domain knowledge, through a combination of
manual and semiautomated methods within PASSAT.1 The
plan developer was asked to create a core set of plans
reflecting a representative set of strategic alternatives that a
SOF commander might consider. Additionally, he was
asked to create variants of the core plans by making a few
key strategic changes that might correspond to handling
contingencies in different ways. Given that variants of this
type are commonly made in practice, we were interested in

1 The plan developer was not involved with the research on plan
summarization and comparison described in this paper. As such, the plans
provide an objective test suite for evaluating the reported work.

determining how well our plan comparison techniques
would be able to recognize the differences among them.

Plan Identifier Description

tiny-plan-a Very simple plan without security or support
tiny-plan-b Variant on tiny-plan-a that uses a different

type of rescue force
small-plan-a Basic solution that includes reconnaissance

and combat search and rescue
small-plan-b Variant on small-plan-a that uses the same

high-level strategy but differs in the lower-
level realization of parts of it

medium-plan-a Broadly similar to the small plans but
involves refueling

medium-plan-b Broadly similar to the small plans but with
suppression of enemy air defenses (SEAD)

activities
large-plan-a Extensive plan with significant

reconnaissance and support activities as well
as a diversion from the main assault

large-plan-b Variant on large-plan-a that provides
increased fire support and SEAD

large-plan-c Variant on large-plan-a with a different style
of diversion

Figure 1. Summary of Test Plans

Plan Summarization
The roles and features of the metatheory provide a
semantic basis for summarizing key properties of a plan.
In particular, a description of how a plan fills its roles and
the features that it possesses can provide valuable insight
into the structure, strengths, and weaknesses of a plan.

Task Features
Task features provide a succinct summary of key activity
types within a plan. In particular, such a summary can
inform the user that a given plan does or does not contain
critical activities such as reconnaissance or fire support.

Template Features
Template features provide a different perspective on a
plan, as they designate plan characteristics that have more
of an evaluational nature (e.g., cost, speed). Template
features can be applied in multiple contexts within a plan,
with different occurrences yielding different values. This
variation reflects the fact that, for example, a given plan
may use an inexpensive reconnaissance operation but an
expensive rescue strategy. To enable plan-level
summarization of the property represented by a template
feature, we introduce the concept of template feature value
for a feature f and plan P, denoted by
TemplFeatureValue(f,P). This value is defined to be the
average of the values for all occurrences of f within P.

ICAPS 2005

46 Workshop on Mixed-Initiative Planning and Scheduling

Definition 1 [Template Feature Value for a Plan] The
template feature value for feature f and plan P is defined
by TemplFeatureValue(f,P)=Avg (TemplFeatureInsts(f,P)).

 The use of a qualitative domain for template features (as
in the SOF application) introduces a complication in
computing TemplFeatureValue(f,P), as it is necessary to
support qualitative averaging. To this end, we require for
each qualitative feature f a surjective, order-preserving
mapping θf from a designated interval of the reals
Interval(f) to the domain of the feature f: θf: Interval(f)
Domain(f). Variation in the ‘closeness’ of values in
Domain(f) can be achieved by appropriate definitions of
θf.2 With this mapping, we define the average of a set V of
qualitative template feature values as follows:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

∑
∈

−

V

v
VAvg Vv

f

f

)(
)(

1θ
θ

Roles
A description of how roles are filled within a plan can
provide a concise summary of what resources are used and
how, as well as key parameters to a plan (e.g., the choice
of location for a forward base). Furthermore, it is possible
to search for patterns in the filling of roles. So, for
example, it may be useful to know that only satellites are
used as reconnaissance assets, or that all transport of
troops is through the use of helicopters of a particular type.
We refer to such patterns as uniformities in the filling of
roles. Here, we define two specific types of uniformity for
role fills, oriented around values and types.

Definition 2 [Value Uniformity in Role Fills] A plan P
uniformly fills a role r with value c iff |RoleFills(r,P)| > 1
and v ∈RoleFills(r,P) implies that v =c.

Type uniformity depends on the declaration of a type
Type(r) for a given role r, which indicates that all fills for
role r must be of that type. Type uniformity becomes
interesting when some proper subtype of Type(r)
generalizes all fills for a given role. For example, it can be
useful to note that only satellites are used for
reconnaissance within a given plan, although other types of
assets (e.g., ground forces) are possible.

Definition 3 [Type Uniformity in Role Fills] A plan P
uniformly fills a role r with a type T iff |RoleFills(r,P)| > 1,
T is a proper subtype of Type(r), and every fill value
v∈RoleFills(r,P) is of type T.

Value and type uniformity for roles constitute generic,
domain-independent mechanisms for generalizing a
collection of role fills. For a given domain, it may be

2 For the SOF metatheory, every template feature has the domain [low
medium high], the interval [0,1], and the mapping function θ: [0,1]
[low medium high] where θ-1 is distributed linearly across [0,1]: low
maps to 0, medium to 0.5 and high to 1.

* (Rescue-Hostage Mogadishu-Town-Hall Riyadh-Airport Riyadh-Stadium)
 * (Rescue-And-Recover Riyadh-Airport Mogadishu-Town-Hall Riyadh-Stadium)
 * (Recon Mogadishu-Town-Hall)
 * (Infiltrate Green-Oda-2 Ankara-Airport Mogadishu-Town-Hall)
 * (Produce-Landing-Plan Mh-60-G-Pave-Hawk-2)
 * (Produce-Air-Movement-Plan Mh-60-G-Pave-Hawk-2)
 * (Produce-Loading-Plan Green-Oda-2)
 * (Produce-Aircraft-Bump-Plan Green-Oda-2)
 * (Load Green-Oda-2 Mh-60-G-Pave-Hawk-2)
 * (Fly Mh-60-G-Pave-Hawk-2 Ankara-Airport Mogadishu-Stadium)
 * (Drop Green-Oda-2 Mh-60-G-Pave-Hawk-2 Mogadishu-Town-Hall)
 * (Depart Mh-60-G-Pave-Hawk-2 Mogadishu-Stadium)
 * (Establish-Observation-Post Green-Oda-2 Mogadishu-Town-Hall)
 * (Exfiltrate Green-Oda-2 Mogadishu-Town-Hall Mogadishu-Building4)
 * (Fly Uh-60a-2 Mogadishu-Town-Hall Mogadishu-Building3)
 * (Load Green-Oda-2 Uh-60a-2)
 * (Depart Uh-60a-2 Mogadishu-Building3)
 * (Provide-Fire-Support Mogadishu-Town-Hall)
 * (Take-Off Ch-53e-Super-Stallion-1 Addis-Ababa-Airport)
 * (Fly Ch-53e-Super-Stallion-1 Addis-Ababa-Airport Mogadishu-Town-Ha
 * (Place-On-Station-Fire-Support Ch-53e-Super-Stallion-1 Mogadishu-T
 * (Fly Ch-53e-Super-Stallion-1 Mogadishu-Town-Hall Addis-Ababa-Airpo
 * (Land-At Ch-53e-Super-Stallion-1 Addis-Ababa-Airport)
 * (Provide-Csar-Coverage Csar-Team-2 Mogadishu-Town-Hall)
 * (Prepare Csar-C1-A)
 * (Take-Off Csar-C1-A Baidoa-Stadium)
 * (Fly Csar-C1-A Baidoa-Stadium Mogadishu-Town-Hall)
 * (On-Station Csar-C1-A Mogadishu-Town-Hall)
 * (Provide-Fire-Support Mogadishu-Town-Hall)
 * (Take-Off Ah-100-1 Balikesir-Stadium)
 * (Fly Ah-100-1 Balikesir-Stadium Mogadishu-Town-Hall)
 * (Place-On-Station-Fire-Support Ah-100-1 Mogadishu-Town-Hall)
 * (Fly Ah-100-1 Mogadishu-Town-Hall Balikesir-Stadium)
 * (Land-At Ah-100-1 Balikesir-Stadium)
 * (Provide-Sead Sead-1 Ad-Dammam-Stadium Mogadishu-Town-Hall)
 * (Prepare Sead-1)
 * (Take-Off Sead-1 Ad-Dammam-Stadium)
 * (Fly-To Sead-1 Mogadishu-Town-Hall)
 * (Infiltrate Orange-Oda-1 Riyadh-Airport Mogadishu-Town-Hall)
 * (Fly-Commercial Aa7864 Orange-Oda-1 Riyadh-Airport Mogadishu-Town-Hal
 * (Storm Orange-Oda-1 Mogadishu-Town-Hall)
 * (Exfiltrate Orange-Oda-1 Mogadishu-Town-Hall Riyadh-Stadium)
 * (Fly-Commercial Aa201 Orange-Oda-1 Mogadishu-Town-Hall Riyadh-Stadium
 * (Provide-Fire-Support Mogadishu-Town-Hall) [Fire-Support-Naval]
 * (Station Yorktown Mogadishu-Town-Hall)
 * (Provide-Csar-Coverage Csar-Team-2 Mogadishu-Town-Hall)
 * (Prepare Uh-60l-1)
 * (Take-Off Uh-60l-1 Bihac-Stadium)
 * (Fly Uh-60l-1 Bihac-Stadium Mogadishu-Town-Hall)
 * (On-Station Uh-60l-1 Mogadishu-Town-Hall)

Figure 2. Task Decomposition View of Plan medium-plan-b

appropriate to introduce domain-specific generalization
mechanisms. For example, in domains where locations
play a significant role, it might be useful to generalize
based on geographic proximity, or co-location within some
designated geographic area (e.g., all air assets are pulled
from bases in the same region).

Sample Plan Summary
To illustrate the value of metatheory-based plan
summarization, consider the summary of the test plan
medium-plan-b shown in Figure 2. The figure presents a
task decomposition view of the plan that highlights its
hierarchical structure; for simplicity, temporal sequencing
information among activities has been omitted.
 As can be seen, the plan is sufficiently complex that its
key strategic elements are not readily apparent. Rather,
some form of analysis tool is required to understand the
plan. Figure 3 summarizes the task features within this
plan while Figure 4 summarizes the template features and
their normalized values. Figure 5 summarizes key role
fills for the plan.
 The summary of task features in Figure 3 makes it
easy to identify the key strategic elements of the plan. The
features RESCUE-AND-RECOVER and RESCUE derive
from the fact that the plan describes a rescue-and-recover
operation; these features are common to every plan in the
test suite. At a lower level, we can see that this particular
solution includes components for combat search and
rescue support (CSAR-SUPPORT), fire support (FIRE-
SUPPORT), reconnaissance (RECON), and suppression of

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 47

enemy air defenses (SEAD). These components are
optional, as not every solution contains them.

Task Feature Value
CSAR-SUPPORT
DIVERSION
EVACUATION

FIRE-SUPPORT
PARACHUTE

RECON
REFUELING
RESCUE

RESCUE-AND-RECOVER
 SEAD

SECURITY
SUPPORT

true
false
false
true
false
true
false
true
true
true
false
true

Figure 3. Task Features for Plan medium-plan-b

Template Feature Plan Value

BLUE-CASUALTY-RISK medium
COLLATERAL-DAMAGE low

COORDINATION-COMPLEXITY medium
COVERTNESS medium
DURABILITY low

FORCE-FATIGUE medium
FORCE-FOOTPRINT medium
FORCE-INTEGRITY medium

INFORMATION-QUALITY high
LANDING-ZONE-PREP low

ROBUSTNESS medium
SPEED medium

VULNERABILITY-GROUND-FIRE high

Figure 4. Template Features for Plan medium-plan-b

Role Fill Values

ASSAULT-FORCE green-oda-2
orange-oda-1

FORCE orange-oda-1 (2)
green-oda-2 (2)

OBSERVATION-FORCE green-oda-2

Roles related to Strategic Decisions about Locations

Figure 5. Force Usage Roles in medium-plan-b

Value-based Role Uniformity

Role Value Count
CSAR-LOCATION mogadishu-town-hall 2
FIRE-SUPPORT-

LOCATION mogadishu-town-hall 5

FORWARD-POINT riyadh-airport 3
INFIL-DESTINATION mogadishu-town-hall 2

SEAD-AIRCRAFT sead-1 2

Type-based Role Uniformity

Role Role Type Fill Types Min.
SuperType

EXFIL-
ASSET Asset

Commercial-
flight

Helicopter
Air-asset

INFIL-
ASSET Asset

Commercial-
flight

Helicopter
Air-asset

TRANSPORT-
ASSET Asset

Sead-
aircraft

Helicopter
Air-asset

Figure 6. Role Uniformities in Plan medium-plan-b

 The template features in Figure 4 summarize key
evaluational qualities of the plan. Desirable qualities
include the fact that the expected quality of information
underlying the plan is high, while expected collateral
damage is low. On the negative side, there is high
vulnerability to ground fire.
 More than 30 roles occur in the plan medium-plan-b,
some of which have multiple fills. Typically, a user would
not choose to view all roles and their fills at once. Rather,
at a given point in time he would be interested in knowing
about a subset of these roles as he focuses on certain
aspects of the plan. So, for example, a user interested in
understanding the high-level strategy of a plan may
concentrate on a subset of roles related to key strategic
decisions, while a user interested in asset usage may
concentrate on roles related to resource utilization.
 Figure 5 displays the role fills related to force usage for
the plan medium-plan-b. For fill values that occurred more
than once for a given role, the number of occurrences is
noted in parentheses. This summary makes it easy to see
that only Green and Orange teams are used in the plan;
both are used in assault roles while the Green team is also
used in a reconnaissance capacity as an observation force.3
 Figure 6 summarizes value-based and type-based role
uniformities for the plan medium-plan-b. For value-based
uniformity, the summary indicates the role, the fill value,
and the number of occurrences. For type-based
uniformity, the summary indicates the role, its type, the
types of the fill values, and the most specific type that
generalizes the fill values. The information on type-based
uniformity is particularly useful here as it highlights the
exclusive use of air assets for many key functional roles
within the plan.

Plan Comparison
Our approach to comparing plans is grounded in two
techniques: feature differencing and role differencing.
These techniques can be useful both in terms of identifying
subtle variations in similar plans, and understanding larger
differences in more varied plans.

Feature Differencing
As noted above, features correspond to high-level semantic
characteristics of tasks (for task features) and strategic or
evaluational qualities (for template features).
 Task features provide a semantic summary of key
activities within a plan. Task feature differencing, which
involves a comparison of task features within two plans,
provides a snapshot of how the two plans differ in their
key task types. This type of capability can enable a user to
see easily that, for example, one plan contains
reconnaissance capabilities while another does not.

3 The color in a force name is significant: colors denote units with
specific skills and capabilities. For the sake of brevity, we omit detailed
descriptions of the qualities associated with the various force colors.

ICAPS 2005

48 Workshop on Mixed-Initiative Planning and Scheduling

 Template feature differencing compares the normalized
template feature values for two different plans in order to
identify significant variations. This form of differencing
makes it easy to see, for example, that one plan trades risk
for increased complexity relative to another plan.

Role Differencing
Role differencing looks at variabilities in how two plans
fill their roles. This type of comparison can shed insight
on key differences in strategic decisions (e.g., Where are
the hostages to assemble?) and resource usage (e.g., What
types of reconnaissance asset are used?).
 Figure 7 presents a categorization of the ways in which
the fill values for a given role in two plans can differ.
There, V1 and V2 designate sets of fill values for a role
from which duplicates have been removed. It is assumed
that V1≠V2 and that both V1 and V2 are nonempty. The first
three entries cover situations where V1 and V2 are disjoint;
the last two cover situations where V1 and V2 overlap.
 The category different single valued, although just a
special case of disjoint types, is useful for identifying
differences in key strategic decisions for a plan. For
example, for the role ASSAULT-FORCE, the plan tiny-plan-
a uses orange-oda-2 while the plan tiny-plan-b uses
green-oda-1. This difference is important, as noted
above, because orange and green forces have significantly
different core capabilities. The category different single
valued is especially useful when the role appears exactly
once within each of the two plans being compared; such a
role often designates some critical parameter choice.
 The category disjoint types requires both that the most
specific supertype of the role-fill values in the two plans be
different, and that neither be a subtype of the other. As an
example, the plan small-plan-a uses only helicopters of
type CSAR-HELICOPTER-CLASS-1 for combat search and
rescue while the plan large-plan-b uses helicopters of type
CSAR-HELICOPTER-CLASS-2. The category disjoint
multivalued defines an even weaker condition, requiring
only that the fill values for the two plans be different.
 For overlapping values, the strongest condition is
restricted subtype, which indicates that the most specific
supertype of one collection of values is a subtype of the
most specific supertype of the other collection. For
example, the plan large-plan-b uses only assault forces of
type SOF-UNIT while the plan large-plan-c uses a more
general set of forces (of type FORCE-COMPOSITION); in
contrast, the plan large-plan-b uses a range of watercraft to
fill the role WATER-ASSET while the plan large-plan-c uses
only values of type BOAT. Restricted subset weakens the
restricted subtype condition to require only that one
collection of values be a subset of the other.
 Role differencing can provide insights into fundamental
differences between plans, as illustrated in the next section.
However, there are limitations to its usefulness.
 First, the significance of role differences may be
difficult to gauge in isolation. So, while the decision to
use force Green-ODA-1 rather than Orange-ODA-2 to fill
the ASSAULT-FORCE role is significant, as those two units

have markedly different capabilities, the difference
between the forces Green-ODA-1 and Green-ODA-2 is
insignificant as they have the same fundamental
capabilities. This problem can be addressed by introducing
a notion of ‘semantic distance’ between individuals to help
identify differences that are significant.
 Second, the utility of role differencing can decrease as
plan size grows due to increased numbers of occurrences
of a role that are not closely related. (For example, it is
possible to create larger SOF plans by introducing multiple
assault prongs involving forces inserted at different drop
locations; doing so leads to duplication of roles used in
very different contexts.) Thus, while unrestricted role
differencing can be useful in small- to medium-sized plans,
larger plans would benefit from some scheme to
contextualize role fills to certain portions of the plan.

Disjoint: V1 ∩ V2 = {}

Different single valued: V1 ∩ V2 = {} ∧ |V1|=|V2|=1
Disjoint types: MinSupertype(V1) ≠ MinSupertype(V2)
 ∧ MinSupertype(V1) ⊄ MinSupertype(V2)
 ∧ MinSupertype(V2) ⊄ MinSupertype(V1)
Disjoint multivalued: V1 ∩ V2 = {} ∧ (|V1|>1 ∨ |V2|>1)

Overlapping: V1 ∩ V2 ≠ {}

Restricted subtype: MinSupertype(V1) ⊂ MinSupertype(V2)
 ∨ MinSupertype(V2) ⊂ MinSupertype(V1)
Restricted subset: V1⊂V2

Figure 7. Categories of Role-fill Differences

Sample Plan Comparison
Figure 8 displays the results of applying our metatheoretic
plan comparison techniques to the test plans medium-plan-
a and medium-plan-b.
 In looking at the results of task feature differencing, two
fundamental differences emerge: medium-plan-a contains
refueling activities and medium-plan-b does not, while
medium-plan-b contains SEAD (suppression of enemy air
defense) activities and medium-plan-a does not.
 For template feature differencing, there is some
variation among expected values for key evaluation
criteria. Given the use of a fairly coarse-grained set of
qualitative values for template feature domains in the SOF
metatheory, the scope for variability is limited. A more
fine-grained set of values would enable more precise
comparisons.
 Role differencing highlights some interesting variations
in the use of resources between the two plans. Both plans
include reconnaissance operations, but medium-plan-a
relies on a satellite (satellite-1) while medium-plan-b
makes use of a ground force (green-oda-2) as the asset
used to perform the reconnaissance (see the table Different
Single Valued). This distinction is important because the
nature and quality of the intelligence that can be obtained
with these two assets is markedly different. Different
types of infiltration, exfiltration, fire support and transport

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 49

assets are used, each with their individual strengths and
weaknesses (see the table Disjoint Multivalued).
 The tables Restricted Subtype and Restricted Subset
show that plan medium-plan-a is much less diverse than
plan medium-plan-b, since it uses more restricted sets of
entities to fill a number of key roles (i.e., ORANGE-UNIT is

a subtype of SOF-UNIT, BUILDING and AIRPORT are
subtypes of POINT-LOCATION).
 Overall, a user looking at the style of comparison in
Figure 8 could quickly grasp the fundamental differences
in strategy and resource usage between the two plans.
Detailed examination of the plans themselves shows that
there are additional differences in terms of unimportant
low-level activities used to accomplish higher-level tasks
and resource allocation. However, the metatheoretic
comparison hides these nonessential differences.

Plan Space Analysis
We define two capabilities grounded in the domain
metatheory for reasoning about a collection of plans:
identifying unique characteristics of a plan, and identifying
maximally different plans.

Identifying Unique Characteristics of a Plan
The metatheoretic differencing capabilities defined in the
previous section can be used to identify three useful
distinguishing characteristics of a plan P relative to a set S
of candidate solutions.

1. Unique task features:
• P has a task feature not found in any other P' in S
• P lacks a task feature found in all P in S

2. Unique normalized template features: P has a
normalized template feature value that differs from the
value for all other solutions in S. This situation is
especially interesting when all other plans share a
common value for that template feature; in that case,
the template feature for plan P is called exceptional.

3. Differing role fills: There is a role common to all plans
for which some fill value in P does not occur as a fill
value in other solutions in S.

Figure 9 summarizes the unique task features and
normalized template features within our suite of test plans;
they occurred in the plans small-plan-b and medium-plan-
a. (We have not yet implemented the ability to look for
differing role fills.)
 The plan small-plan-b differs from all others in the test
suite on the normalized value for the template feature
BLUE-CASUALTY-RISK. In particular, its value for that
feature is low while the other plans have value medium.

Plan: small-plan-b

 Has Exceptional Template Feature Values:
 BLUE-CASUALTY-RISK: low; all others medium

Plan: medium-plan-a
 Has Unique Task Features: REFUELING
 Has Exceptional Template Feature Values:

LANDING-ZONE-PREP: medium; all others low
 Has Unique Template Feature Values:

DURABILITY: medium
FORCE-FATIGUE: high

Figure 9. Unique Features in the Test Suite

Task Feature Differencing:
Task Features in medium-plan-a but not in medium-plan-b:
 REFUELING
Task Features in medium-plan-b but not in medium-plan-a:
 SEAD

Template Feature Differencing:

Template Feature medium-plan-a medium-plan-b
DURABILITY medium low

FORCE-FATIGUE high medium
FORCE-INTEGRITY high medium

LANDING-ZONE-PREP medium low

 Role Differencing:

Different Single Valued
Role medium-plan-a medium-plan-b

RECON-ASSET satellite-1 green-oda-2

Disjoint Multivalued

Role Values for
medium-plan-a

Values for medium-
plan-b

ASSET csar-c2-b
tanker-1

uh-60l-1 yorktown
sead-1

csar-c1-a

EXFIL-ASSET uh-60l-1 aa201
uh-60a-2

FIRE-SUPPORT-
ASSET

av-8b-
harrier-ii-a

yorktown ah-100-1
ch-53e-super-
stallion-1

INFIL-ASSET uh-60l-2
aa7864

mh-60-g-pave-hawk-
2

TRANSPORT-ASSET

tanker-1
av-8b-

harrier-ii-a
uh-60l-1
uh-60l-2

sead-1
uh-60a-2

mh-60-g-pave-hawk-
2

Restricted Subtype

Role Type for
medium-plan-a

Type for medium-
plan-b

ASSAULT-FORCE ORANGE-UNIT SOF-UNIT
INFIL-POINT BUILDING POINT-LOCATION
INFIL-TEAM ORANGE-UNIT SOF-UNIT

LANDING-LOCATION AIRPORT POINT-LOCATION

Restricted Subset

Role Values for medium-
plan-a

Values for medium-
plan-b

EXFIL-POINT mogadishu-town-
hall

mogadishu-town-
hall

mogadishu-
building4

INFIL-START riyadh-airport riyadh-airport
ankara-airport

Figure 8. Comparison of medium-plan-a and medium-plan-b

ICAPS 2005

50 Workshop on Mixed-Initiative Planning and Scheduling

The plan medium-plan-a has several unique characteristics
relative to the other plans in the test suite. First, it is the
only plan with the task feature REFUELING; hence, no
other plans in the test suite include refueling operations.
Second, while the plan medium-plan-a has the normalized
value medium for the template feature LANDING-ZONE-
PREP, all other plans have the value low. Finally, the plan
medium-plan-a differs from the other plans in the values
for template features DURABILITY and FORCE-FATIGUE;
in those cases, however, there is no common value for the
remaining plans in the test suite.

Maximally Different Plans
For many applications, a human planner will want to
explore a range of plans that embody qualitatively different
solutions [Tate et al. 1998; Myers & Lee, 1999]. Such
exploration can be useful both in terms of helping the user
understand fundamental tradeoffs that are inherent to the
domain, and identifying ‘out of the box’ solutions that he
may not normally consider.
 Our metatheoretic differencing techniques can be used
to identify plans that are semantically far apart from each
other, and hence are likely to have significant qualitative
differences. To that end, we define a concept of distance
between plans that builds on the concepts of task feature,
template feature, and role distance between plans.
Task Feature Plan Distance
Task feature distance is a normalized form of Hamming
distance for the task features within the plans. In
particular, it is defined to be the ratio of the number of task
features that appear in one but not both plans to the
number of features that appear in either plan.

Definition 4 [Task Feature Plan Distance] The task
feature distance between plans P1 and P2, denoted by
TaskFeatureDist(P1, P2), is defined by

 =),(21 PPeDistTaskFeatur

)()(
)()()()(

21

1221

PesTaskFeaturPesTaskFeatur
PesTaskFeaturPesTaskFeaturPesTaskFeaturPesTaskFeatur

∪
−+−

Template Feature Plan Distance
Template feature distance for a pair of plans is defined to
be the average distance between the values of those
features that are common to both plans, normalized with
respect to the range of possible values for the features. Let
TemplateFeatures(P) denote the set of template features
that occur in plan P, and FDist(f,P1,P2) the distance
between values for template feature f in plans P1 and P2.

Definition 5 [Template Feature Plan Distance] The
template feature distance between plans P1 and P2,
denoted by TemplFeatureDist(P1, P2), is defined by

)()(

),,(
),(

21

21

21

PaturesTemplateFePaturesTemplateFeF
F

PPfFDist
PPreDistTemplFeatu Ff

II

I

I

=

=
∑
∈

For quantitative feature values, FDist(f,P1, P2) is defined as

)(
),(),(21

fDomain
PfreValueTemplFeatuPfreValueTemplFeatu −

For qualitative template feature values, the normalizations
and differencing required to calculate FDist(f,P1,P2) should
be done within a single application of the mapping θf

-1
from the qualitative values to Interval(f) (i.e., rather than
mapping once to compute each TemplFeatureValue(f,Pi)
and then again to difference them). This is necessary to
minimize the discretization error from applying θf to map
back to Domain(f). Let Vi = TemplFeatureInsts(f,Pi); the
qualitative version of FDist(f,P1,P2) is defined to be

21

1
1

1
2

21

))(())((

VV

vVvV
Vv

f
Vv

f

×

×−× ∑∑
∈

−

∈

− θθ

Role Plan Distance
Role distance for a pair of plans is defined in terms of how
distant the sets of fill values are for the roles that the two
plans share. Our measure for the distance between sets of
role fill values is defined to be the ratio of values that
appear in one but not both sets to the total number of fill
values (another normalized form of Hamming distance).
We note that when possible, it may be appropriate to
employ more specialized definitions that take into account
the semantics of the underlying values. Such a definition
could, for instance, reflect the fact that two airplanes of the
same type are ‘closer’ than an airplane and a helicopter.

Definition 6 [Role Plan Distance] The role distance
between plans P1 and P2, denoted by RoleDist (P1, P2), is
defined as follows.

I

I

R

PrRoleFillsPrRoleFillsrstRoleFillDi
PPRoleDist Rr

∑
∈=

)),(),,(,(
),(

21

21

)()(21 PRolesPRolesR II =

21
1221

)2,1,(
VV

VVVV
VVrstRoleFillDi

U

−+−
=

Metatheoretic Plan Distance
Using the above definitions, we define the metatheoretic
distance between two plans as follows.

Definition 7 [Metatheoretic Plan Distance] The
metatheoretic distance between plans P1 and P2, denoted
by PlanDistance(P1, P2), is defined as follows, where w1
+ w2 + w3 = 1.

PlanDistance(P1, P2) = w1 × TaskFeatureDist(P1, P2)
 + w2× TemplFeatureDist(P1, P2)
 + w3 × RoleDist(P1, P2)

The definition of metatheoretic plan distance assumes a set
of weights, wi, that can be used to adjust the relative
importance of task features, template features, and roles in
the distance specification. Because these three components

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 51

address different aspects of an overall plan, different users
may be interested in biasing the plan distance calculation
to stress the relative importance of these three components.
 Similarly, the definitions for template feature, task
feature, and role distance can be modified in a
straightforward manner to support weights that enable
varying degrees of emphasis for individual features and
roles. Such weights could be defined either for an entire
domain or customized by an individual user (on a
situation-by-situation basis, if so desired).

Plan Distances for the Test Suite
The motivation for defining the concept of plan distance
was to support a user in identifying semantically distinct
plans. The results in Figure 10 show that for the SOF
domain, our definition is effective. The figure displays the
distances for plans in our test suite, using an equal
distribution of weights for the task feature, template
feature, and role distances (i.e., w1=w2=w3 =1/3).
 The figure shows that the ‘closest’ plans correspond to
core plans and their variants. In particular, the shortest
plan distances found are between the two tiny plans (.08),
between the various large plans (.08, .09, .15), and
between the two small plans (.15). The distance between
the two medium plans is appreciably higher (.31); as noted
in Figure 1 and made apparent in Figure 8, these two plans
are not simple variants of each other but rather contain key
strategic differences. In addition, the plans that are farthest
apart (the tiny vs large plans) are indeed the plans with the
greatest meaningful variations among them. These results
thus provide a preliminary validation of the effectiveness
of the metatheoretic methods for capturing meaningful
similarities and differences among plans.

Discussion
To date, research on general-purpose plan summarization
and comparison methods has focused on approaches that
analyze plan structures and planning processes directly.
For example, [Mellish & Evans 1989] generate a textual
description of a plan that references every plan element,
without regard to its relative importance, thus making it
difficult to understand the essence of large plans. [Young
1999] improves on that work by rating the importance of
an action in a plan by counting the number of its incoming
causal links; only actions with certain numbers of links are
included in the plan summary.
 Such syntactic approaches do not necessarily shed light
on the semantic content of a plan. In particular, it is
possible to have plans with significant variations in
syntactic structure that are semantically similar; as well,
plans with similar syntactic structure may have semantic
differences that are extremely significant.
 One key benefit of our metatheoretic approach to plan
summarization and comparison is its emphasis on semantic
rather than syntactic characteristics of plans. Thus, our
comparison of metatheoretic properties grounds the results
in concepts that are significant from a semantic

Plan
Dist

Template Feature,
Task Feature,

Role
Dist

Plan1 Plan2

.08 .03 .11 .08 large-plan-a large-plan-b

.09 .00 .00 .28 large-plan-a large-plan-c

.12 .00 .00 .35 tiny-plan-a tiny-plan-b

.15 .03 .11 .30 large-plan-b large-plan-c

.15 .15 .00 .31 small-plan-a small-plan-b

.17 .12 .14 .26 small-plan-a medium-plan-a

.21 .00 .14 .49 small-plan-a medium-plan-b

.26 .27 .14 .37 small-plan-b medium-plan-a

.29 .15 .14 .56 small-plan-b medium-plan-b

.31 .14 .25 .53 medium-plan-a medium-plan-b

.34 .12 .25 .67 small-plan-a large-plan-a

.35 .07 .22 .75 medium-plan-b large-plan-b

.35 .21 .67 .18 tiny-plan-b small-plan-b

.36 .12 .25 .72 small-plan-a large-plan-c

.37 .08 .33 .70 small-plan-a large-plan-b

.40 .27 .25 .67 small-plan-b large-plan-c

.40 .18 .33 .69 medium-plan-a large-plan-a

.40 .27 .25 .68 small-plan-b large-plan-a

.41 .18 .33 .71 medium-plan-a large-plan-c

.41 .14 .40 .69 medium-plan-a large-plan-b

.41 .11 .33 .79 medium-plan-b large-plan-a

.42 .23 .33 .69 small-plan-b large-plan-b

.42 .11 .33 .81 medium-plan-b large-plan-c

.44 .21 .67 .45 tiny-plan-a small-plan-b

.47 .29 .67 .46 tiny-plan-a small-plan-a

.47 .29 .67 .46 tiny-plan-b small-plan-a

.51 .29 .71 .51 tiny-plan-b medium-plan-b

.51 .29 .71 .53 tiny-plan-a medium-plan-b

.52 .42 .71 .42 tiny-plan-a medium-plan-a

.52 .42 .71 .42 tiny-plan-b medium-plan-a

.56 .33 .75 .58 tiny-plan-a large-plan-c

.56 .33 .75 .60 tiny-plan-a large-plan-a

.56 .33 .75 .60 tiny-plan-b large-plan-a

.57 .33 .75 .62 tiny-plan-b large-plan-c

.58 .37 .78 .60 tiny-plan-a large-plan-b

.58 .37 .78 .60 tiny-plan-b large-plan-b

Figure 10. Plan Distances for the SOF Test Suite

perspective, rather than concepts that are important to an
automated system when generating a plan.
 Our approach also supports customization to domains,
individual users, or specific contexts. This can be
achieved by selecting the sets of features and roles that are
of interest to the user (for plan summarization and plan
comparison) and by appropriate adjustment of weights (for
analyzing a solution space).
 Our plan summarization and comparison methods are
domain-independent, making them applicable to a broad
range of problems. In particular, we avoid domain-specific
algorithms or bodies of knowledge that would limit the
applicability of the method. One problem with general-
purpose methods is that their generality often comes at the
cost of depth. This tradeoff applies to our approach, in that
more precise quantitative analysis tools could be
developed for an individual domain that provide deeper
summarization and comparison capabilities.
 Our methods for plan comparison and summarization
are not intended to eliminate the need for more
discriminating tools. Rather, we envision the
metatheoretic approach being valuable in the early stages

ICAPS 2005

52 Workshop on Mixed-Initiative Planning and Scheduling

of planning, both in terms of enabling a user to quickly
understand the main features of a plan, and to perform an
inexpensive analysis of what differentiates alternative
candidate plans. After developing some preliminary
understanding of the plan space, a user may then wish to
perform more expensive and time-consuming quantitative
analyses to assess plans in detail.
 The existence of a well-designed domain metatheory is
critical for the successful application of our plan
summarization and comparison methods. As noted
elsewhere [Myers, 2000], the design of the metatheory
should be a by-product of a principled approach to
modeling a planning domain. Still, it remains a bit of an
art to design a metatheory appropriately.
 The explanatory capability of our methods when applied
to larger plans could be improved by introducing a
capability for contextualization that could localize
application of the summarization and comparison
techniques to meaningful subportions of a plan. This
localization could enable more interesting regularities or
trends within plans to be identified. The hierarchical
structure of HTN plans provides an obvious way to
generate candidate contexts, namely, subplans appearing
below a given task node. Within that framework,
however, identifying the most appropriate contexts for a
given situation remains an interesting challenge.

Conclusions
AI planning tools must provide effective explanation
capabilities in order for them to gain acceptance for real
applications. To date, there has been relatively little effort
devoted to developing such capabilities. Furthermore, the
work that has been done has focused on syntactic elements
of plans and planning processes, despite the fact that such
syntactic characteristics may not correspond to important
semantic features.
 This paper defines an approach to plan summarization
and comparison that builds on the notion of a domain
metatheory. The approach has the benefit of framing
summaries and comparisons in terms of high-level
semantic concepts, rather than low-level syntactic details
of plan structures and derivation processes. We defined a
set of techniques that instantiate this approach and
evaluated them within the context of a rich special
operations planning domain. The evaluation showed that
the techniques are effective in helping a user understand
subtle aspects of individual plans, importance differences
among plans, and the structure of the overall solution
space.

Acknowledgments This work was supported by NASA
grant NCC 2-1267. The author thanks the following people
for their contributions to this work: Mabry Tyson for his
assistance in making modifications to PASSAT to support
the metatheoretic summarization and comparison
capabilities, Peter Jarvis for developing the suite of SOF
test plans used to evaluate the plan summarization and

comparison techniques, Michael Wolverton for discussions
on explanation technology and feedback on the ideas.

References
Erol, K., Hendler, J., and Nau, D. 1994. Semantics for
Hierarchical Task-Network Planning. Technical Report CS-TR-
3239, Computer Science Department, University of Maryland.
Mellish, C. and Evans, R. 1989. Natural Language Generation
from Plans. Computational Linguistics 15(4).
Myers, K. 1996. Strategic Advice for Hierarchical Planners. In
Proc. of the 5th Intl. Conf. on Principles of Knowledge
Representation and Reasoning, Cambridge, Massachusetts.
Myers, K. L. and Lee, T. J. 1999. Generating Qualitatively
Different Plans through Metatheoretic Biases. In Proc. of AAAI-
99, AAAI Press, Menlo Park, CA.
Myers, K. L., Tyson, W. M., Wolverton, M. J., Jarvis, P. A., Lee,
T. J., and desJardins, M. 2002. PASSAT: A User-centric
Planning Framework. In Proc. of the 3rd Intl. NASA Workshop
on Planning and Scheduling for Space, Houston, TX.
Tate, A., Dalton, J., and Levine, J. 1998. Generation of Multiple
Qualitatively Different Plan Options. In Proc. of Artificial
Intelligence Planning Systems.
Wick, M. R. and Thompson, W. B. Expert System Explanation,
Artificial Intelligence, 54(1-2), 1992.
Young, R. M. 1999.Using Grice's Maxim of Quantity to Select
the Content of Plan Descriptions. Artificial Intelligence, 115(2).

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 53

Mixed-Initiative Planning in MAPGEN:
Capabilities and Shortcomings

John L. Bresina, Ari K. Jónsson*, Paul H. Morris, Kanna Rajan

NASA Ames Research Center
Mail Stop 269-2

Moffett Field, CA 94035
{bresina,jonsson,pmorris,kanna}@email.arc.nasa.gov

Abstract

MAPGEN (Mixed-initiative Activity Plan GENerator) is
a mixed-initiative system that employs automated
constraint-based planning, scheduling, and temporal
reasoning to assist the Mars Exploration Rover mission
operations staff in generating the daily activity plans. This
paper describes the mixed-initiative capabilities of
MAPGEN, identifies shortcomings with the deployed
system, and discusses ongoing work to address some of
these shortcomings.

Introduction
In January 2004, NASA landed rovers on the surface of

Mars at two widely separated sites. Their mission: to
explore the geology of Mars, especially looking for
evidence of past water. At the time of writing, signs of
past water presence have been discovered at both sites, and
although well past their design lifetime, both rovers are still
healthy, and the mission is continuing.

Operating the Mars Exploration Rovers is a challenging,
time-pressured task. Each day, the operations team must
generate a new plan describing the rover activities for the
next day. These plans must abide by resource limitations,
safety rules, and temporal constraints. The objective is to
achieve as much science as possible, choosing from a set of
observation requests that oversubscribe rover resources. In
order to accomplish this objective, given the short amount
of planning time available, the MAPGEN (Mixed-initiative
Activity Plan GENerator) system was made a mission-
critical part of the ground operations system.

In this paper, we report on the mixed-initiative
capabilities of the MAPGEN system, outline some of the
shortcomings that we observed during the deployment
effort or during mission operations, and then briefly
describe more recent research that is attempting to address
some of these shortcomings. We first present some
background material on the MER mission and then
summarize the characteristics of the MAPGEN system.

* Research Institute for Advanced Computer Science - USRA

Background
The MER rovers (see Figure1), Spirit and Opportunity, are
solar-powered (with a storage battery) and incorporate a
capable sensor and instrument payload. Panoramic cameras
(Pancam), navigation cameras (Navcam), and a miniature
thermal emissions spectrometer (MiniTES), are mounted
on the mast that rises above the chassis. Hazard cameras
(Hazcams) are mounted on the front and rear of the rover.
A microscopic imager (MI), a Mössbauer spectrometer
(MB), an alpha particle X-ray spectrometer (APXS), and a
rock abrasion tool (RAT), are mounted on the robotic arm.

An onboard computer governs the operation of
subsystems and provides data handling, system state
tracking, limited obstacle avoidance, and so forth. Because
of its large power draw and the rover’s limited energy
supply, the computer is used judiciously.

The rovers are equipped with extensive communication
facilities, including a High Gain Antenna and Low Gain

Figure 1: MER Rover

ICAPS 2005

54 Workshop on Mixed-Initiative Planning and Scheduling

APGEN
User

Interface

APGEN
Execution
Simulation

EUROPA
Constraint

Propagation

MER-specific
Reasoning

APGEN
Plan DB

EUROPA
Plan DBSynchronizer

Constraint
Editor

Figure 2: MAPGEN Architecture

Antenna for Direct-To-Earth transmission and reception, as
well as an UHF antenna for communicating with satellites
orbiting Mars. Communication opportunities are
determined by each rover’s landing site and the Deep
Space Network schedule or orbital schedules for the
satellites.

For this mission, the communication cycle was designed
so that both rovers could be commanded every sol (i.e.,
Mars mean solar day, which is 24 hours, 39 minutes, and
35.2 seconds). The time for ground-based mission
operations is severely limited by the desire to wait until up-
to-date information is available but nevertheless finish in
time to get the command load to the rover. During the
nominal mission, this left 19.5 hours for ground operations.
In this process, the engineering and science data from the
previous sol are analyzed to determine the status of the
rover and its surroundings. Based on this, and on a
strategic longer-term plan, the scientists determine a set of
scientific objectives for the next sol. At this stage only
rough resource guidance is available. Hence, the scientists
are encouraged to oversubscribe to ensure that the rover’s
resources will be fully utilized in the final plan.

In the next step in the commanding process, the science
observation requests are merged with the engineering
requirements (e.g., testing the thermal profile of a
particular actuator heater) and a detailed plan and schedule
of activities is constructed for the upcoming sol. The plan
must obey all applicable flight rules, which specify how to
safely operate the rover and its instrument suite and remain
within specified resource limitations. It is in this step that
the Tactical Activity Planner (TAP) employs MAPGEN.

Once approved, the activity plan is used as the basis to
create sequences of low-level commands, which coordinate
onboard execution. This sequence structure is then
validated, packaged, and communicated to the rover. This
completes the commanding cycle.

MAPGEN System Summary
Traditionally, spacecraft operations’ planning is done
manually; utilizing software tools primarily for simulating
plan executions and identifying flight rule violations. The
time criticality and complexity of MER operations,
combined with advances in planning and scheduling
technology, provided an opportunity for deploying
automated planning and scheduling techniques to the Mars
rover ground-operations problem.

As an integral part of a large mission operations system,
MAPGEN’s capabilities have evolved over time with the
rest of the ground data system. The current user features
are the end result of a journey through the design space,
guided by feedback from the users in the course of many
tests and subject to the changing landscape of the overall
operations system. We can summarize the primary
features as follows:
• Plan editing: Both activities and constraints can be

modified, via direct manipulation, form editing, or
menu items.

• Plan completion: The selected subset of activities
can be completed, in the sense that all subgoals are
achieved and any necessary support activities are
added to the plan.

• Active constraints: During plan editing, the formal
constraints and rules are actively enforced. Thus,
when one activity is moved or modified, other
activities are modified as needed to ensure the
constraints are still satisfied.

The MAPGEN system has five primary components, some
of which were pre-existing software modules (see Figure
2). One of the requirements for infusing this technology
into the mission was the use of an existing interactive plan
editor from JPL, called APGEN (Maldague, et al., 1998),
as the front end of MAPGEN. The core of the plan
representation and reasoning capabilities in MAPGEN is a
constraint-based planning framework called EUROPA
(Extendable Uniform Remote Operations Planning
Architecture), developed at NASA Ames Research Center
(Jónsson, et al., 1999; Frank and Jónsson, 2003).

The new functionality in the MAPGEN system involves
the interface between these two subsystems, support for
extensions to the APGEN graphical user interface to
provide the mixed-initiative capabilities, and more
sophisticated plan search mechanisms that support goal
rejection, priorities, and timeouts. The APGEN and
EUROPA databases, which remain separate, are kept
synchronized; changes may be initiated by either database.

Finally, we considered it expedient to develop an
external tool, called the Constraint Editor, to enter and edit
daily science constraints, since this is not conveniently
supported by the current APGEN graphical user interface.

We next further describe the EUROPA, APGEN, and
Constraint Editor components.

EUROPA
In constraint-based planning (Frank and Jónsson, 2003),
actions and states are described as holding over intervals of
time. Each state is defined by a predicate and a set of
parameters, as in traditional planning paradigms. Actions,

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 55

which are durative, are also represented by parameterized
predicates. The temporal extent of an action or state is
specified in terms of start and end times. For example,
specifying that the panorama camera heater needs to be on
for 25 minutes, starting at 8:00, could be written as:
holds(8:00,8:25,pan_cam_htr(on,0:25))

However, in constraint-based plans, each time and
parameter value is represented by variables, connected by
constraints. Consequently, the statement would be:
holds(s,e,pan_cam_htr(state,dur))
s=8:00, e=8:25, state=on, dur=0:25

Constraint reasoning plays a major role in the constraint-
based planning paradigm. Any partial plan, which is a set
of activities connected by constraints, gives rise to a
constraint network. Constraint-based inference can provide
additional information about plans, reduce the number of
choices to make and identify dead-end plans early.
Achieving arc consistency is one commonly used example
of applicable constraint reasoning methods.

Typically, the temporal variables and associated
constraints give rise to a simple temporal network (STN),
or can be reduced to one by decision choices that enforce
the mutual exclusion constraints. For STNs, it is possible
to make the network arc consistent and to determine
consistency in low-order polynomial time, using the
Bellman-Ford algorithm (Dechter, Meiri, and Pearl, 1991;
Cormen, Leiserson, and Rivest, 1990).

In constraint-based planning, explicit temporal
constraints fall into three categories: model constraints,
problem-specific constraints, and expedient constraints.
The model constraints encompass definitional constraints
and mutual-exclusion flight rules. In MER, for example,
the expansion of activities into sub-activities gives rise to
temporal relations between the parent and its children.

The problem-specific constraints comprise “on the fly”
relations between specific activities in a planning problem.
In MER, these constraints, often called “daily constraints”,
related elements of scientific observations in order to
capture the scientists’ intent. As an example, several
measurements of atmospheric opacity may be required to
be at least 30 minutes apart. These constraints are entered
using the Constraint Editor tool, described below.

The expedient constraints are those resulting from
arbitrary decisions made to guarantee compliance with
higher-level constraints that cannot be directly expressed in
an STN. For example, a flight rule might specify that two
activities are mutually exclusive (such as moving the arm
while the rover is moving). This is really a disjunctive
constraint, but satisfying it will involve placing the
activities in some arbitrary order. Expedient constraints
are typically added during search in automated planning.

APGEN
APGEN (Activity Plan GENerator) is an institutional tool
at JPL and has been used in a number of spacecraft
missions. It has a large number of features, but the core
capabilities can be summarized with three components:

• Activity plan database: A set of activities, each at a
specific time. This database has no notion of
constraints between activities, but does support
context-free activity expansion.

• Resource calculations: A method for calculating,
using forward simulation, resource states that range
from simple Boolean states to complex numerical
resources.

• Graphical user interface: An interface for viewing
and editing plans and activities.

To deploy APGEN for a particular mission, the mission-
specific information is stored in an adaptation, which can
be viewed as a procedural domain model. It defines a set
of activity and state types and then defines a way to
calculate resource states from a given set of activities. In
addition, it defines a set of “constraints” on legal
combinations of resources. The constraints and resource
calculations are only useful for passively identifying
problems with a plan; APGEN does not have the capability
to reason with this information in order to help fix the
identified problems.

Constraint Editor
The APGEN plan-editing interface has no notion of
variables and constraints in the traditional AI sense. This
raised the issue of how to get the daily constraints into the
reasoning component of MAPGEN. These daily
constraints were needed to coordinate the activities in
scientific observations, and these could vary in unforeseen
ways. For example, it might be specified that two specific
measurements should be taken within 10 minutes of each
other. This required an ability to enter and modify
temporal constraints dynamically.

To resolve this, an external, temporal-constraint editing
tool, called the Constraint Editor, was developed as an
augmentation to the APGEN interface. In this tool, users
can view activities and existing temporal constraints, and
then add, delete, or edit constraints.

Mixed-Initiative Planning in MAPGEN
In this section, we first motivate the need for a mixed-
initiative approach to activity planning and then describe
the capabilities in MAPGEN that supported this approach.

In traditional automatic planning, the operator loads in
the goals and initial conditions, pushes a button, and waits
for a complete plan. Due to the need to bring human
expertise in mission planning and science operations to
bear on solving this complex operational problem, this
approach was deemed unacceptable; consequently, we
adopted a mixed-initiative approach for this application.

There were many aspects of the need for human
involvement. Mission operations rely on a number of
checkpoints and acceptance gates to ensure safety. For
activity plans, the critical gate was the activity plan
approval meeting where the fully constructed plan would
be presented by the Tactical Activity Planner (TAP),

ICAPS 2005

56 Workshop on Mixed-Initiative Planning and Scheduling

critiqued by both scientists and mission specialists, and,
hopefully, accepted, possibly with minor modifications.
As a result, the TAPs had to be able to understand, defend,
and sign-off on the validity of the plan. Initial user tests
indicated that a plan constructed automatically in its
entirety was too difficult to analyze by the human operator,
especially given the inherent time pressures. The TAPs,
therefore, prefer to incrementally construct a plan in small,
understandable chunks.

Another major concern was the infeasibility of formally
encoding and effectively utilizing all the knowledge that
characterizes plan quality. One aspect of plan quality
involves a rich set of science preferences, including
everything from preferences on absolute and relative
scheduling of activities to preferences on which
combinations of science observation cuts and changes are
least painful in the face of strict resource limitations. A
second, and more complex, aspect of quality is concerned
with global characteristics of a plan, such as acceptable
profiles of resource usage, and the estimated complexity of
turning a plan into a command sequence structure.

The role of mixed-initiative planning in MAPGEN is
very much in the spirit of the original notion of such
planning (Burstein and McDermott, 1996); the purpose is
to support collaboration between a human user and an
automated system to build a high quality activity plan.

However, it is worth noting that, unlike some variations of
mixed-initiative planning, MAPGEN does not actively
solicit user assistance during planning. The primary role of
the operator is to direct and focus the plan construction
process and to provide qualitative evaluation of plans. The
system makes automated planning capabilities available to
the user and performs potentially tedious tasks, such as
maintaining constraints. The intended interaction between
user and system is that the system handles constraint
enforcement constantly in the background, while
automated plan construction is user invoked.

Interactive plan modification
One of the core issues in mixed-initiative planning is the
introduction of external decision-making and plan editing
into a carefully designed automated search engine. The
intrusion of user choices complicates commonly used
approaches such as backtracking search and propagation-
based checking of consistency. The EUROPA planning
framework used in MAPGEN supports non-chronological
backtracking, but it cannot propagate information in plans
that have constraint violations. To support arbitrary
changes by users, MAPGEN included a plan modification
strategy that would adjust plans to eliminate
inconsistencies.

Figure 3: MAPGEN with planner menu

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 57

Mixed-initiative planning systems must respond and
return control quickly to the user. For an automated
planning operation, which involves a cascading decision
process, MAPGEN relaxes completeness in favor of
responsiveness. This has to be done carefully to maximize
chances of finding near-optimal solutions within limited
time. We developed a backtracking algorithm that noted
the difficulty of planning activities, and when the effort to
plan an activity exceeded an allowance determined by its
priority, the activity was rejected from the plan.

In constraint-based planning, partial plans have an
underlying simple temporal constraint network (Dechter,
Meiri, and Pearl, 1991). The consistency of STNs can be
determined by checking for arc consistency. Furthermore,
each value in an arc-consistent temporal variable domain
appears in at least one legal solution for the temporal
network. The set of such values defines a temporal interval
that can be represented by its bounds.

Consider a plan where all decisions have been made,
except for grounding temporal variables appearing only in
simple temporal constraints. Finding a fixed solution is
then an easy matter of choosing a value for any variable
within its legal bounds, re-enforcing arc consistency,
choosing a value for another variable, and so on.

It is not necessary to immediately ground the variables;
plans with temporal variables left ungrounded are called
flexible plans. In MAPGEN, we utilize the fact that the
underlying plans are flexible to support a common way for
users to modify plans, namely to change the placement of
activities in time. As long as the activity is moved only
within the flexibility range defined by the domain in the
underlying arc-consistent flexible plan, the result is
necessarily another consistent instantiation. This
observation gave rise to the notion of a constrained move.

During a constrained move, the system actively restricts
the movements of an activity to stay within the permitted
range. Then, once the user places the activity, any
dependent activity is updated as necessary to yield a new
valid plan instance.

Note, however, that the consistency enforcement takes
into account all the constraints that determine the flexible
plan. This includes expedient constraints resulting from
decisions about how to order mutually exclusive activities.
Since these decisions are maintained, the ordinary
constrained move has the effect of “pushing” the excluded
activities ahead of it. However, sometimes the TAP wants
to reorder mutually excluded activities. To support this,
we provided a variation, called a super-move, that
temporarily relaxes expedient constraints until the move is
completed.

Adjustable automation
MAPGEN users wanted an adjustable spectrum of
automated planning services (see Figure 3). The system
offers a fully automated “plan everything” operation, a
selective “plan this and everything related to it” operation,
and a fine-grained “plan this and try to put it here”
operation. Users can also un-plan activities and store them

in a “hopper,” which holds requested activities that are not
yet in the plan.

The plan all operation leaves it entirely up to the
automated search to find a plan that achieves as much
science as possible. This functionality is most like what
traditional automated planning methods do. This capability
functioned well and yielded near-optimal plans in terms of
the number of science observations in the plan. However,
the plans tended not to have an intuitive structure and,
therefore, made it difficult for the TAP to explain the plan
structure during the approval meeting. Additionally, they
were often sub-optimal with respect to preferences and
other solution quality criteria that were not encoded in the
domain model or the priorities. Consequently, it was
rarely used.

Instead, the users often applied a more incremental
operation, called plan selected goals. With this operation,
the user could select a set of observation requests not in the
plan and request that these be inserted into the partial plan
already in place, such that all constraints were satisfied.
While repeated application of this led to a result similar to
the full planning variation, users found this more intuitive,
in part because it allowed them to fine-tune and understand
the incremental plans as they were built. Furthermore, this
made it possible for the users to have a complete plan
ready at just about any time.

The user could exercise even more control over the
planning process via the place selected goals operation,
which was applicable only to individual activities. This
operation allowed the user to select an activity in the
hopper and then choose an approximate temporal
placement for it in the plan. The planning algorithm would
then treat the user-chosen time as heuristic guidance and
search for a plan where the selected activity was as close to
the desired time as possible.

Minimizing perturbation
The key to making the automated services feel natural and
unobtrusive is for them to respect the existing plan as much
as possible. This is accomplished by combining an
effective form of temporal placement preference with a
heuristic bias. For changes in the temporal placement of
activities, the system exploits the underlying temporal
flexibility of EUROPA plans. As each plan represents a
family, the system chooses an instance to display that is as
close as possible to what the user had prior to the changes
being made.

The method we developed is based on minimizing the
departure from a reference schedule, which need not be
consistent. The reference schedule provides a general
method for expressing unary temporal preferences. Its
primary use in MAPGEN is to support a minimum
perturbation framework where changes to the previous plan
are minimized when a planner-supported operation is
invoked, such as a constrained move. This is accomplished
by continually updating the reference schedule to reflect
the evolving plan. This means that changes made by the
user to reflect preferences or eliminate problems are

ICAPS 2005

58 Workshop on Mixed-Initiative Planning and Scheduling

respected and maintained unless they violate constraints or
are revised by the user.

When it came to making activity placement choices, i.e.,
expedient ordering-decisions, the heuristic guidance used
was based on minimizing deviation from the reference
schedule. The motivation behind this was twofold. One
was that it would be intuitive to the user, as this approach
would attempt to preserve the temporal placement of
activities. The other motivation was that it would allow
users to “sketch out” a plan in the hopper and then ask the
system to complete the plan. For more details on this
method, see (Bresina, et al., 2003).

Addressing MAPGEN’s Shortcomings
During the multi-year deployment effort, there were a
number of capabilities on our task agenda that never made
it to the top of the stack; we also encountered issues that
require significant research before being ready for mission
deployment. During mission operations, we observed a
number of shortcomings, and often we were not able to
address them at that time due to the restrictions of the
change control process or due to the complexity of the
issue. In this section, we focus on the shortcomings in
MAPGEN’s mixed-initiative approach and describe some
of the new research we are carrying out to address them.

Explanations
The clearest lesson we have learned from our

observations is the need for the automated reasoning
component to provide better explanations of its behavior.
Especially important are explanations of why the planner
could not achieve something, such as inserting an activity
in the plan at a particular time, or moving an activity
beyond the enforced limit. Such a facility would have
greatly helped during training, in addition to increasing the
TAPs’ effectiveness during operations. The system did
have a form of explanation of inconsistency by presenting
a minimal nogood. While the TAPs found it to be useful
when editing constraints, only the developers used this
facility in the context of constructing and modifying plans,
and this was done for the purpose of debugging the system.
The reason is that, in this context, the explanation typically
involved complex chains of activities and constraints that
could not easily be grasped. For example, during MER,
nogoods encountered during planning could involve
hundreds of constraints.

There are several contexts in which inconsistencies can
arise during planning. First, when an activity is considered
for insertion, it may be inconsistent with the current plan
even before any location is examined. Second, it may be
inconsistent with the specific location chosen in a Place
Selected operation. Third, it may be inconsistent with each
one of the possible locations identified during a Plan
Selected operation. The first context gives rise to a nogood
directly. In the second context, a nogood can be extracted
by temporarily placing the activity in the infeasible

location. In the third context, it may be possible to resolve
the individual nogoods arising from each location to form a
compound nogood. Note that these cases may arise before
or during the search. We have focused our efforts thus far
on the first context; we expect similar considerations to
apply in the other contexts.

The lengthy nogoods are partly an artifact of the mixed-
initiative planning process. When MAPGEN attempts to
insert an additional activity into the evolving plan, it first
brings in (i.e., starts enforcing) the constraints associated
with that activity. Since the existing plan was formulated
without those constraints, it is often the case that they are
inconsistent with previous ordering decisions made to
prevent forbidden overlaps (due to mutual exclusion
restrictions). Furthermore, the ordering decisions may
involve mutual exclusions between low-level activities that
are part of activity expansions. Because of this, the
constraint engine must keep track of interactions between
activity expansion constraints and planner decision
constraints, as well as daily constraints. The duration of a
high-level activity is also determined by its activity
expansion constraints, so if this is a factor in an
inconsistency, the raw nogood will include the entire
expansion of the high-level activity. Thus, the raw
nogoods during planning can be very large.

It is obviously impractical to expect a time-pressured
TAP to read, let alone grasp the significance of, a nogood
involving hundreds of constraints. However, we believe
that the essential content of the nogood can be summarized
in a concise form. To this end, we have been investigating
methods of compressing nogoods.

The first compression step rolls up expansions that are
only needed because they determine a higher-level duration
that is involved in the inconsistency. While this step helps,
the explanations can still be quite long, often involving
chains of duration and daily-constraint pairs. We can
distinguish between these constraints, which should be
known to the TAP, and the “hidden” constraints that come
from planner ordering decisions. The second compression
step rolls up the duration/daily sequences into a single
chunk. Based on MER examples, these two steps typically
compress the nogood by a factor of ten.

A remaining issue is that sub-chains of the nogood that
pass through planner ordering decisions can wander
somewhat randomly through large portions of the plan.
The intermediate wandering is not very meaningful in
terms of understanding the inconsistency, so a further step
could involve rolling such a segment into a single
statement about planner placement of the bookend
activities in the segment.

These compression steps carry the risk that one of the
components of the compressed summary will itself be
mystifying. To counter this, it would also be useful to
allow components of the summary to be re-expanded on
demand. Thus, the nogood would be organized into a
hierarchical structure that is more easily grasped.

In general, an inconsistent network may involve more
than one inconsistency. The approach used in the

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 59

constraint editor is to first present one (the first one found
by the temporal reasoning algorithm), have the user resolve
that, then present another one if the network is still
inconsistent, and so on. This may not be the best approach
within the planning context.

Considering the entire set of nogoods, it may be possible
to select the one nogood that yields the “best explanation”,
i.e., an explanation that is easiest to understand and leads to
the easiest resolution of the associated inconsistency.
Another approach is to focus on constraints common to
multiple nogoods, such that the user could resolve more
than one inconsistency with one constraint retraction. A
prerequisite for either of these approaches is a suitable
algorithm for enumerating all the temporal nogoods. At
this point, it is not clear how practical it is to compute such
an enumeration, since theoretically the number of nogoods
may be exponential in the size of the network.

Temporal preferences
A second important issue is that the user does not have

sufficient means to control the planning process and to
influence the types of solutions generated. In MAPGEN,
the user’s only language for specifying their desires is to
create a set of absolute (hard) temporal constraints, which
represent what is necessary for the observation requests to
be scientifically useful. These constraints can specify
ordering among the activities and observations (along with
temporal distances required) and can specify that an
activity or observation has to be scheduled within a
particular time window. For example, the scientist can
specify that three atmospheric imaging activities have to be
a minimum of thirty minutes apart and a maximum of six
hours apart. However, the scientist cannot specify that
they prefer the largest possible spacing between the three
activities. Likewise, they cannot specify that a particular
spectrometer reading must occur between 10:00 and 15:00
but it is preferred to be as near to 12:00 as possible. It is
clear that both absolute constraints and temporal
preferences are needed to generate a high-quality science
activity plan.

MAPGEN did have a limited capability for expressing
start time preferences via the reference schedule of the
minimal-perturbation approach. The operator could also
establish more complex preferences by an iterative process
of relaxing or tightening hard constraints, but this is too
time-consuming and too primitive of an approach.

We are currently investigating a number of alternative,
automated approaches to incorporating temporal
preferences into MAPGEN. We have extended the
Constraint Editor to allow specification of temporal
preferences on an activity’s start or end time, as well as on
distances between start/end time points of two activities.

There are three key issues involved in utilizing temporal
preferences in mixed-initiative planning. The first is the
common problem of combining local preferences into a
global evaluation function. The second issue is finding a
globally optimal instantiation of a given flexible plan. The

third key issue is searching for a flexible plan that yields a
globally preferred instantiation.

Let us first consider the second issue. To effectively
solve constraint problems that have local temporal
preferences, it is necessary to be able to order the space of
assignments to times based on some notion of global
preference. Globally optimal solutions can be produced
via operations that compose and order partial solutions.
Different concepts of composition and comparison result in
different characterizations of global optimality. Past work
(Khatib, et al., 2001; Khatib, et al., 2003, Morris, et al.,
2004) has presented tractable solution methods (under
certain assumptions about the preference functions) for
four notions of global preference: weakest link, Pareto,
utilitarian, and stratified egalitarian. These four notions are
examples of general solutions to the first issue, namely,
how to combine local preferences into an overall
comparison of solutions.

We are incorporating these preference-optimization
methods into MAPGEN and plan to employ them for a
number of purposes. One use is to apply the optimization,
as a post-process, to the family of solutions represented by
a flexible MAPGEN plan in order to display the most-
preferred solution to the user. These methods can also be
employed, as a pre-process, to compute the reference
schedule as a globally optimal solution to the specified
temporal preferences. The minimal-perturbation method
would then try to stay close to this globally optimal
reference. We also intend to investigate other heuristic
methods that include consideration of the preferences when
making search decisions; thus, addressing the third issue.

Other shortcomings
The need for explanations and handling of temporal

preferences were the most obvious shortcomings that
needed to be addressed. Consequently, work is already
underway to address those. However, a number of other
issues have been identified.

In addition to temporal preferences, users may have
preferences regarding the global characteristics of the
solution, such as plan structure preferences or resource
usage preferences. Many constraints can have absolute
validity limits and a preference on the legal values. For
example, the limits on the energy usage may be determined
by minimum battery levels, but it is preferred that the
battery be left charged above a certain level at the end of
the plan. As with temporal preferences, the main issues are
how to combine local preferences into global evaluations
functions and how to then control the search towards
preferred plans.

In MAPGEN, the underlying plan is always kept
consistent. This allows propagation to take place at any
time, which in turn enables active constraint enforcement,
constrained moves, and other propagation-based
capabilities. However, the users sometimes desire to
“temporarily” work with plans that violate rules or
constraints. One possible approach for allowing violations
is to isolate the inconsistent parts of the plan; a second

ICAPS 2005

60 Workshop on Mixed-Initiative Planning and Scheduling

approach is to allow constraints and rules to be disabled
and re-enabled. The latter approach was in fact designed
for the MAPGEN tool, but we never got a chance to
implement it. Future work will explore possible
approaches and techniques for this.

The users also want to advise the planner on how it
makes decisions at a high level and on how the planner’s
search is done. Users have noted that they would like to
specify limits on what the automated reasoning process can
change in order to enforce constraints and rules. For
example, users may want a portion of the plan to remain
unchanged, either in terms of a subinterval of the plan’s
time span or a subset of the plan’s activities.

It would also be useful for the system to answer
questions from the user regarding trade-offs, for example,
by answering the following types of queries:
• What needs to be unplanned (in priority order) to

enable additional time for arm instrument use, or to
allow for driving further?

• For a given panorama that does not fit as a whole,
which parts of it can be fit into the current plan?

• In order to fit in another imaging activity, what
needs to be unplanned or shortened?

Another technique for supporting trade-off analyses is to
help the user better understand the space of possible
solutions by presenting qualitatively different solutions.
We are extending some previous work on advisable
planners (Myers, 1996; Myers, et al., 2003) to apply within
the context of our constraint-based planning technology in
order to help address these issues.

Acknowledgements:
The authors would like to acknowledge the entire
MAPGEN team, which includes: Mitch Ai-Chang, Len
Charest, Brian Chafin, Adam Chase, Kim Farrell, Jennifer
Hsu, Bob Kanefsky, Adans Ko, Pierre Maldague, Richard
Springer, and Jeffrey Yglesias. We would also like to
acknowledge our research collaborators on mixed-initiative
planning, Karen Myers and Michael Wolverton from SRI.

References

Bresina, J., Jónsson, A., Morris, P., and Rajan, K..
Constraint Maintenance with Preferences and
Underlying Flexible Solution. CP-2003 Workshop on
Change and Uncertainty, Kinsale, Ireland, 2003.

Burstein, M., and McDermott, D., Issues in the
development of human-computer mixed-initiative
planning. In Cognitive Technology, B. Gorayska, and
J. L. Mey, editors, pages 285-303. Elsevier, 1996.

Cormen, T., Leiserson, C., and Rivest, R.. Introduction to
Algorithms. MIT press, Cambridge, MA, 1990.

Dechter, R., Meiri, I., and Pearl, J., Temporal constraint
networks. Artificial Intelligence, 49:61– 95, May 1991.

Frank, J., and Jonsson, A., Constraint-Based Interval and
Attribute Planning, Journal of Constraints Special
Issue on Constraints and Planning, 2003.

Khatib, L., Morris, P., Morris, R., Rossi, F. Temporal
reasoning about preferences. Seventeenth International
Joint Conference on AI, Seattle, WA, 2001.

Khatib, L., Morris, P., Morris, R., Venable, B. Tractable
pareto optimization of temporal preferences. Eighteenth
International Joint Conference on AI, Acapulco,
Mexico, 2003.

Maldague, P., Ko, A., Page, D., and Starbird, T., APGEN:
A multi-mission semi-automated planning tool. First
International NASA Workshop on Planning and
Scheduling, Oxnard, CA, 1998.

Morris, P., Morris, R., Khatib, Ramakrishnan, and
Bachmann. Strategies for Global Optimization of
Temporal Preferences. Tenth International Conference
on Principles and Practices of Constraint
Programming (CP-2004), Toronto, Canada, 2004.

Myers, K.L. Advisable Planning Systems. In Advanced
Planning Technology: Technological Achievements of
the ARPA/Rome Laboratory Planning Initiative, ed. A.
Tate, 206-209. AAAI Press, 1996.

Myers, K. L., Jarvis, P. Tyson, W. M., and Wolverton, M.
J. 2003. “A Mixed-initiative Framework for Robust
Plan Sketching”. In Proceedings of the 13th
International Conference on Automated Planning and
Scheduling, Trento, Italy.

ICAPS 2005

Workshop on Mixed-Initiative Planning and Scheduling 61

