WS4

Workshop on Multiagent
Planning and Scheduling

Bradley J. Clement
Jet Propulsion Laboratory, USA

ICAPS 2005
Monterey, California, USA
June 6-10, 2005

CONFERENCE CO-CHAIRS:

Susanne Biundo
University of Um, GERMANY

Karen Myers
SR International, USA

Kanna Rajan
NASA Ames Research Center, USA

Cover design: L.Castillo@decsai.ugr.es

Workshop on Multiagent
Planning and Scheduling

Bradley J. Clement

Jet Propulsion Laboratory, USA

T STy,
e \
“ ¢ 0 =
E N NE B~
SR SCUEI08 o
International, E
ks

S)

=II=I= LOCKHEED MARTIN%A/

10

- Oaro

OSS Group. fnc.

Honeywell

Workshop on Multiagent Planning and
Scheduling

Table of contents

Preface 3
Honeywell's COORDINATORSs Project 5
D. Musliner, J. Phelps

Managing Communication Limitations in Partially Controllable Multi- 8
Agent Plans

J. Stedl, B. Williams

Computing the Communication Costs of Item Allocation 15
T. Rauenbusch, S. Shieber, B. Grosz

Coordinating Agile Systems Through the Model-based Execution of 22
Temporal Plans
T Léauté, B Williams

Execution Monitoring and Replanning with Incremental and Collabo- 29
rative Scheduling
D. Wilkins, S. Smith, L. Kramer, T. Lee, T. Rauenbusch

Self-interested Planning Agents using Plan Repair 36
R. van der Krogt, M. deWeerdt

Exploiting Interaction Structure in Networked Distributed POMDPs 45
R. Nair, P. Varakantham, M. Tambe, M. Yokoo

Bounded Policy Iteration for Decentralized POMDPs 52
D. Bernstein, E. Hansen, S. Zilberstein

ASET: a Multi-Agent Planning Language with Nondeterministic Dura- 58
tive Tasks for BDD-Based Fault Tolerant Planning
R. Jensen, M. Veloso

Robust Distributed Coordination of Heterogeneous Robots through 67
Temporal Plan Networks
A. Wehowsky, S. Block, B. Williams

Determining Task Valuations for Task Allocation 73
D. Han, K. S. Barber

Planning for Multiagent Environments: From Individual Perceptions 80
to Coordinated Execution

M. Brenner

From Multiagent Plan to Individual Agent Plans 89

O. Bonnet-Torrés, C. Tessier

http://icaps05.icaps-conference.org/

Workshop on Multiagent Planning and
Scheduling

Preface

Multiagent planning is concerned with planning by (and for) multiple agents. It can
involve agents planning for a common goal, an agent coordinating the plans (plan mer-
ging) or planning of others, or agents refining their own plans while negotiating over
tasks or resources. The topic also involves how agents can do this in real time while
executing plans (distributed continual planning).

More than ever industry, space, and the military are seeking systems that can solve
multiagent planning (and scheduling) problems, such as those in supply chain manage-
ment, coordinating space missions, and commanding mixtures of vehicles and troops.
For many real-world problems, it is hard to motivate multiple agents because centralized
decision-making is often most efficient. One goal of this workshop is to identify methods
for discerning how and when systems should be decentralized.

Multiagent planning and scheduling seems to fall in the intersection of the fields of
planning and scheduling, distributed systems, parallel computing/algorithms, and mul-
tiagent systems. However, much of the research appears to build on ideas from either
planning or multiagent systems (and usually not both). From the viewpoint of planning,
planning for multiple agents means supporting concurrent action, and planning by mul-
tiple agents means parallelizing a planning algorithm. One might argue that the former
has been done and the latter should be solved using parallel computing techniques and
is dependent on hardware. On the other hand, from a multiagent systems perspective,
multiagent planning is not about just solving planning problems but also how agents
should behave and interact given that they have plans or planning capabilities.

From any point of view, there are many open issues in multiagent planning. While
many planners can handle some notion of concurrency, and many plan merging algo-
rithms have been proposed, there has been little work on decentralized planning, com-
petitive planning systems, evaluation of communication costs, and distributed continual
planning. We aim for this workshop to foster ideas addressing these issues and suggest
other important research questions.

Organizer
= Bradley J. Clement, Jet Propulsion Laboratory
Programme Committee

m K. Suzanne Barber, University of Texas, Austin

= Anthony C. Barrett, Jet Propulsion Laboratory

= Michael Brenner, Albert-Ludwigs-Universitt Freiburg

= Keith S. Decker, University of Delaware

» Marie desJardins, University of Maryland, Baltimore County
» David V. Pynadath, USC Information Sciences Institute

= Katia Sycara, Carnegie Mellon University

= Tom Wagner, Defense Advanced Research Projects Agency
m Peter R. Wurman, North Carolina State University

ICAPS 2005

Honeywell’s COORDINATORs Project
Extended Abstract

David J. Musliner and John Phelps
Honeywell Laboratories
3660 Technology Drive
Minneapolis, MN 55418
{David.Musliner, John.Phelps}@honeywell.com

Introduction

For the past several years, Honeywell has been de-
veloping prototype multi-agent coordination technol-
ogy to help humans coordinate their activities in com-
plex, dynamic environments. For example, we have
demonstrated a COORDINATORS concept system to as-
sist emergency “first responders” such as firefighters
and police (Wagner et al. 2004a; 2004b). Each first re-
sponder is paired with a COORDINATOR agent, running
on a mobile computing device. COORDINATORS provide
decision support to first response teams, helping them
reason about who should be doing what, when, and
with what resources. COORDINATORS respond to the
dynamics of the environment by integrating building
system reports, situation assessments, and new infor-
mation from the human teams to determine the right
course of action in constantly-evolving circumstances.
Our COORDINATORS concept demonstrations have been
implemented using commodity workstations, wireless
PDAs, and proprietary first responder location track-
ing technologies.

Beginning in 2005, DARPA /IPTO has funded a new
program to develop this type of Coordinator technology
beyond the early concept stage, to provide well-founded
technical approaches to the challenge of scheduling and
adapting distributed activity in dynamic environments.
Complete Coordinator multi-agent solutions will be de-
veloped by three independent teams led by Honey-
well, ISI, and SRI. In this abstract, we provide a brief
overview of the Honeywell team’s project.

The Problem

COORDINATORSs are intended to address the problem
of effective coordination of distributed human activ-
ities. COORDINATORS help their human partners to
adapt to rapidly-evolving scenarios by clearly identify-
ing coordination alternatives and assisting in their se-
lection, monitoring, and modification. The emphasis in
these problems is not on planning from first principles
(i.e., building new response plans from low-level mod-
els of environmental dynamics and primitive actions),
but rather on selecting amongst the numerous possible
well-understood, pre-planned alternative tasks that the
human teams may perform. In this way, the problem

Workshop on Multiagent Planning and Scheduling

Figure 1: The prototype portable COORDINATOR dis-
play for a first responder, showing map and task infor-
mation.

is similar to playbook-based (Miller & Goldman 1997,
Miller et al. 2002) concepts of team tasking: the team
is expected to have trained on suitable alternative ac-
tivities, and the challenge is making sure that the ag-
gregate activities of all teams are adaptively selected
and scheduled to achieve the best overall effect.

Demonstrating the Concept

Our early investigations into first-responder domains
highlighted the multi-agent task coordination problem
and its challenges. To demonstrate the concept and
provide an early assessment of the potential value of
a COORDINATOR system, we developed a rapid con-
cept prototype. Using handheld computing devices and
wireless networks, our demonstration system allowed a
team of individuals to coordinate their activities using

. !

AZHL]

ICAPS 2005

@@ |@| sﬁ‘u 12|Eu laluu w‘zu FEN
: search_at_24

Team1_Pxtinguishire_11__ar__2A [

Team3_ProvideYentiliation_StairEvac_Stair2E_...

“HTeam1

1618/ [eler

search__at__28

E Team?2_ExtinguishFire_21___at__28
i) Teamd_GetlLadder WindowEvac Win2D_47__...

R
A F

FLAALA

;

T

—(:ll p A

Teamt: 2nd Elev Lobby Team3: 2nd Elev Lobby Teom 2nd Hall 2836 Team: 2nd_Hall 2233

(o1l fols: B

search__at _2F
Team3_ExtinguishFire_32__ai_2E
Team3_RemoveObstacle_33___at _2E
Team3_ Evac SmokeyStairs Stair?E 38 __at_?E

|§|@ |ﬂ|@ jzln 54|n Bain 12‘511

search__at 20
Teamd_ExtinguishFire 42__at 2D
: Teamd_RemoveObstacle 43___at__2D
:|Teama_Evac Laddenwindow win2D_410__at..

14 - Send

Team1 ~ |Lacation:

Create Search TaskAgent:

Figure 2: The prototype incident commander interface displays full map information as well as views of what tasks

each team is performing.

task-oriented commands and a centralized scheduling
system. Figure 1 illustrates our prototype handheld
interface that lets each first responder see map infor-
mation and tasks they are assigned to perform, as well
as reporting new situation updates and creating new
tasks.

Figure 2 illustrates a portion of the prototype inter-
face used by the incident commander to monitor and
control each of the distributed response teams. Mim-
icking the role of an on-site fire incident commander,
the central scheduling system was able to properly allo-
cate each individual’s efforts in the most effective way.

To test the potential efficacy of the COORDINATOR
concept, we ran volunteers through two exercises, with
and without the automation support. To drive the ex-
ercises, we developed a time-pressured scenario that in-
volves a fictitious oil refinery that has multiple, concur-
rent emergency situations evolving. In the first exercise,
we gave our participants the state-of-the art technology
widely used today: walkie-talkies. In the second exer-
cise, we permuted the roles that the participants played
in the scenario to diminish learning effects and outfit-
ted them with a location transmitter and networked
handheld computers running COORDINATORs. We also
allowed them to keep the walkie-talkies. In all of our ex-
periments, the teams performed markedly better with
the COORDINATORS, despite the fact that we ran the
scenario almost twice as fast as in the first exercise.
More information about these results can be found in
the references.

The concept demonstration helped frame the COOR-
DINATORs problem and illustrate how a full solution

might work, but it was not designed for true distribu-
tion and scaling to larger and more difficult problems.

The Honeywell Team and Approach

To address these challenges, Honeywell has teamed with
the University of Massachusetts (Dr. Victor Lesser and
Dr. Dan Corkill), the University of Michigan (Dr. Ed-
mund Durfee), the University of Southern California
(Dr. Milind Tambe and Dr. Sven Koenig), the Univer-
sity of North Carolina at Charlotte (Dr. Anita Raja),
Adventium Labs (Dr. Mark Boddy) and SIFT, LLC
(Dr. Robert Goldman). Together, our team combines
expertise in several underlying technologies that will
form the foundation of our new system:

TAEMS — The Task Analysis, Environment Model-
ing, and Simulation provides a representation for
multi-agent hierarchical tasks with probabilistic ex-
pectations on their outcomes (characterized by qual-
ity, cost, and duration) and complex hard and soft
interactions. The existing Design To Criteria (DTC)
and Generalized Partial Global Planning (GPGP)
software provides a heuristic approach to collabo-
ratively negotiating over the selection and schedul-
ing of TAMS tasks. These components were used
to build the concept demonstration described above,
and will form the foundation of the new system. In
fact, the TAEMS framework, including its representa-
tion and simulation capability, is being shared by all
three teams on the Coordinators program.

MDPs and Constraint Optimization — While
DTC and GPGP operate on native TAEMS models,
the underlying semantics of T/EMS can be viewed as

Workshop on Multiagent Planning and Scheduling

a distributed MDP problem. Decisions about which
agent performs which task may be addressed either
as variable assignments in a constraint optimization
framework, or as action choices in an MDP model,
or as structural changes to local MDP problems. We
plan to adapt and improve existing MDP solvers and
constraint-based reasoning algorithms to address the
need for incremental, time-adjustable coordination
algorithms that scale to very large distributed
problems.

Next Steps

The new DARPA Coordinators program efforts began
in February 2005. Across the program, we are currently
defining a revised version of TAMS that supports the
rigorous semantic analysis required for the various team
approaches. DARPA has also funded development of
a suite of test domain problems, on which each team’s
algorithms will be evaluated. Our challenge is to build a
time-constrained distributed coordination system that
produces results comparable to a centralized, non-time-
limited scheduling system. We hope that the result will
be revolutionary advances in multi-agent coordination
technology.

References

Miller, C., and Goldman, R. P. 1997. “Tasking” inter-
faces; Associates that know who’s the boss. In Proc.
Fourth Human FElectronic Crew Conference.

Miller, C.; Funk, H.; Whitlow, S.; and Dorneich, M. C.
2002. A playbook interface for mixed initiative control
of multiple unmanned vehicle teams. In 21st Digital
Avionics Systems Conf., 223-235.

Wagner, T.; Phelps, J.; Guralnik, V.; and VanRiper,
R. 2004a. COORDINATORS - Coordination man-
agers for first responders. In Proceedings of the 3rd In-

ternational Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMASO4).

Wagner, T.; Phelps, J.; Guralnik, V.; and VanRiper,
R. 2004b. An application view of COORDINATORS:
Coordination managers for first responders. In Pro-

ceedings of the Sixteenth Innovative Applications of
Artificial Intelligence Conference (IAAIO4).

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

ICAPS 2005

Managing Communication Limitations
in Partially Controllable Multi-Agent Plans

John Stedl and Brian Williams
Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Laboratory
32 Vassar St. Room 32-G275, Cambridge, MA 02139

stedl@mit.edu, williams@mit.edu

Abstract

In most real world situations, cooperative multi-agent plans
will contain activities that are not under direct control by the
agents. In order to enable the agents to robustly adapt to this
temporal uncertainty, the agents must be able to communicate
at execution time in order to dynamically schedule their plans.
However, it is often undesirable or impossible to maintain
communication between all the agents, throughout the entire
duration of the plan.

This paper introduces a two-layer approach that clusters the
tightly coordinated portions of a multi-agent plan into a set
of group plans, such that each group plan only requires loose
coordination with one another. The key contribution of this
paper is a polynomial time, Hierarchical Reformulation (HR)
algorithm that combines the properties of strong and dynamic
controllability, in order to decouple the partially controllable
group plans from one another, while enabling the tightly co-
ordinated activities within each group plan to be scheduled
dynamically.

Introduction

The domain of plan scheduling and execution for multiple
robots cooperating to achieve a common goal has applica-
tions in a wide variety of fields such as cooperative obser-
vations of Earth orbiting satellites. These applications of-
ten require tight temporal coordination between the agents,
which must also be able to robustly adapt to uncontrollable
events.

Previous work on dispatching of temporally flexible
plans (Muscettola, Morris, & Tsamardinos 1998) (Morris,
Muscettola, & Vidal 2001) provided a framework for robust
execution of temporal plans. Tlecutiveconsists of ae-
formulatorand adispatcher The reformulator is an off-line
compilation algorithm that prepares the plan for efficient ex-
ecution. The dispatcher is an online dynamic scheduling al-
gorithm that exploits the temporal flexibility of the plan, by
waiting to schedule events until the last possible moment.
In this least commitment execution strategy, the dispatcher

did not tackle the case of a distributed dispatcher for multi-
robot plans, for which the challenge resides in the fact that
the agents must be cope with communication limitations at
execution time.

Previous work on execution &mple Temporal Networks
with Uncertainty(STNU$ (Vidal & Fargier 1999) (Morris,
Muscettola, & Vidal 2001) provided methods to achieve ro-
bust execution of plans that contain uncontrollable events.
STNUs are an extension of Simple Temporal Networks
(STNs) (Dechter, Meiri, & Pearl 1995), in which only some
of the events (otimepoint$ in the plan are fully controllable
(or executably while othercontingentimepoints cannot be
scheduled directly, but rather are observed during plan ex-
ecution. Links between pairs of timepoints impose flexible
temporal constraints, which express temporal coordination
in the plan (in the form ofequirementinks), and model the
duration of uncontrollable activities (in the caseaointin-
gentlinks).

(Vidal & Fargier) defined a set of controllability prop-
erties for STNUs that determines under what conditions an
agent can guarantee it successful execution of the plan. In-
formally, an STNU is controllable if there exists a consis-
tent strategy for scheduling the executable timepoints of the
plan, for all possible durations of the uncontrollable activi-
ties (subject to the constraints on the contingent and require-
ment links). There are three primary levels of controllabil-
ity; a network isstrongly controllabldf there exists a viable
execution strategy that does not depend on the outcome of
the uncontrollable durations. In this case, it is possible to
statically schedule all executable timepoints beforehand. A
network isdynamically controllabléf there exists a viable
execution strategy that only depends on the knowledge of
outcomes of past uncontrollable events. Finally, a network
is weakly controllableif there is a viable execution strat-
egy, given that we know the outcomes for all the uncontrol-
lable events beforehand. Furthermore, strong controllability
implies dynamic controllability which in turn implies weak

schedules and dispatches the tasks simultaneously, rathercontrollability (Vidal & Fargier).

than scheduling the tasks prior to execution. This dynamic

execution strategy enables the agent to adapt to runtime un-

(Morris, Muscettola, & Vidal 2001) presented a polyno-
mial time dynamic controllability algorithm that both checks

certainty, at the cost of some online constraint propagation. if a plan is dynamically controllable and reformulates the
Specifically, the dispatcher must propagate the execution plan for efficient dynamic execution. (Vidal & Fargier
times of each event, through local temporal constraints, to- 1999) introduced a polynomial time algorithm to check for
wards future events, every time an event is executed. This strong controllability. Waypoint controllability, introduced
propagation enables the dispatcher to select consistent ex-by (Morris & Muscettola 1999), combines the properties of
ecution times for these future events. This work, however, strong and weak controllability. In this framework, a sub-

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

set of the timepoints, designated as waypoints, are sched- ~ TWotayer Multi-Agent Plan
uled prior to knowing the uncertain durations; the remaining [wmission ptan

timepoints are scheduled once all of the uncertainty in the

Decoupled Mission Plan

plan has been resolved. This provides a means to partition @gffoﬁ,;g';,;g;:dS;g;g O

a partially controllable plan; however, it does not enable the Q[]

agents to adapt to the uncertainty at execution time. o)~ soupacs
Our two layer approach is similar to waypoint controlla-

bility; however, in this paper we seek a execution strategy
that combines strong with dynamic controllability instead of
strong with weak controllability.

In the area of collaborative multi-agent planning and
scheduling, (Hunsberger 2002) presented a Temporal De-
coupling Algorithm (TDA) that solved the Temporal Decou-
pling Problems for STNs. The algorithm adds constraints to o
a Simple Temporal Network in order to ensure that agents pispatchable Group Plan Minimal Dispatchable Group Plan

working on different tasks may operate independently. In
this paper we extends this work to Simple Temporal Net- (¢ Edge Trimming Scheduled dynamically
works with Uncertainty. 1o maaptio uneerny

This paper presents a two layer approach and correspond-
ing hierarchical reformulation (HR) algorithm that miti-
gates the need for communication at execution time be-
tween loosely coupled agents, while enabling tightly cou-
pled agents to dynamically adapt to uncertainty. In particu-
lar, the algorithm preserves the flexibility in places where

tight coordination is required and decouples the plan in ith uncertainty as shown in Figure 1a. The Hierarchical re-

Decoupled activities in
mission plan to remove
the need for inter-group
communication

Figure 1: Hierarchical Reformulation Algorithm Overview

places of loose coordination. _ _ formulation (HR) algorithm, converts the two-layer plan into
Our two layer approach is a pragmatic solution to whatwe 5 set of decoupled, minimal dispatchable group plans. The

Informally, a plan in communication controllable if there is pjan by applying our novel STNU decoupling algorithm
a viable multi-agent execution strategy in all situations that that combines properties the Strong Controllability Algo-
only depends on the observable past. Due to communication rithm (SCA) introduced by (Vidal 2000) with the STN Tem-
limitations, information of past outcomes and scheduling de- horal Decoupling Algorithm (TDA) introduced by (Huns-
cisions may be either delayed or completely unobservable. herger 2002), as shown in (Figure 1b). The group plans
To further complicate matters, each agents observable pastare reformulated using the dynamic controllability algorithm
is dependent not only on the outcomes of the uncertain du- (Morris, Muscettola, & Vidal 2001) as shown in (Figure 1c).
rations but also on each agents scheduling decisions. We also apply an edge trimming algorithm (Tsamardinos,
One main challenge in using our two layer approach is ef- \yscettola, & Morris 1998) to resulting dispatchable group
fectively modeling group plans within the mission plan. In yjan (Figure 1d), in order to remove the redundant con-
this paper we present two approaches. The first approach straints. After applying the hierarchical reformulation algo-
preserves maximum flexibility in the group plans at the cost ithm, each group plan may be executed independently using
of completeness. In the second approach, we enable thethe dispatching algorithm presented by (Morris, Muscettola,
group plans to give up some flexibility in order to satisfy g vigal 2001).
the decoupling requirement at the mission layer. In both ap- | this paper, we first we formalize our notion of a two-
proaches it is possible to scheduled the start of each group jayer plan. Then, we present the high level structure of the
plan off-line, without knowing the uncertain durations; how- g yeformulation algorithm followed by a detailed descrip-
ever, in order to be robust to unmodeled uncertainty we keep o of the decoupling algorithm. We end with a discussion

the start time of each group plan flexible. of the HR algorithm and directions for future work.

Overall Approach

.) Sy Formal Definition of Two-Layer Plans

In this paper, we assume the full multi-agent plan is divided
into a set of tightly coordinated group plans. Furthermore, In this section we formally define a two-layer multi-agent
we assume that the agents that participate in these groupplan with uncertainty and communication constraints. Then
plans are free to communicate with one another; however, we describe our simplifying assumptions used in this paper.
the agents may not be capable of communicating outside In general, a two-layer multi-agent plan consists of a high
their group. These group plans are loosely coupled via a level mission plan, and a set of lower level group plans. The
higher level mission plan. The mission plan uses a simplified mission plan consists of a set of uncontrollable activities that
abstraction for each group plan that hides the details of the corresponds to the set of group plans along with a set of con-
group plan. This encapsulation enables the reformulation straints. The mission plan contains a start timepoint, Z, that
algorithm to reason about group level interactions, without is always execute at T = 0. The group plans specify the de-
getting into the details of the group plans. tails of each group activity. Specifically, each group plan

Our overall approach is presented in Figure 1.The multi- contains a set of activities (both controllable or uncontrol-
agent plan is formulated as a two-layer plan multi-agent plan lable) to be performed the group of agents and a set of the

Workshop on Multiagent Planning and Scheduling 9

temporal constraints on those activities.

We formalize the our two-layer plans as a two-layer
Multi-Agent Temporal Plan Network with Uncertainty (2L-
MTPNU). A TPN is a set of activities4, to be performed,
each of which includes a start time;, and end timeg;,
together with a set of simple temporal constraints that spec-
ify the valid activity start timesS and end timesFE for the
activities, A. Hence a TPN is a generalization of a STN
(Dechter, Meiri, & Pearl 1995) that also contains of a set
of activities A, and a mappings7™ : S — N7, and
T—- : E — N—, mapping the start and end times of each
activity to the timepoints in the STN. A TPN under uncer-
tainty (TPNU) is analogous, where the temporal constraints
are of the plan expressed as a STN). (In this case, the
duration of each activity is either controllable and expressed

as a requirement link, or uncontrollable and expressed as a

contingent link.

A multi-agent TPNU (MTPNU) extends the TPNU in two
ways. First, a MTPNU introduces a set of agents, Q, and
a distribution,D : N — @, mapping the timepoints to

agents. We assume that the start and end timepoints as-

sociated with each activity are mapped to the same agent.
Second, a MTPNU contains @mmunication availability
graph (CAG), which specifies when the agents are capable
of communicating with one another. In general, a CAG,
=< II,T,U >, consists of a set of states, < II for each
agenty; € @, a set of state transitiorts € T with transition
guards that specify how the agents transition between states
and a set of undirected communication availability edges,
connecting states of different agents. We say that reliable
communication exists between statgsnd; if there is an
edgeu; € U.

A two-layer MTPNU is an extension of a MTPNU. The
two-layer MPTNU =< M, G, B >, whereM is the high
level mission planG is a set of group plans, ang is a
function mapping the group activities, € A in the mission
plan to a group plap; € G. Both the mission plan and group
plans are modeled as a MPTNU; howewgr,in the mission
plan are a set of groups, where@sin the group plans are a
set of agents.

In this paper we introduce several simplifying assump-
tions with respect to the two-layer MTPNU. First, we as-
sume that the mission plan’s CAG specifies that each group
is unable to communicate with one another during execu-
tion. Second, we assume the CAG of each group plan is
fully connected, meaning each agent is able to communi-
cate with all other agents that participates in the same group
plan. Third, we assume the mission plan consists only of the
Z timepoint and timepoints associated with the start and end
of each group activity.

Consider the simple two-layer plan illustrated in Figure 2.
The mission plan (shown in Figure 2a) contains two group
activities: group actl and group act2. The corresponding
group plans are shown Figure 2b,c. Both of the group plans
consist of three timepoints and one contingent activity.

Hierarchical Reformulation Algorithm

In this section, we present our novel Hierarchical Reformu-
lation (HR) algorithm. The HR algorithm is a centralized re-
formulation algorithm that transforms a two-layer MTPNU
into a set of decoupled, minimally dispatchable group plans.

10

ICAPS 2005

(a) Mission Plan (b) Group Plan1

act1
grot{]%acﬂ @5\>- 5 :
0\A * V-0
V4
0 1 0 8
(c) Group Plan2
S5—m0 act2
-1 3 1
group act2 G‘FO < O\FB/GD

Figure 2: (a) The simple two-layer mission plan, (b) group
plani (c) group plan2.

After running the HR algorithm, each group is able to exe-
cute their plan independently.

The HR algorithm operates on both layers of the two-layer
plan. The dynamic controllability algorithm operates on the
group plans, whereas, the decoupling algorithm, based on
the strong controllability algorithm and STN temporal de-
coupling algorithm, operates on the mission plan.

The pseudo-code for the HR algorithm is shown in Fig-
ure 1. The algorithm takes in a two-layer MTPNU, P =
(M, G, B), consisting of a mission plany/, and a set of
group plans(, and mappingB and generates a set of de-

,coupled, dispatchable MTPNUSs. The algorithm returns true

if the reformulation succeeds; otherwise, false.

The HR algorithm may fail for several reasons. The HR
algorithm fails if either the mission plan or group plans
are temporally inconsistent. Furthermore, the HR algorithm
fails if the group plans are not dynamically controllable or if
the mission plan is not strongly controllable.

Lines 1-3 of the HR algorithm, shown in 1, calls the UP-
DATE_GROUPACTIVITIES function and returns false if
the update reveals a temporal inconsistency in any of the
group plans. This function is called at the beginning of the
HR algorithm, in order to synchronize the mission plan with
the constraints specified in the group plans.

Alg. 1 HIERARCHICAL_REFORMULATION(P)
. consistent — UPDATE.GROUPACTIVITIES(G,M)

1
2: if = consistent then
3: return FALSE

4: end if

5: consistent — COMPUTEAPSPGRAPH(\)
6: if = consistent then
7: return FALSE
8: end if
UPDATE_GROUPPLANS(G,M)
for eachg € G do

controllable — DC(g)

if = controllable then

return FALSE

end if
end for
UPDATE_.GROUPRPACTIVITIES(G,M)
success — DECOUPLEQM ,G)

. returnsuccess

9:
10:
11:
12:
13:
14:
15:
16:
17:
18

Workshop on Multiagent Planning and Scheduling

Alg. 2 UPDATE_.GROUPRACTIVITIES(M,G)

1. for each group plag € G do

: s« start timepoint ofy
if -~ BELLMAN _FORD.SSSP{,s) then

return FALSFE

end if
ub «+— max(dfp] for eachn € N[g])
BELLMAN _FORD_SDSP§,s)
lb — -min(d[n] for eachn € N[g])
groupactivity «— GET_.GROUPACTIVITY(g)
UPDATE_EDGE (M ,START[m], END[m], ub)
11: UPDATE.EDGE(M,END[m], START[m], 4b)
12: end for
13: returnTRUE

eeNoarON

10:

group act1

10
4_22

1
group act2

Figure 3: The UPDATEGROUPACTIVITIES function
updates the edges associated with the group activities in the
mission plan. AB is updated to 9 and CD is updated to 4.

The UPDATEGROUPACTIVITIES function first com-
putes the feasible duration of each group plan. Next, it
updates the contingent timebounds of the corresponding
contingent bounds in the mission plan. The pseudo code
for the UPDATEGROUPACTIVITIES function is shown
2. The feasible durations are computed by calling two
Bellman-Ford Single-Source Shortest-Path (SSSP) compu-
tations (Dechter, Meiri, & Pearl 1995) (Cormen, Leiserson,
& Rivest 1990). If the SSSP computation detects an in-
consistency in any of the group plans, the algorithm returns
false, otherwise true.

For example, the two-layer plan shown in Figure 2.
For group planl, the maximum SSSP distance is 10 for
the path ABC, and the minimum SDSP is -2 for the
path CBA. The UPDATEGROUPRACTIVITIES function
leaves the distance of the contingent edge AB in the mis-
sion plan at 10; however, the distance of the contingent
edge BA is updated to -2. For group plan2, the max-
imum SSSP distance is 4 for the path ABC, and the
minimum SDSP is 0 for the path CBA. For this group
plan, the UPDATEGROUPACTIVITIES function updates
the distance of the mission plan’s contingent edge CD to
4, while the contingent edge DC remains at -1. Both
group plans are temporally consistent; therefore, the UP-
DATE_GROUPRACTIVITIES function returns true. Fig-
ure 3 shows the updated mission plan after calling the UP-
DATE_GROUPACTIVITIES in the HR algorithm.

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

Lines 4-7 of the HR algorithm computes the All-Pairs
Shortest-Path graph (APSP-graph) of the mission plan’s dis-
tance graph (returning false if the mission plan is tempo-
rally inconsistent). Then the HR algorithm updates the
timebounds of the group plans if the edges associated with
the group activities are tightened by the APSP-graph. The
COMPUTEAPSP.GRAPH function in Line 4 computes the
APSP-graph, given the mission plan’s distance graph. This
APSP-graph is maintained separate from the mission plan’s
distance graph. The APSP computation is performed by
either Johnson’s algorithm or Floyd-Warshall’s algorithm
(Cormen, Leiserson, & Rivest 1990).

The APSP-graph is computed for two purposes. First, it
checks if the mission plan is temporally consistent. If the
mission plan is inconsistent, then the algorithm returns false
in Line 6. Second, the APSP-graph is used to deduce any
tightenings on the group activities implied by the constraints
in the mission plan’s distance graph. If the edges in the
APSP-graph, corresponding to the group activity edges, are
tightened, then the HR algorithm updates the correspond-
ing group plan. The group plans are updated by calling the
UPDATE_.GROUPPLANS function, in Line 7 of the HR al-
gorithm.

Alg. 3 UPDATE.GROUPPLANS(M,G)

1: for each group activityn € Group,ctivities[M] do
s < START(m)

e «— END(m)

ub — M.APSPgraphy,]

b — -M.APSPgraph{, s]
UPDATE_EDGE(/,s,e,ub)
UPDATE_EDGE(M ,e,s,—1b)
g — GROUPn)

s «+— START(g)

e — END(g)
UPDATE_EDGE(y,s,e,ub)
UPDATE EDGE(y,e,s,—1b)
d for

10:
11:
12:
13: en

The pseudo code for the UPDATGROUPPLANS
function is shown in Figure 1-24. This function loops
through each group activity in the mission plan and updates
the bounds in the corresponding group plan.

For example, the mission plan’s APSP-graph is shown
in Figure 4. The APSP-graph edge AB is smaller than
the edge AB in the mission plan’s distance graph. This
edge AB is associated with the upper bound on the group
actl. The edge AB is tightened from 10 to 9. The UP-
DATE_GROUPPLANS function updates the mission plan’s
distance graph accordingly, as shown in Figure 4b. The
UPDATE_GROUPPLAN function then updates the group
plans. The updated group plans are shown in Figure 4(c-d).
The UPDATEGROUPPLANS function adds the edge AC
= 9 to group planl, corresponding to the edge AB = 9 in
the mission plan, and adds the edge CA = -1 to group plan2,
corresponding to the edge DC = -1 in the mission plan. Note
that the edge DC = -1 was present in the original mission
plan, whereas the edge AB = 9 was derived by the APSP-
graph.

After the group plan’s timebounds are updated, the HR
algorithm calls the dynamic controllability (DC) algorithm

APSP-graph Mission Plan

b group act1
9.

(0) @C
0 1 0 s
% .

pa—

group act2

Group Plans
group plan1

(C) act1 o

group plan 2
act2

group actt

@) @\\C
A 5 871 F

01 S 73
O ——L
-
group act2

(d)

(O =[N0

Figure 4. (a) mission plan’'s APSP-graph (b) Updated mis-
sion plan (c) Updated group plan 1 (d) Updated group plan
2.

(Morris, Muscettola, & Vidal 2001), in order to reformulate
each group plan into a minimal dispatchable group plan, on
Line 9. If this reformulation succeeds, then the group plan
is dynamically controllable and the HR algorithm continues.
However, if the DC algorithm fails (for any group plan), then
the HR algorithm terminates and returns FALSE.

The complete description of the DC algorithm is pre-
sented in (Morris, Muscettola, & Vidal 2001). For now
the reader only needs to understand that the DC algorithm
is a reformulation algorithm that either adds or tightens
the constraints of the group plan. These additional con-
straints may alter the range of feasible durations of the
group plan. If the range of feasible durations of a group

ICAPS 2005

group1.drive_to(A)

group1.drive_to(A) constraints relating

<: h[m‘zm» requirements on
ya) / contingent timepoints /@‘[10‘20]+

01l [0.30] 1015] 515) /cons

group2.drive_to(B)] ” . exe

5,15 >. . group3 drive_tol
19l e 1515} [5-15]>@\[5‘15]‘>

art timepoint / T

of mission

[0,15) [0.30] [0,15] [10.25]
roup3.drive to(C) A new set of g roup3.drive_to(C}
5.10]—| requirement links / 5,10]—m}
between executable

timepoints

(a) (b)

Ty, = 10__groupt drive_to(A)

fixed schedule for @[10,20]
executable timepoints \
T,=5

T,=0 s2 group2.drive_to(B)
o @@

- group3.drive_to(C)

T= 15

requirement constraint no —[5‘10]‘>=
longer needed

1~

Figure 5: (a) The original mission plan containing require-
ment edges connecting contingent timepoints. (b) The mis-
sion plan after the contingent timepoints are decoupled by
the strong controllability algorithm. Note, all requirement
edge connecting contingent timepoints are removed. (c) The
decoupling algorithm fixes the start time for each executable
timepoints. This eliminates the need to propagate schedul-
ing times during execution.

plan is tightened (the lower bound is increased or the up- to their respective group plans. The resulting group plans
per bound is decreased), then the HR updates the edges ofcan be scheduled independently. The decoupling builds

the corresponding group activity by once again calling UP-
DATE_GROUPACTIVITIES. Thisis done in Line 14. Note
that tightening the constraints of the group activities only
serves to remove uncertainty from the mission plan. Thus,
the update performed in Line 14 only serves to make the
decoupling algorithm more likely to succeed.

In our simple example, both of the group plans are dy-
namically controllable. Furthermore, feasible durations of
the group plans are unchanged by the DC algorithm; there-
fore, the UPDATEGROUPACTIVITIES call in Line 14 of
the HR algorithm does not change the mission plan.

In Line 15, the HR algorithm calls the decoupling algo-
rithm on the mission plan. The decoupling algorithm fixes
the schedule for the start of each group plan. If the de-
coupling algorithm succeeds, then the HR algorithm returns
true; otherwise, the HR algorithm returns false.

The Decoupling Algorithm

In this section we describe tliecoupling algorithmyvhich
temporally decouples each group activity in the mission
plan. The effect of decoupling the group activities in the
mission plan is that each group plan may be scheduled inde-
pendently. The simplest method to perform this decoupling
is to use a slight variation of the strong controllability al-
gorithm, introduced by (Vidal 2000). Figur@)(shows the
decoupling procedure. First, the strong controllability algo-
rithm decouples the executable timepoint from the contin-
gent timepoints, by making all requirement edges, connect-
ing contingent timepoints, dominated (redundant). Next, the

upon the strong controllability checking algorithm (Vidal &
Fargier 1999). The decoupling algorithm transforms the dis-
tance graph of the mission plan using the strong controllabil-
ity transformation rules. If this transformed graph is consis-
tent, the decoupling algorithm generates a schedule for the
timepoints of the transformed graph. Note that any consis-
tent schedule would work; however, we elect to schedule the
group activities as early as possible. This schedule is used
to fix the time of the corresponding group plans.

The pseudo-code for the decoupling algorithm is shown in
Figure 6. The algorithm takes in a two-layer plan, consisting
of a mission plan, M, and a set of group plans, G and fixes
the schedule for the mission plan.

The decoupling algorithm runs in polynomial time. Lines
1-13 run in the same time as the strong controllability al-
gorithm (i.e. O(NE)). In Lines 14-20, the decoupling al-
gorithm loops through each timepoint and fixes the start
time of each group plan. Using a simple lookup, the
GET_.GROUPACTIVITY and GET.GROUPPLAN run in
time linear in the number of group plans. Therefore, Lines
14-20 run in O(NG), wheré; is the number of group plans.
The number of group plan& is less than the number of
edges in the distance graph; therefore, the decoupling algo-
rithm is dominated by the Bellman-Ford SDSP computation.
The running time of the decoupling algorithm is O(NE).

For our simple example, the decoupling algorithm suc-
ceeds. The decoupling algorithm is applied to the updated
mission plan, as shown in Figure 14(b). The distance graph
of the mission plan is converted into the transformed STN,

decoupling algorithm selects a consistent assignment to the as shown in Figure 15(a). The decoupling algorithm first

executable timepoints in the mission plan.
This decoupling algorithm operates on the mission plan,

copies over the executable timepoints, A and C, then it trans-
forms the edges, using the strong controllability transfor-

in order to generate a fixed schedule for the start timepoint of mation rules. The decoupling algorithm copies over the re-
each group activity. These fixed start times are then passed quirement edges AC = 1 and CA = 0 from the mission plans

12 Workshop on Multiagent Planning and Scheduling

Alg. 4 DECOUPLEM ,G) Input : A mission planM and a
set of group plan&:. Ef fects : Decouples the group plans
by fixing the start time of each group pla@utput : True
mission plan is strongly controllable; otherwidesise.

: G, < getdistance graph of mission plan
: copy all executable timepoints 6f,,, to T’
: initialize all edges of T to NIL
for each requirement edge,{) € E[G,,] do
transform the edgeu(v) using SC transformation
rules to and edgeu(,v") with d(u’,v) = x
UPDATE_EDGE(",u' v/ ,x)
: end for
: s « start timepoint ofl’
. consistent «— BELLMAN _FORD_SDSP(’,s)
. if — consistent then
return FALSFE
. else
for each timepoint € N[T] do
m — GET.GROUPACTIVITY(n)
if m = NIL then
g — GROUPPLAN(m)
fix start time ofg to -d[n] as computed by line
10
end if
end for
: end if
s returnTRUFE

ICAPS 2005

Discussion

After running the HR algorithm on the two-layer MTPNU,
each group is able to efficiently execute the plan by using
the dispatching algorithm presented by (Morris, Muscettola,
& Vidal 2001).

The HR algorithm is a polynomial time algorithm. It
gains efficiency by dividing the reformulation problem into
a set of smaller sub-problems.

Consider the runtime complexity of the HR algorithm. In
this discussion, we use the following notation.

e G = number of group plans.

e N,, = number of timepoints in the mission plan.

e FE,, = number of edges in the mission plan.

e N, = maximum number of timepoints in any group plan.
e E, = maximum number of edges in any group plan.

In Line 1, HR calls the UPDATEGROUPACTIVITIES
function. The UPDATEGROUPACTIVITIES function
loops through each group plan and the time of each loop
is dominated by the Bellman-Ford algorithm. There-
fore, the UPDATEGROUPACTIVITIES runs in O@G x
Ny * Eg). Lines 2-3 of the HR algorithm run in con-
stant time. In Line 4, the HR algorithm calls COM-
PUTEAPSPGRAPH. The Floyd-Warshall algorithm is
used, which runs inX(3). Lines 5-6 run in constant time.
Line 7 calls the UPDATEGROUPPLANS function. The
UPDATE_GROUPPLANS function loops through each
group activity and each loop is performed in constant time.
Therefore, the UPDATEGROUPPLANS runs in O(G)
time. Lines 8-13 of the HR algorithm loop through each

distance graph. The edge CB = 8 is transformed into an edge group plan and calls the DC algorithm.

CA =-1, which relaxes the edge CA in the transformed STN.
The edge BC =0 is transformed into an edge AC = 2, which

The time complexity of the DC algorithm is polynomial
(Morris, Muscettola, & Vidal 2001) however, experimental

is greater than the existing edge, so there is no change in theresylts exhibit a running time of O?). Given this, the run-

transformed STN. Finally, the decoupling algorithm com-
putes the earliest execution time for each timepoint, using
an SDSP computation. The earliest execution time for A=0
and B =1, and, therefore, the start timepoint associated with
group planl, is fixed at 0, and the start timepoint for group
plan2 is fixed at 1. The decoupled group plans are shown in
Figure 6(b,c).

group plan1
b 9
(a) () act1
To (e el
g% B -2 ' O
101
% (C) aCtzgroup plan 2

Figure 6: (a) The transformed STN (b) The start time of
group planl is fixed at T = 0 (c) The start time of group
plan2 is fixed at T = 1.

Workshop on Multiagent Planning and Scheduling

ning time of Lines 8-13 is experimentally shown to bed3(
N?). Line 14 calls the UPDATEGROUPRPACTIVITIES
function. Finally, in Line 15, the HR algorithm calls DE-
COUPLE, which runs in Gf * N,) time.

Adding the terms together, we get an expression for the
running time of the HR algorithm as Q¢ N, E,) + O(N3,
+ O(G) + O@G * N?) + O(G * Ny) + O(1), which can be
simplified to OG * N + N33). The N term is derived by
an All-Pairs Shortest-Path (APSP) computation, applied to
the group plan used in the DC algorithm. Thg, term is
due to the APSP computation on the mission plan.

The HR algorithm, presented in this paper, is unique in
its ability to cope with both communication limitations and
temporal uncertainty, by combining properties of strong and
dynamic controllability. We believe this paper lays out a
framework that will enable multi-agent systems to manage
communication limitations in a pragmatic way.

References

Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1990.
Introduction to AlgorithmsCambridge, MA: MIT Press.
Dechter; Meiri; and Pearl. 1995. Temporal constraint new-
works. InAtrtificial Intelligence 61-95.

Hunsberger, L. 2002. Algorithms for a temporal decou-
pling problem in multi-agent planning.

Morris, P. H., and Muscettola, N. 1999. Managing tempo-
ral uncertainty through waypoint controllability. I4CAl,
1253-1258.

Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. WCAI, 494—
502.

Muscettola, N.; Morris, P.; and Tsamardinos, I. 1998. Re-
formulating temporal plans for efficient execution.Rrin-
ciples of Knowledge Representation and Reasqridg—
452.

Tsamardinos, |.; Muscettola, N.; and Morris, P. 1998. Fast
transformation of temporal plans for efficient execution. In
AAAI/IAAI 254-261.

Vidal, and Fargier. Dealing with uncertain durations in
temporal constraint networks dedicated to planning. In
In Proc. of 12th European Conference on Artificial Intel-
ligence (ECAI-96)48-52.

Vidal, and Fargier. 1999. Handling contingency in tem-
poral constraint networks: from consitency to controllabil-
ities. InJournal of Experimental and Theoretical Atrtificial
Intelligence 23-45.

Vidal, T. 2000. Controllability characterization and check-
ing in contingent temporal constraint newtorks Aroc. of
Seveth Int. Conf. on Principles of Knowledge Representa-
tion and Reasoning (KR'2000)

14

ICAPS 2005

Workshop on Multiagent Planning and Scheduling

1

ICAPS 2005

Computing the Communication Costs of Item Allocation

Timothy W. Rauenbusch
Artificial Intelligence Center
SRI International
Menlo Park, CA 94025
rauenbusch@ai.sri.com

Abstract

Multiagent systems require techniques for effec-
tively allocating resources or tasks to among agents
in a group. Auctions are one method for structuring
communication of agents’ private values for the re-
source or task to a central decision maker. Different
auction methods vary in their communication re-
qguirements. This paper makes three contributions
to the understanding the types of group decision
making for which auctions are apprpriate meth-
ods. First, it shows that entropy is the best measure
of communication bandwidth used by an auction
in messages bidders seadd receive. Second, it
presents a method for measuring bandwidth usage;
the dialogue trees used for this computation are a
new and compact representation of the probablity
distribution of every possible dialogue between two
agents. Third, it presents new guidelines for choos-
ing the best auction, guidelines which differ signif-
icantly from recommendations in prior work. The
new guidelines are based on detailed analysis of the
communication requirements of Sealed-bid, Dutch,
Staged, Japanese, and Bisection auctions. In con-
tradistinction to previous work, the guidelines show
that the auction that minimizes bandwidth depends
on both the number of bidders and the sample space
from which bidders’ valuations are drawn.

I ntroduction

Stuart M. Shieber and Barbara J. Grosz
Division of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138
shieber,grosz@eecs.harvard.edu

the same assumptions. A difference of four bits of informa-
tion may seem insignificant by today’s standards but modern
systems may make millions or billions of related team deci-
sions every second. While sacrificing no team decision qual-
ity, a system designer could save over 80 percent of its com-
munication bandwidth just by implementing a different det o
auction rules.

Previous work has made recommendations for the best
choice of auction for making group decisions. However, the
assumptions that led to those recommendations are incempat
ible with real systems in which communication bandwidth is
costly, such as those using Internet-like networks.

This paper makes three main contributions to the under-
standing of communication for decision making in multia-
gent systems. First, we argue for entropy as the metric of
communication bandwidth used by all messages exchanged.
Communication in any multiagent system is made up of a se-
ries of messages that one agent sends to another. System de-
signers need to choose an encoding for messages. For exam-
ple, the number nine is commonly given the binary encoding
“1001” but in ASCII code it is assigned the binary encoding
“0011 1001". Measuring communication in decision-making
algorithms using a particular message encoding could tead t
results that are applicable only for that encoding. Thisgpap
uses principles of Information Theory to measure informa-
tion in a coding-independent way. The receiver of a message
can generate a probability distribution over the set of jdess
messages it can receive. The entropy of that distribution is
a lower bound on the average size of the encoding for each
message.

Second, we provide details of a three-step method for mea-

Multiagent system designers can achieve significant cest sasuring bandwidth used by an algorithm. In the first step, the
ings by making the correct choice of algorithm for team de-analyst builds a dialogue tree that represents all possésle
cision making. The results in this paper show that no singlejuences of messages exchanged between the auctioneer and
auction type minimizes bandwidth usage for all team sizesach bidder. In the second step, the edges of the dialogrie tre
or for all possible valuations for the resource. For instanc are labeled with the probability associated with each ngessa
Sealed-bid auctions require the least communication fatlsm Finally, in the third step, the expected information in tie-d
problems. The Dutch, Staged, and Bisection auctions eadegue is calculated using the tree representation.

require least communication in some situations.

Third, we apply the analysis to Sealed-bid, Dutch (de-

A Sealed-bid auction requires each bidder and the auctiorscending), Japanese (ascending), Staged (ascending), and

eer to exchange 5 bits of information in a system with 60Bisection auctions and provides system designers with the
agents where each agent’s valuation is drawn independentlinowledge necessary to choose the auction that minimizes
and uniformly from the range $1 to $32. A Dutch auction re-communication bandwidth. Auctions are particularly attra

quires an exchange of approximately one bit on average undéwe for multiagent decision making because they provide a

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

way to structure the allocation of a resource or task to theSealed-bid. All bidders send their value to the auctioneer.
member of a multiagent system that values it most, when th&he winner is the bidder that sends the highest value.
resource’s value is private to each group member. Equiva-

lently, auctions are used to assign a task to the member of . . o

a group that is best suited to perform it when the suitabilityJapanese (Ascending). The auctioneer maintainscarrent

of each group member to the task is primnsberger and price, |n|t|a”y set to 0. The auctioneer sends each bidder in
Grosz, 2000; Rauenbusch, 2004 turn the current price. If a bidder’s value is greater than or

Our recommendations, based on a minimizing Commu_equal to the current price, it sends a message affirmingiits co

nication requirements, differ from those of economists an&'gug?n%?ég%'ﬁa?én dlgsti?S fc‘)ul(;t;?/g' tﬁ;h:lj\(/:vtli?)?{ 'Eriingﬂgm
computer scientists. Economic analysis typically ignore 9 9 X

communication costs entirely. Some computer scientist hen increments the current price, and repeats the proifess.

[Shoham and Tennenholtz, 2d0fiave focused on prefer- only one participating bidder remains in the auction after a
ence revelation, which con'cerns the willingness to disnlosround’ the auction ends and that remaining bidder is the win-

information. They consider only those messages sent fro er. If no participating bidders remain, the winner is ctose
a bidder to an auctioneer and ignore message sent in the o om the bidders in the previous round. Once a bidder leaves

posite direction. Some researchf@vigorievaet al., 2004 € auction, it may not rejoin.
have used communication complexity or other metrics that

assume a particular message encoding. Their results may,qeq (Ascending). The auctioneer maintains airrent
be misleading for measuring bandwidth requirements in sySsjce initially set to 0. In Stage 1, the auctioneer sends bid-

tems that employ more efficient encodings—our results ar@er 1 the current price. If the bidder's value is greater than

coding-independent. or equal to the current price, it sends its value and the ntirre
This paper is organized as follows. In Section 2 the sinprice is updated to this value. Otherwise, it sends a message
gle item allocation problem is formally defined, and the fiveindicating its desire to leave the auction. The auctioneent
auctions are described. Next, Section 3 details the processoves on to Stage 2, sends the current price to bidder 2, and
for measuring communication in a dialogue using Dialoguethe process repeats. The auctioneer continues in this vihy wi
Trees. Section 4 describes the application of dialogus teee each bidder and the process ends aftenthestage. The win-
auctions. Guidelines for system designers choosing auctioner is the last bidder that did not leave the auction.
rules that minimize communication are given in Section 5.
Section 6 highlights important related work and Section 7
gives conclusions and suggests areas for future work. Dutch (Descending). = The auctioneer maintains @irrent
price, initially set to2® — 1. The auctioneer sends each bid-
der in turn the current price. The bidder sends a message
2 Item Allocation and Auctions indicating whether its value is equal to the current pride. |
no bidder’s value is equal to the current price, the auctone

A single-item allocation problem is characterized by a arou decrements the price and repeats. If one or more bidder has
9 P yagrou yaue equal to the current price, the auctioneer chooses one
of n bidder agents and a seller agent (also called the auctlorgs the winner

eer) that possesses a single, atomic item. Each bidder has
a value for the item that is private and drawn independently

and uniformly from the set of integers from 026 — 1in- Bigection. The auctioneer maintains dower bound de-
plusiye. Another way to look ata bidder_’s \{alue is that it noted; andupper bound denotedy, initially set to 0 and2%,
is being drawn from one OZ_R bins. The distribution from regpectively. The auctioneer also maintains a list of activ
which each bidder’s value is drawn is common knowledgepqgders, initially the set of all bidders. The auctionedcua
Bidderi’s value is denoted by;. The goal of the seller is |ates thecurrent price asu — “=. The auctioneer sends each
to allocate the task to the bidder with the highest value. Ifyigder in turn the current price. Each bidder sends a message
there is a tie for the highest value, the task may be allocategs gjther “Yes” or “No” to indicate whether its value is great
to any of the bidders with the highest value.sélutionto a than or equal to the current price. If there are two or more bid
single-item allocation problem is the indexwherez; isthe gers that sent a “Yes” message, the lower bound is updated to
maximum value among ail bidders. the current price, the set of active bidders updated to declu
We analyze five auction types: Sealed-bid, Japanes@nly those that sent a “Yes” message, and the process repeats
Staged, Dutch, and Bisection. This particular list of five-au If no bidder sent a “Yes” message, the upper bound is updated
tion types is representative of the range of auctions tylpica with the current price and the procedure repeats. If one bid-
used to allocate a single item and is not intended to be exhauder sent a “Yes” message, that bidder is declared the winner
tive. For reference, the rest of this section provides arifiesc and the procedure ends. If the upper bound and lower bound
tion of each auction type. Rauenbug2004 provides more differ by only one, one of the active bidders is chosen as the
detail, including pseudocode for each. In each auction, wavinner. After finding a winner, typically the bisection aiact
assume bidders are honest. Prices are used to structure comay proceed into a “price determination” phase that pravide
munication with the bidders and not as a tool for building inincentives for honesty. Because we assume honesty, the pric
incentives for honesty. determination phase is omitted from our analysis.

16 Workshop on Multiagent Planning and Scheduling

ICAPS 2005

Encoding Probability therefore use entropy to measure expected information com-
Message Encl Enc2 AlgA AlgB municated.

a 0000 O 0.0625 0.99
b 0001 10001 0.0625 0.000333 3.2 Direction of Communication
c 0010 10010 0.0625 0.000333 . _ o _—
d 0011 10011 00625 0.000333 It is convenient to distinguish betweemc_)rdlnatlon mes-
sages, which are those sent by the auctioneer to a bidder,
D 0011 10011 0.0625 0.000333 from revelation messages, which are those sent by the bid-

der to the auctioneer. In this paper, the communicatiorscost

_)) associated with coordination and with revelation are abnsi
Table 1: Two encodings for sixteen messages used by Algqsyed when calculating the expected information transthitte

rithms AlgA and AlgB in an auction. In particular, the results provided are far th
sum of coordination and revelation costs. This assumption
3 Communication Properties of a Dialogue is supported by Internet-like computer networks in which in

creased bandwidth requires costs associated with inatease
This section serves three main purposes. First, it presents infrastructure for both directions of communication.
argument for the use of entropy and information theory to In a Sealed-bid auction, each bidder always reveals its
measure communication for team decision making. Secondalue. Therefore, Sealed-bid auctions have the highest-ban
it highlights the need to consider all communication. In-auc width requirements for revelation messages. As the reisults
tions, this means that complete analysis requires evafyati Section 5 indicate, it would be misleading to rely on revela-
communication in two directions: both from the bidders totion messages alone when choosing an auction. Even though
the auctioneer and from the auctioneer to the bidders. ThirdSealed-bid auctions require more information transmitted
it presents dialogue trees—a tool for using entropy to mearevelation than any other auction, they require no coordina
sure the expected information transmitted in successiv® metion. For that reason, they have low communication require-
sages between agents. It details the use of dialogue treesiiments in settings with small teams and coarse distributions
measuring communication for team decision making. from which bidders’ values are drawn.

3.1 Entropy: Metric for Measuring 3.3 Dialogue Trees

Communication A dialogue is a sequence of messages sent from one agent

A metric for measuring communication is required to com-to another agent, in which the agent that sends the odd-
pare auction rules by their communication cost. In each aucaumbered messages receives the even-numbered messages.
tion, information is exchanged between the auctioneer an®ialogue trees simplify the construction of a probabitisti
each bidder by sending and receiving messages. In any imnodel of the messages. In this section, we describe dialogue
plementation of an auction, the center and the bidders mugtees and provide a detailed method for calculating the ex-
agree to an encoding of messages. pected information in a dialogue. We use dialogue trees to
Measuring information required by a multiagent algorithm measure expected information in an auctions by analyziag th
using a particular encoding for messages may lead to miglialogue between the auctioneer and each bidder. Dialogue
leading results. To illustrate why, we refer to the exampletrees apply equally to other dialogues and are not limited to
given in Table 1. The columns labeled Encl and Enc2 showanalysis of auctions.
two possible encodings for each of sixteen messages labeledA dialoguetreeis a tree data structure with labeled edges.
a throughp. Two algorithms, labeled AlgA and AlgB, each Each node represents a message, and is labeled with the mes-
require one of sixteen messages to be sent from one agentsage it representQuery messages are those sent by the auc-
another but they differ in the frequency with which each mestioneer to request a message from the bidd#aty messages
sage is sent. The probability associated with each messagée those sent by the bidde#tatus messages are those sent
for each algorithm is shown in the two rightmost columns ofby the auctioneer to which no reply is expected. Figures that
the table. represent dialogue trees (such as Figure 1) show query nodes
With encoding Enc1, both AlgA and AlgB require four bits reply nodes, and status nodes enclosed by circles, box@s, an
to transmit the message. But with encoding Enc2, AlgA re-diamonds, respectiveliodes(d) denotes the set of all nodes
quires 4.75 bits and AlgB requires 1.04 bits in expectationin dialogue treel.
Therefore, the algorithm that requires the least communica The children of a node in a dialogue tree represent the
tion depends on the encoding chosen. Just as in this toy exarsample space from which the next message is drawn, given
ple, conclusions about the communication properties of audhat the message represented by the parent node has been
tions using a particular encoding are misleading because #ent. Children(m) denotes the set of child nodes of node
is not clear whether those conclusions hold for other possim. Parent(m) denotes the parent node of node
ble encodings. Work in Information Theofghannon, 1948; A label on an edge between a parent and child node indi-
Cover and Thomas, 199has shown that the entropy of a cates the receiver’s belief, prior to receiving the messtige
random variable describing a message is a lower bound otihe message represented by the child node is the one that the
the average size of the encoding for that message. Rathsender will sendln(m) denotes the edge label thatis incident
than evaluate an algorithm using a particular encoding, wen nodem in a dialogue tree.

Workshop on Multiagent Planning and Scheduling 17

ICAPS 2005

The edge labels define a probability distribution over theof information sent by the center is the sum of the contrihute
sample space represented by the children. The probabilitypnformation of all reply nodes. This is counter-intuitiveda
distribution and sample space together define a probadbilistarises because contributed information of each node is de-
model for messages in a dialogue. rived from the probabilities associated with the edgegi-

In the auctions described in this paper, a bidder alwaysating at that node, which define the information content of
sends a reply after receiving a query; therefore, a querg nodthe messages represented by its child nodes. Section 4 de-
is never a leaf in a dialogue tree. A reply node may be either acribes the dialogue tree in Figure 1 and how it is used to
leaf or a non-leaf node, depending on whether the center magnalyze the Bisection auction.
follow the corresponding reply message with a message. A
status node is always a leaf in a dialogue tree. ; ;

The remainder of this section details how a dialogue tree is£,1r Analysis of Auctions
used to calculate the expected information in a dialogue. ThUsing dialogue trees as a tool, in each auction we first deter-
procedure uses edge labels for two purposes: to calculkate ttmine the structure of the tree, then calculate the apprigpria
information content of a node and to calculate the probgbili edge labels. To aid in determining the structure of the tree,
of visiting a node. messages in each of the five auctions are divided into the fol-

The information content (IC) of nodem is the entropy of lowing two types of query/response pairs: (1) best response
the random variable represented by the labels of all edgesnd (2) value. In a best response query, the auctioneer sends

originating at the node. Formally, the bidder a message that includes a price. The bidder then
responds with the messades if its value is higher than the
IC(m) =— Z In(c) log In(c) (1) price and the messadi® otherwise. In a value query, the auc-
c€Children(m) tioneer sends a message, and the bidder responds by sending

a message containing its value.

Decomposing these algorithms into two types of con-
A path from the root node to each leaf node representiyent query/response pairs is a tool used to simplifyef t
every possible dialogue between the two agents. The amough 5\ qjs ' The measurement of the expected information in a
of information in a dialogue is the sum of the information dialogue for each auction is independent of this decomposi-

content in each node on the path. Each of the possible dy,, “For example, if a bidder in the Staged auction responds
alogues represented by a tree has a different probability o#

. . y < es when sent the first message, it always sends its value. It
occurring. This probab|I_|ty is the product of the edge label ig harefore not necessary to send a query message for the
along the path of the dialogue from the root of the tree t

a leaf. Theprobability of visiting (PV) noderm (that is, the %idder’s value after receiving the response. But, thereiie z

i . ommunication cost for the value query (because the proba-
probability that a message represented by a particular noc&"ty of sending it given ares response is 1)
will be sent in a dialogue) is the product of the probability o :

the message represented by its parent node and the label RI%TWO methods are used to determine the edge labels. The
its incident edge. There is unit probability of visiting tremt tand simplest way to determine the edge labels is by sim-

node. Formall ulation. An auction is run many times in simulation, and
' Y, the frequency of each message is recorded and used for the

A leaf node therefore has information content of 0.

1 if m is root edge labels. The main advantage of this approach is thatit re
PV(m) = { PV(Parent(m)) - Tn(m) otherwise ~ (2) quires little labor, after coding the algorithm. One disaly
tage of the simulation method is that the time required to run
The contributed information (CI) of a nodem is the prod- the many simulations needed to accurately estimate the fre-
uct of the amount of information represented by the node anduency of low-probability messages usually found near the

the probability the node is visited. Formally, leaves of the dialogue tree may be prohibitive. In addition,
this method requires a different simulation for each segttif
Cl(m) = PV(m)IC(m) ©) parameters of interest. For example, the results givengn Fi

; P ; .ure 2 would require 1220 sets of simulations: one for each of
We use expected information in dialogue as the metmgzz team sizeg and 10 settings for the number of bins

for communication. Expecteq information of a dlalogue (El ™ d thod is t 9 lculate the edae lab .I

represented by dialogue tréds the sum of the contributed € second method 1s 1o calculate the edge labels ana-

information of each node id. Formally, lytically. This approach uses the common knowledge from
¥ which the bidder’s value is drawn, and the knowledge ac-
El(d) = Z Cl(m) (4) quired through messages represented by higher levels of the

tree. The main drawback with this approach is that it is labor
intensive because an analyst must reason about the régeiver

Contributed information provides a straightforward way to mental model for each message in each algorithm. The main
separate the information contribution of messages seritdoy t advantage of this approach is that the procedure for generat
center from those sent by the bidder. The child nodes of a reng edge labels in one particular setting (e.g., for a teag0of
ply node represent messages sent by the center and the chédents and 4 bins) applies equally well to other settingg, (e.
nodes of a query node represent messages sent by the bidd&t.agents and 8 bins) by substituting appropriate parameter
The amount of information sent by the bidder is the sum ofAn additional advantage is that the edge labels are catxlilat
the contributed information of all query nodes and the anounprecisely rather than estimated.

me&Nodes(d)

18 Workshop on Multiagent Planning and Scheduling

ICAPS 2005

120

100

80 Bisection

60

Number of Bidders

40

20

Figure 1: Highest three levels of a dialogue tree for Bigercti /Sealed—b|d

auction with four bidders and sixteen bins 2 4 8 16 32 64 128 256 512 1024
Number of Bins

The results presented in this paper were based on generat-
ing edge labels using the second method. The first methoBigure 2: Algorithm with lowest expected information trans
was used to verify the results. The rest of this section promitted for varying numbers of bidders and bins
vides an example of a dialogue tree for the Bisection auction

to illustrate the use of dialogue trees to measure the exgect .
g 0 The edges incident on the next reply nodes are labeled 0.5.

amount of information transmitted in the five auctions. De- h : K hat the bidder’ | d
tails of the analysis have been omitted due to lack of space.N€ auctioneer knows (1) that the bidder's value was drawn

Rauenbuscf2004 provides the details of the analysis of the Uniformly from 0-15 by common knowledge; and (2) the bid-

dialogue trees for each auction der's value is greater than 8 by virtue of ti&s response rep-
: : . . . _resented in a higher level of the tree. Therefore, the anictio
The calculation of the edge labels in any dialogue tree Ir]'ﬁer’s believes that there is a probability of 0.5 that thelbits

volves reasoning about the knowledge of the receiver of each is higher than 12.

message: the distribution from which the bidder’s value is . o
drawn and all messages represented in higher levels of the The calculation of the edge labeled 0.661, incident on the

tree. Figure 1 shows the dialogue tree that represents ghe firnOde labeled 14 in the tree, is complex and full details are

. : itted. To get a feeling for why, the analysis begins with
five messages exchanged between the auctioneer and one bR ; '
der in a Bisection auction. In the tree, the message contini the knowledge that given that the bidder senttEmessage

: : represented by the top of the edge, the message represented
tnhoedkéeviittaelz%%r;)se query with vahis represented by a query by the node labeled 14 will be sent if and only if at least one

T id le of th ing involved i other bidder also has value greater than 12. But the bidder
0 provide an example of the reasoning INVolved In COM-~ ¢ that at least one other bidder had value greater than 8.

puting edge labels, we specifically consider the edges on th?he calculation involves the bidder assiani :
gning a belief eect
path from the root node label@do the leaf node labeleth. representing is belief that each of one, two, and three other

Calculation of edge labels in the figure assumes that there af . . o ; .
four bidders, with values drawn from 16 bins—O0 through 15E)gdn(1§lrjs£es(}lllljsrﬁ]rg?;]ri15|Cé?gfuctlon. The value 0.661 is then

inclusive.
The root of the tree corresponds to the best response queg/ Result
with value 8. The bidder replies to this query witks if its esults
value is greater than or equal to 8, addlotherwise. The re- Figure 2 indicates the algorithm that has lowest expected in
ceiver of theYes or No message—the auctioneer—believesformation transmitted for increasing numbers of bidders an
that theYes message will be sent with probability 0.5 be- for increasing numbers of bins. It clearly shows that chogsi
cause it knows the distribution from which the bidder’s walu the algorithm that needs least expected information trégism
is drawn. Therefore, the edge into thes node is labeled 0.5. sion is highly dependent on the two parameters of the envi-
To compute the next edges, labeled 0.125 and 0.875, wenment. For large numbers of bidders and bins, Bisection
first assume that the bidder sent&s response to the first requires the least communication. Sealed-bid, Dutch, and
guery. The bidder will win the auction (and will be sent a Staged auctions each require the least communicationfor pa
message indicating that it is assigned to the item) if angl onl ticular parameter settings.
if no other bidder sent #esresponse to the first query. Given For a very small number of bidders and bins (fewer than
the common knowledge that bidders’ values are distributedive bidders with two or four bins, and fewer than three bid-
uniformly between 0 and 15, the probability that all threeders with eight bins) the Sealed-bid auction performs best.
other bidders sent ¥es query is(0.5)> = 0.125. There- A sealed-bid auction by definition requires the maximum
fore, the edge incident on th&ssign node is labeled 0.125, amount or revelation and no coordination. Therefore, for
and the edge incident on the 12 query node is labeled with itgery small problems, the savings in revelation from any othe
complement 0.875. auction method are outweighed by the cost of coordination.

Workshop on Multiagent Planning and Scheduling 19

ICAPS 2005

o decision making. One such approach counted the number of

—~Seald-bd| messages required to arrive at a team decifntiz et al.,
Dutch 2003, which is equivalent to assuming that each message has
10+ —— Japanese 1
\i\ e Bisection a fixed length. In systems with communication channels that

— = ~ Staged | carry encoded messages, the assumption that each message
: has a fixed length does not hold. Under a fixed length assump-
tion, the Sealed-bid auction would always be preferred sThu
such analyses may be misleading because an algorithm with
fewer fixed-length messages will not always be the cheaper
algorithm in terms of expected information transmitted.
Sunderham and ParkE003 measure the volume remain-
ing in the space of feasible private information after bigde
e have sent the auctioneer constraints on their privaterimder
2 4 8 16 32 64 128 256 512 1024 tion in a multi-attribute auction. They use this metric torco
Number of Bins pare the amount of revelation in auctions. For our purposes,
entropy is a preferred metric because it provides a direat me
Figure 3: Expected information transmitted per bidder forsure of bandwidth required by an auction and it provides the
varying numbers of bins with 60 bidders comIm(_)n currency of bits to measure both coordination and
revelation.

Communication complexitjKushilevitz and Nisan, 1996

When there are two bins, the Japanese auction has the same,\ides an alternative method for analyzing communicatio
communication properties as the Sealed-bid auction becauggtyeen agents. Grigorieva et E2002 use communication

the first and only query in the Japanese auction is always seghmplexity to analyze the bisection auction. Communicatio
and the bidder reveals its value (by its response that itelica complexity evaluates the worst case amount of communica-

whether its value is in the higher or lower bin). tion required for two agents to compute a function. The com-
For all but the smallest numbers of bidders and bins, the Bix, inication complexity model assumes that sending each bi-

section, Dutch, and Staged Japanese auctions perform Well,ry message costs one bit. If any prior information is avail

The graph in Figure 3 shows the expected amount of inforyp e ‘it is ignored for the purposes of calculating communi-
mation transmitted between the center and each bidder for @iqn complexity. As long as thereseme arbitrarily small

varying number of bins for a constant 60 bidders. __possibility that an agent will send a ‘0", that communicatio
The first thing of note on the graph is that the COMMuNICatgsts one bit. Protocol tred¥ao, 1979 are used as a tool

tion requirements of the Sealed-bin auction increasefigea , eyajuate communication complexity of an algorithm while
as the number of bins increases exponentially. The Seale

; . = ot , ialogue trees are used to calculate expected informatian i
bid auction has zero coordination cost and a revelation CO%ialogue that represents messages sent in an algorithm

thz%_tr:s Iogarri]thhmic in Lhe nurEber of gins.f bins | The main benefit of this assumption is that there is no need
e graph shows that as the number of bins Increases expgs 4ssume a prior distribution, and that simplifies the analy

nentially, the expected amount of communication requised b is " The main drawback is that it assumes a particular encod-

the Bisection auction rises then levels off. For a smaII_ nu_m-Ing of messages and therefore no savings can be attained by

Riternative encodings. A system designer that relies on com

icati ; ts actually d th bmunic:ation complexity in choosing an auction will select an
communication requirements actually decrease as the Mumbg, +tjon that performs well under a worst case assumption of

of bins increase. Therefore, as the number of bins inCreaseg,q encoding cosif each message. In this paper, we assume
the auction with the lowest communication costs is first they, 5 5y stem designers prefer choosing an auction basee on th
S_taged auction, then the Dutch auction and finally the B'Secéxpected information transmitted.
tion auction. Shoham and Tennenholi200] use a method related to
communication complexity for the analysis of the functions
6 Related Work computed in team dzcisign-making meychanisms. They de-
Economic analysis of auctioiRasmussen, 1989, inter dlia fine f as the maximum value of bidders’ willingness to pay
focuses on the effect of auction rules and prices on theestrat for an item, where each biddéhas a willingness to pay of
gies of non-cooperative bidders. While this paper is con<;. They imply that the domain of; is continuous on the in-
cerned with systems in which strategies can be imposed bigerval (0, maxprice) and assume that each bidderan com-
methods external to the auction itself, dialogue trees @n bmunicater; to the auctioneer with one bit by making use of
used to measure communication requirements of all types af common clock. They claim that by using an auction similar
auctions. In multiagent systems where the assumption of exe the Dutch auction, the functiofi can be computed by a
ternally imposed incentives does not hold, dialogue trees ¢ single bidder communicating a single bit.
be used to compare the communication costs of auctions that In both Yao’s theory of communication complexity and
impose desirable incentives on the bidders. Shannon’s theory of informatiofShannon, 1948 the cost
Researchers in computer science have used several alterrd-communicating an arbitrary value drawn from a continu-
tives to entropy for measuring communication in multiagentous interval is infinite, not a single bit, because there is an

Information (bits)
(o))

requirements. For small numbers of bins, the Dutch aucion

20 Workshop on Multiagent Planning and Scheduling

ICAPS 2005

infinite number of messages that the bidder can send to thhat agents were honest—small adjustments to the auctions
center. The theory of information makes assumptions thatules instead allow us to build incentives into an auction di
are consistent with modern wired and wireless computer netectly. We plan to evaluate the communication costs inclirre
works, in which messages can be encoded. Shoham and Temy auctions with built-in incentives and analyze the impct
nenholtz’ critical assumption that a continuous value may b those incentives on the correct choice of auction method.
communicated in one bit does not hold in modern multiagent

systems. 8 Acknowledgments

Relying on Shoham and Tennenholtz assumptions WOUIdI‘his material is based on work supported by the National Sci-
lead a system designer to always choose their version of th

X S N O € ce Foundation under Grant No. 11S-9978343.
Dutch auction to minimize the amount of communication
from the bidder to the center. This paper shows that the ex-
pected amount of information communicated by an algorith eferences
is highly dependent on the number of bidders and the distribu[Cover and Thomas, 199IThomas M. Cover and Joy A.
tion of bidders’ private values. The Dutch auction is oftet n Thomas. Elements of Information Theory. Wiley-
the algorithm that minimizes the expected amount of commu- Interscience, 1991.

nication from the bidder to the center. Therefore, a SyStenPGrigorievaet al., 2004 Elena Grigorieva, P. Jean-Jacques
designer that relies on Shoham and Tennenholtz’ assumption Herings Rudolf Miiller. and Dries Vermeulen. The private

may Incur unnecessary costs. value single item bisection auction. METEOR Research

Much prior work[Shoham and Tennenholtz, 2001; Sun- pemoranda, number RM/02/035. Maastricht University,
deram and Parkes, 2003, inter &les centered around mea- 2002.

suring how much of a bidder’'s preferences are revealed b

an algorithm instead of how much bandwidth is used by art/Hunsberger and Grosz, 200Quke Hunsberger and Bar-
algorithm. Therefore, a common assumption has been that bara J. Grosz. A c.omblnatorlal auction for. collaborative
coordination messages are free while revelation messages a P/anning. InProceedings of the Fourth International Con-
costly. Under that assumption, it is desirable to selectlan a férence on Multi-Agent Systems (ICMAS-2000), 2000.
gorithm with low revelation costs, even if it has high coerdi [Kushilevitz and Nisan, 1996Eyal Kushilevitz and Noam
nation costs. The results presented in Section 5 are for the Nisan. Communication Complexity. Cambridge Univer-
sum of revelation and coordination costs and differ fromhsuc sity Press, 1996.

prior work for several reasons. However, situations in Wwhic [Ortiz et al.,, 2003 Charles L. Ortiz, Timothy W. Rauen-

only one direction of communication is important can be han- busch, and Eric Hsu. Dynamic resource-bounded negotia-
dled easily by the models described in this paper by ignoring i, in non-additive domains. In Victor Lesser, Charles L.

the other direction in the analysis. Ortiz, Jr., and Milind Tambe, editor§istributed Sensor
) Networks: A Multiagent Perspective. Kluwer Academic
7 Conclusion and Future Work Publishers, 2003.

In this paper, we presented three major contributions.t,Firs [Rasmussen, 198%ric Rasmussen.Games and Informa-

we presented an argument for measuring expected informa- tion. Blackwell, 1989.

tion transmitted in a dialogue to determine the bandwidthfRauenbusch, 2004Timothy W. Rauenbusch.Measuring

need by multiagent algorithms. Second, we provided a Information Transmission for Team Decision Making. PhD

method for measuring expected information using dialogue thesis, Harvard University, 2004.

]Eir\?gzu;!g;ds' I\g’Z dsshtz)wr?ss(iéﬁr;:igagtighnast]fgretrgﬁﬁi;o ::ta;yéEShannon, 1948C. E. Shannon. A mathematical theory of
X . . 9 YS* communicationBell System Technical Journal, 27, 1948.

tem design that differ from recommendations made in previ-

ous work. The results of the analysis indicated that thescorr [Shoham and Tennenholtz, 240Y. Shoham and M. Ten-

choice of auction depends on the number of bidders and the nenholtz. Rational computation and the communication

size of the sample space from which bidders’ values for the complexity of auctions.Games and Economic Behavior,

item are drawn. The Staged, Dutch, and Bisection auctions 35(1-2):197-211, 2001.

are each appropriate for different situations, and thee®eal [Sunderam and Parkes, 2Q08ditya V. Sunderam and
bid auction is best for very small problems. The guidelines pavid C. Parkes. Preference elicitation in proxied mul-
presented in this paper could lead to real savings in commu- tjattribute auctions. IrProceedings of the Fourth ACM
nication bandwidth with no loss in decision quality. Conference on Electronic Commerce, 2003.
In future work, we plan to use dialogue trees to analyz C .

: ' . Yao, 1979 Andrew Chi-Chih Yao. Some complexity ques-
algorithms for more general team decision problems thai tions related to distributive computing (preliminary re-
single-item assignment and for more general algorithms tha oort). I Proceedings of the eleventh annual ACM sym-

auctions. Auctions are commonly suggested for item or task . .
assignment in multiagent systems because they are a conve- Egs%gm on Theory of computing, pages 209-213, Atlanta,

nient method for structuring communication between agents
We plan to compare other methods for allocating a single
item, such as inter-agent exchange, to auctions. We assumed

Workshop on Multiagent Planning and Scheduling 21

ICAPS 2005

Coordinating Agile Systems Through The
Model-based Execution of Temporal Plans*

Thomas Léauté and Brian Williams
MIT Computer Science and Artificial Intelligence Laboratory (CSAIL)
Bldg. 32-G273, 77 Massachusetts Ave., Cambridge, MA 02139
{thleaute, williams } @mit.edu

Abstract

Agile autonomous systems are emerging, such as un-
manned aerial vehicles (UAVs), that must robustly per-
form tightly coordinated time-critical missions; for ex-
ample, military surveillance or search-and-rescue sce-
narios. In the space domain, execution of tempo-
rally flexible plans has provided an enabler for achiev-
ing the desired coordination and robustness. We ad-
dress the challenge of extending plan execution to
non-holonomic systems that are controlled indirectly
through the setting of continuous state variables.

Our solution is a novel model-based executive that takes
as input a temporally flexible state plan, specifying in-
tended state evolutions, and dynamically generates an
optimal control sequence. To achieve optimality and
safety, the executive plans into the future, framing plan-
ning as a disjunctive programming problem. To achieve
robustness to disturbances and tractability, planning is
folded within a receding horizon, continuous planning
framework. Key to performance is a problem reduction
method based on constraint pruning. We benchmark
performance through a suite of UAV scenarios using a
hardware-in-the-loop testbed.

Introduction

Autonomous control of dynamic systems has application in
a wide variety of fields, from managing a team of agile un-
manned aerial vehicles (UAVs) for fire-fighting missions,
to controlling a Mars life support system. The control of
such systems is challenging for several reasons. First, they
are non-holonomic systems, which means they are under-
actuated (not all state variables are directly controllable);
second, their models involve continuous dynamics described
by differential equations; third, controlling these systems
usually requires tight synchronization; and fourth, the con-
troller must be optimal and robust to disturbances.

An autonomous controller for agile systems must, there-
fore, provide three capabilities: 1) to handle tight coordina-
tion, the system should execute a temporal plan specifying
time coordination constraints. 2) To deal with the under-
actuated nature of the system, it should elevate the interac-
tion with the system under control (or plant) to the level

*This research is supported in part by The Boeing Company
under contract MIT-BA-GTA-1, and by the Air Force Research Lab
award under contract F33615-01-C-1850

22

at which the human operator is able to robustly program
the plant in terms of desired state evolution, including state
variables that are not directly controllable. 3) To deal with
the non-holonomic dynamics of the plant, the intended state
evolution must be specified in a temporally flexible manner,
allowing robust control over the system.

Previous work in model-based programming introduced
a model-based executive, called Titan (Williams 2003), that
elevates the level of interaction between human operators
and hidden-state, non-holonomic systems, by allowing the
operator to specify the behavior to be executed in terms of
intended plant state evolution, instead of specific command
sequences. The executive uses models of the plant to map
the desired state evolution to a sequence of commands driv-
ing the plant through the specified states. However, Titan
focuses on reactive control of discrete-event systems, and
does not handle temporally flexible constraints.

Work on dispatchable execution (Vidal & Ghallab 1996;
Morris, Muscettola, & Tsamardinos 1998; Tsamardinos,
Pollack, & Ramakrishnan 2003) provides a framework
for robust scheduling and execution of temporally flexible
plans. This framework uses methods based on distance
graphs to both tighten time constraints in the plan, in or-
der to guarantee dispatchability, and propagate occurrence
of events during plan execution. However, this work was ap-
plied to discrete, directly controllable, loosely coupled sys-
tems, and, therefore, must be extended to non-holonomic
plants.

Previous work on continuous planning and execution
(Ambros-Ingerson & Steel 1988; Wilkins & Myer 1995;
Chien et al. 2000) also provides methods to achieve ro-
bustness, by interleaving planning and execution, allowing
on-the-fly replanning and adaptation to disturbances. These
methods, inspired from model predictive control (MPC)
(Propoi 1963; Richalet ef al. 1976), involve planning and
scheduling iteratively over short horizons, while revising the
plan when necessary during execution. This work, however,
needs to be extended to deal with temporally flexible plans
and non-holonomic systems with continuous dynamics.

We propose a model-based executive that unifies the three
previous approaches and enables coordinated control of ag-
ile systems, through model-based execution of femporally
flexible state plans. Our approach is novel with respect to
three aspects. First, we provide a general method for encod-

Workshop on Multiagent Planning and Scheduling

Base 1

End in [v, at fire]

Base 2

a) b)

End in [v, at fire]

ICAPS 2005

[0,20]

Start in [v, & v, at base]

Remain in [v, at fire]

Remain in [v, at fire]

Figure 1: a) Map of the terrain for the fire-fighting example; b) Corresponding temporally flexible state plan.

ing both the temporal state plan and the dynamics of the sys-
tem as a mixed discrete-continuous mathematical program.
Solving this program provides time-optimal trajectories in
the plant state space that satisfy the system dynamics and
the state plan. Second, to achieve efficiency and robust-
ness, we apply MPC for planning of control trajectories, in
the context of continuous temporal plan execution for non-
holonomic dynamical systems. MPC allows us to achieve
tractability, by reasoning over a limited receding horizon.
Third, in order to further reduce the complexity of the pro-
gram and solve it in real time, we introduce pruning policies
that enable us to ignore some of the constraints in the state
plan outside the current planning horizon.

Problem Statement

Given a dynamic system (a plant) described by a plant
model, and given a temporally flexible state plan, specifying
the desired evolution of the plant state over time, the con-
tinuous model-based execution (CMEx) problem consists in
designing a control sequence that produces a plant state evo-
lution that is consistent with the state plan. In this section
we present a formal definition of the CMEx problem.

Multiple-UAV Fire-fighting Example

This paragraph introduces the multiple-UAV fire-fighting
example used in this paper. In this example, the plant con-
sists of two fixed-wing UAVs, whose state variables are their
2-D Cartesian positions and velocities. The vehicles evolve
in an environment (Fig. 1a) involving a reported fire that the
team is assigned to extinguish. To do so, they must navigate
around unsafe regions (e.g. obstacles) and drop water on
the fire. They must also take pictures after the fire has been
extinguished, in order to assess the damage. An English de-
scription for the mission’s state plan is:

Vehicles vy and vo must start at their respective base
stations. vy (a water tanker UAV) must reach the fire
region and remain there for 5 to 8 time units, while it
drops water over the fire. v (a reconnaissance UAV)
must reach the fire region after vy is done dropping wa-
ter and must remain there for 2 to 3 time units, in order
to take pictures of the damage. The overall plan execu-
tion must last no longer than 20 time units.

Definition of a Plant Model

A plant model M = (s, S,u,Q, SE) consists of a vector s(t)
of state variables, taking on values from the state space S C

Workshop on Multiagent Planning and Scheduling

R"™, a vector u(t) of input variables, taking on values from
the context) C R™, and a set S& of state equations over u,
s and its time derivatives, describing the plant behavior with
time. .S and §2 impose linear safety constraints on s and u.

In our multiple-UAV example, s is the vector of 2-D co-
ordinates of the UAV positions and velocities, and u is the
acceleration coordinates. S€ is the set of equations describ-
ing the kinematics of the UAVs. The unsafe regions in S
correspond to obstacles and bounds on nominal velocities,
and the unsafe regions in 2 to bounds on accelerations.

Definition of a Temporally Flexible State Plan

A temporally flexible state plan P = (£,C, A) specifies a
desired evolution of the plant state, and is defined by a set
& of events, a set C of coordination constraints, imposing
temporal constraints between events, and a set A of activ-
ities, imposing constraints on the plant state evolution. A
coordination constraint ¢ = (e, eq, AT, AT)
constrains the distance from event e; to event e, to be
in [ATT CATT] C [0,400]. An activity a =
(e1,e2,cs) has an associated start event ey and an end
event es. Given an assignment 7" : £ +— R of times to
all events in P (a schedule), cg is a state constraint that can
take on one of the following forms, where Dg, Dg, Dy and
D3 are domains of S described by linear constraints on the

state variables:

1. Start in state region Dg: s(T'(e1)) € Dg;
2. End in state region Dg: s(T'(e2)) € Dg;
3. Remain in state region Dy: ¥t € [T(e1),T(ez)],s(t) €

Dy;

4. Go by state region D3: 3t € [T'(e1),T(e2)],s(t) € D3.

We illustrate a state plan diagrammatically by an acyclic
directed graph in which events are represented by nodes, co-
ordination constraints by arcs, labeled by their correspond-
ing time bounds, and activities by arcs labeled with associ-
ated state constraints. The state plan for the the multiple-
UAV fire-fighting mission example is shown in Fig. 1b.

Definition of the CMEx Problem

Schedule T for state plan P is temporally consistent if it sat-
isfies all ¢ € C. Given an activity a = (ej, ez, cg) and a
schedule T, a state sequence S = (Sg . ..S;) satisfies activ-
ity a if it satisfies cg. S then satisfies state plan P if there
exists a temporally consistent schedule such that S satisfies

23

Temporally Flexible
Plant Model State Plan

| |

Continuous Model-based Executive

State Plant | Continuous
Estimator | State Planner
\ v

Observations Control Sequence

Figure 2: Continuous model-based executive architecture

every activity in .A. Similarly, given a plant model M and
initial state sg, a control sequence U = (ug...w;) safis-
fies P if it generates a state sequence that satisfies P. U is
optimal if it satisfies P while minimizing an objective func-
tion F(U,S,T). A common objective is to minimize the
scheduled time T'(eg) for the end event e of P.

Given an initial state sy, a plant model M and state
plan P, the CMEx problem consists of generating, for
each t > 0, a control action uw; from a control se-
quence (ug...u;_7) and its corresponding state sequence
(So - ..St), such that (ug . ..u;) is optimal. A corresponding
continuous model-based executive consists of a state estima-
tor and a continuous planner (Fig. 2). The continuous plan-
ner takes in a state plan, and generates optimal control se-
quences, based on the plant model, and state sequences pro-
vided by the state estimator. The estimator reasons on sensor
observations and on the plant model in order to continuously
track the state of the plant. Previous work on hybrid estima-
tion (Hofbaur & Williams 2004) provides a framework for
this state estimator; in this paper, we focus on presenting an
algorithm for the continuous planner.

Overall Approach

Previous model-based executives, such as Titan, focus on re-
actively controlling discrete-event systems (Williams 2003).
This approach is not applicable to temporal plan execu-
tion of systems with continuous dynamics; our continuous
model-based executive uses a different approach that con-
sists of planning into the future, in order to perform opti-
mal, safe execution of temporal plans. However, solving the
whole CMEXx problem over an infinite horizon would present
two major challenges. First, the problem is intractable in the
case of long-duration missions. Second, it would require
perfect knowledge of the state plan and the environment be-
forehand; this assumption does not always hold in real-life
applications such as our fire-fighting scenario, in which the
position of the fire might precisely be known only once the
UAVs are close enough to the fire to localize it. Furthermore,
the executive must be able to compensate possible drift due
to approximations or errors in the plant model.

Receding Horizon CMEx

Model Predictive Control (MPC), also called Receding
Horizon Control, is a method introduced in (Propoi 1963;

24

ICAPS 2005

Plant Temporally Flexible

Model State Plan
Plant Encode as Solve up Extract
an disjunctive —» to limited —> control
State LP horizon sequence

v
Control Sequence

Figure 3: Receding horizon continuous planner

Richalet et al. 1976) that tackles these two challenges in
the context of low-level control of systems with continuous
dynamics. MPC solves the control problem up to a limited
planning horizon, and re-solves it when it reaches a shorter
execution horizon. This method makes the problem tractable
by restricting it to a small planning window; it also allows
for on-line, robust adaptation to disturbances.

In this paper, we extend MPC to continuous model-based
execution of temporal plans by introducing a receding hori-
zon continuous model-based executive. We formally define
receding horizon CMEx as follows. Given a state plan P, a
plant model M, and an initial state s(¢g), single-stage, lim-
ited horizon CMEx consists of generating an optimal control
sequence (U, ...W,n,) for P, where N; is the planning
horizon. The receding horizon CMEx problem consists of
iteratively solving single-stage, limited horizon CMEx for
successive initial states s(to+4-n¢) withi = 0,1, .. ., where
ny < N; is the execution horizon. The architecture for our
model-based executive is presented in Fig. 3.

Disjunctive Linear Programming Formulation

As introduced in Fig. 3, we solve each single-stage limited
horizon CMEx problem by encoding it as a disjunctive lin-
ear program (DLP) (Balas 1979). A DLP is an optimization
problem with respect to a linear cost function over decision
variables, subject to constraints that can be written as logical
combinations of linear inequalities (Eq. (1)). In this paper,
we solve DLPs by reformulating them as Mixed-Integer Lin-
ear Programs. Other current work addresses directly solving
DLPs (Krishnan 2004).

min f(x)
subjectto: \;\V,; 9i(x) <0 M

Any arbitrary propositional logic formula whose proposi-
tions are linear inequalities is reducible to a DLP. Hence, in
this paper, we expose formulae in propositional form.

Single-stage Limited Horizon CMEx as a DLP

We now present how we encode single-stage limited horizon
CMEX as a DLP. Our innovation is the encoding of the state
plan as a goal specification for the plant.

Workshop on Multiagent Planning and Scheduling

State Plan Encodings

In the following paragraphs, we present the encodings for
the state plan. A range of objective functions are possible,
the most common being to minimize completion time. To
encode this, for every event e € £, we add to the DLP cost
function, the time 7'(e) at which e is scheduled.

Temporal constraints between events: Eq. (2) encodes
a temporal constraint between two events eg and eg. For
example, in Fig. 1b, events e; and es must be distant from
each other by a least 0 and at most 20 time units.

ATmin

€Ss—€ER

<T(eg)—T(eg) < AT 2)

€Ss—€ER

State activity constraints: Activities are of the following
types: start in, end in, remain in and go by. Start in and go
by are derivable easily from the primitives remain in and end
in. We present the encodings for these two primitives below.
In each case, we assume that the domains D and Dy are
unions of polyhedra (Eq. (6)), so thats, € Dg and s; € Dy
can be expressed as DLP constraints similar to (Eq. (7)).

Remain in activity: Eq. (3) presents the encoding for
the remain in state Dy activity between events eg and eg.
This imposes s € Dy for all time steps between T'(eg) and
T(eg). Our example imposes the constraint “Remain in
state [v; in fire region]”, which means that v; must be in
the fire region between e and es while it is dropping water.
To € R denotes the initial time instant of index ¢t = 0.

T(es) S To +t- AT

t—O/\N{/\ T(GE)>T0+t.AT}éStEDV 3)

End in activity: Consider a end in activity imposing
s € Dy at the time T'(eg) when event e is scheduled. An
example in our fire-fighting scenario is the “End in state [vo
in fire region]” constraint imposing vs to be in the fire region
at event e4. The general encoding is presented in Eq. (4),
which translates to the fact that, either there exists a time in-
stant of index ¢ in the planning window that is AT-close to
T(eg) and for which s; € Dy, or event e must be sched-
uled outside of the current planning window .

T(eg) > Ty + (t — L)AT

Vico.n, AN T(eg) <To+ (t+ 35)AT

AN St € DV (4)
v T(ep) <To— &F
v T(eg) > To+ (Ny + 3)AT

Guidance heuristic for End in activities: During exe-
cution of an “End in state region Dg” activity, the end event
may be scheduled beyond the current horizon. In this case,
the model-based executive constructs a heuristic, in order to
guide the trajectory towards Dg. For this purpose, an es-
timate of the “distance” to Dg from the end of the current
partial state trajectory is added to the DLP cost function, so

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

that the partial trajectory ends as “close” to D g as possible.
In the case of the multiple-UAV fire-fighting scenario, this
“distance” is an estimate of the time needed to go from the
end of the current trajectory to the goal region Dg.

The heuristic is formally defined as a function hp,, : § —
R, where S = {S; C S} is a finite partition of S such that
Dg =S; . € S. Given S; € S, hp,(S;) is an estimate of
the cost to go from S; to Dg. In the fire-fighting example,
S is a grid map in which each grid cell S; corresponds to
a hypercube centered on a state vector s;, and hp,(S;) is
an estimate of the time necessary to go from state s; to the
goal state s; Dy Similar to (Bellingham, Richards, & How
2002), we compute hp, by constructing a visibility graph
based on the unsafe regions of the (x, y) state space, and by
computing, for every i, the cost to go from (z;,y;) € S; to
the goal state (i, _,Yip,) € D

Eq. (5) presents the constraint, for a given “End in state
region Dg” activity a, starting at event eg and ending at
event eg. This encodes the fact that, if a is scheduled to
start within the execution horizon but end beyond, then the
executive must choose a region S; € S so that the partial
state trajectory ends in .S;, and the value & of the heuristic at
S; is minimized (by adding A to the DLP cost function).

T(es) < Tp+n - AT

A T(BE) >Ty+ne - AT
_ &)
h =hp,(S;i)
= Vs,es A Sn, € 5
Eq. (5) can be simplified by reducing S to a subset Scs
that excludes all the S; unreachable within the horizon. For
instance, in the multiple-UAV example, the maximum veloc-
ity constraints allow us to ignore the .S; that are not reachable
by the UAVs within the execution horizon. We present in a
later section how M allows us to determine, in the general

case, when a region of the state space is unreachable.

Plant Model Encodings

Recall that a plant model M consists of a state space S and
a context () imposing linear constraints on the variables, and
a set of state equations S€. We represent unsafe regions in
S and € by unions of polyhedra, where a polyhedron Pgs of
S is defined in Eq. (6). Polyhedra of € are defined similarly.

Ps={seR"|a]s<b;,i=1...np,} (6)

The corresponding encoding (Eq. (7)) constrains s; to be
outside of Pg for all ¢. In the UAV example, this corresponds
to the constraint encoding obstacle collision avoidance.

ANV

t=1..Ny i=1..npg

al'sy > b; (7

The state equations in SE are given in DLP form in
Eq. (8), with the time increment AT assumed small with
respect to the plant dynamics. In our fixed-wing UAV ex-
ample, we use the zero-order hold time discretization model
from (Kuwata 2003).

Si+1 = As; + Buy 3

25

In this section, we presented how we designed optimal
control sequences that satisfy the state plan, by formulating
the problem as a DLP using an MPC framework. We now
present how we simplify the DLP to solve it in real time.

Constraint Pruning Policies

Recall that our executive solves the CMEx problem by en-
coding it as a DLP and iteratively solving it over small plan-
ning windows. The ability of the executive to look into the
future is limited by the number of variables and constraints
in the DLP. In the next section, we introduce novel pruning
policies that dramatically reduce the number of constraints.

Plant Model Constraint Pruning

Recall that M defines unsafe regions in S using polyhedra
(Eq. (6)). The DLP constraint for a polyhedron Pg (Eq. (7))
can be pruned if Pg is unreachable from the current plant
state sg, within the horizon N;. That is, if the region R of all
states reachable from sy within V; is disjunct from Pg. R is
formally defined in Eq. (9) and (10), with Ry = {so}.

Vt=0...N, —1,

_ St+1 = As; + Buy, (&)
Rt+1 o St+1| St € Rt,ut S Q
R= |J R (10)
t=0...N;

Techniques have been developed in order to compute R
(Tiwari 2003). In the UAV example, for a given vehicle,
we use a simpler, sound but incomplete method, in which
we approximate R by a circle centered on the vehicle and of
radius Ny - AT -v™2* where v™? is the vehicle’s maximum
velocity.

State Plan Constraint Pruning

State plan constraints can be either temporal constraints be-
tween events, remain in constraints, end in constraints, or
heuristic guidance constraints for end in activities. For each
type, we now show that the problem of finding a policy is
equivalent to that of foreseeing if an event could possibly
be scheduled within the current horizon. This is solved by
computing bounds (7T™® Tmax) on T'(e), for every e € £.
Given the execution times of past events, these bounds are
computed from the bounds (AT}, AT[2%,) on the dis-
tance between any pair of events (e, €’), obtained using the
method in (Dechter, Meiri, & Pearl 1991). This involves
running an all-pairs shortest path algorithm on the distance
graph corresponding to P, which can be done offline.

Temporal constraint pruning: A temporal constraint be-
tween a pair of events (eg, ep) can be pruned if the time
bounds on either event guarantee that the event will be
scheduled outside of the current planning window (Alg. 1).
However, pruning some of the temporal constraints spec-
ified in the state plan can have two bad consequences. First,
implicit temporal constraints between two events that can
be scheduled within the current planning window might no

26

ICAPS 2005

Alg. 1 Pruning policy for the temporal constraint between
events eg and eg
L if T2 < Tp then
2: prune {eg has already been executed }
3: else if 7" > T + N, - AT then
4: pmne{se s is out of reach within the current horizon}
5: else if T.2** < T} then
6: prune {eg has already been executed}
7
8
9

:else if 71" > Ty + Ny - AT then
: prune{z g is out of reach within the current horizon}
: end if

Alg. 2 Pruning policy for the absolute temporal constraint
on an event e
1 if 77" < T} then
prune {e has already been executed}
else if 7" > Ty + N, - AT then
prune{e is out of reach within the current horizon}
POSTPONE(e)
end if

AN AN A

longer be enforced. Implicit temporal constraints are con-
straints that do not appear explicitly in the state plan, but
rather result from several explicit temporal constraints. Sec-
ond, the schedule might violate temporal constraints be-
tween events that remain to be scheduled, and events that
have already been executed.

To tackle the first issue aforementioned, rather than en-
coding only the temporal constraints that are mentioned
in the state plan, we encode the temporal constraints be-
tween any pair of events (e, ¢’), using the temporal bounds
(AT&}}%, AT%y) computed by the method in (Dechter,
Meiri, & Pearl 1991). This way, no implicit temporal con-
straint is ignored, because all temporal constraints between
events are explicitly encoded.

To address the second issue, we also encode the abso-
lute temporal constraints on every event e: 7" < T'(e) <
T7m#*. The pruning policy for those constraints is presented
in Alg. 2. The constraint can be pruned if e is guaranteed to
be scheduled in the past (i.e. it has already been executed,
line 1). It can also be pruned if e is guaranteed to be sched-
uled beyond the current planning horizon (line 3). In that
case, e must be explicitly postponed (Alg. 3, lines 1 & 2)
to make sure it will not be scheduled before T}, at the next
iteration (which would then correspond to scheduling e in
the past before it has been executed). The change in 7" is
then propagated to the other events (Alg. 3, line 3).

Alg. 3 POSTPONE(e) routine to postpone an event e

I: T™0 Ty + Ny - AT
2: add T(¢) > Ty + N - AT to the DLP

3: for all events ¢’ do {propagate to other events}
4 TP max(THR, T 4 AT,)
5: end for

Workshop on Multiagent Planning and Scheduling

Alg. 4 Pruning policy for a “Remain in state region Dy”
activity starting at event eg and ending at event e

1 if 702 < T then

2: prune {activity is completed}

3: elseif 72" < Tp then

4: do not prune{activity is being executed }

5: else if 7™ > Ty + N, - AT then
6: prune {sactivity will start beyond N }
7
8
9
0
1:

s elseif 1,22 < To + Ny - AT then

: do not prune {activity will start within N;}
: elseif RN Dy = () then

. prune; POSTPONE(eg)
end if

Alg. 5 Pruning policy for a “End in state region Dg” activity
ending at event e

1 if T* < T then
2: prune {eg has already occurred}
3: elseif T.0%* < Tp + Ny - AT then
4: do not prune {eg will be scheduled within N, }
5: else if 7" > Ty + N; - AT then
6.
7
8
9

: prune fe g will be scheduled beyond N, }
s elseif RN Dg = (then

. prune; POSTPONE(eg)

. end if

Remain in constraint pruning (Alg. 4): Consider the
constraint cg on a “Remain in state region Dy’ activity a,
between events eg and e (Eq. (3)). If ep is guaranteed to
be scheduled in the past (i.e. it has already occurred, line 1),
then a has been completed and cg can be pruned. Otherwise,
if eg has already occurred (line 3), then a is being executed
and cg must not be pruned. Otherwise, if a is guaranteed
to start beyond the planning horizon (line 5), then cg can
be pruned. Conversely, if a is guaranteed to start within the
planning horizon (line 7), then cg must not be pruned.

Otherwise, the time bounds on T'(es) and T'(ey) provide
no guarantee, but we can still use M to try to prune the
constraint: if M guarantees that Dy is unreachable within
the planning horizon, then cg can be pruned (line 9; refer to
Eq. (9) & (10) for the definition of R). Similarly to Alg. 2,
es must then be explicitly postponed.

End in constraint pruning (Alg. 5): Consider a con-
straint cg on an “End in state region Dg” activity ending
atevent er (Eq. (4)). If ep is guaranteed to be scheduled in
the past (i.e., it has already occurred, line 1), then cg can be
pruned. Otherwise, if the value of T,7** guarantees that eg
will be scheduled within the planning horizon (line 3), then
cs must not be pruned. Conversely, it can be pruned if Te“;;“
guarantees that eg will be scheduled beyond the planning
horizon (line 5). Finally, cg can also be pruned if the plant
model guarantees that Dg is unreachable within the plan-
ning horizon from the current plant state (line 7). Similarly
to Alg. 2, e must then be explicitly postponed.

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

4r —&— Average DLP solving time 1
- = = Real-time threshold

5 6 7 8 9 10
Length of execution horizon

Figure 4: Performance of the model-based executive.

Guidance constraint pruning: The heuristic guidance
constraint for an end in activity a between events eg and
er (Eq. (5)) can be pruned if a is guaranteed either to end
within the execution horizon (T3 < Ty + n; - AT) or to

start beyond (Té’;in > Ty + ne - AT).

In the next section, we show that our model-based execu-
tive is able to design optimal control sequences in real time.

Results and Discussion

The model-based executive has been implemented in C++,
using Ilog CPLEX to solve the DLPs. It has been demon-
strated on a range of fire-fighting scenarios on a hardware-
in-the-loop testbed, comprised of CloudCap autopilots con-
trolling a set of fixed-wing UAVs. This offers a precise as-
sessment of real-time performance on UAVs. Fig. 1a was
obtained from a snapshot of the operator interface, and il-
lustrates the trajectories corresponding to our example.

Fig. 4 presents an analysis of the performance of the ex-
ecutive on a more complex example, comprised of two ve-
hicles, two obstacles, and 26 activities, for a total execu-
tion time of about 1300s. These results were obtained on a
1.7GHz computer with 512MB RAM, by averaging over the
whole plan execution, and over 5 different runs with random
initial conditions. At each iteration, the computation was cut
short if and when it passed 200s.

The x axis corresponds to the length of the execution hori-
zon, ny - AT, in seconds. For these results, we maintained a
planning buffer of Ny- AT —n;- AT = 10s (where N¢- AT is
the length of the planning horizon). The full line represents
the average time in seconds required by CPLEX to solve the
DLP at each iteration, while the dotted line is the line y = x,
corresponding to the real-time threshold.

Fig. 4 shows that, below the value x ~ 7.3s, the model-
based executive is able to compute optimal control se-
quences in real time (the average DLP solving time is below
the length of the execution horizon). For longer planning
horizons corresponding to values of x above 7.3s, CPLEX is

27

unable to find optimal solutions to the DLPs before the exec-
utive is required to replan (average solving time greater than
the execution horizon). Note that in that case, since CPLEX
runs as an anytime algorithm, we can still interrupt it and
use the best solution found so far to generate sub-optimal
control sequences.

Note also that the number of variables in the DLP is lin-
ear in the length of the planning horizon; therefore, the com-
plexity of the DLP is worst-case exponential in the length of
the horizon. In Fig. 4, however, the relationship appears to
be linear. This can be explained by the fact that the DLP is
very sparse, since no constraint in the corresponding MILP
involves more than three or four variables.

Future work includes carrying out more experiments in
order to benchmark the performance of the pruning policies
presented in this paper.

Conclusion

In this paper, we have presented a continuous model-based
executive that is able to robustly execute temporal plans for
agile, non-holonomic systems with continuous dynamics. In
order to deal with the under-actuated nature of the plant and
to provide robustness, the model-based executive reasons
on temporally flexible state plans, specifying the intended
plant state evolution. The use of pruning policies enables the
executive to design optimal control sequences in real time,
which was demonstrated on a hardware-in-the-loop testbed
in the context of multiple-UAV fire-fighting scenarios. Our
approach is broadly applicable to other dynamic systems,
such as chemical plants or Mars life support systems.

References

Ambros-Ingerson, J. A., and Steel, S. 1988. Integrating
planning, execution and monitoring. In Proc. AAAI

Balas, E. 1979. Disjunctive programming. Annals of Dis-
crete Mathematics 5:3-51.

Bellingham, J.; Richards, A.; and How, J. 2002. Receding
horizon control of autonomous aerial vehicles. In ACC.
Chien, S.; Knight, R.; Stechert, A.; Sherwood, R.; and Ra-
bideau, G. 2000. Using iterative repair to improve respon-
siveness of planning and scheduling. In Proc. AIPS.
Dechter, R.; Meiri, 1.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence Journal.

Hofbaur, M. W., and Williams, B. C. 2004. Hybrid estima-
tion of complex systems. IEEE SMC - Part B: Cybernetics.
Krishnan, R. 2004. Solving hybrid decision-control prob-
lems through conflict-directed branch and bound. Master’s
thesis, MIT.

Kuwata, Y. 2003. Real-time trajectory design for un-
manned aerial vehicles using receding horizon control.
Master’s thesis, MIT.

Morris, P.; Muscettola, N.; and Tsamardinos, I. 1998. Re-
formulating temporal plans for efficient execution. In Proc.
KRR, 444-452.

Propoi, A. 1963. Use of linear programming methods for

synthesizing sampled-data automatic systems. Automation
and Remote Control 24(7):837-844.

28

ICAPS 2005

Richalet, J.; Rault, A.; Testud, J.; and Papon, J. 1976.
Algorithmic control of industrial processes. In IFAC Sym.
Id. & Syst. Param. Est., 1119-1167.

Tiwari, A. 2003. Approximate reachability for linear sys-
tems. In Proceedings of HSCC, 514-525.

Tsamardinos, I.; Pollack, M. E.; and Ramakrishnan, S.
2003. Assessing the probability of legal execution of plans
with temporal uncertainty. In Proc. ICAPS.

Vidal, T., and Ghallab, M. 1996. Dealing with uncer-
tain durations in temporal constraint networks dedicated to
planning. In Proc. ECAI, 48-52.

Wilkins, D. E., and Myer, K. L. 1995. A common knowl-
edge representation for plan generation and reactive execu-
tion. Journal of Logic and Computation 5(6):731-761.
Williams, B. C. 2003. Model-based programming of intel-
ligent embedded systems and robotic space explorers. In
Proc. IEEE: Modeling and Design of Embedded Software.

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

Execution Monitoring and Replanning

with Incremental and Collaborative Scheduling

David E. Wilkins', Stephen F. Smith?, Laurence A. Kramer?,
Thomas J. Lee' and Timothy W. Rauenbusch'

! Artificial Intelligence Center
SRI International
Menlo Park, CA 94025
wilkins,tomlee,rauenbusch@ai.sri.com

Abstract

We describe the Flight Manager Assistant (FMA), a
prototype system, designed to support real-time
management of airlift operations at the USAF Air Mobility
Command (AMC). In current practice, AMC flight
managers are assigned to manage individual air missions.
They tend to be overburdened with associated data
monitoring and constraint checking, and generally react to
detected problems in a local, myopic fashion. Consequently,
decisions taken for one mission can often have deleterious
effects on others. FMA combines two key capabilities for
overcoming these problems: (1) intelligent monitoring of
incoming information (for example, weather, airport
operations, aircraft status) and recognizing those situations
that require corrective action, and (2) dynamic rescheduling
of missions in response to detected problems, both to
understand the global implications of changed
circumstances and to determine appropriate rescheduling
actions. FMA builds on two of our existing technologies: an
execution-monitoring framework previously applied to
small-unit operations and control of robots, and a dynamic
scheduling tool that is transitioning into operational use in
AMC's Tanker/Airlift Control Center. FMA's dynamic
mediation module provides for collaborative mission
management by different planning and execution offices by
structuring communication for decision making.

Introduction and Problem Statement

Management of flight operations at the United States Air
Force Air Mobility Command (AMC) is a challenging
problem. AMC typically flies several thousand missions
worldwide on a weekly basis (more in a crisis situation),
involving several hundreds of aircraft and comparable
numbers of aircrews. The execution of any given mission
requires attention to a broad range of constraints relating to
the mission’s requirements (e.g., delivery dates, cargo type
and weight), resource availability (e.g., aircraft, aircrews,
airports, diplomatic clearances), and usage constraints
(e.g., crew duty day restrictions and scheduled return dates,
aircraft speed, range, and capacity, airspace restrictions).
Although missions are planned and globally scheduled to
satisfy such constraints, the dynamics of execution
regularly forces changes. Aircraft break down, airports
become unavailable due to weather, missions become
delayed due to diplomatic clearance problems, and so on,

Workshop on Multiagent Planning and Scheduling

2The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213
sfs,lkramer@cs.cmu.edu

and all such events can warrant reassessment of previous
allocation decisions. In such execution-driven rescheduling
contexts, it is important to weigh potential recovery
options against their prospective impact on future
operations, and to take actions that continue to make the
most effective global use of AMC assets.

In current practice, management of flight operations at
AMC is a stovepiped process, where planning and
execution are treated as sequential steps and information
flows in one direction (from planning to execution). New
mission requirements flow into AMC’s planning offices on
a continuous basis, and as they do aircraft and aircrews are
incrementally allocated to support new missions in
accordance with associated priorities and as resource
availability allows. When a mission gets to within 24 hours
of execution, it is “pushed” from the planning side of AMC
to the execution office, and becomes the responsibility of
an individual flight manager. AMC flight managers take
responsibility for checking to ensure that all mission
constraints remain satisfied before and during execution,
and as problems are detected, they diagnose and revise
mission plans to facilitate mission continuation and/or
recovery. Unfortunately, AMC flight managers are not
well supported in this execution management task. Some
alerting tools do exist for signaling certain kinds of
problems, but there is generally no ability to differentiate
routine checks from exceptional events (i.e., everything
shows up red), and no ability to detect more complex,
compound conditions. Flight managers are typically
overburdened by the data monitoring and constraint
checking activities that are required to ensure the
continuing viability of executing missions. Furthermore,
when problematic situations are detected, flight managers
have no visibility of the larger AMC operating picture, and
must take recovery actions without regard to potential
interactions with other missions. As a result, execution
management often proceeds in fire-fighting mode, where
putting out one fire ignites the next one.

For the past several years, we have been engaged in the
development of technologies that we believe can provide a
basis for more effective flight management. At Carnegie
Mellon University (CMU) we have been developing the

29

AMC Allocator, a dynamic scheduling tool for day-to-day
management of airlift and tanker schedules [Kramer &
Smith 2002, Smith et al. 2004]. The AMC Allocator
provides a range of capabilities for incrementally revising
schedules to accommodate new or changed requirements,
with continued emphasis on efficient resource utilization. It
is currently transitioning into use as a “planning” tool in
the Tanker/Airlift Control center at AMC. At SRI, we have
been developing the Small Unit Operations Execution
Assistant (SUO-EA), which monitors large volumes of
situational data and gets urgent, plan-aware alerts to the
right users [Wilkins et al. 2003]. SUO-EA has been
successfully demonstrated in both the DARPA SUO
program and ONR UCAYV program. Also at SRI, we have
developed technologies for incremental negotiation and
coalition formation technology within the DARPA
Autonomous Negotiating Teams program and the ONR
UCAV program [Ortiz et al. 2003]. Finally, SRI's Open
Agent Architecture (OAA) [Cheyer & Martin 2001]
provides a robust integration infrastructure that has been
used in dozens of programs and applications.

In this paper, we describe the Flight Manager Assistant
(FMA), a system that integrates the above set of
technology components to provide a flexible, mixed-
initiative tool for real-time flight management. Through a
coupling of execution monitoring capabilities with a global
dynamic scheduler, the FMA is designed to promote a
more integrated, and hence more informed, basis for
detecting and responding to exceptional execution events.
The FMA actively monitors data information sources for
expectations it derives from the current schedule,
recognizes deviations immediately, and applies policies for
responding to deviations. Responses to significant
deviations may alert the user to take control. Other options
might include automated responses (when permitted by
policy), or invoking the scheduler to explore alternative
rescheduling options. By integrating status update
information with the current schedule, the FMA indicates
the important consequences of detected events on current
and future operations. Through generation and comparison
of alternative schedule repair options (either through
interaction with the user or automatically), the FMA
supports determination of globally coherent recovery
actions while also promoting schedule changes that
minimize disruption to other missions whenever possible.
A given schedule repair process may also initiate and assist
a collaboration between the user responsible for execution
and the users who planned the missions. Finally, the FMA
can provide automated support for implementing the
human-selected response. The FMA continuously reacts to
new information while interspersing its proactive pursuit of
response procedures.

The broad goal of the FMA project has been to develop

technology that enables increased organizational
responsiveness and effectiveness in managing the

30

ICAPS 2005

dynamics of mission operations. In our view, there are two
key factors to realizing this goal:

* Increased automation. Ubiquitous computers, data
sources, and reliable, high-bandwidth
communication networks are providing too much
information for humans to monitor. In our vision,
flight managers will rely on an automated execution
aid to monitor the large (and ever increasing)
volume of incoming information. By understanding
the plan and situation, such an execution aid will
consider the outputs of multiple monitoring
techniques and tools, and then judge when the user
should be alerted. Good judgment avoids
overalerting. There may be many exceptions noted
in the current plan by various AMC monitoring
tools — the FMA recognizes which are most
important, focuses the human on those, and assists
with developing responses.

* Closing the loop between planning and execution.
The ability to effectively respond to important alerts
requires access to the global state of current and
planned future operations, and to the rationale that
underlies current mission plans/schedules. In our
vision, flight managers will utilize dynamic
scheduling tools to understand the consequences of
detected events, to generate alternative reactions
and evaluate the impact of each, and to provide a
basis for negotiating mission requirements—the
FMA provides these sorts of capabilities and
enables a flight manager to apply a more global
perspective in determining how to respond. The
FMA also alerts originating planners to problems
with their missions and provides support for them to
contribute information relevant to execution
decisions and achieve globally beneficial changes to
individual mission plans.

The current FMA prototype is composed of two principal
components: a Flight Manager Executive (built from SRI’s
SUO-EA system) and a Dynamic Scheduler (derived from
CMU’s AMC Allocator system). We have demonstrated
this prototype on a series of execution management
vignettes, using actual (full scale) AMC schedules pulled
from AMC’s Consolidated Air Mobility Planning System
(CAMPS), and representative (but scripted) execution data
streams. A third Dynamic Mediation component (based on
SRI’s incremental negotiation techniques) has undergone
preliminary proof-of-concept testing.

In the sections below we describe these components in
more detail, and give an indication of the application’s
status and potential for transition.

FMA Architecture

The FMA architecture features actors. There is an actor for
each participant in the decision-making process. The FMA
is configurable for arbitrary sets of decision makers. A

Workshop on Multiagent Planning and Scheduling

typical configuration includes at least one actor for the
Execution Office and for each planning office (e.g.,
SAAM, Channel). Figure 1 depicts the various actors in a
common configuration of our Flight Manager Assistant.
We designed the software architecture for the various SRI
and CMU components, and decided to use OAA to
communicate between the various software agents in our

v

Alerts Alerts

|
|
|
|
|

v

Alerts, Schedule queries,
Data, Reschedule requests

Dynamic

P
,/Bids, pr:?mxu/.\‘

Central
Executive

ICAPS 2005

architecture. Our system, the Flight Manager Assistant, is
composed of four software modules:

e GUI

* Executive (Exception Handler)

* Dynamic Scheduler (DS)

* Dynamic Mediator (DM)

Actor
B

Policies

e

User requests,
\lert IMT and HISA output,
¥ A
FALCTS messages

Schedule information,

Schedule changes

Scheduler

Figure 1: FMA Architecture. Arrows represent message and information flow; every agent communicates with the Actor
Policies (arrows omitted). FMA monitors the output of HISA and IMT (AMC software tools which report MOG exceptions

and execution-time exceptions respectively).

The DS is an FMA actor. Each other actor is an
instantiation of the Executive, with its own GUI and
value-of-information (VOI) functions that determine the
alerts received and their priority.

The inputs the FMA monitors come from various AMC
tools and messages from other actors and external agents.
For example, one tool detects and reports maximum on
ground (MOG) conflicts at airbases.

Executive. The key problem for the Executive is that
algorithms that alert on constraint violations and threats in
a straightforward manner inundate the user in dynamic
domains. Unwanted alerts are a problem in many
domains, from medicine to transportation to battle
command. An execution aid that gives alerts every few
seconds will quickly be discarded by the user in stressful
situations (if not immediately). To be useful, an execution
aid must produce high-value, user-appropriate alerts.
Alerts and their presentation may also have to be adjusted

Workshop on Multiagent Planning and Scheduling

to the situation, including the user’s cognitive state (or the
computational state of a software agent). For example, in
high-stress situations, tolerances could be increased or
certain types of alerts might be ignored or postponed.

Our approach is grounded in the concept of determining
the value of an alert. First, the system must estimate the
value of new information to the user. We use the term
value of information (VOI) to refer to the pragmatic
import the information has relative to its receiver. We
assume that the practical value of information derives
from its usefulness in making informed decisions.
However, alerting the user to all valuable information
could have a negative impact in certain situations, such as
when the alert distracts the user from more important
tasks, or when too many alerts overwhelm the user. We
therefore introduce the concept of value of an alert
(VOA), which is the pragmatic import (for making
informed decisions) of taking an action to focus the user’s
attention on a piece of information. VOA takes VOI into
account but weighs it against the costs and benefits of

31

ICAPS 2005

e
Edt Alocate Map Sheets Options
£ Tl OO0 v» &@ @ compareoptions | Run Seript | Distiss | ‘
I” Delay [~ Overalloc. | Overalioc. & Delay | Bump | Bump&Delay | Merge [Divert [Extend AternateMDS JNone | Plannedwing [anwings :
TRl il il Bl Bl el el | [contits |
Mission Pri. | Type Status | Ass.Wi
||~7| AQB20W500350 1B3 CHANNEL SCHEDULED 437AW
@ preflight at KCHS
O—®KCHS -> ETAR
|| @postflight at ETAR
| @ stop and crew rest at ETAR []
@ preflight and onload at ETAR
O—®ETAR -> LLBG (cargo)
@ postflight at LLBG
| @stop at LLEG
|| @preflight at LLBG
O—®LLBG -> ETAR [cargo)
@ postflight and offload at ETAR
@ stop and crev rest at ETAR I
|| @preflight at ETAR [|
|| O—@ETAR -> KCHS |
@ postflight at KCHS 1
|| D | AJBO7R300349 1B3 CHANNEL SCHEDULED 305AMY
D | 6JB52X500347 1B3 CHANNEL SCHEDULED 60AMW
I)> | AJB08070E349 1B3 CHANNEL SCHEDULED 437AW
=
< | o7} 7] |
Fri2-0ct-98 10:24 ‘ @ fous =~
Figure 2: Screenshot of the Dynamic Scheduler
% User Interface
: “y : 1
signal /4 2 ;
AV commit *
. select |
Alerts /7 [import Event :
i iy Agenda Processing
Message| / ——— Cycle
4 Schedule :
Handler ‘\ Changes - conflicts Vlsual.
- opportunities
< \\ - new reauests TOOIS
Responses
Schedule
Uod Current Search
pdate ;
Schedule Engine

Figure 3: Internal architecture of the FMA Dynamic Scheduler

interrupting the user. If the user is busy doing something
significantly more important, then issuing an alert might
not be valuable, even when VOI is high.

Our monitoring framework integrates many domain-
specific and task-specific monitoring techniques and then
uses the concept of value of an alert to avoid operator
overload. We have used this framework to implement
Execution Assistants (EAs) in three different dynamic,
data-rich, real-world domains to assist a human in
monitoring team behavior. One domain (Army small unit
operations) has hundreds of mobile, geographically

32

distributed agents, a combination of humans, robots, and
vehicles. The second domain (teams of unmanned ground
and air vehicles) has a handful of cooperating robots.
Both domains involve unpredictable adversaries in the
vicinity. The application to integrated flight management
at AMC represents our third application. Our approach
customizes monitoring behavior for each specific task,
plan, and situation, as well as for user preferences.

Dynamic Scheduler. The dynamic scheduler (DS)

provides capabilities for assessing the broader impact of
events that have caused alerts and for determining

Workshop on Multiagent Planning and Scheduling

appropriate mitigating changes to the current airlift
schedule. As indicated earlier, the DS extends the
technology and software first implemented in the AMC
Allocator [Kramer & Smith 2002, Smith et al. 2004], a
system for day-to-day management of airlift and tanker
schedules that is now embedded as an operational module
in the AMC CAMPS mission planning system. At its
core, the AMC Allocator utilizes incremental, constraint-
based scheduling techniques that allow selective re-
optimization of allocation decisions to accommodate new
higher-priority missions while minimizing disruption to
previous assignments.

As resource assignments are made to a given mission, any
necessary auxiliary tasks (for example, positioning or
depositioning flights or crew rest periods) are generated
and inserted into the mission plan. In the simplest case, all
missions are planned and scheduled as round trips.
Various missions will be sequenced when necessary to
satisfy overall resource capacity constraints (and in some
cases rejected as unsupportable). It is also possible to
direct the system to consider mission merging
possibilities, which provides another means for
optimizing resource usage. For example, the system
might suggest using an aircraft from one mission to
support a second mission instead of returning directly
back to home station.

Mission scheduling and resource allocation capabilities
can be invoked in automated or semiautomated modes. In
the latter case, the system generates and compares
different options that might be taken. Planners interact
with the AMC Allocator through graphical displays,
which incorporate mission-oriented, resource-oriented,
and map-based views of the current set of commitments.

To provide a dynamic scheduler (DS) for use in an
execution management context, the AMC Allocator
technology has been extended to accept and respond to
updated "state of the world" information. The AMC
Allocator's GUI was augmented to include an Agenda
Panel for displaying, managing, and examining the effects
of alerts received from the FMA Executive. Graphical
tools were also developed for visualizing the impact of an
alert on the existing schedule. The alerts are
communicated via OAA to a new message handling
module in the DS, which is responsible for computing the
effects of an alert on the existing schedule and passing the
alerts to the DS UL This internal architecture is depicted
in Figure 2.

While the DS retains the core constraint-based,
incremental scheduling architecture of the AMC
Allocator, it has been significantly reengineered and
extended to incorporate the constraints and resource
models that must be taken into account in an execution-
management context (for example, airport MOG
constraints that dictate how many aircraft can be

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

accommodated simultaneously). Mission itineraries are
modeled with much greater fidelity than in the AMC
Allocator, introducing new activities such as take-offs,
block-ins, preflights, and postflights. In addition, the DS
incorporates a more flexible temporal constraint network
model than the AMC Allocator. This new flexibility
allows for dynamic extension of activities such as crew
rests, which in the AMC Allocator were assigned a fixed
duration.

Like the AMC Allocator, the DS supports mixed-initiative
scheduling, allowing the end user a range of interaction
options, from primarily manual with constraint checking,
to user selection of system-recommended options for
schedule deconfliction, to fully automated rescheduling
actions based on predefined user preferences. The DS
incorporates all previously developed options for relaxing
constraints in circumstances of constraint conflict, such as
overallocating aircraft or aircrews, delaying missions,
bumping lower-priority missions, or merging multiple
missions into a single mission to reclaim capacity. To
resolve problems that involve in-process missions, the DS
may also add activity delay and itinerary diversion
options.

Dynamic Mediator. DM enables the flight manager to
make an effective decision by gathering information from
other actors quickly. When the flight manager must alter
the schedule in response to an unexpected event, time is
an important factor because a delayed decision may
require the schedule to be altered even more. For
example, when faced with a reduction in MOG capacity,
the flight manager needs to make a decision that allocates
the remaining capacity to the missions that most require
it.

The DM module makes two main assumptions:
(1) No single entity possesses all the information
relevant to the decision.
(2) The time allowed for making the decision is
limited or a delayed decision is costly.

The originating planners have information relevant to
making alterations to the mission schedule that has not
been entered into FMA in advance because it is
information that is not needed for normal scheduling. For
example, for deciding which missions most require the
remaining MOG capacity, the cargo contents and the
purpose of the mission are often relevant.

Extracting information relevant to decision making is
costly because planners must be contacted to extract
information. DM automates parts of the process of
incrementally extracting only that information that is
relevant to the flight manager’s decision. The DM lowers
the cost of collecting information and computing the
correct decision.

33

Prior to the FMA, the communication was attempted in
only the most important decision situations because
interpersonal communication was too costly. As a result,
the flight manager often makes an educated guess as to
the importance of the relevant missions and therefore may
make an inappropriate decision based on that guess. The
DM module makes communication practical by (1)
managing the communication between the flight manager
and the planners to focus on relevant information, and (2)
storing, organizing, and analyzing the information for the
purpose of making a decision. The DM module enables
the flight manager to make better decisions during
execution, while not precluding the use of personal
contact for the most important decisions.

The DM module automates collection of relevant
information from planners using queries and replies,
implements a search for those queries and replies that
minimize the expected communication costs, and enables
correct decision making with limited information.

Application Status

We defined a demonstration scenario consisting of several
storyboard-level vignettes that illustrate the capabilities of
the FMA. The FMA was demonstrated on the vignettes
using scripted data feeds that were generated to be as
similar to actual data feeds as possible. For instance, one
such script uses all 1100 MOG exceptions from the output
of an AMC monitoring system. Based on review by
subject-matter experts, all the demonstrated vignettes
show useful capabilities beyond what is currently
provided by existing AMC flight management software.

A brief summary of each vignette follows:

* A MOG conflict is detected by the FMA Executive and
resolved by the execution office and planners with
assistance of the DS.

* A single event causes multiple, cascading problems. An
airplane breaks on the runway of Airport 1, causing both a
wing capacity overallocation problem and a cargo stalled
problem. The FMA Executive detects the problems and
DS-aided responses must handle multiple problems.

e Multiple events (bad weather and an instrument landing
system (ILS) failure) when considered together cause a
problem. The FMA detects the problem and suggests
responses.

e The FMA monitors system behavior and gives alerts or
responds to the situation. For example, the FMA might
alert when AMC tools that report MOG exceptions and
execution-time exceptions are not present or have lost
input feeds, or when FMA actors are not present.

e The FMA performs automated responses to a minor
problem, controlled by user-established and selected
policy.

To give an idea of how the FMA operates, we briefly
describe the execution flow of the second vignette above.

34

ICAPS 2005

Input Event Sequence:

1. The Executive receives a report that the ILS for port P
will be offline for a time window [t1, t2] for repairs.

2. The Executive receives a weather exception at P that
overlaps with [t1, t2].

¢ The Executive infers that the airport will be closed
for some period because of simultaneous bad
weather and no ILS capability. Either event by
itself is no problem but together they cause a
problem.

e The Executive communicates port closure
information to the scheduler.

¢ The Executive queries the Scheduler for affected
missions and alerts the Execution user and affected
planning offices, customizing the alert to each
actor.

e The Scheduler automatically computes the
immediate impact and suggests rescheduling
actions:

o Options include bumping, delaying,
overallocating and rerouting.

* The Scheduler computes the “ripple effect” on the
downstream schedule.

e The Execution user, possibly collaborating with
planning offices using the Dynamic Mediator,
selects a schedule fix, after possibly modifying it
during interactions with the Scheduler.

e The Execution user and appropriate planning
offices are notified of all relevant changes to
missions.

The Executive is designed to coexist with and
complement the existing flight management software
tools currently deployed at AMC. Some existing tools at
AMC detect deviations and problems, but they are based
on simple rules. Thus, they detect too many false alarms
that overwhelm the user with alerts and therefore the user
cannot focus on the most important deviations. The FMA
improves upon these tools by its VOA computation,
which will filter out low-value alerts, and show high-
value alerts to those users for whom they have high value.
Furthermore, the FMA detects problems that are not
detected by existing tools (for example, the closure
vignette described above).

Transition tasks. The Executive generally takes inputs in
forms that are available in existing AMC tools and
databases. The Dynamic Scheduler is already in use at
AMC as part of CAMPS. The primary tasks that would
be required to transition this technology are as follows:

e The Executive must integrate and interface with any
data sources to be monitored.

e The FMA system operates in real time, but must be
made more robust with respect to tracking and reasoning
about current time.

Workshop on Multiagent Planning and Scheduling

e Design and implementation of an interactive
alert/collaboration GUI or integration with existing GUIs
must be accomplished.

* Policies must be encoded to implement AMC
procedures; it may be desirable to monitor additional data
sources.

Evaluation and Summary

Subject-matter experts determined that the alerts
generated and schedule repairs completed using the FMA
were correct and valuable in each of the vignettes. The
Executive (1) monitors all exceptions from multiple tools,
(2) estimates the value of each possible alert, and (3)
issues high-value alerts that focus user attention on key
problems. Using actor-specific VOA, it effectively
filtered and prioritized the alerts generated by existing
AMC tools. For example, we ran the Executive and
SAAM actors on 1085 actual MOG alerts. The Executive
filters all but 242 of the 1085 alerts, of which only one is
highest priority, and only eight require immediate
attention. The Executive sends the SAAM actor 145
alerts, all of which are lower priority.

Such filtering greatly reduces the amount of information
humans must monitor, allowing the humans to
concentrate on more important tasks than monitoring
large amounts of incoming information. Timely alerts
result in faster and better responses to unexpected events.
Using the DS to assist with modifications results in more
missions being accomplished, more efficient resource
usage, fewer constraint violations, and fewer downstream
problems. Because the FMA analyzes all inputs against
the entire schedule, large, complex schedules can be
accurately monitored, and no relevant information is
ignored or missed. Finally, our distributed actor
architecture ensures that the planners (and other actors)
get planner-specific alerts. Thus, planners are kept
apprised of the status of their missions and can provide
feedback during execution.

The Dynamic Scheduler (DS) provides a range of
capabilities for responding effectively and rapidly to
exceptional events that have been detected. Upon receipt
of an alert from the Executive, the status information
contained in the alert is superimposed over the current
existing schedule, and a list of resulting issues (e.g.,
schedule conflicts) is posted on an agenda panel. As the
user selects a given conflict to address, the system
invokes graphical displays that indicate the impact of the
event. The DS can be directed by the user to generate sets
of possible actions for resolving a given schedule conflict
(e.g., delay, divert, or coalesce a problematic mission).
Alternatively, the DS can be invoked automatically by the
Executive (if policy permits) to resolve and/or improve
the current schedule. As decisions are made as to which
recovery course of action to take, this information is
communicated back to the Executive for implementation.

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

Importantly, policies control system responses; for
example, some responses can be made more automated
and others more interactive. The coupling of intelligent
execution monitoring to dynamic scheduling capabilities
introduces several further benefits. Users gain a better
understanding of the implications of detected events and
prospective responses on other current and planned
activities; such implications include projected resource
shortfalls, potential mission delays or disruptions, and
opportunities for schedule improvement. This coupling
also provides rapid generation of alternative recovery
actions and more globally rational flight management.

Acknowledgments. This research was supported by the
Air Force Research Laboratory — Rome, under Contract
F30602-02-C-0152. We thank Steve Hofmann for his
domain expertise and advice.

References

Adam Cheyer and David Martin, "The Open Agent
Architecture", Journal of Autonomous Agents and Multi-
Agent Systems, Kluwer Academic Publishers, Volume 4
(1-2), pages 143-148, 2001.

Laurence A. Kramer and Stephen F. Smith, “Optimizing
for Change: Mixed-Initiative Resource Allocation with
the AMC Barrel Allocator”, in Proceedings of the 3rd
International NASA Workshop on Planning and
Scheduling for Space, Houston, TX, October 2002.

Charles L. Ortiz, Jr., Timothy W. Rauenbusch and Eric
Hsu (2003). “Dynamic Resource-Bounded Negotiation in
Non-Additive Domains.” In Victor Lesser, Charles L.
Ortiz and Milind Tambe (Eds.) Distributed Sensor
Networks: A Multiagent Perspective. In Series:
Multiagent Systems, Artificial Societies, and Simulated
Organizations, Volume 9. Kluwer Academic Publishers.

Timothy W. Rauenbusch (2004). Measuring Information
Transmission for Team Decision Making. Ph.D. Thesis,
Harvard University.

Stephen F. Smith, Marcel Becker and Laurence A.
Kramer, “Continuous Management of Airlift and Tanker
Resources: A Constraint-Based Approach”, Mathematical
and Computer Modeling—Special Issue on Defense
Transportation: Algorithms, Models and Applications for
the 21st Century, 39 (6-8), 2004.

David E. Wilkins, Thomas J. Lee and Pauline Berry,
“Interactive Execution Monitoring of Agent Teams",
Journal of Artificial Intelligence Research, volume 18,
pages 217-261, March 2003.

http://www jair.org/abstracts/wilkinsO3a.html.html

35

ICAPS 2005

Self-interested Planning Agents using Plan Repair

Roman van der Krogt and Mathijs de Weerdt*
Transport Research Center Delft
Delft University of Technology
Delft, The Netherlands
{r.p.j.vanderkrogt | m.m.deweerdt}@ewi.tudelft.nl

Abstract to their plan, and take part in an auction again. They con-
tinue to alternatingly perform these steps of adapting a plan
using plan repair and taking part in an auction until a com-

multiagent planning systems should be built upon (single- pletg and valid p!an is computed. When an agent ge_ts a task
agent)plan repair systems. In our system agents can ex- assigned on which others depend, we use a heuristic that

change goals and subgoals through an auction, using their ~ |€tS the agent schedule it early in its plan to prevent cyclic
own heuristics or utility functions to determine when to auc- dependencies. Furthermore, we give the agents some high-
tion and what to bid. Some experimental results for a logistics ~ level information about the services others can provide to
domain demonstrate empirically that this system supports the reason about which subgoals they should auction.
coordination of self-interested agents. As an example of a situation in which this type of plan-
ning is required, consider the following logistics problem. In
Introduction this domain, a number of independent planning agents have
to transport goods between different locations in different
Most of the interesting applications of planning involve cities. Each of the agents is capable of only a select num-
more than one agent to plan for. Often these agents are per of actions: for each of the cities, there is an agent that is
self-interested and require some privacy concerning their capable of transporting goodsthin that city, using trucks.
plans and the dependencies of actions in their plans on For transportoetweercities, only one agent can transport
other agents’ actions. We propose a system in wiilh goods by air from one airport to another. Thus, for a typi-
interestedagents can igonstruct their planshemselves, ii) cal transportation order, three agents have to work together:
coordinatetheir actions during planning, and do so while one to bring the goods from their current location to the air-
iii) maintaining their privacy. With this system we take portin that city, one to transport the goods to another airport,
the challenge of negotiated distributed planning that “meth- and a third and final agent is required for the transport from
ods must be developed for adapting the various [existing] that airport to the destination within that same city. As these
approaches in a way that is consistent with the resource- agents are different companies, they are self-interested and
constrained nature of planning agents: planning should be competitive. However, they are willing to help each other,
a continuous, incremental process at both the individual and provided adequate compensation is offered.
group level.” (DesJardinst al. 2000). In this paper we show how such companies can construct
Our idea is to combine a dynamic planning method for their plans individually, and meanwhile coordinate (some
each agent with an auction for delegating (sub)tasks. How- of) their actions while maintaining their privacy. In the
ever, to coordinate subtasks we should deal with inter- next section we define an abstract version of this problem
agent dependencies (Malone & Crowston 1994) to prevent more precisely, and we show how a propositional plan re-
deadlocks. Currently, multiagent planning methods manage pair method can be combined with a simple auction to deal
inter-agent dependencies at a central place (Wilkins & My- with this problem. Also we present solutions to subproblems
ers 1998), or by constructing and communicating a (partial) such as the prevention of deadlock, and dealing with agents
global plan (Decker & Li 2000; von Martial 1992). Obvi- that do nothing but accepting orders to sell them again. The
ously, in many applications, agents are not prepared to sharegiven logistics problem is used to show the suitability of
this kind of information. these ideas. Finally, in the discussion we summarize our
In our system, we have a number of agents that first con- findings, compare them with related work, and give away
currently plan for a single goal, after which they take partin our ideas for further study.
an auction (if there is any) to exchange goals and subgoals.

Then, they apply a plan repair technique to add another goal A Multiagent Planner using Plan Repair
“This research is supported by the Technology Foundation In this paper we propose a method that dynamically creates,

STW, applied science division of NWO, and the technology pro- coordinates, and repairs plans for agents that do not want to
gram of the Ministry of Economic Affairs. share crucial information. We base this work on the work of

We present a novel approach to multiagent planning for self-
interested agents. The main idea behind our approach is that

36 Workshop on Multiagent Planning and Scheduling

ICAPS 2005

propositional planning, see e.g. (Kambhampati 1997). We system includes a heuristic functi@#(P, I,) that, given a

focus on problems that can be modeled aetof distinct problemIT and a plarP, estimates the costs of adaptiR¢o
propositional planning problemEl, = (O,, I,, G,), one for achieve another gogl. Usually such a system is only able
each agent. In such a problem the s&€, is the set of to solvesingleinstances of a propositional planning prob-
actions that the agemt can perform,l, is the part of the lem, not a combination of them. How to combine a number

initial state the agent can observe, dgdare the goals to of these systems to form a multiagent planning system is the
be achieved by the agent. The initial state is described by topic of this paper.

propositions, an action by its preconditions and effects, and
goals, preconditions, and effects are all defined by conjunc-
tions of literals. The problems of all agents are mutually dis-
tinct, meaning that we require that there are no agents able to
perform actions using the same resources (i.e., described by
the same propositions) and each agent has complete knowl-
edge about its own problem. At first this may seem too re-
strictive, but in many domains agents (companies) that are
not cooperative can indeed not use each other’s resources.
For some resources of general use where conflicts may oc-
cur (such as cross roads) we may introduce an additional
agent to coordinate the use of such a resource.

Note that in a propositional planning problem there is usu-
ally no realistic model of the costs and duration of actions,
nor of deadlines. Therefore, the length of the plan (i.e., the
number of actions) is used as an indication of the costs.

To render the problem more manageable, we assume that
all actions in the domain can be undone (are reversible), and
that there are no goals that are inherently unattainable. This
assumption ensures that in principle a solution can always be
found. We also assume that agents do not break contracts,
unless they really cannot hold to them, in which case they
inform the other party immediately.

The above-mentioned assumptions help us to focus on the
more interesting and more difficult problem of designing a
system

Planning The first important decision made to achieve the
properties described above is to process the goals one-by-
one by a plan repair system, instead of in a single batch (as is
usual in planning). This has a number of advantages: firstly,
failure to add a goal to the plan immediately tells us which
goal we should put up for auction, while when planning for
a batch of goals fails, it is not immediately obvious which
of the goals cannot be achieved. Secondly, we get regular
moments at which we can easily make changes in the prob-
lem. Moreover, at these moments we have a valid plan that
partially achieves our goals to base our decisions on. This
means that we can make a more informed decision than if
we would interrupt a regular planner at certain points. There
is one disadvantage, however: we cannot as easily exploit
positive interactions that may exist between goals. In the
section on our experimental work, we shall come back to
this issue.

We now describe the basic steps of this goal-by-goal plan-
ning approach. The process starts by taking the original
planning problenT], and creating a goal queug from it
(containing all the goals that are to be solved in order to
solvell) as well as the probledipy, initially identical toIT,
but without goals. We use this probleifpr to keep track
of the problem that we are trying to solve in the current it-
eration. Later it may contain additional goals that this agent
has accepted from others, and it does not need to include
o that only communicates offers and bids, but little else, and all goals fromIT (as some might not have been planned for
« in which agents can auction (sub)tasks to other agents, Yet, or are currently planned for by other agents). To plan

while preventing a single goalg from Q the system performs the following

. . steps:
— cyclic dependencies, P

— lazy agents, and deal with 1. It queries the planning heurist®f of the plan repair sys-

— decommitment of subtasks by subcontractors. tem to estimate the cost of addiggo the plan.

2. The heuristic may report that it cannot incorporate the
goal, or that the costs of incorporating are so large that
it is preferable to ask other agents for help. If this is the
case, the agent passes this goal to the blackboard for auc-
tion. Otherwise, it removes j from Q, adds it as a goal
to I'lpgr, and updates its plan for this new planning prob-
lem using the plan repair system.

In the following section we lay out the design of such a
system and we explain how to deal with problems that
may occur when building it. The crux of our idea is
quite simple: coordinate (single agent) plan repair systems
through a task auction. To implement this idea, we sup-
pose that we have a dynamic planner for such problems at
our disposal, such as the Partial Order Plan Repair system

(POPR) (van der Krogt & de Weerdt 2005), which is based These steps are interleaved with processing auctions (if any),
on VHPOP (Younes & Simmons 2003). Although we use a5 discussed hereafter. Once the goal queue is empty, each
the same planning system for each of the agents in our dis- goga| of the agent is either planned for in its own plan, or has
cussion, we do not rely on the specifics of this planner for peen given to another agent (via the blackboard). From this
the coordination of the agents. This ensures that we truly point on, the agent stays active to respond to auctions until
simulate a situation in which each agent is free to choose its || other agents are finished as well.

a common communication moduléNe assume that sucha he multiagent specifics. First we discuss the auctioning of

1Such a plan repair system can be derived from the planning 9oals. Then, we describe a way with which we can, during
system that the agent is currently employing by using the tech- the planning phase, decompose a goal into subgoals, some
niques of (van der Krogt & de Weerdt 2005). of which the agent might not be able to achieve itself. These

Workshop on Multiagent Planning and Scheduling 37

subgoals then can also be auctioned.

Auctions As said, an agent planning a goal first consults
its planning heuristic to discover whether it is advisable to
plan for this goal itself. If it is not, or if it turns out after plan
repair that the goal is unattainable, the agent will put the goal
up for auction. For ease of implementation, this auction is
currently run by a blackboard, but it can be distributed over
the agents as well, of course. The blackboard keeps a list of
auctions, and processes them one-by-one. This prevents ad
ditional difficulties that agents face when dealing with multi-
ple simultaneous auctions (such as the “eager bidder” prob-
lem (Schillo, Kray, & Fischer 2002)). For each auction, the
blackboard sends out request for bids. Note that we cur-
rently process the auctions in order of arrival. In the future,
we might include a priority which determines the order of
the auctions.

When an agent receives a request to bid on a goal, a
heuristic is applied to discover whether this agent can in-
corporate the new goal in the current plan. If so, this also
tells us what the estimated cost is of adapting the plan. This
value is then sent as our bid for this goal. In the current

ICAPS 2005

more other agents. It is not required to knbew a task is
achieved, nor is it required to knowhocan exactly achieve
portions of a task. For example, in the distributed logistics
domain, a trucking agent in a city might know that other
agents can achieve the task to bring a certain package from
other cities to the airport in his own city.

We model services as regular actions. To distinguish such
actions from regular actions we refer to themeagernal
actions Like regular actions, external actions can be inte-
grated in the plan during the planning phase to indicate that
help from other agents is required. At the end of a planning
iteration (in which an additional goal from the goal queue is
planned for), the effects of new external actions are sent to
the blackboard for auction. In this way, propositions can be
“exchanged” between agents.

The complete planning loop Having described the fea-
tures of the algorithm in isolation, we now end this section
with the complete algorithm as we have used in our exper-
iments. The algorithm is presented below, and starts with
setting up some data structures, such as the goal qUeue
and the initial planning probledipr. Then, in step 4, it tries

system, we have chosen to allow the agents a single, sealedto add a goal from the queue to the current pParAt first,

bid.

The blackboard waits for all bids, and selects the cheapest
bid. The winner is awarded the goal, and receives payment
equal to the second-lowest bid (Vickrey 1961)pon being
awarded a goa¢, the agent addg to the front of its goal

in step 4.2, we compute the heuristic vafl&P, Ipg, g) of
establishingg with P. If this is estimated to cost more than
the agent is willing to spend (with an unsatisfiable goal re-
turning o), we send the goal to the blackboard for auction.
Otherwise, we update the planning probl&kpz, and com-

queue. This ensures that this goal is processed next, and thagpute the new plan. If this plan contains any external actions,

the agent can actually attaghby repairing its plan. If we
allow other goals to be processed figgtnight no longer be
achievable. This would require decommitment of the agent,
a situation that we would rather prevent. Only in the unlucky
event that during plan repair it turns out that the heuristic was
completely wrong, decommitment is performed as discussed
on the next page.

Services Exchanging goals is necessary but not sufficient
for a complete multiagent planning system, for it is often
the case that a certain goal cannot be achieved by a single
agent, but only through cooperation. For example, moving
a package from one city to another in our example logistics
domain requires three agents to work together. Hence, we

also need to be able to decompose goals into subgoals that

may have to be carried out by other agents. To continue our
example, moving a package from one city to another decom-
poses into three subgoals: delivering the good to the airport
in the source city, bringing the good to the airport in the des-
tination city, and finally the delivery to the destination. De-
composition is not trivial, but fortunately, we can do some
decomposition during the planning phase.

To perform decomposition during planning, agents need
some knowledge on the actions (or groups of actions) that
other agents can perform. We encode such knowledge as
services A serviceis a task that can be achieved by one or

2Note that with a repeated auction the main advantage of a
Vickrey auction (that it is a dominant strategy to bid ones private
value) is lost for agents that reason about future auctions. Other
types of auctions are a topic for future study.

38

the subgoals they satisfy are sent to the blackboard for auc-
tion. Having processed a goal from the queue (if any), we
check whether a gogl’ is currently being auctioned. If so,
we compute our costs for it (using the heuristi€ of the

plan repair system), and send this as a bid to the blackboard.
If our bid is winning, we add the gogl to the front of our
goal queue.

PLANNING LoOP (IT)
Input: A problemIT = (O, I, G)

begin
1. Setup the goal queue Q containing all goals from I'1
2. Create the initial problem description I'lpg = (O, I, 0)
3. Create the initial (empty) plan P
4. if Q is not empty then
4.1. pop goal g from Q
.2. Estimate cost for this goal: c = U(P,I1pg, g)
4.3. if the goal is too expensive then
sendg to the blackboard for auction
else

4.4.1. Update problem: Ipg = ITpg U {g}

4.4.2. Update plan: P = PR(P, T1pg)

4.4.3. if P contains external actions then
request results (subgoals) of these actions
via an auction (blackboard)

5. if an auction is ongoing for a goal g’ then
5.1. sendbid (which is U(P,T1pg, g’))
5.2. if goal is awarded then
push g’ onto the front of Q
6. goto step 4

end

4.4,

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

AMS

AIR
external-transfer P po-bos ap-ams external-transfer P po-bos ap-bos
N
N
\
@ap-ams \ load P ap-bos
\

\
\
\
@ms po-ams fly ap-bos ap-ams
N
N
N
unload P po-ams unload P ap-ams

Figure 1: The multiagent plan for transporting pack&geom po—bos to po—ams using three agents: BOS, AIR, and AMS.

BOS

load P po-bos

/

move po-bos ap-bos

unload P ap-bos

Note that besides the details mentioned in the algorithm 2. load P atap—ams
a bit more bookkeeping is necessary. For example, we have 3. move from ap—ams to po—ams
to detect when everybody has finished planning for all their 4. unload P atpo—ams
goals. Currently this is being recorded at the blackboard,
where every agent can declare itself ready (and can remove
that declaration when it accepts a new goal from the black-
board). Also, in step 4.4.3 where the subgoals from external
actions are auctioned, we should only send those subgoals
that were not present in the plan before. Finally, we observe
that, currently, agents do not receive feedback on their goals 1. external-transfer P from po—bos to ap—bos
that have been sent for auction. That is, if none of the other 2. load P atap—bos
agents bids on a (sub) goal, the auctioneer will continue to 3. fly from ap—bos to ap—ams
periodically try to auction this goal, instead of reporting this 4. unload P atap—ams
to the original sender who should then try and find another __ . . _ . .
solution. For the domains that we have used in our experi- | NiS results in the goa(P, ap—bos) being auctioned, which
ments, this is no problem, as there is always someone who IS Subsequently won by and planned for by BOS. This com-
can achieve the goal (the goals do not have time limits). For Plétes the multiagent plan for delivering the package from
more complicated domains this does not hold, of course. We B0Ston to Amsterdam using all three agents as shown in Fig-

will come back to this issue in our discussion on future work. el

The effect of the external action is a proposition
at(P,ap—ams), which AMS sends to the blackboard. In the
following auction, BOS bidsw (it cannot reach this goal)
and AIR bids 4. Hence, the goal is awarded to AIR, which
creates the following plan for it:

Example._Suppose the following logistics probllem. Th_ere Coordination problems
are two cities, Amsterdam and Boston, each with an airport)))
(denoted byip—ams andap—bos, respectively). A package Whereas the former section gave an overview of the basics
Pisto be transported from the post office in Bostpm-{bos) of our multiagent planning system, in practice one bumps
to the post office in Amsterdanpd—ams). In each city, into some additional difficulties that need to be solved. In
there is a transportation company that uses trucks to trans- this section we pay attention to three important issues that
port goods within the city. Furthermore, there is an airline We encountered in building the system.

company that can transport goods between airports. In the « 5,y agents The first issue that we encountered in our
domain of each agent one external action is present, called j,itia] experiments was that sometimes an agent accepted a

external-transfer , that describes that other agents are goal from the blackboard, and then planned to use a ser-
capable of transportation as well. o vice to have other agents satisfy the exact same goal. We
Initially, the goal (frompo—bos to po—ams) is given to the called these agents “lazy agents”, for they did not want to do

trucking agent in Amsterdam (we refer to this agentas AMS, g5 me work themselves. In some experiments, this is a minor
the trucking agent in Boston is referred to as BOS, and the inefficiency, but in other problems two of such lazy agents

airline agent is denoted by AIR). AMS queries its heuristic \yere present who were continuously bouncing the same goal
and finds out that it can reach this goal. Using plan repair on p5ck-and-forth. As a solution we considered gaalsufor

the empty plan, it comes up with the following plan: production by external actions. That is, when adapting the
1. external-transfer P from po—bos to ap—ams plan to include a goat}, no external actions may be planned

Workshop on Multiagent Planning and Scheduling 39

ICAPS 2005

that produceg. We adapted both the planning algorithm and agent can create a new inter-agent dependency at a time. If
the heuristic to honor these tabus. we ensure that this new dependency is not dependent upon
previously existing dependencies, we prevent cycles from
occurring. Any additional external actions inserted will be
auctioned only after this part of the plan has been completed.
Note that the need for this heuristic disappears when using a
domain in which time is explicitly represented and a planner
that can reason with time, since time attributes can be used
to prevent cyclic dependencies.

Decommitment of bidders As indicated in the previous
section, agents place their bids based on a heuristic estimate
of the costs of changing their plans. Using a heuristic has
two important repercussions: firstly, an agent may need to
modify its plan in a far greater (and possibly more expen-
sive) way than anticipated, and secondly, an agent may find
that it cannot achieve the goal at all. When an agent discov-
ers that it cannot actually satisfy the goal it has bid on, itin- Example.Consider the logistics problem of the previous ex-
dicates this in a message to the blackboard. The blackboardample. Suppose that a second packBgevould have to
then re-auctions the goal, disregarding the bids of agents thatbe transferred in the opposite direction, i.e., from the post
have bid on the goal and rejected it before. Under the as- office in Amsterdamyo—ams) to the post office in Boston
sumptions we made, there is always at least one agent ca-(po—bos). BOS already had a plan for transportifgrom
pable of achieving the goal. Since bids of agents that have po—bos to ap—bos, but now it creates the following plan for
rejected a goal are disregarded, the goal will eventually be this situation:

awarded to the agent that can satisfy the goal. For now, a
decommitting agent pays (as a penalty) the cost difference
between its own bid and the next ohe.

. external-transfer P’ from po—ams to ap—bos

. load P’ atap—bos
3. move from ap—bos to po—bos

Managing dependencies A distributed planning system, 4. unload P’ atpo—bos
5
6

NP

such as presented in the previous section, should ensure the 5. load P atpo—bos

validity of the proposed plans. For this, itis required that not . move from po—bos to ap—bos
only the individual plans are valid, but also that the combi- 7. unload P atap—bos

nation of plans is valid. In particular, we should verify three

conditions: After the auctions for transportinB have been dealt with,

AIR and BOS have computed the plans from the previous
1. Actions in different plans may not interfere. As explained example. Then, the auction of(P’,ap—bos) takes place,
in the previous section, strongly autonomous agents, such which is won by AIR. Due to the backward planning heuris-
as competitive companies, usually have distinct areas of tic, AIR inserts the actions for this subgoal before its other
control, or an additional agent can be introduced to ensure actions:
mutual exclusion of shared resources.

2. If an agent depends on another agent to provide a subgoal,
another agent should actually provide this subgoal, and

3. the combined plans may not contaiyclic dependencies
That s, it may not be that an actiaris (indirectly) depen-
dent upon an action (of another agent) that is dependent
on an effect ofz.

The second condition is ensured by our assumption that all
agents are sincere: when an agent promises to provide a
subgoal, it will either do so, or inform the blackboard that Thus, the added actions (related® do not have to wait for
it cannot. The last condition is the most difficult to guar- existing actions to finish. Hence, AIR cannot create a cyclic
antee, because in principle agents need to know the detailsdependency. Had it tried to reuse part of its existing plan
of the other agents’ plans to ensure this property. In exist- (like AMS did) by first waiting for the external action related
ing solutions to prevent cyclic dependencies either a central to P (step 6), it would have created a cyclic dependency,
facility is keeping track of dependencies (Wilkins & My- because BOS firsts waits for the external action relatdt to
ers 1998), or agents communicate to form a so-called partial to finish (step 1).
global plan (Decker & Li 2000).

In our goal-by-goal approach, however, we can use a so- Experimental Results
called backward planning heuristic. When an agent plans a
task for someone else, it can prevent cycles from occurring
without any additional communications by placing all ac-
tions (possibly including external actions) required for this
task beforeall other actions in its plan. This heuristic de-
pends for a great deal on the fact that only one goal is auc-
tioned by the blackboard in a single iteration. Thus, only one

1. fly fromap—bos to ap—ams

. external-transfer P’ from po—ams to ap—ams
. load P’ atap—ams

. fly from ap—ams to ap—bos

. unload P’ atap—bos

. external-transfer P from po—bos to ap—bos

. load P atap—bos

. fly from ap—bos to ap—ams

. unload P atap—ams

OCO~NOOITAWN

For our experiments we applied the method described in the
previous section to thBOPR plan repair system (van der
Krogt & de Weerdt 2005), which is an adaptation of the
VHPOP planner by (Younes & Simmons 2003). We used
a series of benchmark problems from the AIPS competi-
tion (Bacchuset al. 2000) in the logistics domain that was
used as an example before. We took a total of 11 problems,
3We are considering leveled-commitment contracting (Sand- Vvarying from 2 to 5 cities, and from 4 to 15 goals. The num-
holm 2002) to enable strategic decommitting. ber of cities grows as the number of goals do: for a problem

40 Workshop on Multiagent Planning and Scheduling

10000 ‘ : : —
1000 F

100

time (ms, logarithmic)

—+— one-shot
————— »<— goal-by-goal

4 6 8 10
instance (#goals)

12 14

Figure 2: Run times of one-shot planning and goal-by-goal
planning by a single agent.

90

80

70

60

size (steps)

50
40

30 —+— one-shot

‘ ‘ —>*— goal-by-goal

4 6 8 10 12 14
instance (#goals)

20

Figure 3: Plan lengths of one-shot planning and goal-by-
goal planning by a single agent.

with n goals,[g] cities are used. Each goal consists of the

transport of a single package from one location to another.

Transportation can be performed by truck (within a city), or
by plane (between airports in different cities). Sometimes,
the transportation orders are within a city, but for most or-
ders, the destination city is different from the starting city.

ICAPS 2005

tively when goal-by-goal planning is compared with solving
a single planning problem involving all goals. Although, in
principle, a planning problem can be solved more efficiently
by dividing it into subgoals (Korf 1987), we can see from
Figure 2 that goal-by-goal planning takes quite some more
time than solving a single planning instance. This is due to
the fact that for each goal, a new planning problem is cre-
ated, which invalidates a lot of the structures that were cre-
ated before. For example, part of the heuristic P@PR
inherits fromVHPORP relies on a planning graph, which is
currently created completely anew for each planning prob-
lem, whereas it can be reused when we solve multiple goals
within a single problem. In principle, this could be mitigated
by realizing that we are not solviranyplan repair problem,

but a specific one in which only a single goal is added. This
would allow the unrefinement heuristic (which can be used
to solve general plan repair problems) to reuse some of the
existing structures that are not invalidate&or our current
system, we have not done so, however.

Concerning the quality of the plans, we can see from Fig-
ure 3 that one-shot planning for a single problem or goal-
by-goal planning makes hardly any difference. This is to be
expected, a¥HPOP (also) uses a LIFO queue for its goal
agenda and hence tries to completely satisfy one goal (in-
cluding all subgoals that lead to this goal) before working
on the next one.

Multiagent Planning

The more important part of our experiments obviously has
to do with multiagent planning. In particular, we want to
verify that our approach is feasible. The planning problems
used in the previous section were translated into their multi-
agent counterparts by introducing a number of agents as fol-
lows: for each city, we introduced an agent that is capable
of transport within that city (using trucks). One additional
agent was given control over the airplanes, and is hence ca-
pable of inter-city transports. We used two types of domains:
one for the inner-city agents and one for the inter-city agent.
The former consisted of the usuahd , unload andmove
actions, with which cargo can be loaded, transported and
unloaded. In addition, we added external-transport

action that represents the knowledge of the other agents’ ca-
pabilities. It specifies that any package in any location can

Because there are no deadlines in this domain, goals canbe moved to the local airport by some means. The domain

eventually always be achieved.

Goal-by-Goal Planning
The first question that we posed is the following. In our

current approach, we choose to plan goal-by-goal. That is,
instead of considering all goals at once, in a single planning

problem, we first plan for one goal, then add another, etc.
The question is how this affects the quality of our solutions,

and of course the speed with which we reach these solutions.

To investigate this, we compared the plans producedHby

POP (which plans in a single batch) and the plans produced

by POPR, when given a series of plan repair problems in
which the goals were added one by one.

of the inter-city agent also consisted of four actiotusd |,
unload andfly to transport goods from one airport to an-
other, and aexternal-transport action specifying that
other agents are capable of transporting goods between two
locations within the same city.

These logistics problems were used to verify that our ap-
proach is feasible. The run time for three different cases
can be seen in Figure 4. The first case is labatlied-shot
This shows the run time of the unmodified (centk&jPOP
planner on the benchmark problem. In this case, we have a

“For example, the reason to regenerate the planning graph is
that the initial state or the set of available actions might have been
changed. Since this is not the case in our specific plan repair prob-

Figures 2 and 3 show the runtime and plan quality respec- lems, the planning graph can be reused.

Workshop on Multiagent Planning and Scheduling

41

10000 ‘ : : —
1000 F

1007

time (ms, logarithmic)

—+— one-shot (single-agent)
''''' »-- goal-by-goal (single-agent)
|~k multiagent

12

4 6 8 10 14
instance (#goals)

Figure 4: Run times of multiagent planning compared to
single-agent planning. The time reported for the multiagent
experiments is the time it took the slowest of the agents to
compute its plan (the “make span”).

140

120

100

80

60

size (steps)

40 r

207 —+— single-agent (one-shot) |
‘ —>— multiagent
4 6 8 10 12

instance (#goals)

O L
14

Figure 5: Plan lengths of single-agent one-shot planning,
and the cumulative size of the multiagent plans.

single agent that plans for all trucks and airplanes. (Clearly,
this is a hypothetical situation for a domain involving self-
interested companies.) The second case, labglediby-
goal shows the amount of time it takes a single planner to
create a plan for this problem when it uses a goal-by-goal
approach. The third case is labellediltiagent In this case,

we used one planner to plan for the transport of goods in
each of the cities (thus, far cities, we used planners) and

a single planner for the planning of inter-city transportation
orders (thus, a total of + 1 planners for problems with
cities). As we can see, for these problems multiagent plan-
ning is considerably faster than planning centrally using a
goal-by-goal approach, due to the fact that we can have dif-
ferent agents plan in parallel.Notice that the differences

SFor these easy problems a planning cycle takes about 5-10ms,
while one communication takes about 40ms, because Linux sched-

ICAPS 2005

are significant (as one might guess from the figure), as can
be seen from the results of paired t-tests we performed:

| | |t [P]
one-shot | goal-by-goal| -3.0756| < 0.02
one-shot multiagent | -3.106 | <0.01
goal-by-goal| multiagent | 2.7874 | <0.02

Besides run-time performance, plan quality is also impor-
tant. Figure 5 shows the size of the resulting plans. As ex-
pected, the backward planning heuristic that we employ has
a negative effect on the size of the plans, compared with a
centralized solution. This is because it forces an ordering on
the agents’ plans that is stricter than necessary. As a result,
the plans that we obtain are significantly bigger (a paired
t-test results in t=-5.0344 and p < 0.01). This is the price
one has to pay for not exchanging detailed information on
the structure of the plans. An important question for future
work is whether we can relax the ordering that is imposed
by the heuristic a little, allowing us to reuse a part of the
existing plan.

Discussion

In this paper we gave experimental evidence that self-
interested agents can plan and coordinate their plans while
only exchanging a very small amount of information. Our
method should work with any plan repair algorithm, allow-
ing agents to choose their own dynamic planner. We de-
scribed how to use such an existing plan repair algorithm in
a goal-by-goal setting and a simple auction, we showed how
to prevent cyclic inter-agent dependencies, and how to deal
with lazy agents and decommitment by a bidder that over-
shooted itself.

We studied the difference in both plan size and planning
time between multiagent planning and single-agent plan-
ning. It turns out that our distributed approach produces
longer plans than central solutions. This can be mainly at-
tributed to our cycle-prevention heuristic, which is often too
restrictive. However, it allows us to create valid multiagent
plans without exchanging details about the plans, which is
very important for self-interested agents.

The distribution of the planning problem in a multiagent
planning system leads to an improvement of planning per-
formance compared to a single-agent solving a planning
problem goal-by-goal. We expect that for more realistic
and more complicated domains the difference may be even
larger, since agents can do a lot of work in parallel. Summa-
rizing, from the experiments we conclude that it is indeed
possible to use multiple single-agent plan repair systems to
let self-interested agents plan for their goals individually,
and request (or provide) help when necessary.

Related Work

This system for coordinating self-interested agents using
propositional plan repair is unique in that we do not assume
that the agents amllaborating Agents may even be each

ules processes in slots of at least 10ms and communication uses attime. Therefore we focused on the time required for planning. The

least 4 different processes. In realistic (i.e. complicated) domains
the planning component is the dominating factor in the total run

42

total time including communication is only slightly better than the
single-agent goal-by-goal results for these simple problems.

Workshop on Multiagent Planning and Scheduling

other’s competitors. Previous work on multiagent planning,
although often more advanced in modeling problems realis-
tically (by involving time constraints, minimizing costs, and

ICAPS 2005

planning process.
Another line of research concerns treasoningbehind
the creation of multiagent plans. Examples of this type

efficient use of resources) assumes that the agents are col-of research are the work goint intentionsby Cohen and

laborative. For example, in the Cougaar system (Kleinmann,
Lazarus, & Tomlinson 2003) cooperative agents are coordi-
nated by exchanging more and more details of their hierar-
chical plans until conflicts can be resolved (similar to (von
Martial 1992)).

The Generalized Partial Global PlanningsRGP)
method (Decker & Lesser 1992; Decker & Li 2000) de-
scribes a framework for distributedly constructing a (partial)
global plan to be able to discover all kinds of potential con-
flicts. In GPGP agents exchange parts of their plans, so
that each agent can build a partial global plan, containing

the knowledge that this agent has of the other agents’ plans.

Using this partial global plan, the agent can detect possible
positive and negative effects, and deal with them. To use
GPGP, however, the agents need to trust each other with

Levesque (1991) and thgharedPlans approach of Grosz
and Kraus (1999). Although both these approaches focus on
collaborative behaviour, some aspects are important to our
work as well. Firstly, when one of our agents carries out an
action to bring about a subgoal of another agent this can be
seen as a particular type of joint intention. Secondly, we are
considering a formalisation of our approach similar to the
theory of elaborating multiagent plans as presented in the
SharedPlans framework

Next to this work on coordinating multiagent plans, there
is also a substantial body of work dask allocationfor
self-interested agents. For example using market mecha-
nisms (Walsh & Wellman 1999), or using extensions of the
contract-net protocol (Collingt al. 1998; Smith 1980).
Ideas from this work may be used to improve the simple

some of the details of their plans. Self-interested agents are auction of our approach, for example to enable parallel or

not prepared to do this. A similar line of reasoning holds
for most of the cooperative (often hierarchical) and mixed-
initiative multiagent planning systems. Of these, the idea
of planner-independent collaborative planning by Kim and
Gratch (Kim & Gratch 2004) is particularly interesting in

view of our idea for planner independence. They use such

planners to solve small problems that can support the deci-

sion process of the user. In their situation there is no need
for plan repair or cooperation.

Thirdly, in (Brenner 2003) a method using partially or-
dered temporal plans is proposed to solve multiagent plan-

combinatorial auctions. Task (re)allocation, however, can-
not completely be disconnected from planning. In our work

we focus not so much on task allocation, but on coordinating

the agentsplanningandplan repair behavior (without the
construction of a global set of constraints).

Future Work

Since our initial experiments showed promising results, we
intend to continue this line of research towards a fully
equipped multiagent planning system. Besides looking at
improvements to our heuristic, one of the first things to do

ning problems in such a way that agents can ask others aboutis to relax some of our assumptions to be able to tackle

the state of the world, who will (truthfully) answer as soon as

more advanced problems. First of all we would like to have

possible. This work relaxes our assumption that agents have a method to estimate the costs of external actions. Typi-

complete knowledge about the relevant part of the world,

cally “external” actions are more expensive than your own

but in all of the above mentioned systems the agents are not actions. If all actions have costs, we can try to optimize

self-interested.
Finally, we would like to compare our method to a multia-
gent planning approach based on @@MAS system (Cox,

costs instead of plan length. In most domains this may give
more realistic solutions. For example, there may be two air-
ports in a city, each serviced by a different airline company.

Elahi, & Cleereman 2003). In their approach each agent has Our current system cannot distinguish between the two op-

one or morauniquecapabilities. Each agent can directly re-

tions. When the costs of such external actions are known,

quest such a ‘specialist’ when it needs its capability (based the most efficient option can be chosen. Another impor-
on knowledge about other agents’ capabilities). The request- tant topic for future study is using a different type of auction

ing agent is then sent a complete subplan that it can include and (de)committing mechanism (e.g. (Hoen & Poutré 2003;
in its plan. Besides the exchange of a lot more information Sandholm 2002)) that matches the specific requirements of
than in our method (both beforehand and during planning), efficiently allocating sets of subtasks to self-interested plan-
their system also takes a rather simple approach to prevent- ning agents.
ing cyclic dependencies: they assume that actions that can Another important issue for further study is to give feed-
possibly lead to cyclic dependencies (e.g. the load/unload back to the agent on their auctioned goals. As we indicated
pair of actions in logistics) can only be executed (and hence in a previous section, the agents currently submit their auc-
planned for) by a single agent. tions to the auctioneer, and assume they will be successfully
Plan merging systems (Tsamardinos, Pollack, & Horty auctioned. However, it may very well be that no other agent
2000; de Weerdet al. 2003) can also be used by self- bids on a certain goal, in which case the agent submitting the
interested agents in order to coordinate their plans. In these auction should reconsider its plan, since its subgoals cannot
systems, each agent builds its own plan, without exchanging be achieved. Also, in many applications, agents may need to
information with the other agents. When all plans have been deal with a very dynamic situation where actions may turn
computed, limited information is exchanged to detect pos- out to be disabled or planned goals may become useless. We
sible interactions. Clearly, these approaches are static andwould like to find an efficient coordination mechanism that
cannot be used to request help from other agents during the can use the plan repair systems of the agents to remove parts

Workshop on Multiagent Planning and Scheduling 43

of their plans that become irrelevant.

Furthermore, the algorithm for each agent is currently se-
guential: it processes a goal, then an auction, then a goal
again, and so on. In the future we would like to have two

ICAPS 2005

tional Conference on Autonomous Agents and Multi-Agent Sys-
tems 764-771.

Kleinmann, K.; Lazarus, R.; and Tomlinson, R. 2003. An in-
frastructure for adaptive control of multi-agent systemslEHEE

independent subprocesses per agent taking care of each of Int. Conf. on Integration of Knowledge Intensive Multi-Agent Sys-

these tasks. The same holds for the blackboard: it auctions
goals one at a time, whereas we might want to have mul-
tiple simultaneous auctions, or smart heuristics for order-
ing the goals before auctioning. Finally, we would like to
investigate whether exchanging just a tiny bit more infor-
mation about the dependencies of actions (or for example
making contracts that include time constraints) can lead to a
more efficient plan and to more individuality by relaxing the
heuristic of ‘planning actions for others first in your plan’.

References

Bacchus, F.; Kautz, H.; Smith, D. E.; Long, D.; Geffner, H.; and
Koehler, J. 2000. The Fifth International Conference on Atrtificial
Intelligence Planning and Scheduling Systems Planning Compe-
tition. http://www.cs.toronto.edu/aips2000/.

Brenner, M. 2003. Multiagent planning with partially ordered
temporal plans. IfProceedings of the Doctorial Consortium of
the International Conferenence on Al Planning and Scheduling

Cohen, P., and Levesque, H. 1991. Teamwdi&us25(4):487—
512.

Collins, J.; Tsvetovatyy, M.; Gini, M.; and Mobasher, B. 1998.
MAGNET: A multi-agent contracting system for plan execution.
In Proceeding of the Workshop on Atrtificial Intelligence and Man-
ufacturing (SIGMAN-98)

Cox, M. T.; Elahi, M. M.; and Cleereman, K. 2003. A distributed
planning approach using multiagent goal transformations. In
Fourteenth Midwest Atrtificial Intelligence and Cognitive Sciences
Conferencel8-23.

de Weerdt, M. M.; Bos, A.; Tonino, J.; and Witteveen, C. 2003.
A resource logic for multi-agent plan mergingnnals of Mathe-
matics and Artificial Intelligence, special issue on Computational
Logic in Multi-Agent Systent7(1-2):93-130.

Decker, K. S., and Lesser, V. R. 1992. Generalizing the partial
global planning algorithm.International Journal of Intelligent
and Cooperative Information Systeth(®):319-346.

Decker, K. S., and Li, J. 2000. Coordinating mutually exclu-
sive resources using gpggutonomous Agents and Multi-Agent
System$§(2):113-157.

DesJardins, M. E.; Durfee, E. H.; Ortiz, C. L.; and Wolverton,
M. J. 2000. A survey of research in distributed, continual plan-
ning. Al Magazine20(4):13-22.

Grosz, B. J., and Kraus, S. 1999. The evolution of SharedPlans. In
Rao, A., and Wooldridge, M. J., edBgundations and Theories of
Rational AgencyDordrecht, The Netherlands: Kluwer Academic
Publishers. 227-262.

Hoen, P.J., t., and Poutré, J.A., L. 2003. A decommitment strategy
in a competitive multi-agent transportation setting. Proceed-
ings of the AAMAS-03 Workshop on Agent Mediated Electronic
Commerce V: Designing Mechanisms and Systeolame 3048

of Lecture Notes on Artificial Intelligence

Kambhampati, S. 1997. Refinement planning as a unifying frame-
work for plan synthesisAl Magazinel8(2):67-97.

Kim, H.-S., and Gratch, J. 2004. A planner-independent collab-
orative planning assistant. Proceedings of the Third Interna-

44

tems 230-236.

Korf, R. 1987. Planning as search: A quantitative approach.
Artificial Intelligence33(1):65-88.

Malone, T. W., and Crowston, K. 1994. The interdisciplinary
study of coordinationACM Computing Surveyl(1):87-119.

Sandholm, T. W. 2002. Algorithm for optimal winner determina-
tion in combinatorial auctiondrtificial Intelligencel35(1-2):1—
54,

Schillo, M.; Kray, C.; and Fischer, K. 2002. The eager bid-
der problem: A fundamental problem of DAl and selected solu-
tions. InProceedings of the First International Conference on
Autonomous Agents and Multi-Agent Systef#9-606. ACM
Press.

Smith, R. G. 1980. The contract net protocol: High-level commu-
nication and control in a distributed problem solM&EE Trans-
actions on Computer8-29(12):1104-1113.

Tsamardinos, |.; Pollack, M. E.; and Horty, J. F. 2000. Merging
plans with quantitative temporal constraints, temporally extended
actions, and conditional branches. Pnoceedings of the Fifth
International Conference on Atrtificial Intelligence Planning Sys-
tems (AIPS-00)264—-272. Menlo Park, CA: AAAI Press.

van der Krogt, R., and de Weerdt, M. 2005. Plan repair as an
extension of planning. IRProceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS-05)

Vickrey, W. 1961. Computer speculation, auctions, and competi-
tive sealed tendergournal of Financel6:8—37.

von Martial, F. 1992 Coordinating Plans of Autonomous Agents
volume 610 ofLecture Notes on Artificial IntelligenceBerlin:
Springer Verlag.

Walsh, W. E., and Wellman, M. P. 1999. A market protocol for
decentralized task allocation and scheduling with hierarchical de-
pendencies. IRroceedings of the Third International Conference
on Multi-Agent Systems (ICMAS-98p5-332. An extended ver-
sion of this paper is also available.

Wilkins, D., and Myers, K. 1998. A multiagent planning archi-
tecture. InProceedings of the Fourth International Conference
on Artificial Intelligence Planning Systems (AIPS-984-162.
Menlo Park, CA: AAAI Press. Also available as a technical re-
port.

Younes, H. L. S., and Simmons, R. G. 2003. VHPOP: Versatile
heuristic partial order plannedournal of Al Researc20:405—
430.

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

Exploiting I nteraction Structurein Networ ked Distributed POM DPs

R. Nair
Knowledge Systems Group
Honeywell Labs
Minneapolis MN 55418
ranjit.nair@honeywell.com

Abstract

In many real-world multiagent applications such as dis-
tributed sensor nets, a network of agents is formed
based on each agent’s limited interactions with a small
number of neighbors. While distributed POMDPs cap-
ture the real-world uncertainty in multiagent domains,
they fail to exploit such locality of interaction. Distrib-
uted constraint optimization (DCOP) captures the lo-
cality of interaction but fails to capture planning un-
der uncertainty. This paper present a new model syn-
thesized from distributed POMDPs and DCOPs, called
Networked Distributed POMDPs (ND-POMDPs). Ex-
ploiting network structure enables us to present two
novel algorithms for ND-POMDPs: a distributed pol-
icy generation algorithm that performs local search and
a systematic policy search that is guaranteed to reach
the global optimal.

P. Varakantham and M. Tambe
Computer Science Dept.
University of Southern California
Los Angeles CA 90089
{varakant,tambg@usc.edu

M. Yokoo
Dept. of Intelligent Systems
Kyushu University
Kyushu, Japan
yokoo@is.kyushu-u.ac.jp

ND-POMDPs is a hybrid model that synergistically com-
bines the local agent interactions of distributed constrai
optimization (DCOP) (Modét al. 2003; Yokoo & Hirayama
1996) with the planning under uncertainty in POMDPs.
DCOPs have successfully exploited limited agent interac-
tions in multiagent systems, with over a decade of algo-
rithm development. Distributed POMDPs benefit by build-
ing upon such algorithms that enable distributed planning,
and provide algorithmic guarantees. DCOPs benefit due to
the significant enrichment to enable (distributed) plagnin
under uncertainty — a key DCOP deficiency in practical
applications such as sensor nets (Lesser, Ortiz, & Tambe
2003).

Indeed, the DCOP-POMDP synergy in ND-POMDPs
leads to two novel algorithms. First, LID-JESP algorithm
combines the existing JESP algorithm of Netial. (2003)

and theDBA (Yokoo & Hirayama 1996) DCOP algorithm.
LID-JESP thus combines the dynamic programming of
JESP with two innovations: (i) distributed instead of JESP’
centralized policy generation; (ii) LID-JESP guarantess t
mination in a local optimal, but also provides monotonicity
for anytime performance. LID-JESP illustrates by example
the beneficial synergies of DCOP and POMDPs in exploit-
ing agent interaction graphs. Second, we present a more sys-
tematic policy search that is guaranteed to reach the global
optimal on tree-structured agent-interaction graphs;iknd
lustrate that by exploiting properties from constraingit
ature, it can guarantee optimality in general. Finally, we

Unfortunately, as shown by Bernsteihal. (2000), the er_‘npirically compare the performance o_f the two algorithms
problem of findfng the optimal joint policy for a g’eneral with two benchmarks that do not exploit network structure.

unrestricted distributed POMDP is NEXP-Complete. Re- S these experiments show, we are able to solve larger prob-
searchers have hence attempted two different approaches tole_r_ns by epro_mng network structure of the interactiorg-Si
address this complexity. First, they have focused on algo- nificantly, an increase in the number of agents keeping the
rithms that sacrifice global optimality and instead focus on MaXimum number of neighbors fixed leads to a linear in-
local optimality (Nairet al. 2003; Peshkirt al. 2000). Sec- crease in run time using the LID-JESP algorithm; while it

ond, they have focused on domains that require restricted iﬁafz to,tan expdonentlal mlfr?asci In “fl_nht'me for alg(l)knthlr_ns
types of interactions between two agents, e.g., transition atdont consider network structure. 1hus, approackes i

dependence or reward independence (Beekat. 2003) LID-JESP appear well-suited for domains like sensor grids
While these approaches have led to useful advances, theW'th a large numbe_r of agents, where each interacts with a
complexity of the distributed POMDP problem has limited small number of neighbors.

most experiments to a central policy generator planning for . . .
just two 'dems, POIeY 9 P J Domains, M otivation and M odel

This paper introduces a third complementary approach Our research is motivated by domains such as distributed
called Networked Distributed POMDPs (ND-POMDPs). sensor nets(Lesser, Ortiz, & Tambe 2003), distributed UAV

I ntroduction

Distributed Partially Observable Markov Decision Prob-
lems (Distributed POMDPS) are emerging as an impor-
tant approach for multiagent teamwork. With distributed
POMDPs, a central policy generator plans an optimal joint
policy that maximizes the agents’ expected joint reward un-
der both action and observation uncertainty. Distributed
POMDPs enable modeling more realistically the problems
of a team’s coordinated action under uncertainty (lsal.
2003; Montemerlet al. 2004; Bernstein, Zilberstein, & Im-
merman 2000).

Workshop on Multiagent Planning and Scheduling 45

teams, and distributed satellites, where multiple agentst m
coordinate to accomplish a joint goal, but agents have a
strong locality in their interactions. For example, witls-di
tributed sensor nets, multiple sensor agents must codedina
to track individual targets moving through an area. In par-
ticular, we consider in this paper a problem motivated by
the real-world challenge in (Lesser, Ortiz, & Tambe 2003).
Here, each sensor node can scan in one of four directions
— North, South, East or West (see Figure 1), and to track
a target, two sensors with overlapping scanning areas must

ICAPS 2005

control. A = x1<;<p4; is the set of joint actions, where
Ay, ..., A, are the sets of action for agents Into
We assume #ransition independent distributed POMDP

model, where the transition function is defined as
P(s,a,s") = Py(su,s.,) - ngignpi(si’ Su, Gi, S;), where
S(S1, .oy Sny Su)y S=(81,..., 8.,y anda=(a1, ..., ap).

The local transition function for agent is defined as
Pi(s;, Su,ai,s;) = Pr(si]s:, su,a;) and the unaffectable
transition function is defined &, (s, s.,) = Pr(s),|su)-

Q = Xi<i<nfl; is the set of joint observations where

coordinate by scanning the_ same area simultaneously. We (); is the set of observations for agerits In this paper,
assume that there are two independent targets and that eacliye assume that an agent’s observations are independent of

target's movementis uncertain and unaffected by the agtion

of the sensor agents. Additionally, each sensor receives ob
servations only from the area it is scanning and this observa
tion can have both false positives as well as false negatives

Further, each agent pays a cost for scanning whether the tar-

get is present or not. This cost is not incurred if the sensor
chooses not to scan in any direction. As seen in this domain,
each sensor interacts with only a limited number of neigh-

boring sensor agents. For instance, sensors 1 and 3 do no

other agents’ actions. Thus, we define the joint observa-
tion function asO(s,a,w) = ngign Oi(8iy Su, Qiyw;),

wheres = (s1,...,8n,54), @ = {(a1,...,a,) andw =
(w1,...,wn). The observation function for agentis de-
fined asO(s;, Su, a;, w;) = Pr(w;|s1, Su, a;)-

R refers to the reward function and is defined as
R(S, a) = Zl Rl(sll, ey Slky Sus, AUy - - - ,alk), where each
[could refer to any sub-group of agents d@ne- |{|. Based

on the reward function, we can construct interaction

share any scanning area, and have no effect on each othergraph where a link exists between a sub-group of agents,

except potentially via sensor 2. The sensors’ observations
and transitions are independent of each other’s actions. Ex
isting distributed POMDP algorithms, although rich enough
to capture the uncertainties in this domain, are unlikely to
work well for such a domain because they are not geared
to take advantage of the locality of interaction. As a re-
sult they will have to consider all possible action choicks o
even non-interacting agents, in trying to solve the diated
POMDP. Distributed constraint satisfaction and distréolt
constraint optimization (DCOP) have been applied to sen-
sor nets but these approaches cannot capture the ungertaint
in the domain. Hence we introduce the networked distrib-
uted POMDP (ND-POMDP) model, a hybrid of POMDP
and DCOP, that can handle the uncertainties in the domain
as well as take advantage of locality of interaction.

N, Loci-1 Loc2-1
1 2/ 37
Loc1-2 | . Loc2-2
R
5 4

Figure 1: Sensor net scenario: If present, targetl is in Locl
1, Locl-2 or Locl-3, and target? is in Loc2-1 or Loc2-2.

ND-POMDPs

We define an ND-POMDP for a groufig of n agents as
atuple(S, A4, P,Q,0, Ry, whereS = Xi1<;<,S; X S, IS

the set of world statessS; refers to the set of local states
of agenti and S,, is the set of unaffectable states. Unaf-
fectable state refers to that part of the world state thatatan

be affected by the actions of any of the agents and can re-
fer to environmental factors like weather that no agent can

46

[, for every componeng; in the reward function. However,
for simplicity we will assume that eadR is for at most two
agents.

Thus, we can define thanteraction graph as G
(Ag, E), where the vertices are the set of ageAts and
E = {(i,j)|Re,,is acomponentoR} refers to a set of
undirected edges between agéand;. Note that, in addi-
tion to binary rewards, we also allow local rewards. Thus the
reward functionis defined a®(s, a) = Y, R;(si, su, i)+
Z%_ e Rij (i, 55, 54, ai, a;), where we assume thak j.

Based on the interaction graph, we defirsghborhood
of i asN; = {j|3e;; € E}. We refer to the local states of
the neighbors of asSy, = X s.t. ¢;;erS;. Similarly we
also defined y,, Qn,, Py, andOy;, .

The goal in the ND-POMDP model is to come up with a
joint policy 7 = (m;, ..., m,) that maximizes the expected
reward of the team over a finite horizdhstarting from an
initial probability distributionb over statesar; refers to the
individual policy of agent and is a mapping from the set of
observation histories d@fto the set of actionsl;. wy, refers
to the joint policy of the agents ifV;.

L ocality of Interaction

Given a factored reward function and the assumptions of
transitional and observational independence, the regulti

value function can be factored (Guestrin, Venkataraman, &
Koller 2002) as well into value functions for each of the

agents,V; and each of the edges in the interaction graph,
Vij-
]We define docal neighborhood utility as follows:

UN’i (7T) = ‘/7;7” (Sivsuaaji)—" Z %E‘ﬂi’ﬂj)(sivSjvsuvu_jivu_jj)

e;;€E
)
which is the value returned by Algorithm 2.
Equation 1 sums ovefr € N; only in the neighborhood
of 4, and hence any change of policies of agents not in the

Workshop on Multiagent Planning and Scheduling

neighborhood of does not affect/ Vi (7). Thus any such
policy assignmenty’ that has different policies for only
non-neighborhood agents, has equal valué ¥s~). Thus,
while trying to find best policy for agentgiven its neigh-
bor’s policy, we do not need to consider non-neighbor’spoli
cies. This is the property dbcality of interaction that is
used in Sections and .

Similarity to DCOP
The ND-POMDP can be thought of as a DCOP where each

ICAPS 2005

(st st st &%). Given that the neighbors’ policies are
fixed, treating episode as the state, results in a singletagen
POMDP, where the transition function and observation func-
tion can be defined as follows:
P'(el,al, el™)=P,(s!, stT1) - Py(st, st

1) 771 Ty u? u 27w

t+1)

7
t+1 t+1 _t+1
Py, (siy,s sty an,, 85,) - O, (s st

ai, S

AN, WN;)

O/(t+1 »f;'awf+1) _O(t+1 t-l—l

iy W)

agentis a node. The variable at each node is the local policy A multiagent belief state for an agengiven the distribu-

of that agent and the domain of values is the set of possi-
ble individual policies. The reward componeR} can be
thought of as a local constraint while the rewartls, cor-
responding to edges in thieteraction graph, are the binary
constraints in a constraint graph. In the following section
we push this analogy further by taking inspiration from the
DBA algorithm (Yokoo & Hirayama 1996), an algorithm for
distributed constraint satisfaction, to develop an athaomi

for solving ND-POMDPs.

L ocally optimal policy generation

The locally optimal policy generation algorithm called
LID-JESP (Locally interacting distributed joint equilibm
search for policies) is based on the DBA algorithm (Yokoo
& Hirayama 1996) and JESP (Nait al. 2003). In this al-
gorithm (see Algorithm 1), each agent tries to improve its
policy with respect to its neighbors’ policies in a distried
manner similar to DBA. Initially each agentstarts with a
random policy and exchanges its policies with its neighbors
(lines 2-3). It then computes its local neighborhood wtilit
(see Equation 1) from its initial belief staiavith respect to

its current policy and its neighbors’ policy. Agerthen tries

to improve upon its current policy by calling functiore®
VALUE (see Algorithm 3), which returns the value of agent
i's best response to its neighbors’ policies. This algorithm
is described in detail in Section . Agehthen computes
the gain that it can make to its local neighborhood utility,
and exchanges its gain with its neighbors (lines 7-10).
i’s gain is greater than that of one any of its neighboris
changes its policy and sends its new policy to all its neigh-
bors. This process of trying to improve the local policy is
continued until termination. Termination detection isdxhs
on using a termination counter to count the number of cycles
wheregain; = 0. If its gain is greater than zero the termina-
tion counter is reset. Agenthen exchanges its termination
counter with its neighbors and sets its counter to the mini-
mum of its counter and its neighbors’ counters. Agentll
terminate if its termination counter becomes equal to the di
ameter of the interaction graph.

Finding Best Response

The algorithm for computing the best response is a dynamic-
programming approach similar to that used in JESP. Here,
we define anepisode of agenti at time ¢ as e!

1The function argmax; disambiguates between multiple
corresponding to the same max value by returning the loyvest

Workshop on Multiagent Planning and Scheduling

tion over the initial statej(s) is defined as:

B() PT(Sus mSNaLD‘%V ﬁfaaz ! b) (2)

We can now compute the best response using the follow-
ing equation (see Algorithm 3):

t/pt _ ait(pt
V(BLb) = max V! (BLb)

®3)

The function,V %!, can be computed using Algorithm 4

as follows:
Z Bi(e

vt
> _Pr(

t+1€Q]

<CL1', TN, (C}Nl»)

t+1|B

‘/Zt+1 (Bt-l-l)) (4)

B! is the belief state updated after performing actign
and observmgf+1 and is computed using Algorithm 5.

Algorithm 1 LID-JESH Agent 1)

1: d < diameter of graphierminationCtr; < 0
. m; < randomly selected policyyrevVal <+ 0
: Exchanger; with V;
whileterminationCtr; < d do
for all s;, sn;, s« do
prevVal Pr(si, SN, , Sulb)
EVALUATE (Agent i, si, Su, SN, Wi, TN, () (), 0,T)
7. gain; «<— GETVALUE(Agent i,b,7n,,0,T) — prevVal
8: if gain; > 0then terminationCtr; — 0
9

o ahwh

+
—

1 dseterminationCtr;]
10: Exchangegain;,terminationCtr; with N;

11: terminationCtr; < min;en, iy terminationCtr;
12: maxGain < max;en,u{i }gainJ

13: winner < argmax; eN;ULi }gam]

14: if maxGain > 0 and ¢ = winner then

15: initialize

16: FNDPoLicY(Agent i,b, () ,mn,,0,T)

17: Communicater; with N;

18: dseif maxGain > 0then

19: Receiveryinner from winner and updatery,

20: return

Theoretical Results

Proposition 1 If terminationCtr; = diameter of graph,
then agents arein alocal optimum.

47

Algorithm 2 EVALUATE (Agent i, i, si,, s, , mi, N, , @i, On, , 1, T)

a; — mi(Ji), an; «— 7N, (DN;)

D wal — Ri(st, a;) + Zew R;j (sﬁ,sﬁ,sﬁ@i,a,‘)
ift <7 — 1then '

s’jvtl,szﬂ do

for all ws, wn, do

o akrhwnNE

t ot

Pi(s5,8y,ai,$
t ot

PNi (5N7378u7aNi78

EVALUATE (Agent

Su ’SNi y Tis TN <“7i7wi>) <‘DN1:7WN1:> U+ lvT)

Algorithm 3 GETVALUE(

Agenti, B*, 7n,

cift > T thenreturn0
. if V3(B") is already recordethen return V;(B?)

: for all a; € A; do

value «+ GETVALUEACTION(Agent i, BY, a;, wn,, t,T)
recordV** (B") as value

if value > best then best < value

1
2
3
4
5:
6
7
8: recordV;(B") asbest
9

Algorithm 4 GETVALUEACTION(Agent i, BY,a, 7w, , t,T)

1: value — 0
2: forall e' = (s
3:

ooNogOA

11:
12:

13:

14: return value

sk, @n;) st B (') > 0do
Ri(sf,ai) +

N, (@n,) ., reward —

value & Bt(e') - reward
ift <T —1then
for all w; € €2; do
B't! « UPDATE(Agent i, B, a,w;, 7N,)

for all stu,sﬁ,sﬁ\;i do
<‘3Ni7wNi>> S.t.
B (1) > 0do
aN; < TN; (‘DNz)
T ot ot t
prob — B¥(e")-Pu(sy, s
Pn, (8, 84, an;, s

)'Pi(5§785uai78

value < prob - GETVALUE(Agent i, B! nn, t +

Algorithm 5 UPDATE(Agent 4, BY, ai, wi, TN,)

1: for all e+ do
Bt+l(et+1) —0,an; «— 7N, (‘DNz)
for all s* € S do

2:
3:
4.

5: normalizeB!*?!
6: return B**!

t t t t
Pi(8i78u7ai75 PN1(5N1375u7aNi78

ICAPS 2005

Algorithm 6 FINDPoLIcY (Agent i, BY,J;, 7w, t, T)

a* — argmaxa, Vo, (B"), mi(W;) < a*
ift <T —1then
for all w; € Q; do
B! « UPDATE(Agent i, B*,a*,w;, mn;,)
FINDPoLICY(Agent i, BT (&5, wi) , mn,, t + 1,T)
return

ouhrwNRE

Proof: Assume thatin cycle, terminationCtr; = diame-
ter but agents are not in a local optimum.

In cycle ¢ — diameter, there must be at least one agent
j who can improve, i.egain; # 0 (otherwise, agents are
in a local optimum in cycle — diameter and no agent can
improve later).

Let the distance between agenwnd;j bed;;. Then, in
cyclec — diametert d;; (which is less than or equal),
terminationCtr; become®). HoweverterminationCtr;
increases at most by one for each cycle. Thus, in cycle
terminationCtr; < diameter— d;;.

If d;; > 1, in cyclec, terminationCtr; < diameter.
Also, if d;; = 0, i.e., in cyclec — diametergain; # 0, then
in cyclec — diameter+ 1, terminationCtr; = 0, thus, in
cylcec, terminationCtr; < diameter. In either case, the
assumption thaterminationCtr; = diameter cannot hold.

O

Proposition2 If agents reach a local optimum,
terminationCtr; becomes d within d cycles, where
d = diameter.

Proof: Once agents reach a local optimum, for each agent
i gain; = 0 henceforth. ThusterminationCtr; is
never reset to 0 and is incremented by 1 in every cycle.
Thus, afted = diameter cycleserminationCtr; becomes
diameter. O

Based on the above proofs, we can conclude the LID-
JESP is guaranteed to terminate if and only if the agents
reach a local optimum.

Proposition 3 When applying LID-JESP, the global utility
is strictly increasing with each cycle until local optimumis
attained.

Proof sketch By construction of LID-JESP, neighboring
agents cannot modify their policies in the same cycle. Agent
1 chooses to change its policy if it can improve upon its lo-
cal neighborhood utility/~:. From Equation 1, increasing
UM results in an increase in global utility. Based on local-
ity of interaction, if a non-neighbagj changes its policy, it
will not affect UVi but will increasel/™Vs. Thus with each
cycle global utility is strictly increasing until local dptum

is reached. a.

Global Optimal Algorithm (GOA)

The global optimal algorithm exploits network structure in
finding the optimal policy for a distributed POMDP. It re-
quires a tree structure (interaction graph constructeddas

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

on the reward structure) among the agents. However this figurations of increasing complexity. The first configuratio
does not impair its application to other kinds of interagtio is a chain with 3 agents (sensors 1-3). Here targetl is either
graphs, because any interaction graph with cycles can be absent or located at Loc1-1. Similarly, target? is either ab
converted to a tree using cycle cutset algorithms. sent or at Loc2-1. Each agent can perform either turnOff,
All child agents find their best policy (policy with high- scanEast or scanWest. Each agent receives an observation
est expected reward) for a fixed parent policy and return the targetPresent or targetAbsent depending on the unaffectab
expected reward associated with their best policy. Theevalu state and its last action. The second configurationis a 4agen
of a parent policy is the sum of the best policy rewards ob- chain (sensors 1-4). In this configuration target2 can be in
tained from the children. A parent node goes through all its either absent or in Loc2-1 or Loc2-2, giving rise to 6 unaf-
possible policies, and changes its best policy if it gethéig fectable states. The number of individual actions and ebser
value than its current best policy. This process is repeated vations are unchanged. The 3rd configuration is the 5 agent
at each level in the tree, until the root exhausts all its-poli F configuration and is identical to Figure 1. In this configu-
cies. The above method helps GOA take advantage of the ration targetl can also be located at Loc1-2 and Loc1-3 giv-
structure and prune unnecessary joint policy evaluations. ing rise to 12 unaffectable states. We include an additional
Algorithm 7 provides the pseudo code for the Global action for each agent called scanVert that allows the agent t
Optimal algorithm at each agent. Lines 1-4 set the best scan North and South.
policy(r;) at an agent and its children when terminate is For each of these scenarios, we ran the LID-JESP algo-
received. Lines 10-12 calculate the value of policyfor a rithm from Section . For our first benchmark (JESP), we
given policy,r; of its parent (in the interaction graph). Lines used Nairet al.'s JESP algorithm (2003). This algorithm
13-20 record the best value for a policy when all children uses a centralized processor to find a locally optimal joint
provide best responses. Lines 21-23 store the best value andpolicy and does not consider the network structure of the in-
policy obtained thus far for a given a parent policy. Lines teraction. For our second benchmark (LID-JESP-no-nw),
23-25 are for the root agent to signal the termination of the we ran the LID-JESP with a fully connectedteraction

algorithm. graph. For the 3 and 4 agent chains, we also ran the GOA
algorithm (from Section) and the GOA algorithm with a
Algorithm 7 GO-JoINTPoLICY (Agent i, 75, terminate) completely connected interaction graph (GOA-no-nw).
1. if terminate = yesthen Figures 2- 4 compare the performance of the various al-
20 < bestResponse{m;} gorithms for the 3 agent chain, 4 agent chain and 5 agent
3. for all Agent k € children; do F configurations respectively. Each of the graphs on the
4 GO-DINTPOLICY(k, 77 yes) left of these figures shows the run tifna seconds on a
5: Il < ENUMERATE(Agent i, A;, 0:,T) logscale on the Y-axis for increasing finite horizbron the
6: bestVal «+ -00 . . .
7: j — parenti) X-axis, while the grap.hs on the rlght. shoyv_the va_lue of pol-
8: for all m; € 11, do icy found on the Y-axis and increasing finite horizéron
9: jointVal — 0 the X-axis. The run times and values for LID-JESP, JESP
10: if i + rootthen and LID-JESP-no-nw are each the average obtained from 5
11: for all s;, s, s, do runs, each with different randomly chosen starting pddicie
12: jointVal X Pr(si, sj,sulb) - . However, for a particular run, the various algorithms use
EVALUATE (Agent 4, 8i, Su, 85, T, 75, (), () ,0,T) the same starting policies. As can be seen in the graphs on
13: if policyValMap{m;} # null then the right of Figures 2- 4, the values obtained for LID-JESP,
14: jointVal & policyValMap{m:} JESP and LID-JESP-no-nw are quite similar, although LID-
15: dse JESP and LID-JESP-no-nw often converged on a higher lo-
16: childVal «— 0 cal optima than JESP. On average the value obtained using
17: for all Agent k € children; do LID-JESP will be less than that obtained by GOA. Random
18: childVal <& GO-JoINTPOLICY(k, 7:,n0) restarts can be used to try and converge at a higher local op-
19: policyValMap{m;} — childVal tima. Please note that GOA and GOA-no-nw are both exact
20 jointVal & childVal algorithms and will hence return the same value. In compar-
21 if jointVal > bestVal then ing the run times, please note that GOA does significantly
22: bestVal — jointVal better than GOA-no-nw, which could not be run for> 2
23: T e and7 > 1 for the 3 and 4 agent chains, respectively, within
24: if i = root then 10,000 seconds. GOA, itself, could not be runfor- 3 and
25 for all Agent k € children; do T > 2 within 10,000 seconds for the 3 and 4 agent chains re-
26: GO-DiNTPOLICY (K, 7] ,yes) spectively. All three locally optimal algorithms show a-sig

27: bestResponse{n;} = 7

nificant improvement over GOA in terms of run time. How-
28: return bestVal

ever, it should be noted that LID-JESP significantly outper-
forms LID-JESP-no-nw and JESP by exploititagality of
interaction.

Experimental Results

For our experiments, we use the sensor domain from Sec- 2Machine specs for all experiments: Intel Xeon 2.8 GHz
tion (see Figure 1). We consider three different sensor con- processor, 2GB RAM, Linux Redhat 8.1

Workshop on Multiagent Planning and Scheduling 49

——LID-JESP

-®- LID-JESP-no-n'w —A-JESP

ICAPS 2005

——LID-JESP - ®- LID-JESP-no-n/w —A-JESP

—- GOA —X- GOA-no-nw —e- GOA —x- GOA-no-nw
10000 10000 5
1000 - - 1000 : —%
. s
. ! oA @ J - et
5 100 - & 100 L s
8 ! / 3 / B //
k B . .
@ .- KA -
@ 10 ;/ o 10 ; ——
0] ! / =2
g 1 ! 2 £ B
= PRy / c P /
S o1 o 2 oif—e =
= § /
B
0.01 0.01+—g
0.001 — 7 T3 T 4 T 5 0.001 +——— PR 5 5
Horizon Horizon

——LID-JESP
—A-JESP

- =- LID-JESP-no-n/w

—- GOA

300 400
250 g — 350 =
200 o / 300 - .
.//’ 250 = ==
2 150 = — @ i ,‘/.‘r{/
% R > 200 " g
= Rz s v P
100 150 -
;/ //
100
50 -
50—
0 . ‘
3 4 5 0

Horizon

6

Figure 2: 3 agent chain.(a) Run time(secs),(b) Value

‘—O—L\D-JESP - 8- LID-JESP-no-n/w —A-JESP -e- GOA

Horizon

Figure 3: 4 agent chain. (a) Run time (secs), (b) Value

Comparing Figures 2(a) and 3(a) shows that an increase
in the number of agents, keeping the maximum number of counted value for actions. We have earlier discussed Nair
neighbors fixed, leads to a linear increase in run time us- et al. (2003)’s JESP algorithm that uses dynamic program-

ing the LID-JESP algorithm; while it leads to an exponen-
tial increase in run time for algorithms that don’t consider
network structure. It is important to note that all the exper

ming to reach a local optimal. In addition, Becletral.’s

work (2003) on transition-independent distributed MDPs is

related to our assumptions about transition and observabil

iments were run on a single processor machine. We would ity independence in ND-POMDPs. These are all central-

expect LID-JESP to out-perform centralized algorithme lik

ized policy generation algorithms that could benefit from th

JESP even more on multi-processor machines owing to its key ideas in this paper — that of exploiting local interawtio

distributedness.

Summary and Related Work

structure among agents to (i) enable distributed policy gen
eration; (i) limit policy generation complexity by congid

ing only interactions with “neighboring” agents. Guestin
al. (2002), present “coordination graphs” which have sim-

In a large class of applications, such as distributed sensor ilarities to constraint graphs. The key difference in their

nets, distributed UAVs and satellites, a large network of
agents is formed from each agent’s limited interactiong wit
a small number of neighboring agents. We exploit such net-
work structure to present a new distributed POMDP model
called ND-POMDP. We present two distributed algorithms
for ND-POMDPs that exploit network structure: a dynamic-
programming algorithm that performs local search and a
more systematic policy search that is guaranteed to reach th
global optimal. Experimental results illustrate the sfigaint
efficiency gains of the two algorithms when compared with
previous algorithms that are unable to exploit such strectu
Among related work, we have earlier discussed the rela-
tionship of our work to key DCOP and distributed POMDP
algorithms, i.e., that we synthesize new algorithms by ex-
ploiting their synergies. We now discuss some other re-
cent algorithms for locally and globally optimal policy gen
eration for distributed POMDPs. For instance, Hansen
al. (2004) present an exact algorithm for partially observ-

approach is that the “coordination graph” is obtained from
the value function which is computed in a centralized man-
ner. The agents then use a distributed procedure for online
action selection based on the coordination graph. In our ap-
proach, the value function is computed in a distributed man-
ner. Dolgov and Durfee (2004) also study the effect of net-
work structure on multiagent MDPs. However, their algo-
rithm assumed that each agent tried to optimize its individ-
ual utility instead of the team’s utility.

Acknowledgments

This material is based upon work supported by the
DARPA/IPTO COORDINATORs program and the Air

Force Research Laboratoryunder Contract No. FA8750-05—
C-0030.The views and conclusions contained in this docu-

able stochastic games (POSGs) based on dynamic program-ment are those of the authors, and should not be interpreted

ming and iterated elimination of dominant policies. Emery-

Montemerlo (2004) approximate POSGs as a series of one-
step Bayesian games using heuristics to find the future dis-

50

as representing the official policies, either expresseder i
plied, of the Defense Advanced Research Projects Agency
or the U.S. Government.

Workshop on Multiagent Planning and Scheduling

——LID-JESP -m- LID-JESP-no-n'w —a-JESP ‘

10000

1000 ——
RSP
it /

>
S
|

>
S

Run time (secs)

\

o
o ¢
<

0.001] T > T 3 T 2 T 5
Horizon

——LID-JESP - #- LID-JESP-no-nw _ —a-JESP |

300

250 /
200 /
PO
150 —
S

100 / =

50 ===

Value

0 3
Horizon

Figure 4: 5 agent F-config. (a) Run time (secs), (b) Value

References
Becker, R.; Zilberstein, S.; Lesser, V.; and Goldman, C. V.
2003. Transition-independent decentralized Markov deci-
sion processes. IR AMAS.
Bernstein, D. S.; Zilberstein, S.; and Immerman, N. 2000.
The complexity of decentralized control of MDPs. U\
Dolgov, D., and Durfee, E. 2004. Graphical models in
local, asymmetric multi-agent markov decision processes.
In AAMAS,
Guestrin, C.; Venkataraman, S.; and Koller, D. 2002.
Context specific multiagent coordination and planning with
factored MDPs. IrAAAI.
Hansen, E.; Bernstein, D.; and Zilberstein, S. 2004. Dy-
namic Programming for Partially Observable Stochastic
Games. IMAAI.
Lesser, V.; Ortiz, C.; and Tambe, M. 200Ristributed
sensor nets: A multiagent perspective. Kluwer academic
publishers.
Modi, P. J.; Shen, W.; Tambe, M.; and Yokoo, M. 2003. An
asynchronous complete method for distributed constraint
optimization. INAAMAS.
Montemerlo, R. E.; Gordon, G.; Schneider, J.; and Thrun,
S. 2004. Approximate solutions for partially observable
stochastic games with common payoffs AAMAS.
Nair, R.; Pynadath, D.; Yokoo, M.; Tambe, M.; and
Marsella, S. 2003. Taming decentralized POMDPs: To-
wards efficient policy computation for multiagent settings
In 1JCAI.
Peshkin, L.; Meuleau, N.; Kim, K.-E.; and Kaelbling, L.
2000. Learning to cooperate via policy searchUK.
Yokoo, M., and Hirayama, K. 1996. Distributed break-
out algorithm for solving distributed constraint satitfan
problems. INCMAS. MIT Press.

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

51

ICAPS 2005

Bounded Policy Iteration for Decentralized POMDPs

Daniel S. Bernstein Eric A. Hansen Shlomo Zilberstein
Dept. of Computer Science Dept. of CS and Engineering Dept. of Computer Science
University of Massachusetts Mississippi State University University of Massachusetts

Amherst, MA 01003 Mississippi State, MS 39762 Amherst, MA 01003
bern@cs.umass.edu hansen@cse.msstate.edu shlomo@cs.umass.edu
Abstract problems, there are various ways to extend it to the infinite-

o) . horizon case. However, in both cases, it suffers from the fact
We present a bounded policy iteration algorithm for that the memory requirements grow quickly with each itera-
infinite-horizon decentralized POMDPs. Policies tion, and in practice it has only been used to solve very small
are represented as joint stochastic finite-state con- problems. It is likely that any optimal algorithm would suf-

trollers, which consist of a local controller for each fer this problem, as finite-horizon DEC-POMDPSs have been
agent. We a_Iso let a joint controller include a cor- shown to be NEXP-complete, even for just two agéBesrn-
relation device that allows the agents to correlate steinet al., 2004.

their behavior without exchanging information dur- In this paper, we present a memory-bounded dynamic

ing execution, and show that this leads to improved 5rogramming algorithm for infinite-horizon DEC-POMDPS.
performance. The algorithm uses a fixed amount The algorithm uses a stochastic finite-state controller to rep-
of memory, and each iteration is guaranteed to pro- regent the joint policy for the agents. A straightforward ap-
duce a controller with value at least as high as the hroach is to use a set of independent local controllers, one for
previous one for all possible initial state distribu- each agent. We provide an example to illustrate that higher
tions. For the case of a single agent, the algorithm 31y can be obtained through the use of shared randomness.
reduces to Poupart and Boutilier's bounded policy ag such, we define a joint controller to be a set of local con-
iteration for POMDPs. trollers along with acorrelation device The correlation de-
vice is a finite-state machine that sends a signal to all of the
. agents on each time step. Its behavior can be determined prior
1 Introduction to execution time, and thus it does not require that the agents
The Markov decision process (MDP) framework has proverexchange information after receiving local observations.
to be useful for solving problems of sequential decision mak- Our algorithm generalizebounded policy iteratiorfor
ing under uncertainty. For some problems, an agent mustOMDPs[Poupart and Boutilier, 20030 the multi-agent
base its decision on partial information about the systentase. On each iteration, a node is chosen from one of the
state. In this case, it is often better to use the more genlocal controllers or the correlation device, and its parameters
eral partially observable Markov decision process (POMDP)re updated through the solution of a linear program. The
framework. Though POMDPs are difficult to solve in the generalization has the same theoretical guarantees as in the
worst case, much progress has been made in the developmdoMDP case. Namely, an iteration is guaranteed to produce
of practical dynamic programming algorithrfSmallwood a new controller with value at least as high for every possible
and Sondik, 1973; Cassandea al, 1997; Hansen, 1998; initial state distribution.
Poupart and Boutilier, 2003; Feng and Zilberstein, 4004 In our experiments, we applied our algorithm to idealized
Even more general are problems in which a team of decinetworking and robot navigation problems. Both problems
sion makers, each with its own local observations, must acare too large for exact dynamic programming, but could be
together. Domains in which these types of problems ariséhandled by our approximation algorithm. We found that the
include networking, multi-robot coordination, e-commerce,addition of a correlation device gives rise to better solutions.
and space exploration systems. To model such problems, we addition, larger controllers most often lead to better solu-
can use the decentralized partially observable Markov decitions.
sion process (DEC-POMDP) framework. Though this model A number of approximation algorithms have been devel-
has been recognized for decades (see, Bigitsenhausen, oped previously for DEC-POMDPEPeshkinet al, 2000;
1971]), there has been little work on efficient algorithms for Nair et al, 2003; Emery-Montemerlet al, 2004. How-
it. ever, the previous algorithms do not guarantee both bounded
Recently, an exact dynamic programming algorithm wasmemory usage and monotonic value improvement for all ini-
proposed for DEC-POMDPi$Hanseret al, 2004. Though tial state distributions. Furthermore, the use of correlated
the algorithm was presented in the context of finite-horizonstochastic policies in the DEC-POMDP context is novel. The

52 Workshop on Multiagent Planning and Scheduling

ICAPS 2005

importance of correlation has been recognized in the game AB AA
theory communityfAumann, 1974 but there has been little BA AA R AB
work on algorithms for finding correlated policies. BB BA

2 Background -R R
In this section, we present our formal framework for e e

multi-agent decision making. Alecentralized partially-
observable Markov decision process (DEC-POMI¥A tu-
ple(I,S,{A;},{O;}, P, R), where
e [is afinite set of agents indexad. .., n +R
e Sis afinite set of states
e A; is a finite set of actions available to agenand Figure 1: This figure shows a DEC-POMDP for which the
A = x,;c14; is the set of joint actions, wherg¢ = Optimal memoryless joint policy requires correlation.
(a1, ...,a,) denotes a joint action

BB

e O, is a finite set of observations for age'nand(j Taken together, the agents’ controllers determine the con-
x,c10; is the set of joint observations, whee2 ditional distributionP(a, ¢’|q,0). This is denoted ainde-
(01,...,0,) denotes a joint observation pendent joint controller In the following subsection, we

r]show that independence can be limiting.

e P is a set of Markovian state transition and observatio
probabilities, where(s’, ols, @) denotes the probability 35 The Utility of Correlation
that taking joint actiori in states results in a transition

to states’ and joint observatiod The joint controllers described above do not allow the agents
S .) to correlate their behavior via a shared source of randomness.
e R:5xA— Risareward function We will use a simple example to illustrate the utility of cor-

In this paper, we consider the case in which the procesgelation in partially observable domains where agents have
unfolds over an infinite sequence of stages. At each stage, dimited memory. This example generalizes the one given in
agents simultaneously select an action, and each receives thginghet al, 1994 to illustrate the utility of stochastic poli-
global reward and a local observation. The objective of theties in single-agent partially observable settings.
agents is to maximize the expected discounted sum of rewards Consider the DEC-POMDP shown in Figure 1. This prob-
received. We denote the discount factoand require that lem has two states, two agents, and two actions per agent (

0<y<l. andB). The agents each have only one observation, and thus
cannot distinguish between the two states. For this example,
3 Finite-State Controllers we will consider only memoryless policies.

. L Suppose that the agents can independently randomize their
Our algorithm uses stochastic finite-state controllers to repgaonavior using distribution®(a;) and P(as), and consider
resent policies. In this section, we first define a type of cony,q policy in which each agent chooses eitkiemrB accord-

troller in which the agents actindependently. We then provid,, 5 5 yniform distribution. This yields an expected reward

an example demonstrating the utility of correlation, and showy¢™ per time step, which results in an expected long-term
how to extend the definition of a joint controller to allow for 2 !

correlation among agents. reward ofﬁ. It is straightforward to show that no in-
dependent policy yields higher reward than this one for all

3.1 Local Finite-State Controllers states.

In a DEC-POMDP, each agent must select an action based on Next, let us consider the larger class of policies in which

its history of local observations. Finite-state controllers pro-th€ agents may act in a correlated fashion. In other words, we

vide a way to represent local policies using a finite amoungonsider all joint distribution®(as, az). Consider the policy

of memory. The state of the controller is based on the ob{hat assigns prqba_b|l|t§ to the pairAA and probability; to-

servation sequence, and the agent's actions are based on th€ PairBB. This yields an average reward of 0 at each time

state of its controller. We allow for stochastic transitionsSteP and thus an expected long-term reward of 0. The dif-
and stochastic action selection, as this can help to makference between the rewards obtained by the independent and

up for limited memory. This type of controller has been correlated policies can be made arbitrarily large by increasing
used previously in the single-agent contfRlatzman, 1980;
Meuleauet al., 1999; Poupart and Boutilier, 20D3 .
Formally, we define éocal finite-state controllefor agent 3.3 Correlated Joint Controllers

i to be a tuple(Q;, vi, n;), where@); is a finite set of con- Inthe previous subsection, we established that correlation can
troller nodesy); : @Q; — AA,; is an action selection function, be useful in the face of limited memory. In this subsection, we
andn; : Q; x A; x O; — AQ, is a transition function. The extend our definition of a joint controller to allow for correla-
functionsy; andn; parameterize the conditional distribution tion among the agents. To do this, we introduce an additional
P(a;, ¢}|gi, 0;). finite-state machine, called a correlation device, that provides

Workshop on Multiagent Planning and Scheduling 53

ICAPS 2005

Variables:e, z(c, a;), z(c, a;, 0, q)
Objective: Maximize:
Improvement constraints:

Vs, q—i,c V(s,q,c)+e < Z P(a_;le,q—i)[z(c,a;)R(s, @) +
Y Z CC(C7 ai,Oi,q;)P(qLi‘C, q,i,a,i,o,i)P(S',é'\s,d')P(c/|c)V(s/,q_’/,c/)]
s',0,q" ¢’
Probability constraints:

Ve Zx(c,ai)zl, Ve, a;i, 0; Zx(c,ai,oi,qg)za:(c,ai)

a; q"i

VC, a; I(C, ai) Z Oa VC, az‘a‘%‘]; ,I(C, ai701aQQ) Z 0

Table 1: The linear program used to find new parameters for agemideq;. The variablez(c, a;) represent®(a;|q¢;, c), and
the variablex(c, a;, 0, ¢}) representd(a;, ¢}|c, gi, 0;).

extra signals to the agents at each time step. The device ofated joint controller, we can either change the correlation de-
erates independently of the DEC-POMDP process, and thugce or one of the local controllers. Both improvements can
does not provide the agents with information about the othebe done via &@ounded backupwhich involves solving a lin-
agents’ observations. In fact, the random numbers necessaear program. Following an improvement, the controller can
for its operation could be determined prior to execution time be reevaluated through the solution of a set of linear equa-
Formally, acorrelation devices a tuple(C,), whereC' tions. Below, we describe how a bounded backup works, and
is a set of states and : C — AC is a state transition func- prove that it always produces a new controller with value at
tion. At each step, the device undergoes a transition, and eadbast as high for all initial state distributions.
agent observes its state.
We must modify the definition of a local controller to 4.1 Improving a Local Controller
take the state of the correlation device as input. Now, aMNe first describe how to improve a local controller. To do
local controller for agent is a conditional distribution of this, we choose an agent along with a nodey;. Then,
the form P(a;, ¢;|c, ¢i, 0;). The correlation device together we search for new parameters for the conditional distribution
with the local controllers form a joint conditional distribu- P(a;, g}|c, ¢, 0i).

tion P(c',d,q"|c, q,0). We will refer to this as aorrelated The search for new parameters works as follows. We as-
joint controller Note that a correlated joint controller with sume that the original controller will be used from the second
|C| = 1is effectively an independent joint controller. step on, and try to replace the parametersgfowith better

The value function for a correlated joint controller can beones for just the first step. In other words, we look for the
computed by solving the following system of linear equa-best parameters satisfying the following inequality:

tions, one foreach € S, ¢ € @, andc € C: Vis.q.c ZP dle, §)[R(s, a) +
V(s,q.c ZP dle, @)[R(s,@) +
y Z P({|e, @, a@,0)P(s',d]s,qd)
v Z P(s',0ls,@)P({"|c, q, a,0) s,5,0 ¢’
s',0,q",c’ . P(C/|C)V(S/,§/,C)]
PV (s, q",c)]. foralls € S, q_; € Q_;, andc € C. Note that the inequality
We sometimes refer to the value of the controller for an initiallS always satisfied by the original parameters. However, it is
state distribution. For a distributia this is defined as often possible to get an improvement. o
Finding new parameters can be done using linear program-
= max Z 0(s)V(s,q,c ming, as shown in Table 1. We note that this linear program is

the same as that of Poupart and Boutilier [2003] for POMDPs,
with the nodes of the other local controllers and correlation
device considered part of the hidden state. Its size is polyno-
mial in the sizes of the DEC-POMDP and the joint controller,
but exponential in the number of agents.

4 Bounded Policy Iteration 4.2 Improving the Correlation Device

We now describe our bounded policy iteration algorithm forThe procedure for improving the correlation device is very
improving correlated joint controllers. To improve a corre- similar to the procedure for improving a local controller. We

It is assumed that, given an initial state distribution, the con-
troller is started in the joint node which maximizes value from
that distribution.

54 Workshop on Multiagent Planning and Scheduling

ICAPS 2005

Variables:e, z(c)
Objective: Maximize:
Improvement constraints:

Vs,q V(s,q,c)+e

Probability constraints:

’

C

Ve Zm(c’) =1, V¢ xz(d)>0

Z P({"|c,q,a,0)P(s',als,a@)x(c)V (s, 7,)]

Table 2: The linear program used to find new parameters for the correlation device.ndthe variablex(c) represents

P(cc).

first choose a device nodeand consider changing its param-

TFY(V,) > Tk(V,). SinceV,, = limy,_., T*(V,), we have

eters for just the first step. We look for the best parameterthatV,, > V,. Thus, the value of the new controller is higher

satisfying the following inequality:

Vis,q,c) < Z P(dle, §)[R(s,a) +

> P(q'|e.q.@,5)P(s,d]s, @)

0,q9°,¢

- P(|V(s',q",)]

Y
s

forall s € S andg e Q.
As in the previous case, the search for parameters c
be formulated as a linear program. This is shown in Tabl

2. This linear program is also polynomial in the sizes of
the DEC-POMDP and joint controller, but exponential in the

number of agents.

4.3 Monotonic Improvement

than that of the original controller for all possible initial state
distributions.

The argument for changing nodes of the correlation device
is almost identical to the one given above.

4.4 Local Optima

Although bounded backups give nondecreasing values for all
initial state distributions, convergence to optimality is not
guaranteed. There are a couple of factors contributing to this.
First is the fact that only one local controller, or the corre-

3at|on device, is improved at once. Thus, it is possible for

the algorithm to get stuck in a suboptimal Nash equilibrium

in which each of the controllers and the correlation device
is optimal with the others held fixed. It is an open problem

whether there is a linear program for updating more than one
controller at a time.

Of course, a bounded backup does not finddapmal pa-

We have the following theorem, which says that performing

X . ra
either of the two updates cannot lead to a decrease in val
for any initial state distribution.

meters for one controller with the others held fixed. Thus,
L?sequence of such updates may converge to a local optimum
without even reaching a Nash equilibrium. For POMDPs,
Theorem 1 Performing a bounded backup on a local con- Poupart and Boutilier [2003] provide a characterization of
troller or the correlation device produces a correlated joint these local optima, and a heuristic for escaping from them.
controller with value at least as high for every initial state This could be applied in our case, but it would not address

distribution.

Proof. Consider the case in which some nageof agent
i's local controller is changed. Léf, be the value function
for the original controller, and lev,, be the value function

the suboptimal Nash equilibrium problem.

5 Experiments
We implemented bounded policy iteration and tested it on two

for the new controller. Recall that the new parameters forifferent problems, an idealized networking scenario and a

P(a;, qle, qi, 0;) must satisfy the following inequality for all
s€S,q; €Q_;,andc € C:

Vo(s,qi0) < Z P(dle, [R(s,a) +

v Y. P('le,§,d0)P(s,dls,d)

' 7 A7 o
s’,0,q" ¢

- P(cle)Vo(s',q",)]

Notice that the formula on the right is the Bellman opera-
tor for the new controller, applied to the old value function.

Denoting this operatdr,, the system of inequalities implies
thatT,,V, > V,. By monotonicity, we have that for all > 0,

Workshop on Multiagent Planning and Scheduling

problem of navigating on a grid. Below, we describe our ex-
perimental methodology, the specifics of the problems, and
our results.

5.1 Experimental Setup

Although our algorithm guarantees nondecreasing value for
all initial state distributions, we chose a specific distribution
to focus on for each problem. Experiments with different dis-
tributions yielded qualitatively similar results.

We define drial run of the algorithm as follows. At the
start of a trial run, a size is chosen for each of the local con-
trollers and the correlation device. The action selection and
transition functions are initialized to be deterministic, with

55

ICAPS 2005
10.0 + 4.5 4

9.0 4.0
80 1 /\\/ 35 /’/\
7.0 1 R
3.0 4
6.0 q
2.5+
5.0 | —e—Independent —e— Independent
Correlated

201 Correlated

Value
Value

4.0 q

3.0 q

2.0 4

1.0 0.5
0.0 ; ; ; ; ; ; i 0.0 ; ; ; ; ; ;
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Size of Local Controllers Size of Local Controllers
(a) (b)

Figure 2: Average value per trial run plotted against the size of the local controllers, for (a) the multi-access broadcast channel
problem, and (b) the robot navigation problem. The solid line represents independent controllers (a correlation device with one
node), and the dotted line represents a joint controller including a two-node correlation device.

the outcomes drawn according to a uniform distribution. Athe buffer for agent 1 containing a message and the buffer for

stepconsists of choosing a node uniformly at random fromagent 2 being empty.

the correlation device or one of the local controllers, and per- . .

forming a bounded backup on that node. After 50 steps, the-3 Meeting on a Grid

run is considered over. In practice, we found that values usun this problem, we have two robots navigating on a two-

ally stabilized within 15 steps. by-two grid with no obstacles. Each robot can only sense
We varied the sizes of the local controllers from 1 to 7 (thewhether there are walls to its left or right, and the goal is

agents’ controllers were always the same sizes as each otheigr the robots to spend as much time as possible on the same

and we varied the size of the correlation device from 1 to 2square. The actions are to move up, down, left, or right, or

Thus, the number of joint nodes ranged from 1 to 98. Memonyto stay on the same square. When a robot attempts to move

limitations prevented us from using larger controllers. Forto an open square, it only goes in the intended direction with

each combination of sizes, we performed 20 trial runs. Weprobability 0.6, otherwise it either goes in another direction

recorded the highest value obtained across all runs, as well & stays in the same square. Any move into a wall results in

the average value over all runs. staying in the same square. The robots do not interfere with
. each other and cannot sense each other.
5.2 Multi-Access Broadcast Channel This problem has 16 states, since each robot can be in any

Our first domain is an idealized model of control of a multi- of 4 squares at any time. Each robot has 4 observations, since
access broadcast chant€loi and Wornell, 1996 In this it has a bit for sensing a wall to its left or right. The total
problem, nodes need to broadcast messages to each other omamber of actions for each agent is 5. The reward is 1 when
a channel. Only one node may broadcast at a time, otherwis@e agents share a square, and 0 otherwise, and the discount
a collision occurs. The nodes share the common goal of maxactor is 0.9. The initial state distribution is deterministic,
imizing the throughput of the channel. placing both robots in the upper left corner of the grid.

At the start of each time step, each node decides whether or
not to send a message. The nodes receive a reward of 1 whépd Results
a message is successfully broadcast and a reward of 0 othdter each combination of controller sizes, we looked at the
wise. At the end of the time step, each node observes its owest solutions found across all trial runs. The values for these
buffer, and whether the previous step contained a collision, aolutions were the same for all controller sizes except for the
successful broadcast, or nothing attempted. few smallest.

The message buffer for each agent has space for only one It was more instructive to compare average values over all
message. If a node is unable to broadcast a message, the m&l runs. Figure 2 shows graphs of average values plotted
sage remains in the buffer for the next time step. If a nbde against controller size. We found that, for the most part, the
is able to send its message, the probability that its buffer willaverage value increases when we increase the size of the cor-
fill up on the next step ip;. Our problem has two nodes, relation device from one node to two nodes (essentially mov-
with p; = 0.9 andp, = 0.1. There are 4 states, 2 actions ing from independent to correlated).
per agent, and 5 observations per agent. The discount fac- For small controllers, the average value tends to increase
tor is 0.9. The start state distribution is deterministic, withwith controller size. However, as the controllers get larger,

56 Workshop on Multiagent Planning and Scheduling

ICAPS 2005

there is no clear trend. This behavior is somewhat intuitive2-1311, and by the Air Force Office of Scientific Research
given the way the algorithm works. For new node param-under grant F49620-03-1-0090.

eters to be acceptable, they must not decrease the value for

any combination of states, nodes for the other controllers, anReferences

nodes for the correlation device. This becomes more difficulf o mann, 197 Robert J. Aumann. Subijectivity and correlation
as controllers get larger, and thus it is easier to get stuck in a in randomized strategieslournal of Mathematical Economics
local optimum. 1:67-96, 1974.

Improving multiple controllers at once would help to alle- [Bernsteinet al, 2004 Daniel S. Bernstein, Robert Givan, Neil Im-
viate the aforementioned problem. As mentioned earlier, we merman, and Shlomo Zilberstein. The complexity of decentral-
do not currently have a way to do this using linear program- ized control of Markov decision processédathematics of Op-
ming, and it thus remains an interesting topic for future work. erations Researct27(4):819-840, 2002.

[Cassandrat al, 1997 Anthony Cassandra, Michael L. Littman,

6 Conclusion and Future Work and Nevin L. Zhang. Incremental pruning: A simple, fast, exact
method for partially observable Markov decision processes. In

We have presented a bounded policy iteration algorithm for Proceedings of UAlpages 54-61, 1997.

DEC-POMDPs. Besides the fact that it uses finite memory[Emery-Montemerlet al, 2004 Rosemary Emery-Montemerlo,
the algorithm has a number of other appealing theoretical Geoff Gordon, Jeff Schnieder, and Sebastian Thrun. Approx-
guarantees. First, by using correlated joint controllers, we can imate solutions for partially observable stochastic games with
achieve higher value than with independent joint controllers common payoffs. IProceedings of AAMAR004.

of the same size. Second, assuming a constant number Bfeng and Zilberstein, 2004Zhengzhu Feng and Shlomo Zilber-
agents, each iteration of the algorithm completes in polyno- Stéin- Region-Based incremental pruning for POMDPsPrio-
mial time. Finally, monotonic value improvement is guaran-, cé€dings of UAlpages 146-153, 2004. _

teed for all states on each iteration. [Hanseret al, 2004 Eric A. Hansen, Daniel S. Bernstein, and

. . . Shlomo Zilberstein. Dynamic programming for partially observ-
. Our empirical results are encouraging. By bounding the able stochastic games. Froceedings of AAApages 709715,
size of the controller, we are able to achieve a tradeoff be- 5504

twee_n Cqmputatlonal Co_mpl_eXIty and the q‘Ja"ty of the aPHansen, 1998 Eric Hansen. Solving POMDPs by searching in
proximation. Up to a point, increasing the sizes of the local’ pgjicy space. IProceedings of UAlpages 211-219, 1998.
controllers leads to higher values on average. After this pointyeyleavet al, 1999 Nicolas Meuleau, Kee-Eung Kim, Leslie
average values tend to level off or decrease. Increasing the kaelbling, and Anthony R. Cassandra. Solving POMDPs by
size of the correlation device leads to higher value, which is searching the space of finite policies. Proceedings of UAI
consistent with our theoretical results. pages 417-426, 1999.

For future work, there are many more experiments that cafNair et al, 2003 Ranjit Nair, David Pynadath, Makoto Yokoo,
be done with bounded policy iteration. For instance, in mov- Milind Tambe, and Stacy Marsella. Taming decentralized
ing to a larger controller, we could use the previous controller POMDPs: Towards efficient policy computation for multiagent
as a starting point, rather than starting over with a random _Settings. InProceedings of IJCAR003.
controller. Poupart and Boutilier's [2003] escape techniqud©oi and Wornell, 1995 James M. Ooi and Gregory W. Wornell.
could be useful here. Also, rather than choosing nodes uni- Decentralized control of a mul_tlple access broadcast channel:
formly at random for updating, we could develop a principled P érformance bounds. roceedings of the 35th Conference on

Decision and Contrglpages 293-298, 1996.
way to order the nodes.

We are also looking into ways of extending the al orithm[PeShkinEt al, 2000 Leonid Peshkin, Kee-Eung Kim, Nicolas
Y y g 9 Meuleau, and Leslie Pack Kaelbling. Learning to cooperate via

to handle problems w[th large nu_mbers of agents. In many policy search. IProceedings of UAlpages 489—-496, 2000.
problems, each agent interacts with only a small subset of thﬁ‘olatzman, 1980 Loren K. Platzman. A feasible computational

other agents. This additional structure can be exploited t0 gpproach to infinite-horizon partially-observed Markov decision
reduce the size of the problem representation, and it should processes. Technical report, Georgia Institute of Technology,

be possible to extend our algorithm to take advantage of these 1980. Reprinted itWorking Notes of the 1998 AAAI Fall Sympo-

local interactions. sium on Planning Using Partially Observable Markov Decision
Finally, it would be interesting to extend bounded policy ~Processes

iteration to the noncooperative setting, where each agent h&Boupart and Boutilier, 2003Pascal Poupart and Craig Boutilier.

a separate reward function. One approach is to require that Bounded finite state controllers. Rroceedings of NIPS2003.

a change in parameters does not lead to a decrease in vallfdnghetal, 1994 Satinder P. Singh, Tommi Jaakkola, and

for anyagent. Another approach is to consider just the value Michael 1. Jordan. Learning without state-estimation in par-

function for the agent whose node is being updated. This tially observable markovian decision processesPioceedings

. . f ICML, 1994.
should move the joint controller towards a Nash equilibrium._ °© ’))
J q [Smallwood and Sondik, 19¥3Richard D. Smallwood and Ed-

ward J. Sondik. The optimal control of partially observable
7 Acknowledgments Markov processes over a finite horizoperations Research
We thank Martin Allen andzdir Simsek for helpful discus- _21(5):1071‘108& 1973. _] _
sions of this work. This work was supported in part by the[Wltsenhausen, 1971Hans_S. Wlts_enhausen. Separatlon of esti-
National Science Foundation under grants 11S-0219606 and mation and control for discrete time systerRsoceedings of the
[1S-9984952, by NASA under cooperative agreement NCC IEEE, 59(11):1557-1566, 1971.

Workshop on Multiagent Planning and Scheduling 57

ICAPS 2005

ASET: a Multi-Agent Planning Language with Nondeterministic Durative Tasks
for BDD-Based Fault Tolerant Planning’

Rune M. Jensenand Manuela M. Veloso
Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA 15213-3891, USA

Abstract

In this paper, we introduce a multi-agent planning language
called ASynchronous Evolving Tasks (ASET). The main con-
tribution of ASET is a novel explicit representation of temap
rally extended tasks that may be nondeterministic both with
respect to duration and effects. Moreover, ASET explicitly
models the environment as a set of uncontrollable agents. We
formally define ASET descriptions and their transformation
to a nondeterministic planning domain. Using a Boolean en-
coding, fault tolerant planning problems specified in ASET
can be solved efficiently with state-of-the-art BDD-based
planning systems. Our preliminary experimental resulés\sh
that the transformation of ASET domains to nondeterministi
planning domains is computationally efficient even for ASET
descriptions with a high level of temporal detail.

Introduction

The most important obstacle for widespread application of
automated planning is lack of scalability. Since the com-
plexity of planning grows with the representational power
of the planning language, a good strategy for solving a plan-
ning problem efficiently is to use a planning language that
is sufficient for representing the problem at hand but among
such languages has least representational power.

For this reason, the goal for planning language develop-

actions. There is no simple way of modeling stochastic be-
havior of actions and multi-agent domains in STRIPS. Its
representational power is too low.

A wide range of planning languages have been developed
to address the deficiencies of STRIPS including temporal
languages e.g., (Fox & Long 2003; Bacchus & Ady 2001;
Laborie & Ghallab 1995), nondeterministic languages e.g.,
(Piergiorgioet al. 2002; Giunchiglia, Kartha, & Lifschitz
1997; Jensen & Veloso 2000) and probabilistic languages
e.g., (Younes 2003). None of them, however, have simple
explicit ways of describing domains that combine all the as-
pects of real-world domains mentioned above. In particular
we are not aware of any planning language with a single
unified construct to define actions that are nondeterménisti
both with respect to effect and duration. Temporal planning
languages have deterministic actions and nondeternainisti
planning languages do not consider durative actions.

The representational power of some of these languages
e.g., (Younes 2003; Musliner, Durfee, & Shin 1993) and
classical representations like discrete event systemgdti
automata, and Markov Decision Processes (MDPs) is strong
enough to model such domains. But it is often tedious and
error prone to define domains in these formalisms due to the
implicit representation of abstract phenomena. Furtheemo
the representational power may be so high that the planning
problems become unnecessarily hard to solve.

ers is to expose the representational power of the language The research reported in this paper investigates how low

by providing intuitive and explicit ways to state abstralr
world phenomena. In addition, well designed high-level lan

guages makes it possible to write short and elegant descrip-

tions of a domain. They further improve the ability of plan-
ning systems to exploit structure in domains.

Today powerful planners exist for the STRIPS planning
language e.g., (Hoffmann & Nebel 2001). But STRIPS as-

we can go in representational power and still be able to
define a language in which stochastic durative actions and
multi-agent domains can be stated in a unified, intuitive,
and explicit way. More specifically, we consider a lan-
guage with the representation power of a nondeterministic
planning domain (i.e., an MDP with no transition probabil-
ities). Our motivation is that stationary policies for non-

sumes a single agent executing instantaneous and determinyeterministic planning problems can be synthesized effi-

istic actions, while most real domains involve multiple sy

ciently (Cimatti et al. 2003; Jensen, Veloso, & Bryant

chronous agents executing temporally extended stochastic 2003) using techniques developed in formal verification

*This research is sponsored by BBNT Solutions LLC under its
prime contract number FA8760-04-C-0002 with the U.S. Airdeo
and DARPA. The views and conclusions contained herein aseth
of the authors and should not be interpreted as necessepirg-+
senting the official policies or endorsements, either esqad or
implied, of the sponsoring institutions, the U.S. Governt any
other entity.

58

based on Binary Decision Diagrams (BDDs) (Bryant 1986;
Burch, Clarke, & McMillan 1990).

Continuous time and probabilistic models are attractive,
but come with a high computational fee. It is well-known
that continuous time verification of asynchronous circigits
much harder than discrete time verification of synchronized
circuits, and even though efficient symbolic techniques ex-

Workshop on Multiagent Planning and Scheduling

ist for solving MDPs (Hansen & Zilberstein 2001), it is our
experience that nonprobabilistic versions of these proble
have orders of magnitude lower complexity.

We are interested in high-level planing problems where
the goal is to coordinate low-level activities and manage

ICAPS 2005

assumption for systems that are engineered to be highly con-
trollable.

We have implemented a BDD-based planning system for
ASET. Preliminary experimental results show that a unit
time transition graph can be efficiently transformed inte de

shared resources. Such domains are often combinatorial andcision graph even when the duration of tasks is in the order

discrete in nature. Imagine an automated job shop floor
with robots moving objects between machines and storage
buffers. Commands to machines and robots are high-level,
but fairly accurate models exist of the behavior they trig-
ger. The main problem is to deliver and remove objects from
machines in a temporally coordinated manner and share re-
sources such as space.

Our language is based on an action representation called
Evolving Tasks (ETs). ETs are Directed Acyclic Graphs
(DAGS) of guarded unit time transitions that define the tem-
poral behavior of the task. They can represent temporally
extended activities which are nondeterministic both wéth r
spect to duration and effect. We consider multi-agent plan-
ning domains where each agent is defined by the set of
ETs it can execute. The resulting language is called ASyn-
chronous Evolving Tasks (ASET). Like NADL (Jensen &
Veloso 2000), ASET explicitly model the environment as a
set of uncontrollable agents.

The low-level semantics of an ASET domain isuait
time transition graph The domain, however, is not con-
trollable at this level since tasks are uninterruptibledeki-
sion graphis derived from the unit time transition graph by
adding transitions between all states where some taskeis idl
and removing all other states from the unit time transition
graph. This can be done efficiently using a technique called
iterative squaringBurch, Clarke, & McMillan 1990). The
decision graph is a nondeterministic planning domain that
allows us to define solutions to ASET planning problems as
strong, strong cyclic, and weak plans (Cimattial. 2003).
These plans can be efficiently generated by state-of-the-ar
symbolic nondeterministic planning systems (Cimattal.
2003; Jensen, Veloso, & Bryant 2003).

Using this bottom-up approach, it is easy to define low-
level temporal properties of the activities, but plan in aeno
abstract space. PDDL2.1 and other temporal languages ex-
tending STRIPS are based on a top-down approach where
many features are used to define the temporal properties of
actions. The result is less general languages with temporal
semantics of actions that can be hard to understand. The unit
time semantics of ETs further solve a general problem of
augmenting first order logic with time for temporal planning
(Bacchus & Ady 2001; Fox & Long 2003). This often leads
to information “holes” caused by concurrent actions hiding
the state of domain knowledge they are currently changing.
This makes it hard to write domains with mutually depen-
dent asynchronous activities.

The main limitation of ASET is the lack of transition
probabilities. Often, however, stochastic behavior isseaiu
by infrequent system failures. This allows us to avoid full-
blown probabilistic planning and instead consider nondete
ministic plans robust to a limited number of system failures
(Jensen, Veloso, & Bryant 2004). Another limitation is that
ASET assumes full observability. But this is a reasonable

Workshop on Multiagent Planning and Scheduling

of 500 time units. This level of temporal granularity is more
than sufficient for most applications.

The remainder of the paper is organized as follows. We
first define ASET descriptions and discuss how they relate
to other planning domain representations. We then present
the unit time transition graph of an ASET description and
its Boolean encoding and show how to transform the unit
time transition graph into a decision graph. The following
section briefly reminds about the definition of strong nonde-
terministic plans and shows how to represent a fault toteran
planning domain in ASET. We then present our experimen-
tal results and finally draw conclusions and discuss plans fo
future work.

ASET Descriptions

An ASET description consists of a disjoint set of system and
environmenttate variableswith finite domains, and a de-
scription ofsystemandenvironment agents

The state variables can eetric with finite integer do-
mains,Boolean or enumerationsvith finite domains. The
usual arithmetic and relational operations can be carnigd o
on metric variables. The set of state variable assignments
defines the state space of the world.

An agent’s description is a set tafsks The agents change
the state of the world by executing tasks. Each agent is al-
ways in a state of activity executing some task. The agents
are asynchronous, they may start and stop tasks at different
time-points. The system agents model the behavior of the
agents controllable by the planner, while the environment
agents model the uncontrollable world. To ensure indepen-
dence of the system and environment agents, they affect a
disjoint set of state variables. Their tasks, however, ne&y d
pend on the complete state of the world.

A task has two parts: a set sfate variableghat the task
modifies and a set afnit time transitionghat defines how
the task evolves. Intuitively, the task is responsible ®r a
signing new values to the variables it modifies. It furthes ha
exclusive access to the modified variables, no other concur-
rent task can modify these variables as long as it is active.
Each agent is associated with a finite set of execution states
These states are shared between the tasks of the agent and
define the transition states of the tasks. Each set of execu-
tion states has a specidle state Each transition of a task
has unit time duration. The outgoing transitions from the
idle state are taken when a task starts. The incoming tran-
sitions to the idle state are taken when the task stops. The
remaining transitions of a task form a DAG on the execu-
tion states causing all execution paths of the task to befinit
Each transition igguarded The guard is an expression on
the complete state. This may include the current task and
execution state of any agent as well as the current value of
any state variable. The transition is only enabled if theedua

59

expression is satisfied. This allows rich behavior models in
cluding strong synchronization schemes with tasks of other
agents. The effect of the transition is given as an expressio
on the state variables it modifies and its execution state. If
this expression holds for several assignments, one of these
is nondeterministically chosen as the effect of the tréovsit

In this way, tasks are nondeterministic both with respect to
duration and effect on modified variables. Notice that there
is no need for an explicit precondition. The precondition of
a task is the disjunction of the guards of outgoing transgio
from the idle state.

Time advances in discrete integer time points. In each
unit time step, the currently active tasks perform a unigtim
transition. Variables not modified by any task maintainrthei
value. The resulting unit time transition graph valbck if
no transition is enabled for some task.

As an example consider the simple job shop domain
shown in Figure 1. The domain has four locatien9, c,
andd connected with corridorsb, bd, cd, andac. The goal
is to paint the object (O). It can be carried by the robot (R) to
the painting machine (P). The robot spends time navigating
between corridors and may have to backtrack to its source
location. The robot and painting machine are controllable,
but there is also an uncontrollable human operator (H). For
security reasons, the robot is not allowed to load and unload
the object when the human is at the same location.

a b

HEION]

Figure 1: The job shop domain.

Figure 2 shows an ASET description of the job shop do-
main. Each task is a DAG where vertices are execution states
and edges are unit time transitions. The idle executioe stat
is marked by a double circle. Execution states are labeled by
numbers (by convention idle states are labeled by zero, but
these labels have been omitted to enhance readability). The
guard expression or precondition of a unit time transiten i
shown above the associated edge. The effect of the transi-
tion is shown below the edge. The ASET description has
two controllable system agents the robot (R) and the paint-
ing machine (P). It also has a single uncontrollable environ
ment agent which is the human operator (H). The tasks of
the robot areirive(x, y)*, take, put, andwait. During the
drive task, the robot navigates between the locations @a th

'The figure showslrive(a, b), but there are 7 other drive tasks.

60

ICAPS 2005
Robot
drive(a,b)

posR = q 1

® iz
— = o =(
posR = ab posR = b

posR = a

take put
posR # posH

posR # posH
posO = posR

posO = onR

®

posO = onR posO = posR

wait

&O——®

Painter
paint

—painted
0sO = b 0sR # b
® p }p sk #
posO = inP

2 3

=@
painted
posO = b

=)

painted
posO

wait

®o——=®

Human
walk(a,b)

3

posH =a 1

° e
=

posH = b

N

>®

posH = ab

Figure 2: An ASET description of the job shop domain.

corridors. It may succeed after 2 time units and reach its
destination, or fail after 3 time units in which case, it re-
turns to the source location. The take and put tasks loads
and unloads the object on the robot. They take one time unit
and are conditioned by the human being at another location.
The wait task also takes one time unit. It does not change
any state variables, but only advances time to coordinate th
robots activities with other agents. The tasks of the painte
arepaint andwait. The paint task takes either 3 or 4 time
units and requires that the object is at locatboend is un-
painted. Moreover, the robot must avoid locattomhen the
actual painting happens. The wait task of the painter is-iden
tical to the wait task of the robot. The human has walk tasks
similar to the robot’s drive tasks except that the walk tasks
are deterministic and have a duration of 4 time units. Since
there is no wait task, the human must continuously walk be-
tween locations. This guarantees that the robot eventually
can load and unload the object.

Workshop on Multiagent Planning and Scheduling

Formally, an ASET description is defined as follows.

Definition 1 (ASET Description) An ASET description is
atriple M = (V, E, T, where

V is a finite domain ofn® system state variablesnd
n® environment state variablds = V* x V* where
Ve =], V& forz € {s, e},

is a finiteexecution spacef m*® > 0 system agents
andm¢ > 0 environment agentsach associated with
a set of execution statds = E° x £ whereE® =
[1:~, Ef for x € {s,e}. Each set of execution states
includes a special idle statB* DO {idle} for x €
{s,e}andi =1..m*, and

is a finitetask spacef a non-empty set of tasks as-
sociated with each agefft = [/, T x [T/, T¢.
Each task € T is a pair(M[, RY), where

E

MF is a set of indices of state variables modified
by the taskM C {1,...,n"}, and
R} is a set of guarded unit time execution transi-

tions of the task defining how modified vari-
ables are changed while the task is active
Ry C VxExTxHiethVisz,f.

Compared with the durative action descriptions of
PDDL2.1, TLplan, and IxTeT (Fox & Long 2003; Bacchus
& Ady 2001; Laborie & Ghallab 1995), the most signifi-
cant difference of ASET descriptions is that tasks are dura-
tive and nondeterministic. None of the above domain de-
scriptions consider nondeterministic actions. Actualg
are not aware of any planning language with temporally ex-
tended and nondeterministic actions. Another importdnt di

ICAPS 2005

ample of destructive synergetic effects is when two or more
tasks require exclusive use of a single resource or when two
tasks have inconsistent effects liges’ = 3 andpos’ = 2.

Like actions in NADL, ASET tasks cannot be performed
concurrently in the following two conditions: 1) they have
inconsistent effects, or 2) they modify an overlapping et o
state variables. The first condition is due to the fact that
state knowledge is expressed in a monotonic logic that can-
not represent inconsistent knowledge. The second condi-
tion addresses the problem of sharing resources. Consider
for example two agents trying to eat the same ice cream.
If only the first condition defined interfering tasks, both
agents could simultaneously eat the ice cream, as the effect
iceCreamEaten of the two tasks would be consistent. With
the second condition added, these tasks are interfering and
cannot be performed concurrently.

We have chosen this definition of task interference due
to our positive experience with it in NADL. There are, how-
ever, several issues to address. First, we need to show how to
encode synergetic activity strong enough to solve Geltond’
soup problem (Gelfond, Lifschitz, & Rabinov 1991). The
problemis to lift a soup bowl without spilling the soup. Two
actions, lift left and lift right, can be applied to the bowil.
either is applied on its own the soup will spill, but if theyar
applied simultaneously then the bowl is raised from the ta-
ble and no soup spills. The problem is that we cannot model
the state of the soup bowl in ASET using just one state vari-
able, since two concurrent lift tasks then would be unable
to access that state variable. We can, however, represent
such synergetic activity by letting the state of the bowl be-
ing expressed by several state variables. If we introduoe tw
Boolean variablegorce_left and force_right the different

ference between ASET and the domain descriptions above states of the bow! can be represented by

is the use of state variables. This provides metric valugs, b
so has PDDL2.1. What is probably more important is that
our state variables are defined at every time point like state
variables in physics and control theory (Cassandras & Eafor
tune 1999). When augmenting first order logic with time and
preserving the precondition and effect notions from ctzsi
planning, domain knowledge may only exist at certain time
points. An important exception from this, however, are the
continuous durative actions of PDDL2.1. For these actions,
update functions are provided to define the change of metric
information. This approach, however, is not as general as
ETs.

Another challenge for durative actions in the classical
precondition-effect format is how to handle conditional ef
fects. The problem is that conditional effects require tinfo
mation to be transfered from the state the action is being ap-
plied in, to the state the action is completed in. Thesestate
however, may not be adjacent in the planning domain. The
problem can be solved by introducing memory propositions
(Fox & Long 2003) or instantaneous effects of actions (Bac-
chus & Ady 2001). For ETs the problem is solved explicitly,
since conditional effects can be defined for each unit time
transition as shown in the job shop example.

An important issue to address when introducing concur-
rent tasks is synergetic effects between simultaneously ex
ecuting tasks (Lingard & Richards 1998). A common ex-

Workshop on Multiagent Planning and Scheduling

onGround = ~—force_left N —force_right,
spill = force_left xor force_right,
lift = force_left N force_right.

Second, we need to address how to handle state variables
that represent shared resources. In (Bacchus & Ady 2001)
an example of a gas station with 6 refueling bays is given.
If this resource is represented by a single state variable in
ASET, we once more face the problem of at most one task
accessing the resource at a time. Again, we can solve the
problem by using several state variables (e.g., a Boolean
variable for each refueling bay).

ASET Unit Time Transition Graphs

In order to transform an ASET description into a nonde-
terministic planning domain, we first compute itsit time
transition graph The unit time transition graph is a tran-
sition system that represents the combined effect of active
tasks. As the name suggests, each transition in the unit time
transition graph advances the clock one time unit.

Consider again the job shop domain shown in Figure 2.
Assume that all agents are in an idle execution state in the
situation depicted at the top of the figure. Suppose that the
tasks drive(a, ¢) and paint are chosen for the robot and

61

painter, and that the human happens to chaaesgg(d, c).?
Figure 3 shows the reachable states in the unit time transiti
graph from this state until some agents are idle again. Each
state is labeled with a vector showing the execution state of
the robot, painter, and human respectively.

(0,3,3)
o

Ridle
(2,2,2)
\O

(0,8,0) (1,1,1) (0,0,3)
Ridle R idle
h P idle
P idle 0,2,2)
(o]
R idle

Figure 3: A subset of the unit time transition graph of the
job shop domain.

For an ASET descriptiom = (V, E, T'), let NC denote
nonconflicting tasks of system and environment agents. We
have, NC= NC® x NC*, where NC = {{t1,...,tm,) €
T : M{ N M{ = 0 fori# j}. We can now define the
unit time transition graph of an ASET description as follows
Definition 2 (Unit Time Transition Graph) A unit time

transition graph of an ASET descriptiom = (V, E, T)
is a transition systerd = (S7, Rr), where

St s afinite set of stateS+ =V x E x NC, and
Rr isatransitionrelatiolRy C Sy x St.
For
§ = <’Uf..n5’vf..n“ei..ms’etle..m57t§..m5’t§..mc>
/ / / / / / /
S = <vls..n5 ’ vle..nc7 els..1nS) ele..m57 tls..ms) tlei.mc>

We have(s, s') € Ry iff

1. Running tasks transition,

(s,vgfl)”p(nfm),egﬂ € Rj. forz € {s,e},i=1..m",

whereM? = {p(1),...,p(n})}.

2. Non-idle tasks continue,
(ef #idle) = (¢ =1t7) for z € {s,e} andi = 1..m".
3. Unmodified variables maintain their value, and

v" =vf forw € {s,e} andi € {1,...,m"} \ M,
whereM = U}njl M.

In order to use symbolic nondeterministic planners to
solve ASET planning problems, we need a Boolean encod-
ing of unit time transition graphs. This is achieved by defin-
ing thecharacteristicfunction of the set of state pairs iR
of the unit time transition graph. L&tands’ be two vectors

2The result would have been the same for any of its walk tasks.

62

ICAPS 2005

of Boolean variables representing the current and nex stat
of a unit time transition graph, where

n 3
t1 sy U1 me

),

=S —le S ~e s e
<U1..n3 yUl.nes €1..mss €1..me> tl..m3 ’ tl..me>‘

=g —e —5 ~e
<Ul..n5 »UL.nes €1..mss €1..me>

chL Wy

Our goal is to define a Boolean functid®y (s,) that is
true iff the variables of and s’ are assigned values corre-
sponding to a transition i®Ry. For an ASET description
M = (V,E,T), let r; represent requirementof Defini-
tion 2

o= AN [E =02 R
where M} = {p(1),...,p(nf)} and

R{ (5, Uy(1). p(nz)» €) 1s the characteristic

)végz)}

function of the set of tuples in R,
"
c 1€ M}

Further, letNCdenote the non-conflicting tasks

Dy ND =0 =

NC* = /\ ﬁ(tf_’: t1 N\ t;”_}: tg)
i€Dy t €T NS =t AET = t2)
j€ Dy tg€ Tf

whereD; = {1,...,m*}andDy = {1,...,m*} \ {i}.

We then have

Rr(5,5) = /\ i AT AT ANCT3
ze{s,e}

ASET Decision Graphs

We now consider how to transform the unit time transition
graph of an ASET description into a nondeterministic plan-
ning domain that we can solve efficiently with a state-of-
the-art BDD-based nondeterministic planning system. The
nondeterministic planning domains used by these systems
are a generalization of classical deterministic planniag d
mains where the effect of an action applied in some state is
modeled by a nondeterministic choice from a set of possible
next states.

3Since the finite domains of ASET variables are embedded in a
binary encoding, there may exist assignments to the Boalagn
ables that do not correspond to valid domain values. Coimgin
an expression that removes these assignments from thedoole
transition relation has been omitted in the definition togify the
presentation.

Workshop on Multiagent Planning and Scheduling

Definition 3 (Nondeterministic Planning Domain) A
nondeterministic planning domain is a tupkd, A, R)
wheresS is a finite set of statesd is a finite set of actions,
andR C S x A x S'is a nondeterministic transition relation
of action effects.

A unit time transition graph is transformed into a nonde-
terministic planning domain by removing states where no
planning decision can be made. A planning decision can be
made in states where the task of one or more controllable
agents is idle. We call such statgscision statesFor unit
time transition graph of the job shop domain shown in Fig-
ure 3, all unfilled circles (the end states) are decisiorestat
Let D7 denote thesdecision statesf a unit time transition
graphT = (S7, R7). We haveDr = {{(...)€
St : ef =idle for somel < i < m?°}.

The nondeterministic planning domain of an ASET de-
scription, however, also needs to includbcking states
where some task is unable to transition. Without includ-
ing these states, we may get an incorrect model that hides
the fact that some decision may lead to a dead end (e.g.,
causing two tasks to “wait” on each other). In the job shop
domain, any state where the robot is at locatioand the
painter is in execution statk of its paint task is a block-
ing state since the paint task is unable to transition due to
the guardposR # b. Let By denote the blocking states
of a unit time transition grap” = (St, R7). We have
Br ={se St : (s,s') ¢ Rrforall s’ € Sr}.

The nondeterministic planing domain associated with an
ASET description is calleddecision graphEach transition

s
y€1.msy -+

in the decision graph corresponds to a path between decision

states and blocking states in the unit time transition graph
For a set of state§® and a transition relatio/ C Q x

Q@ apathof lengthk from v to w is a sequence of states
qoq1 - - - gk such thaig;,¢q;+1) e Ufori=0,... , k—1and

v = sg andw = s;. We can now define the decision graph
as follows.

Definition 4 (ASET Decision Graph) Given an ASET de-
scription M = (V, E,T) and a unit time transition graph
T = (St, R7) of M, an ASET decision graph o1 is a
nondeterministic planning domaid = (S, A, R), where

S is the union of the decision and blocking states-
Dr U Br,)
A is afinite set of actiongl = 277, and
R isatransitionrelatiolk C S x A x S.
For

s e s e s e
<’Ul..nS »UL..nes €1..ms» €1..me> tl..ms) tl mﬁ>

tlle mf>

/s /e /s /e /s
<’Ul..nS yUl..nes €1..ms» €1..me> tl..ms)

We have(s, a, s') € Riff

there exists a pathy - - - s in R betweens = sy and
s’ = s; not visiting other states it$' (s; ¢ S fori =
1,...,k—1),and

the actiona is the set of system tasks startedsifac =

U.. —idle{t"})-

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

If (s,a,s’) is atransition in a decision graph, the current
states is a decision state and the next statds the first
decision state or blocking state reached by some path from
s when starting the tasks defined dbyn the current state.

It is nontrivial to compute the decision graph, since it is
defined in terms of paths in the unit time transition graph.
For symbolic nondeterministic planning, though, the deci-
sion graph can be efficiently computed usitegative squar-
ing (Burch, Clarke, & McMillan 1990). Iterative squaring of
a transition relation introduces transitions betweentates
connected by a path. The operation is defined recursively.
RY is the original transition relation.R! includes all the
transition inRY, but in addition has transitions between all
states inRk° connected by a path of length 222 includes
all transitions inR*, but in addition has transitions between
all states inR' connected by a path of length 2. Singé
includesR? this means thaRk? includes all the transitions
in R%, but in addition has transitions between all states in
R° connected by a path of length 2,3, or 4. Thus, for each
squaring of the transition relation the length of the padhrs f
which transitions are added doubles.

Consider squaring the unit time transition graph of the job
shop domain shown in Figure 3. Figure 4 shows the transi-
tions in R2.

Figure 4. Squaring the unit time transition graph shown in
Figure 3. Transitions ik’ for j < ¢ are labeled.

We use a special version of the algorithm that ensures that
all intermediate states on paths for which transitions are i
troduced are neither decision states nor blocking states.

Let

=[35'. Rz (5,5)], and

me

P
Ve =
i=1

denote the characteristic functions for the set of blocking
states and decision states of a unit time transition grathh wi
Boolean encodindg?7 (5, 3"). Further, letR‘(s,5") be de-

fined recursively by

idle

R%(5,8) = R7(53),

Ry (5,8) = R:Y(55) \/(3 REY(EE) A
(D) V BE) ARE (3,5 13/5),
fori > 0.

63

The operatoe[s”/s'] renames double primed variables to
single primed variables in the expressionkY- is the tran-
sition relation of the unit time transition grapRZ- includes

the transitions ofz", but adds a transitiols, s”) for every
path ss’s” wheres’ neither is a blocking state or decision
state. SimilarlyR? adds transitions that may bypass up to 3
such states, an®? adds transitions that may bypass 7 etc..
In this way, we can define a Boolean encoding of the deci-
sion graph as

RPN 8) A (D(3) v B()) A
(D(s") v B(3))
whered is the maximal duration of any task.

Figure 5 shows the decision graph of the unit time transi-
tion graph of the job shop domain shown in Figure 3.

R(5,5)

(0,3,3)
(e}
R idle
(0,0,0 (0,0,3)
(] [e)
Ridle Ridle
i P idle
Pidle 022
o

R idle

Figure 5: The decision graph of the unit time transition
graph of the job shop domain shown in Figure 3.

Iterative squaring is known to be computationally com-
plex. In our case, though, we only need to iterate to “com-
press” paths of lengtti, which often will be much less than
the diameter of the transition graph. In addition, itemativ
squaring has been shown to be fairly efficient for digital sys
tems dominated by clock counting (Gabetlal. 1997). We
may expect ASET domains where tasks have long duration
to be structurally similar to this kind of circuits.

Solving ASET Planning Problems

The transformation of an ASET description to a nondeter-
ministic planning domain and the Boolean encoding of the
decision graph, allows us to use efficient symbolic non-
deterministic planning algorithms (Cimatt al. 2003;
Jensen & Veloso 2000) including heuristic symbolic search
algorithms (Jensen, Veloso, & Bryant 2003) to solve ASET
planning problems. In the remainder of this section, we ap-
ply the machinery developed for nondeterministic symbolic
planning to define ASET planning problems and solutions.

Definition 5 (Nondeterministic Planning Problem) A
nondeterministic planning problem is a tupl®, s, G)
whereD is a nondeterministic planning domaigg is an
initial state, andG C S is a set of goal states.

For a nondeterministic planning domah= (S, A, R),
the set of possible next states of an acti@pplied in state
is given by NexT(s,a) = {s’ : (s,a,s’) € R}. An action
a is calledapplicablein states iff NEXT(s,a) # 0. The

64

ICAPS 2005

set of applicable actions in a statds given by APP(s)
{a : NEXT(s,a) # 0}. A nondeterministic plan is a set of
state-action pair§SAS).

Definition 6 (Nondeterministic Plan) Let D be a nonde-
terministic planning domain. A nondeterministic plan for
D is set of state-action pair§(s, a) : a € APP(s)}.

The set of SAs define a function from states to sets of ac-
tions relevant to apply in order to reach a goal state. States
are assumed to be fully observable. An execution of a non-
deterministic plan is an alternation between observing the
current state and choosing an action to apply from the set
of actions associated with the state. Notice that the defini-
tion of a nondeterministic plan does not give any guarantees
about goal achievement. The reason is that, in contrast to
deterministic plans, it is natural to define a range of solu-
tions classes. We are particularly interested in stronggla
that guarantee goal achievement in a finite number of steps.
Following (Cimattiet al. 2003), we define strong plans for-
mally by as a CTL formula that must hold on a Kripke struc-
ture representing the execution behavior of the plan.

A set of statesoveredby a planm is STATES(7) = {s :
Jda.(s,a) € 7}. The set of actions in a plan associated
with a states is ACT(w, s) = {a : (s,a) € w}. Theclosure
of a planr is the set of possible end statesdSURE(r) =
{s’ & STATES(7) : I(s,a) € m.s" € NEXT(s,a) }.

Definition 7 (Execution Model) An execution model with
respect to a nondeterministic planfor the domainD =
(S, A, R) is a Kripke structureM () = (Q, U) where

e () = CLOSURE(T) U STATES(7) U G,

o (s, eUiff s¢ G, Ja.(s,a) € mand(s,a,s’) € R,
ors = s ands € CLOSURE(m) U G.

Notice that all execution paths are infinite which is re-
quired in order to define solutions in CTL. If a state is
reached that is not covered by the plan (e.g., a goal state
or a dead end), the postfix of the execution path from this
state is an infinite repetition of it. Given a Kripke strueur
defining the execution of a plan, strong plans are defined by
the CTL formula below.

Definition 8 (Strong Plans) Given a nondeterministic
planning problen? = (D, so, G) and a planx for D, 7 is
a strong plan iffM (), so = AF G.

The expressionM (r),so = AFG is true if all execution
paths lead to a goal state in a finite number of steps.

Fault Tolerance

A weakness of strong plans is that they can be very conser-
vative. In real-world domains most actions may fail. If faul
behavior is modeled via nondeterminism, a strong plan only
exists if the worst case behavior of the plan, where all astio
fall, still leads to a goal state. This is seldom the case. We
would like to be able to state a weaker kind of plans that do
not have to cover the most unlikely execution paths. As men-
tioned in the introduction, going all the way to probabitist
planning is not a solution due to the high computational.cost
But we can rephrase a plan with high probability of success

Workshop on Multiagent Planning and Scheduling

as a plan with high tolerance for failures encountered dur-
ing execution. Such plans can be defined fully within the
framework of hondeterministic planning. Plans that guaran
tee goal achievement if no more tharactions fail during
execution are called-fault tolerant plans (Jensen, Veloso,
& Bryant 2004). Fault tolerant plans can be computed via
strong plans by adding fault counters to the donfaiFhis

is also possible for ASET domains.

We define a failure of a task as a unit time transition lead-
ing to the idle state. In order to generatdault tolerant
plans, we add a special fault counter state varighléor
each controllable agent For each task of agentthat can
fail, we extend the guard and effect of each unit time transi-
tion denoting failure with the expression> """ f; and
f! = fi + 1, respectively. For the remaining transitions of
the task, we maintain the value ¢f by extending the ef-
fect with f/ = f;. Finally, the initial state is extended with
fi =0fori =1...m*and the goal states are extended with
n > > fi. Inthis way failures can only happen in the
fault extended problem if less thanfailures have occurred
so far. This is precisely the assumptionsoefault tolerant
plans and ensures that a strong plan of the fault extended
problem is a valich-fault tolerant plan.

Experimental Evaluation

We have implemented a planning system in C++/STL us-
ing the BuDDy BDD package (Lind-Nielsen 1999). Given a
textual ASET description, it computes two BDDs represent-
ing the transition relation of the unit time transition gnap
and its associated decision graph.

The experiment reported in this section investigates how
fast the computational complexity of synthesizing the deci
sion graph grows with the temporal granularity of the unit
time decision graph. We consider a parameterized version
of the job shop domain where each task is extended with
extra unit time transitions such that the overall structfre
the task is maintained. For instance, unit time transitions
are added on both the left and right side of the early termi-
nation of the painter’s paint task and the robot’s drive task

Since the number of possible ways that tasks can be tempo-

rally aligned grows fast with their duration, computing the
decision graph could potentially be hard.

We conducted the experiments on a 3GHz Pentium 4 with
1024KB L2 cache and 2GB RAM running Linux kernel
2.4.25. Figure 6 shows the computation time of the unit
time transition graph and the decision graph. As depicted,
the CPU time for computing the unit time transition graph
is very low for all versions of the domain. Despite the
much longer time needed to compute the decision graph,
the asymptotic complexity of this operation is low. Notice
the jumps in computation time when the iterative squaring
involves computing a new intermediate transition relation

“While this approach is conceptually easy to understandhmuc
better performance can be achieved in real-world domairdidy
tinguishing semantically between failure effects and sssful ef-
fects and use specialized planning algorithms (Jensensbek:
Bryant 2004).

5The experiments, however, were limited to 500MB RAM.

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

1000 : S
><»><-><~><~><—><—x/><'>"><'X'X—>6 *
e Ut ——
DG -
100 I 1
XX
o
2 i
8 10 | e
Y ;
£
= ok
X
o) L x
o 1 v
&
i
0.1 K
‘

0.01
50 100 150 200 250 300 350 400 450 500

Maximum Task Duration

0

Figure 6: CPU time for synthesizing the unit time transition
graph (UTG) and the decision graph (DG) as a function of
maximum task duration.

Fortunately the distance between these jumps grows expo-
nentially with the maximum task duration.

Figure 7 shows how the BDD size of the unit time transi-
tion graph and the decision graph grows as a function of the
maximum task duration. As depicted, the BDD size of the

1e+06

— xxx**xxxx**xx
0 XXX
2 e utG ——
o e DG ——-x—-
c Xx'x
o
S 100000 | o
a e
° X
9] ¥
o) 7
£ £
3 !
(= /
‘s 10000 F*
8
n
[a
[a
m WM\MW\MMM

1000
50 100 150 200 250 300 350 400 450 500

Maximum Task Duration

0

Figure 7: BDD size of the unit time transition graph (UTG)
and the decision graph (DG) as a function of maximum task
duration.

decision graph grows approximately linearly with the com-
putation time of the decision graph. It may be surprising tha
the BDD of the decision graph is larger than the BDD of the
unit time transition graph. Since BDDs represent transgio
implicitly, there is no simple relation between the size of a
BDD and the number of transitions it represent. That the
BDD representing the decision graph is large merely indi-
cates that the subspace of transitions in the decision graph
is less structured than that of the unit time decision graph.
The question is to what extend this will impair BDD based
planning based on the decision graph. Future experiments
will address this issue.

65

Conclusion

In this paper, we have introduced a new multi-agent plan-
ning language called ASET. The main contribution of ASET
is Evolving Tasks (ETs). ETs are, as far as we know, the
first action description that in an explicit and intuitive yva

can represent temporally extended activities which are non
deterministic both with respect to duration and effect. ETs

are represented as directed acyclic graphs that in a natural

way solves the problem of representing conditional effects
and intermediate effects of durative actions.

We have formally defined ASET descriptions and shown
how they can be transformed into nondeterministic planning
domains. Using a Boolean encoding of these domains, effi-
cient symbolic nondeterministic planning algorithms can b
used to solve ASET planning problems.

ASET shows that it is possible to model essential aspects
of time and stochastic behavior in a language with a rep-
resentational power as low as a nondeterministic finite au-
tomata. This is encouraging since the main challenge of
automated planning is to scale to the size of real-world do-
mains, and since dense time and probabilistic models come
with a high computational fee.

Preliminary results show that the decision graph of ASET
domains can be generated efficiently even for domains with
a high level of temporal detail. Future work includes fur-
ther experiments investigating BDD-based planning based
on ASET decision graphs and developing more efficient
ways of generating and representing decision graphs (e.g.,
by using transition relation partitioning (Burch, Clark&,
Long 1991)).

References

Bacchus, F., and Ady, M. 2001. Planning with resources
and concurrency: A forward chaining approach.iiter-
national Joint Conference on Artificial Intelligence (IJGA
01), 417-424.

Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation.|IEEE Transactions on Computers
8:677-691.

Burch, J.; Clarke, E.; and Long, D. 1991. Symbolic model
checking with partitioned transition relations. limerna-
tional Conference on Very Large Scale Integratid@-58.
North-Holland.

Burch, J. R.; Clarke, E. M.; and McMillan, K. 1990. Sym-
bolic model checking:10%° states and beyond. IRro-
ceedings of the 5th Annual IEEE Symposium on Logic in
Computer Scienc&28-439.

Cassandras, C. G., and Lafortune, S. 1988oduction to
Discrete Event SystemKluwer Academic Publishers.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, Strong, and Strong Cyclic Planning via Symbolic
Model Checking Artificial Intelligencel47(1-2). Elsevier
Science publishers.

Fox, M., and Long, D. 2003. PDDL2.1: An extension to

PDDL for expressing temporal planning domaidsurnal
of Artificial Intelligence Research (JAIRP:61-124.

66

ICAPS 2005

Gabodi, G.; Camurati, P.; Lavagno, L.; and Quer, S. 1997.
Disjunctive partitioning and partial iterative squarintn
Proceedings of the 34th Design Automation Conference
DAC-97.

Gelfond, M.; Lifschitz, V.; and Rabinov, A. 1991. What
are the limitations of the situation calculus. HEssays in
Honor of Woody Bledso&luwer Academic. 167-179.

Giunchiglia, E.; Kartha, G. N.; and Lifschitz, Y. 1997.
Representing action: Indeterminacy and ramificatid¥rs.
tificial Intelligence95:409-438.

Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loogstificial
Intelligencel29:35-62.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic seaiobrnal
of Artificial Intelligence Research (JAIR%:253-302.

Jensen, R. M., and Veloso, M. M. 2000. OBDD-
based universal planning for synchronized agents in non-
deterministic domains.Journal of Artificial Intelligence
Researci3:189-226.

Jensen, R. M.; Veloso, M. M.; and Bryant, R. E. 2003.
Guided symbolic universal planning. Rroceedings of the
13th International Conference on Automated Planning and
Scheduling ICAPS-0323-132.

Jensen, R. M.; Veloso, M. M.; and Bryant, R. E. 2004.
Fault tolerant planning: Toward probabilistic uncertgint
models in symbolic non-deterministic planning. mmo-
ceedings of the 14th International Conference on Auto-
mated Planning and Scheduling ICAPS-04

Laborie, P., and Ghallab, M. 1995. Planning with sharable
resource constraints. Proceedings of (IJCAI-951643—
1649.

Lind-Nielsen, J. 1999. BuDDy - A Binary Decision Di-
agram Package. Technical Report IT-TR: 1999-028, In-
stitute of Information Technology, Technical Universitly o
Denmark.http://cs.it.dtu. dk/ buddy.

Lingard, A. R., and Richards, E. B. 1998. Planning parallel
actions.Atrtificial Intelligence99:261-324.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.
CIRCA: A cooperative intelligent real time control archi-
tecture. IEEE Transactions on Systems, Man, and Cyber-
netics23(6):1561-1574.

Piergiorgio, B.; Bonet, B.; Cimatti, A.; Giunchiglia, E.;
Golden, K.; Rintanen, J.; and Smith., D. E. 2002. The
NuPDDL home page.http://sra.itc.it/tools

[mbp/ #nupddl .

Younes, H. L. S. 2003. Extending PDDL to model stochas-
tic decision processes. Proceedings of the 13th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-03) Workshop on PDDB5-103.

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

Robust Distributed Coordination of Heterogeneous Robots
through Temporal Plan Networks *

Andreas F. Wehowsky, Stephen A. Block and Brian C. Williams
Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology,

Cambridge, MA, 02139, USA
andreas @wehowsky.dk, {sblock, williams} @mit.edu

Abstract

Real-world applications of autonomous agents require coor-
dinated groups to work in collaboration. Dependable sys-
tems must plan and carry out activities in a way that is ro-
bust to failure and uncertainty. Previous work has produced
algorithms that provide robustness at the planning phase, by
choosing between functionally redundant methods, and the
execution phase, by dispatching temporally flexible plans.
However, these algorithms use a centralized architecture in
which all computation is performed by a single processor. As
a result, these implementations require significant computa-
tional capabilities, introduce a single point of failure, do not
scale well, and suffer from communication bottlenecks.

This paper introduces the plan extraction component of a ro-
bust, distributed executive for contingent plans. Contingent
plans are encoded as Temporal Plan Networks (TPNs), which
compose temporally flexible plans hierarchically and provide
a choose operator. First, the TPN is distributed over multiple
agents, by creating a hierarchical ad-hoc network and map-
ping the TPN onto this hierarchy. Second, candidate plans
are extracted from the TPN with a distributed, parallel algo-
rithm that exploits the structure of the TPN. Third, temporal
consistency of the candidate plans is tested using a distributed
Bellman-Ford algorithm. This algorithm is empirically vali-
dated on randomized contingent plans.

Introduction

The ability to command coordinated groups of autonomous
agents is key to many real-world tasks, such as the construc-
tion of a Lunar habitat. In order to achieve this goal, we must
perform robust execution of contingent, temporally flexible
plans in a distributed manner. Methods have been devel-
oped for the dynamic execution (Morris & Muscettola 1999)
of temporally flexible plans (Dechter, Meiri, & Pearl 1990).
These methods adapt to failures that fall within the margins
of the temporally flexible plans and hence add robustness to
execution uncertainties.

To address plan failure, (Kim, Williams, & Abramson
2001) introduced a system called Kirk, that performs dy-
namic execution of temporally flexible plans with contin-
gencies. These contingent plans are encoded as alternative
choices between functionally equivalent sub-plans. In Kirk,

*This work was made possible by the sponsorship of the
DARPA NEST program under contract F33615-01-C-1896

Workshop on Multiagent Planning and Scheduling

the contingent plans are represented by a Temporal Plan Net-
work (TPN) (Kim, Williams, & Abramson 2001), which
extends temporally flexible plans with a nested choose op-
erator. To dynamically execute a TPN, Kirk continuously
extracts a plan from the TPN that is temporally feasible,
given the execution history, and dispatches the plan, using
the methods of (Tsamardinos, Muscettola, & Morris 1998).
Dynamic execution of contingent plans adds robustness to
plan failure. However, as a centralized approach, Kirk is ex-
tremely brittle to the loss of the processor performing exe-
cution and, in the case of multi-agent coordination, is brittle
to loss of communication.

We address these two limitations through a distributed
version of Kirk, which performs distributed dynamic exe-
cution of contingent temporally flexible plans. This paper
focuses on the algorithm for dynamically selecting a feasi-
ble plan from a TPN. Methods for performing distributed
execution of the plan are presented in (Stedl 2004). Our key
innovation is a hierarchical algorithm for searching a TPN
for a feasible plan in a distributed manner. In particular,
our plan selection algorithm, called the Distributed Tempo-
ral Planner (DTP), is comprised of three stages.

1. Distribute the TPN across the processor network,

2. Generate candidate plans through distributed search on
the TPN, and

3. Test the generated plans for temporal consistency.

This paper begins with an example TPN and an overview
of the way in which DTP operates on it. We provide a formal
definition of a TPN and then discuss the three stages of DTP.
Finally, we discuss the complexity of the DTP algorithm and
present experimental results demonstrating its performance.

Example Scenario

In this section, we discuss at a high level the three step ap-
proach taken by DTP to solve an example problem. A TPN
is to be executed by a group of seven processors, pl, ..., pT7.
The TPN is represented as a graph in Fig. 1, where nodes
represent points in time and arcs represent activities. A
node at which multiple choices exist for the following path
through the TPN is a choice node and is shown as an in-
scribed circle.

First, the TPN itself is distributed over the processors to
allow the plan selection to take place in a distributed fash-

67

Figure 1: Example TPN

ion. To facilitate this, a leader election algorithm is used to
arrange the processors into a hierarchy (Fig. 2). The hierar-
chical structure of the TPN is then used to map subnetworks
to processors. For example, the head processor pl handles
the merging of multiple branches of the plan at the start node
(node A) and the end node (node B). It passes responsibility
for each of the two main subnetworks to the two processors
immediately beneath it in the hierarchy. Nodes C,D,E,F,G,H
are passed to p2 and nodes I,J,K,L,M,N are passed to p3.

Figure 2: A three-level hierarchy formed by leader election

The processors then work together to extract a tempo-
rally consistent plan from the TPN. The first stage gener-
ates a candidate plan, which corresponds to selecting a sin-
gle subnetwork from the plan at each of the choice nodes.
This is done in a hierarchical fashion, where each processor
sends messages to its neighbors, requesting that they make
selections in the subnetworks for which they are responsible.
These selections are made in parallel. In this example, only
the subnetwork owned by p2 (nodes C,D,E,F,G,H) contains
a choice of path, so p2 must decide between Activitya and
ActivityB, whereas p3 has no choice to make.

Having generated a candidate plan, the third and final step
of DTP is to test it for consistency. Again, this is done
in a hierarchical fashion, where consistency checks are first
made at the lowest level and successful candidates are then
checked at an increasingly high level. For example, p2 and
p3 simultaneously check that their subnetworks are inter-
nally consistent. If so, pl then checks that the two candi-
dates are consistent when executed in parallel. In DTP, can-
didate generation and consistency checking are interleaved,
such that some processors generate candidates while others
simultaneously check consistency.

Temporal Plan Networks

A TPN augments temporally flexible plans with a choose
operator and is used by DTP to represent a contingent, tem-
porally flexible plan. The choose operator allows us to
specify nested choices in the plan, where each choice is an

68

ICAPS 2005

alternative sub-plan that performs the same function.

The primitive element of a TPN is an activityl[l,u],
which is a hardware command with a simple temporal con-
straint. The simple temporal constraint [/, u] places a bound
tt — ¢~ € [I,u] on the start time ¢~ and end time ¢ of the
network to which it is applied. A TPN is built from a group
of activities and is defined recursively using the choose,
parallel and sequence operators, which derive from
the Reactive Model-based Programming Language (RMPL)
(Williams et al. 2003).

e choose(TPNy,...,TPNy) introduces multiple sub-
networks of which only one is to be chosen. A choice
variable is used at the start node to encode the currently
selected subnetwork. A choice variable is active if it falls
within the currently selected portion of the TPN.

e parallel(TPNy,...,TPNy)[l,u] introduces multi-
ple subnetworks to be executed concurrently. A simple
temporal constraint is applied to the entire network. Each
subnetwork is referred to as a child subnetwork.

e sequence(TPNy,...,TPNy)[l,u] introduces multi-
ple subnetworks which are to be executed sequentially.
A simple temporal constraint is applied to the entire net-
work. For a given subnetwork, the subnetwork following
it in a sequence network is referred to as its successor.

Graph representations of the activity, choose,
parallel and sequence network types are shown in
Fig. 3. Nodes represent time events and directed edges rep-
resent simple temporal constraints.

1001

parallel choose

Figure 3: TPN Constructs

Definition 1 A feasible solution of a TPN is an assign-
ment to choice variables such that 1) all active choice vari-
ables are assigned, 2) all inactive choice variables are unas-
signed, and 3) the currently selected temporally flexible plan
is temporally consistent. A temporally flexible plan is tem-
porally consistent if there exist times that can be assigned to
all events such that all temporal constraints are satisfied.

TPN Distribution

The DTP algorithm distributes the computation involved in
finding a feasible solution to the TPN over all available pro-
cessors. Consequently, the processors must be able to com-
municate with each other, in order to coordinate their ac-
tions. We therefore establish an ad-hoc communication net-
work such that adjacent processors are able to communicate.
In addition, an overall leader must be selected to communi-
cate with the outside world and initiate planning.

Workshop on Multiagent Planning and Scheduling

Ad-Hoc Processor Network Formation

We use the leader election algorithm in (Nagpal & Coore
1998) to arrange the processors into a hierarchical network,
an example of which is shown in Fig. 2. For each node,
the node immediately above it in the hierarchy is its leader,
those at the same level within that branch of the hierarchy
are its neighbor leaders and those directly below it in the
hierarchy are its followers. The leader election algorithm
forms the hierarchy using a message passing scheme and in
doing so, ensures that every node can communicate with its
leader, as well as all neighbor leaders and followers. In addi-
tion, the hierarchical nature of the network lends itself well
to the distribution of the TPN, which is also hierarchical.

TPN Distribution over the Processor Network

We implement the distribution of the DTP computation by
assigning to each processor responsibility for a number of
nodes from the TPN graph representation. Each processor
maintains all the data from the TPN relevant to the nodes for
which it is responsible.

This distribution scheme requires that processors respon-
sible for TPN nodes linked by temporal constraints are able
to communicate. The algorithm in Fig. 4 distributes the TPN
over the processor hierarchy such that this communication is
available. It allows distribution down to the level at which
a processor handles only a single node. This allows DTP to
operate on heterogeneous systems that include computation-
ally impoverished processors.

1: wait for TPN

2: n «— number of followers of p

3: if TPN is of type activity then

4: assign start and end nodes of 7PN to p

5: else

6: k< number of subnetworks

7: assign start and end nodes to p

8: if n =0 then

9: if p has a neighbor leader v then
10: send g subnetworks of TP N to v
11: assign % subnetworks of TPN to p
12: else
13: assign TPN top
14: end if
15: elseif n > k then

16: for each of k£ subnetworks of PN do
17: assign subnetwork of T'PN to a follower of p
18: end for
19: elseif n < k then
20: for each of n subnetworks of TPN do
21: assign subnetwork to a follower of p
22: end for
23: assign remaining (k — n) subnetworks of TPN to p
24: endif
25: end if

Figure 4: TPN Distribution Algorithm for node p

We now demonstrate the distribution algorithm using the
TPN in Fig. 1 and the processor hierarchy in Fig. 2. The
TPN is supplied from an external source, which establishes a
connection with the top leader, p/. The TPN is a parallel
network at the highest level, so processor p/ assigns the

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

start and end nodes (nodes A,B) to itself (line 7). There
are two subnetworks, which p/ assigns to its two follow-
ers, p2 and p3 (lines 15-18). pl passes the choose net-
work (nodes C,D,E,EG,H) to p2 and the sequence net-
work (nodes I,J,K,L,M,N) to p3. p2 and p3 then process
their networks in parallel. p2 assigns the start and end nodes
(nodes C,D) to itself (line 7). The network has two subnet-
works, which p2 assigns to two of its followers, p4 and p5
(lines 15-18). p2 passes ActivityA (nodes E,F) to p4 and
ActivityB (nodes G,H) to p5. Since activities can not be
decomposed, p4 and p5 assign nodes E,F and G,H, respec-
tively, to themselves (lines 3-4). Meanwhile, p3 receives
the sequence network and assigns the start and end nodes
(nodes 1,J) to itself (line 7). The network has two subnet-
works, which p3 assigns to two of its followers, p6 and p7
(lines 15-18). p3 passes ActivityC (nodes K,L) to p6 and
ActivityD (nodes M,N)to p7. p6 and p7 then assign nodes
K,L and nodes M, N, respectively, to themselves (lines 3-4).

Candidate Plan Generation

Having distributed the TPN across the available processors,
DTP conducts search for candidate plans. These plans corre-
spond to different assignments to the choice variable at each
choice node (Mittal & Falkenhainer 1990). DTP uses paral-
lel, recursive, depth first search to make these assignments.
This use of parallel processing is one of the key advantages
of DTP over traditional centralized approaches. DTP is im-
plemented using a distributed message-passing architecture
and uses the following messages during candidate plan gen-
eration.

e findfirst instructs a network to make the initial search
for a consistent set of choice variable assignments.

e findnext isused when a network is consistent internally,
but is inconsistent with other networks. In this case, DTP
uses findnext messages to conduct a systematic search
for a new consistent assignment, in order to achieve global
consistency. findnext systematically moves through the
subnetworks and returns when the first new consistent as-
signment is found. Therefore, a successful findnext
message will cause a change to the value assigned to a sin-
gle choice variable, which may in turn cause other choice
variables to become active or inactive.

e fail indicates that no consistent set of assignments was
found and hence the current set of assignments within the
network is inconsistent.

e ack, short for acknowledge, indicates that a consistent set
of choice variable assignments has been found.

Whenever a node initiates search in its subnetworks, using
findfirst or findnext messages, the relevant processors
search the subnetworks simultaneously. This is the origin of
the parallelism in the algorithm.

DTP operates on three network types formed from the
four types fundamental to a TPN. These are activity,
parallel-sequence and choose-sequence, as shown
in Fig. 5, where the subnetworks A;, ..., Z; are of any of
these three types. We handle the simple temporal constraint
present on a sequence network by considering a sequence
network as a special case of a parallel-sequence net-
work, in which only one subnetwork exists.

69

[l
activity

[Lu]

choose-sequence

Figure 5: Constructs for DTP

This choice of network types requires that a network is
able to communicate directly with any its successor. This is
made possible by the Sequential Network Identifier (SNI),
which is a pointer to the start node of the successor network.

The following three sections describe the actions carried
out by the start node of each network type on receipt of a
findfirst or findnext message. Note that while a sim-
ple temporal constraint [, u| is locally inconsistent if [> u,
we assume that the TPN is checked prior to running DTP, to
ensure that all temporal constraints are locally consistent.
This assumption means that only parallel-sequence
networks can introduce temporal inconsistencies.

Activity During search, an act ivity node propagates re-
quest messages forward and response messages backward.

Parallel-Sequence Network On receipt of a findfirst
message, the start node v of a parallel-sequence net-
work S calls parallel-findfirst (v) (Fig. 6). The node
initiates a search of S’s subnetworks and of any successor
network, in order to find a temporally consistent plan. First,
the start node sends £indfirst messages to the start node
of each child subnetwork of the parallel structure (lines
2-4) and to the start node of the successor network, if present
(lines 5-7). These searches are thus conducted in parallel. If
any of the child subnetworks or the successor network re-
turns a fail message (line 12), then no consistent assign-
ment to the choice variables exists and the start node returns
fail (line 13).

Conversely, suppose that all child subnetworks and the
successor network return ack messages, indicating that vari-
able assignments have been made such that each is inter-
nally temporally consistent. The start node must then check
for consistency of the entire parallel network S (line 15).
This is performed by a distributed Bellman Ford consistency
checking algorithm, which is explained in the next section.
If the consistency check is successful, the start node returns
an ack message to its parent (line 16) and the search of the
parallel network is complete.

If, however, the consistency check is not successful, the
start node must continue searching through all permutations

70

ICAPS 2005

. parent < sender of msg
: for each child do
send findfirst tow
end for
if successor B exists then
send findfirst to B
end if
: wait for all responses from children
. if successor B exists then
10: wait for response from B
11: end if
12: if any of the responses is fail then
13: send fail to parent

VRN REDD =

14: else

15: if check-consistency (v) then
16: send ack to parent

17: else

18: if search-permutations (v) then
19: send ack to parent

20: else

21: send fail to parent

22: end if

23: endif

24: end if

Figure 6: parallel-findfirst (node v)

of assignments to the child subnetworks for a globally con-
sistent solution. It calls search-permutations (v) (line
18) and sends an ack message to its parent if this is success-
ful and a fail message otherwise.

In the search-permutations(node v) function
(Fig. 7), the start node sends findnext messages to each
subnetwork (lines 1-2). If a subnetwork returns fail, the
start node sends a findfirst message to that subnetwork
to reconfigure it to its original, consistent solution (lines
11-12) and we move on to the next subnetwork. If at any
point, a subnetwork returns ack, the start node tests for
global consistency and returns true if successful (lines
4-6). If the consistency check is unsuccessful, we try a
different permutation of variable assignments (line 8) and
continue searching. If all permutations are tested without
success, the function returns false (line 15).

1: for w = child-0 to child-n do
2: send findnext tow

3: wait for response

4: if response = ack then
5: if check-consistency (v) then
6: return true

7: else

8: w «— child-0

9: end if
10: else
11: send findfirst tow
12: wait for response
13: endif
14: end for

15: return false

Figure 7: search-permutations (node v) function

When the start node v of a parallel-sequence
network receives a findnext message, it executes

Workshop on Multiagent Planning and Scheduling

parallel-findnext (v) (Fig. 8). First, the start node
calls search-permutations (v) to systematically search
all consistent assignments to its subnetworks, in order to find
a new globally consistent assignment (line 1). If this is suc-
cessful, the start node sends ack to its parent (line 2). If it
fails, however, the start node attempts to find a new assign-
ment to the successor network. If a successor network is
present, the start node sends a findnext message and re-
turns the response to its parent (lines 3-6). If no successor
network is present, then no globally consistent assignment
exists and the node returns fail (line 8).

1: if search-permutations () then
2 send ack to parent
3: else if successor B exists then
4 send findnext to B
5: wait for response
6 send response to parent
7: else

8: send fail to parent

9: end if

Figure 8: parallel-findnext (node v) function

Choose-Sequence Network When the start node of a
choose-sequence network receives a findfirst mes-
sage, it executes the choose-findfirst () function
(Fig. 9). The node searches for a consistent plan by mak-
ing an appropriate assignment to its choice variable. It also
initiates a search in any successor network. To do so, it
first sends a findfirst message to the successor network
if present (lines 2-4). It then systematically assigns each
possible value to the network’s choice variable and, in each
case, sends a findfirst message to the enabled subnet-
work (lines 5-7). If a subnetwork returns fail, indicating
that no consistent assignment exists, the current value of the
choice variable is trimmed from its domain to avoid futile
repeated searches (line 18), and the next value is assigned.

1: parent « sender of msg
2: if successor B exists then

3: send findfirst toB
4: end if
5: for w = child-0 to child-n do
6: choicevariable — w
7: send findfirst tow
8: wait for response from child w
9: if response = ack then
10: if successor B exists then
11: wait for response from successor B
12: send response to parent
13: else
14: send ack to parent
15: end if
16: return
17: else
18: remove w from child list
19: endif
20: end for

21: send fail to parent
Figure 9: choose-findfirst () function

As soon as a subnetwork returns ack, indicating that a

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

consistent assignment to the subnetwork was found, the start
node waits for a response from the successor network (if
present) to determine whether or not a consistent assignment
was found to it too (line 11). Once a response has been
received from the successor network, the start node forwards
this response to its parent and the search terminates (line 12).
If no successor network is present, the network is consistent
and the start node returns ack to its parent (line 14).

If all assignments to the network’s choice variable are
tried without receipt of an ack message from a child sub-
network, the start node returns fail to its parent, indicating
that no consistent assignment exists (line 21).

When the start node of a choose network receives a
findnext message, it executes the choose-findnext ()
function (Fig. 10). The start node first attempts to find a new
consistent assignment for the network while maintaining the
current value of the choice variable. It does so by sending
findnext to the currently selected subnetwork (lines 1-2).
If the response is ack, a new consistent assignment has been
found, so the start node returns ack to its parent and the
search is over (lines 4-6).

w «— current assignment

send findnext tow

wait for response

if response = ack then
send ack to parent
return

end if

while w < child-n do
w <« next child

10: send findfirsttow

11: wait for response

12: if response = ack then

e AR N

13: send ack to parent

14: return

15: else

16: remove w from child list
17: endif

18: end while

19: if successor B exists then

20: send findnext to B

21: for w = childO to child-n do

22: choice variable < w

23: send findfirst tow

24: wait for response from child w
25: if response = ack then

26: break

27: end if

28: end for

29: wait for response from B
30: send response to parent
31: else

32: send fail to parent

33: end if

Figure 10: choose-findnext () function

If this fails, however, the start node searches through un-
explored assignments to the network’s choice variable, in
much the same way as it does on receipt of a findfirst
message (lines 8-18). Finally, if this strategy also fails, the
start node attempts to find a new consistent assignment in
any successor network, by sending a findnext message

7

to the node referenced by its SNI parameter (lines 19-20).
Note that the start node must reset the local network to the
previous consistent configuration, because the unsuccessful
search has left it in an inconsistent state. This is achieved by
repeating the search process used on receiptof a findfirst
message (lines 21-28). Once the successor network has
replied, the start node forwards the response to its parent
(lines 29-30).

Temporal Consistency Checking

Each of the candidate assignments generated during search
on the TPN must be tested for temporal consistency, which is
implemented by the check-consistency (node v) func-
tion. Consistency checking is performed with the distributed
Bellman-Ford Single Source Shortest Path algorithm (Lynch
1997), which is run on the distance graph corresponding to
the currently active portion of the TPN. Temporal inconsis-
tency is detected as a negative weight cycle (Dechter, Meiri,
& Pearl 1990). The consistency checking process is inter-
leaved with candidate generation, such that DTP simulta-
neously runs multiple instances of the distributed Bellman-
Ford algorithm on isolated subsets of the TPN.

The distributed Bellman-Ford algorithm has two key ad-
vantages. First, it requires only local knowledge of the net-
work at every processor. Second, when run synchronously,
it runs in time linear in the number of processors in the net-
work. DTP ensures synchronization by the fact that when-
ever a node initiates search in its subnetworks, it waits for
responses from all processors in the form of ack or fail
messages before proceeding.

Performance Analysis

The overall time complexity of the centralized planning al-
gorithm is worst-case exponential. The backtrack search
used to assign choice variables has worst-case time com-
plexity N¢, where N is the number of nodes and e is the
size of the domain of the choice variables. The Bellman-
Ford algorithm used for consistency checking has complex-
ity N2logN + N M, where M is the number of edges.

DTP also has exponential overall time complexity. The
backtrack search remains N € in the worst case, but we gain
significant computational savings from the fact that the dis-
tributed Bellman-Ford algorithm runs in time N.

Discussion and Results

DTP was implemented in C++ and tested by simulating an
array of processors searching for a feasible solution of a
TPN, where exactly one node was assigned to each proces-
sor. The number of nodes in the TPN was varied between
1 and 100. In each case, the number of TPN constructs
(parallel, sequence or choose) was varied between 3
and 30 and the maximum recursive depth was varied be-
tween 4 and 10. Performance was measured by the num-
ber of listen-act-respond cycles completed by the processor
network.

Fig. 11 shows a plot of the number of cycles against the
number of nodes. The results showed that the variation in
the number of cycles, which is a measure of run-time, is

72

ICAPS 2005

approximately linear with the number of nodes. The worst-
case time complexity of DTP is exponential, but this occurs
only when the TPN is composed entirely of choose net-
works, in which case there is no opportunity for parallel ex-
ecution. However, typical TPNs used in real applications
consist largely of parallel and sequence networks. This
allows processors to conduct parallel search and consistency
checks, which greatly reduces the time complexity of DTP.

140

120

80

Cycles

60

40

20

40 60
Nodes
Figure 11: Number of cycles vs. number of nodes

This paper introduced the Distributed Temporal Planner
(DTP), which is the plan selection component of a dis-
tributed executive that operates on contingent, temporally
flexible plans. DTP distributes both data and processing
across all available agents. First, DTP forms a processor
hierarchy and assigns subnetworks from the TPN to each
processor. It then searches the TPN to generate candidate
plans, which are finally checked for temporal consistency.
DTP exploits the hierarchical nature of TPNs to allow paral-
lel processing in all three phases of the algorithm.

References
Dechter, R.; Meiri, L.; and Pearl, J. 1990. Temporal con-
straint networks. Artificial Intelligence, 49:61-95, 1991.
Kim, P.; Williams, B.; and Abramson, M. 2001. Execut-

ing reactive, model-based programs through graph-based
temporal planning. In Proc. of IJCAI 2001, Seattle, WA.
Lynch, N. 1997. Distributed Algorithms. Morgan Kauf-
mann.

Mittal, S., and Falkenhainer, B. 1990. Dynamic constraint
satisfaction problems. In AAAI-1990.

Morris, P., and Muscettola, N. 1999. Execution of temporal
plans with uncertainty. In AAAI-00.

Nagpal, R., and Coore, D. 1998. An algorithm for group
formation in an amorphous computer. In Proc. of PDCS
1998, Las Vegas, NV.

Stedl, J. L. 2004. A formal model of tight and loose team
coordination. Master’s thesis, MIT, Cambridge, MA.
Tsamardinos, I.; Muscettola, N.; and Morris, P. 1998. Fast
transformation of temporal plans for efficient execution. In
AAAI-98.

Williams, B. C.; Ingham, M.; Chung, S.; and Elliott, P.
2003. Model-based programming of intelligent embedded
systems and robotic explorers. In IEEE Proceedings, Spe-
cial Issue on Embedded Software.

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

Determining Task Valuations for Task Allocation

David C. Han and K. Suzanne Barber
Laboratory for Intelligent Processes and Systems
The University of Texas at Austin
{dhan, barbem@lips.utexas.edu

Abstract

The actions of agents are a reflection of the desires of
their commanders (the people who design, implement,
and deploy the agents). Self-interested agents will not
act benevolently (taking up other agents’ tasks), unless
it is in their own best interests to do so. Given a set of
tasks, rational agents calculate the costs and rewards for
task accomplishment. The value of each task is deter-
mined in relation to (1) other tasks the agent is pursu-
ing (and the order of accomplishment) and (2) interac-
tions with other agents. A computational model for task
evaluation is presented, constructing an overall value
function out of individual rewards and costs describ-
ing the rational actions for an agent to take, effectively
transforming the domain representation into a “task-
oriented domain” for which protocol and mechanism
design work is abundant. Additionally, algorithms for
modification of the task evaluation model in response to
task adoption or release are presented; enabling calcu-
lation of the marginal costs or rewards from accepting
or rejecting task allocations, forming the basis for nego-
tiation of coordination among multiple agents.

Introduction

primary responsibilities of the multi-agent system designer.
If the commander deploys multiple agents, they share the
desires of the commander and should be designed to intrin-
sically cooperate. If the multi-agent system is not a product
of central design, each agent (deployed by a respective com-
mander) is self-interested. For self-interested agents, any
coordination must be pursued must be for the benefit of the
self agent. Self-interested agents will not act benevolently
(taking up other agents’ tasks), unless it is in their own (i.e.,
their commander’s) best interests to do so. Decision theory
is well suited to performing cost/reward analysis of the var-
ious tasks to determine which ones are in an agent’s best
interests for both individual action and coordinated action
(Boutilier 1996)(Boutilier, Dean, & Hanks 1999).

In general, an agent may not be able to achieve all of its
tasks and must decide which tasks to pursue. This is a depar-
ture from the assumptions used in travelling salesman prob-
lems, where the solution includes all tasks. Instead, agents
are faced with over-subscription problems (Smith 2004), and
must select some subset of tasks to accomplish. Based on
what their respective commanders decide, agents may con-
sider some tasks “unprofitable.” Profitability is determined
by combining the desirability of a task (a reward) with the

costs required to achieve that task. Profitability of a given
task is dependent on (1) other tasks and (2) other agents.
"When tasks are aligned, an agent may benefit by a reduced
cost for achieving a set of tasks compared to the sum of the
individual costs of the constituent tasks. For example, com-
bining trips to the grocer and the bank may be less resource
intensive (in terms of time, gas, etc.) than making separate
etrips. Interactions with other agents may also change the
profitability of tasks. In a competitive scenario, upon arrival
at the grocer, one might find a desired ingredient out of stock
due to another agent purchasing it. On the other hand, agents
may often reduce their costs by reallocating tasks amongst
themselves.

Due to differences among the agents in terms of resources,
expertise, or even location, the costs to achieve tasks may
differ among the agents. Tasks which are unprofitable for
one agent may still be turned into profit through coopera-
tion with other agents, i.e., through a subcontracting pro-
cess where the rewards are shared. Cooperation is enacted
through task allocation protocols, assigning tasks to individ-
ual agents. By their nature, protocols for task allocation are

Autonomous agents have the ability to say “no.” Having
autonomy means that an agent has some degree of inde
pendence from external control. Using this independence,
autonomous agents have the ability to refuse tasks that are
not in their best interests to perform. However, autonomous
software agents do not spring into being through sponta-
neous generation. They are designed and deployed by som
human as a proxy; to act in an environment where that hu-
man cannot or will not act. As a proxy for the human, hence-
forth referred to as the commander, the agent actions are de-
termined according to the desires of the commander.

A chasm exists between the desires of the commander and
domain actions. There exists a breadth of options to fill this
chasm, linking the desires of the commander to goal rep-
resentation, belief maintenance, planning, scheduling, and
finally action. Agents can be designed to act individually
or to act in concert with one another. Defining and imple-
menting the level of coordination among agents is one of the

Copyright © 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Workshop on Multiagent Planning and Scheduling 73

ICAPS 2005

based on the fundamental actions propose, accept, and re-of the agent. It is apparent that the order of task accomplish-
ject. Proposals are necessary to inform other agents of the ment affects the overall costs incurred for a set of tasks.
possibility for cooperation. Since agents must reach agree- The agents decide which targets to service and the order in
ment for a task allocation to be enacted, acceptance and re-which those targets are serviced. This domain is equivalent
jection are used to communicate agreement or disagreementto a postman or robot navigation domain with added flexibil-
with the proposed allocation. ity in the ability to not perform unprofitable tasks. Figure 1

Decisions on whether to accept or reject a given allocation shows a graphic of the domain simulator used. In this figure,
are tied back to what the agent considers its best interests, orthree UAVs are shown servicing a number of targets on the
whether the allocation is deemed profitable. Depending on battlefield. The targets are shown with different sizes that
the interactions among the costs and rewards of the agent's correspond to their desirability, or the reward the agents ex-
tasks, profitability of an allocation should be determined in pect to receive. The panel on the left side contains controls
relation to the other tasks an agent holds. for the simulation.

In addition to the cooperative interactions, agents may in-

teract competitively, e.g., when a task is not assigned to a SRR ECT ——
particular agent but rather to a set of agents. The reward for cont P ‘

completing the task provides an incentive for the agents to . H

compete. Agent interactions, both competitive or coopera- ~ ©5L © 6

tive, impact the profitability of tasks. This research analyzes bistance Weige Z

the values and costs of tasks in relation to other tasks and LR e

.

Age Weight

agent interactions.

The next section describes the class of domains addressed

in the paper. Following that, analyses for the value of tasks
for an agent to maintain individual rationality are explored.
A discussion of task evaluations in the context of coordinat-
ing with other agents in both cooperative and competitive
settings is presented, followed by a summary and wrap-up
of the paper.

0 25 5 75 100
Preference Weight

0 25 50 75 100

Hit Rate: 1.0

Avg Time: 22

a0

-]
K

Seed: 3

a1
4. QX
@77
&

[react [piay " oo IR close |

Board: 560 %560

Time Period: 1660

Domain Characteristics

Due to the complexity of dealing with general domains, this

research follows the approach taken by Lane and Kaelbling
(Lane & Kaelbling 2002) and seeks (at first) not to address
all domains, but rather to analyze an interesting subset of do-

mains and build from there. Motivated by unmanned aerial Many coordination approaches use abstractions at the
vehicles (UAV) surveillance, the relevant domain character- task level through task allocation (Rosenschein & Zlotkin
istics are defined by the application domain. This is an in- 1994)(Sandholm 1999). Task allocation protocols and
teresting domain to analyze because it is easily discussed mechanisms can take many forms; e.g., argumentation or
in terms of either tasks or actions and the linkage between economic models. To expedite the application of the body
tasks and actions is clear. In this domain, there exists a set of work on task allocation, the UAV domain must be trans-
of targets distributed around a battlefield. Each UAV, and its formed into a form that lends itself to task allocation.
agent, is interested in a subset of the targets as determined byT A£MS provides an expressive representation for task hier-
the commander of the respective UAVs. Since the comman- archies (Lesseet al. 2004). In TAMS, tasks are annotated
ders’ interests do not necessarily overlap, there is no global with their relationships, such as “facilitates” and “hinders”.

Figure 1: UAV Simulation

utility evaluation for the system. Consequently, top-down,
teamwork based formulations (e.g., COM-MTDP (Pynadath
& Tambe 2002)) are not directly applicable. Instead this re-
search follows a bottom up approach towards coordination,

Although, multiple relationships can be defined per task,
TAMS does not naturally capture the freedom of ordering of
subsets of tasks or their collective affect on the values of the
individual tasks. For instance, tfisk; can either facilitate

closer to that of GPGP (Lessetal. 2004). or hindertask, depending on which other tasks the agent
The UAV domain this work investigates is a “cost-to- has selected and their order of execution, the individual re-
move” domain. Each action taken incurs a cost as an ab- lationships must be enumerated and encoded. In domains,
straction of resource usage. In those states where a UAV like the UAV domain, where the interdependencies among
services a target, that UAV receives some reward, the mag- the tasks are structured, that structure can be encoded to al-
nitude of which is related to the commander’s interest in that low the agent to perform automated reasoning over the task

target.

In the UAV domain, where tasks are located geographi-
cally through a space, the cost associated with a task is re-
lated to the distance an agent must travel to accomplish that
task. Distance is also dependent upon the starting location

74

relationships.

Instead, the UAV domain will be transformed into a task-
oriented domain, with the following sections describing how
to calculate the values of tasks based on the structure of the
domain. A task-oriented domain (Rosenschein & Zlotkin

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

1994) is represented by a tripl&, A, c¢); T representing a combine low level domain actions into actions operating at a
set of tasks,A representing a set of agents, angrovid- more abstract level, i.e., at the task level. Following the for-
ing the costs of accomplishing a subset of tasks by a sin- mulation of macros presented by Sutton, Precup, and Singh
gle agent. Two other important features of task-oriented (Sutton, Precup, & Singh 1999), state variables can be ab-
domains are: (1) there are no negative interactions among stracted away (factored out of the representation). By cre-
the tasks, and (2) the tasks are interchangeable among theating a macro for each goal, reasoning can be performed in
agents. terms of desire states, referred to paper as the desire space
UAVs are tasked with servicing (an abstraction for some (Han & Barber 2004). Macro actions provide a bridge be-
domain function like applying sensors to or firing upon) tar- tween the primitive actions, the building blocks for action
gets, taking into account the expected reward received for execution, and tasks, the building blocks for reasoning about
servicing the target and the cost required to move to the coordination. As an added benefit, macro actions encapsu-
target location. Targets are independent, meaning that ser-late the uncertainty in the domain (e.g., non-deterministic
vicing one target has no effect on the reward for servicing actions) and can be treated semi-deterministically.
any other target. Provided that each UAV has the ability to Figure 2 shows the desire space for three targets in the
service any given target, tasks are interchangeable amongstUAV domain. Each desire state is labelled with the set of
the agents, satisfying the requirements of task-oriented do- goal variables(G;, Gs, G3, denoting which goals have not
mains. been achieved in that state. Initially, the agent is in the state
Underlying all decisions an agent will make about which marked by the full set of goals and the current location. Ap-
tasks to pursue is an evaluation for determining which tasks plication of each macro leads the agent to the desire state
are good and which tasks are bad. For agents to properly where the appropriate goal is marked as achieved (removed
coordinate through task allocation, each agent must be able from the set), leading up to the state with all goals being
to evaluate the costs of the subsets of tasks, the cost functionachieved (the empty set). Unfortunately, the complete do-
c : 2ITI — R. Since the costs associated with tasks are main space cannot be factored out because the cost function
affected by the task ordering, analysis at a lower abstraction for the macro actions is dependent upon the agent’s location

level is required to calculaie in the domain space. Luckily, if an agent executes actions
) .) according to this decision-making mechanism, the only rel-
Task Evaluation for Single Agent Operation evant locations in the domain space are the current location

Before deciding whether to accept or reject a task allocation, and the termination states of the macro actions (i.e., the lo-
an understanding must be formed about the value of the taskscation of the targets).
involved.

Lane and Kaelbling analyze a mail delivery domain (very
similar to the UAV domain) at an action level, where it
is necessary that all tasks are achieved, and reduce it to a
shortest path problem (i.e., the travelling salesman) (Lane &
Kaelbling 2002). However, it may not always be the case
that achievement of all tasks are required. Requiring that an
agent satisfy all its tasks precludes the agent from declining
tasks, infringing on that agent's autonomy. As an alterna-
tive, a decision-theoretic approach may prove more desir-
able; where the tasks are given individual reward values and
the agent must reason about which tasks to pursue. Tasks
are represented as consisting of two components, the state
(labelled a goal) wherein the task can be executed, and the
reward (desirability) the agent will receive from achieving
that goal.

An important characteristic of an autonomous agent is
the ability to decide which goals to pursue. Towards this
end, the agent’s desires may be combined in an “OR” fash- _ . o
ion, where the agent may receive rewards for goals indepen- Figure 2: Desire space for the UAV domain with three tar-
dently and additively. The agent must consider not only the 9€ts (goals)
order in which to achieve, but whether to try to achieve each
particular goal at all. In practice, the cost to achieve a goal = The motivations for reasoning in the desire space include:
may outweigh the reward, in which case the agent should (1) the desire space is smaller than the complete state space
not pursue that goal. Additionally, since execution of ac- (the desire space grows in the number of tasks, not the
tions can change the agent's distance to the respective goals,number of state variables), and (2) the structure of the de-
pursuing one goal may make it more or less profitable (even sire space can be exploited algorithmically during compu-
unprofitable) to pursue other goals. tation. The model for reasoning about the desire space is

A form of Markov Decision Process (MDP) is used to per- defined as follows. Given the domain space of the problem
form the reward/cost analysis. Macro actions can be used to Sy.mq.in, SOMe subset of those states are marked as goals,

Workshop on Multiagent Planning and Scheduling 75

ICAPS 2005

V({{},s)=0 @)
Caction(MACT0;, 5)
V((Gunach, 8)) = max (0, max (+R(9:))))
macro;€Adesire +V(<Gunach — Gi, gl>)

G C Sdiomain = {91,92,--9gx}. The states of the de- the values for achieving the various subsets of tasks, yield-
sire space are built from the goal variables and the agent'’s ing thec we need to fully describe the task-oriented domain.
location in the domain space. Each macro action is con- Given an agent’s starting location ¢(7') = V(T s) from
structed to move the agent to a given goal state. The termi- the above model.

nal states are represented as a probability distribution over

the domain states. However, due to the nature of macro ac- Task Evaluation for Agent Interactions

tions, the probability is concentrated on the goal state. It is
possible for a macro to have termination states that repre-

sent failure of that macro to achieve its goal but, for sim- -
9 T;, by its commander. In the system, the overall set of

licity of explanation, this paper expects the macro actions : . . LT
Fo aI\)//vays tgrminate in its ZOF;| statFe) without fail. The de- tasks is defined as the union of the individual agents’ tasks,
‘ T;. If agenta; is strictly operating indepen-

; . T = U)
sire states are denoted by a tupl@,,.acr, s). The first el- a;inA ~i .
ement of the tupleG .o is the set of goa>1ls that have not dently from other agents, it only needs to calcul&tdor

been achieved. The second element of the tuple is the lo- ItS OWn set of tasks; € T;. Interaction with other agents
cation of the agent ifz,ma:m. The agent can only be lo- changes the task evaluation model by either changing the al-

cated at the initial location;,;;;,;, Or as a result of exe- 0cation of tasks among the agents or by changing the values
cuting a macro action, in al":rgégdmplished goal locagion associated with the constituent tasks. Using the evaluations

hence G s Jel e C performed in the previous section, methods for modifying
G and’gs,degrec;oag /C’;Sm”}”}l>’ %—hi‘e’laggt’igﬁ setAdunfwh = the task evaluation model to deal with interactions with other
(2 unacn J -+ esire T

{macroy, macroq, ..., macrox} is the set of macro ac- agents are presented.
tions, one for achieving each goal the agent holds. Finally, .
the reward functionR : Goals — R, assigns a separate Task Allocations
reward value to each goal. An action level cost function When each task is owned by a single agefit 7; =
Caction 1S required to estimate the costs incurred by execut- 0fori # j), agents may be able to increase their profits
ing the macro action. This cost is related to the distance the by exchanging tasks. Since evaluations and not protocols
agent must travel from a given domain state to the termina- are the focus of this research, examples are presented in the
tion state of the macro. context of a simple allocation protocol. An agent can pro-
Since the reward function is assigned slightly differently Pose a contract for another agent to adopt some of its tasks
from that used in a standard MDP, i.e., the rewards are bro- following an announce, bid, award process (Smith 1980).
ken down according to the goals, the evaluation of statesand ~ To maintain individual rationality, an agent should bid if
actions is changed to match. Global termination states are and only if it is more profitable for that agent to pursue than
those states in which there are no further profitable macro it is not to pursue the contracted tasks. The task evaluation
actions. States in which all goals have been achieved are model is used to facilitate “what-if” reasoning, checking the
global termination states since all rewards have already been value for accepting the task for profitability. By adding and
collected. The global termination states (where all goals removing tasks from the task evaluation model, an agent can
have been achieved) are assigned a value of 0, indicating calculate the marginal utility of a contract.
that no further action will yield any reward. The expected The task allocations after a contract is awarded differ from
value of desire states is defined in equations 1 and 2. the origina_l aIIocat_ions by eit_her adding or removing tasks.
The value of a state is simply the sum of the cost of ex- Thg following sections Qescrlbe how to modify a task eval-
ecuting the macro from that state (a negative number), the uation model for adoption of new tasks and the release of
reward for achieving the immediate goal through macro ex- current tasks.
ecution, and any expected value for being in the resulting Task Adoption: Upon receiving an announcement of an
state due to expected future goal achievement. Note that if gjlocation containing new tasks, the agent should check
no action is profitable (i.e., the cost of each action outweighs \hether adoption of the tasks would be profitable. This is
its b_ene_flts), then the state is also a global termination state performed through “what-if” reasoning by adding the tasks
and is given a value of 0. into the task evaluation model. Profitability is determined
Since tasks, once completed, cannot be undone in this do- by calculating the marginal value of the task shown in equa-
main, loops cannot exist in the graph. This enables calcula- tion 3. For agent:;, already owning task$;, the marginal
tion of the expected values to proceed through simple accu- value is the difference between the valugdpf/ T, ,4 and the
mulation of the values from a single graph traversal rather value ofT; from the current state. If the addition of the tasks,
than an iterative process. The nodes in the graph represent7, , Yyield a positive marginal value for the agent, the agent

When dealing with multiple agents, the idea of task allo-
cation comes into play. An agent,, is assigned tasks,

76 Workshop on Multiagent Planning and Scheduling

ICAPS 2005

should bid on the allocation. Otherwise, the agent should the chosen sequence of tasks must always be profitable. For

reject, ignoring the announcement. example, if the agent selecfs:, g2, g3} as a profitable se-

guence of tasks to pursue, then the sequépegys }, using

the expected end state gf as the starting state, must also

MU (Tyaa|T;) = V(T; U Teqa, s) — V(Ti,8) (3) be profitable. If this is not the case, then the sequdpe

Since agent;’s task evaluation model only contains val- Would be more profitable thafy., g2, g3} and would be se-

ues for tasks relevant to agerft (C 7;), the goal and re- lected instead. Using this constraint, a cache of profitable

ward for the announced taskg,(,;) must be added into the sub-sequences can be built tha’_[represent the poss_ible tails

model. Addition of each goal can be handled in a single of the best sequence after addition of a goal, pruning the

traversal of the graph. search space.

_Algorithm 1 describes a process for adding goab de- Task Release: By announcing a contract for a task and re-
sire stated. For desire statd in the model, a new macro ward, an agent attempts to increase their profitability. To
action is added for achieving gogland the resulting desire maintain individual rationality, the reward offered should

stated’ is created. The children of are added ta’. After be determined by the marginal utility of the task shown in

selecting the best macro to execute in that desire state. Theagent for the tasks minus the value lost by not completing
new goalg are then added to each of the childrenipton- the tasks. An agent can profit from a contract if it pays out
structing the model while executing depth-first traversal of |ess for a set of tasks than the costs it would incur for com-
the tree. Finally, the value ofis updated, possibly chang- pleting those tasks itself. This is especially useful for tasks
ing the best macro to execute. Through this update process, that are not on the most profitable course of action for the
V' is maintained, rather than recalculated for each change agent. In that case, since tasks..... are not included

in task structure, reusing previous computation based on the jn the valueV (T}, s), V(T;, s) = V(Ti/Tremovea s). The
structure of the desire space. agent can make profit by contracting out unselected tasks
for less than the reward given by the commanders.

Algorithm 1 AddGoald,g)

d’ = new STATE(d~G'u7Lac/L7.g>) Z R(t)

_) — tET remone
d-Gunach = d.Clunach + 9 MU Tremonel T2) = Z070H S5~ VT Tremove)
for all 7 € d.children do (4)

)
ADDCHILD(d', 7) Goal removal also allows the agent to reduce the size of

ﬁr;’deX':'E(V(d’)) the desire space that it models. There are two cases for goal
forall i e d.children do removal: (1) the goal has aIready been a_chiev_ed and (2) the
ADDGOAL(z’) goal has not already been achieved but is belng. abandoned
end for g or contracted to another agent. Both cases are simple due to
d.children — d.children + d the structure of th_e dgglre space. '
U'PD ATE(f/ (d)). The first case is trivial due to the structure of the desire

space. The agent needs only treat the current state as the new
root of the model with no recalculation necessary. All desire

Model modification saves computational cost compared states that are not reachable from the current desire state can
to building a new model by reusing calculations for subpaths be pruned from the model (e.g., all those desire states the
that do not contain the new task. Figure 3 shows the result goal being removed contributes value to). In fact, the goal
of addingg; to a model that already includes andgs. De- variable itself can be removed from the representation. Since
sire states marked in gray are replicated from the original the value assigned to that goal variable will be equivalent for
model into the resulting model through ADDCHILD in the all remaining states, it can be safely factored out of the desire
algorithm described above. state representation without affecting any of the remaining

Algorithm 1 is essentially a depth-first search, but was in- desire state values. The marginal utility of removing a task
cluded to illustrate how new nodes are added into the model whose goal has already been achieved is 0, since value is
during the search process. Heuristic usage can modify the accumulated from the goals that have not been achieved.
presented algorithm to a best-first search to further reduce When the goal being removed has not already been
computational costs. achieved (i.e., it is being adopted by another agent or aban-

Additionally, since values are accumulated backwards, doned), recalculation is necessary to remove the value of the
from the end of the path towards the head of the path, some goal from the action-selection reasoning. Due to the struc-
desire state nodes are shown with multiple incoming edges. ture of the desire space (Figure 2), the value of any given
The value for these nodes needs only be calculated a singlenode is dependent only on the unachieved goals and state
time, cached, then reused for each of the incoming edges. of the agent at that nodé/(T; /T, cimove), Save for the cost
Replication saves the computational cost of recalculating the of the immediate macro action to execute, has already been
values for states which will have equivalent values to preex- computed previously as an intermediate value in the calcu-
isting states. Rational action dictates that the agent will only lation of V(7;). Computation is saved by caching the values
pursue profitable tasks. To maintain rationality, the tail of of each node

Workshop on Multiagent Planning and Scheduling 77

ICAPS 2005

Figure 3: Modification of desire space for addition or removal of a goal

Algorithm 2 REMOVEGOAL(d,g) Marginal calculations can be performed for shared tasks,
location = d.location enabling agents to determine the value for pursuing a shared
d =CHILD(d, g) task. The rewards received for completing a task are directly
d.location = location influenced by the actions of other agents. Modification of
UPDATE(V (d)) equation 2 by replacing the rewaf(g;) with the expected

value EV (g;) enables an agent to incorporate uncertainty
reasoning into the decision-making process. To improve the
accuracy of the task evaluation model, it may be beneficial
for an agent to use predictions or knowledge of the future

Algorithm 2 describes the removal of gaalThe function
CHILD() selctsand reurs he desire ate that 15U aions of ather agents
The agxentutrlar?sitions in the desirla Zpace as if i'lt had achieved Returning to the UAV domain, if two UAVS are compet-
goalg. The resulting state in the desire space is then updated ing to service a set of targets, then even knowledge about

. : - : the location of the competing UAVs is useful. An agent
with the agent's current location in the state space. Finally, . e cide that targets that are closer to the competing UAV
the value of the current new state is recalculated based on

the new location. The values of the children states had previ- than to itself are more likely to be serviced by the competing

ously been calculated, but due to the new location, the costs UAV, lowering the expected value for servicing those targets.

to reach the children have changed. This may cause a r‘ewAdditionaIIy, information about the reward structure other
macro to be selected as the most profitable when calculating agents hold also describe the likely targets other agents wil

the newl’(d). pursue, as they will be more likely to pursue higher value

Figure 3 illustrates the effect of removing gaal from targets.
the desire space. The desire states highlighted in gray show .
the reused state values after the removay,of Conclusion
. d . Agents should strive to perform actions that are in their, and
Competition and Cooperation their commander’s, best interests. This work addresses the

If tasks are simultaneously owned by multiple agents, those problem of evaluating tasks, determining which tasks the
tasks are shared tasks. Depending on how the rewards areagent should pursue individually and providing a computa-
distributed for a shared task, the agents may be in either a tional model for task allocation in coordinated action. The
competitive or cooperative scenario. For example, if only value of a task is dependent upon the agent’s state and the
one agent is rewarded by its commander, two agents that tasks the agent is already pursuing. This paper describes
share a task are in competition to receive that single reward. the desire space, a task evaluation model for computing the
If rewards split amongst the agents (e.g., when the agents value of subsets of tasks by combining the costs and rewards
are deployed by the same commander, they care only for of the constituent tasks.

the combined value received rather than their individual re- The ability to say “no” is central to the idea of autonomy.
wards), the agents are motivated to cooperate. Equation 5 Usage of this task evaluation model preserves individual ra-

defines which tasks are shared by agentsnda;. tionality by calculating which subset of tasks is most prof-
itable, allowing the agent to decide which tasks to pursue
Tshared; ; = Ti N} (5) and not pursue. The task evaluation model provides infor-

78 Workshop on Multiagent Planning and Scheduling

mation about the profitability of tasks in relation to each
other. It takes into account the location of the agent when
calculating costs, and the order in which tasks are achieved.
Negotiation for task allocation depends on the agent
knowing the value of its tasks. Using this model, profitabil-
ity analysis can be performed for negotiating the adoption of

a task from another agent in cooperative scenarios as gener-

ating expected values based on knowledge of other agents’
behavior for competitive scenarios. Marginal utility calcu-
lations, generated by modifying the task evaluation model
through goal addition and removal, are used to determine
the profitability of forming contracts with other agents. In
the case that a task is not on the most profitable path, mean-
ing that the agent will choose not to pursue it, the agent is
then free to negotiate for other agents to adopt that task. An

agent can receive some value by subcontracting tasks out to

agents for whom those tasks might be less costly to com-
plete.

Future research directions include the extension of this
work to include more complex domain assumptions, includ-
ing conflicting tasks, deadlines, and other task interactions.

Acknowledgements

This research was funded in part by the Defense Advanced
Research Projects Agency and Air Force Research Labora-
tory, Air Force Materiel Command, USAF, under agreement

number F30602-00-2-0588. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental

purposes notwithstanding any copyright annotation thereon.
The views and conclusions herein are those of the authors

and should not be interpreted as necessarily representing the

official policies or endorsements, either expressed on im-
plied, of the Defense Advanced Research Projects Agency
(DARPA), the Air Force Research Laboratory, or the U.S.
Government.

The research reported in this document was performed in
connection with Contract number DAAD13-02-C-0079 with
the U.S. Edgewood Biological Chemical Command.

References

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and computa-
tional leverage Journal of Artificial Intelligence Research
11:1-94.

Boutilier, C. 1996. Planning, learning and coordination in
multiagent decision processes. Theoretical Aspects of
Rationality and Knowledgel 95-201.

Han, D., and Barber, K. S. 2004. Desire-space analysis and
action selection for multiple, dynamic goals. GLIMA 'V,
Computational Logic in Multi-agent Systeni8§2—-195.

Lane, T., and Kaelbling, L. P. 2002. Nearly deterministic
abstractions of markov decision processesEighteenth
National Conference on Artificial Intelligence (AAAI2002)
260-266.

Lesser, V.; Decker, K.; Wagner, T.; Carver, N.; Gar-
vey, A.; Horling, B.; Neiman, D.; Podorozhny, R.; Na-
gendraPrasad, M.; Raja, A.; Vincent, R.; Xuan, P.; and

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

Zhang, X. 2004. Evolution of the GPGP/TAEMS Domain-
Independent Coordination Framework. Autonomous
Agents and Multi-Agent Syste®d):87-143.

Pynadath, D. V., and Tambe, M. 2002. The communicative
multiagent team decision problem: Analyzing teamwork
theories and modeldournal of Al researcii6:389-423.

Rosenschein, J. S., and Zlotkin, G. 199Rules of en-
counter: designing conventions for automated negotiation
among computerdMIT Press.

Sandholm, T. W. 1999. Distributed rational decision mak-
ing. In Weiss, G., ed.Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligenc&€ambridge,
MA, USA: The MIT Press. 201-258.

Smith, R. G. 1980. The contract net protocol: High-level
communication and control in a distributed problem-solver.
IEEE Transactions on Compute29(12):1104-1113.

Smith, D. E. 2004. Choosing objectives in over-
subscription planning. In Zilberstein, S.; Koehler, J.; and
Koenig, S., edsICAPS 393-401. AAAL.

Sutton, R. S.; Precup, D.; and Singh, S. P. 1999. Be-
tween MDPs and semi-MDPs: A framework for tempo-
ral abstraction in reinforcement learnindrtificial Intelli-
gencell?2(1-2):181-211.

79

ICAPS 2005

Planning for Multiagent Environments

From Individual Perceptions to Coordinated Execution

Michael Brenner
Institute for Computer Science
Albert-Ludwigs-University
79110 Freiburg
Germany
brenner@informatik.uni-freiburg.de

Abstract

In this paper, we discuss the particular characteristics of
planning for multiagent systems, and present a rich formal
model for describing features like concurrency, individual
and mutual beliefs of agents, acting under incomplete knowl-
edge, control, perception, and communication. Our model
allow agents to execute their individual plan fragments as
autonomously as possible while provably guaranteeing syn-
chronized behavior where necessary. Synchronization can be
achieved by as different methods as communication, metric
or quantitative temporal constraints, or copresence. We show
the semantic relation of multiagent plans to classical plans,
and informally describe a sound and complete variant of a
POCL algorithm for multiagent planning.

1 Introduction

In this paper, we discuss the particular characteristics of
planning for multiagent systems, and present a rich for-
mal model for describing features like concurrency, individ-
ual and mutual beliefs of agents, acting under incomplete
knowledge, control, perception, and communication. While

previous research has acknowledged most of these charac-

teristics to be relevant for multiagent planning (MAP), we
are not aware of prior work modelling and integrating all of
them and, above all, giving them a clear formal semantics

that can be used to prove properties of both plans and plan-

ning algorithms.
Our model allow agents to execute their individual plan
fragments as autonomously and flexibily as possible while

provably guaranteeing synchronized behavior where neces-

sary. Synchronization can be achieved by as different meth-
ods as communication, metric or quantitative temporal con-
straints, individual perception or copresence.

The purpose of this article is unusual in so far that it does
not contain algorithmical or empirical results, but “only”
provides a thorough discussion of MAP characteristics and,
consequently, a thoroughly defined logical model that al-
lows, e.g., to prove that a multiagent plan can by executed
by multiple agents without further coordination or external
synchronization. We believe that only based on such formal
gmodels, there can be theoretical, algorithmical, and empir-
ical progress in MAP. As one tool for this development we

cluding the one presented in the next section) will be made
available for download.

The next section will motivate and discuss the concepts
formalized in the remainder of the article. At the end of the
paper, we also sketch a sound and complete algorithm for
planning in our formalism.

2 Motivation

Example 1 A person wants to visit a friend. The friend’s
house can only be entered once its door has been opened.

Consider the scenario described in Example 1. We can
model it using the simple STRIPS-like operators given be-
low. If we assumeslosed A outside N\ —atHouse as the
initial state of the world (intuitively stating that the door is
closed and that the visitor has not yet reached the house)
the following is a valid STRIPS plan for the scenario:
(move2house; open; enter

action precondition effect

move2house| outside A —~atHouse | atHouse

open closed —closed

enter outside N atHouse | —outside
A —closed

As the reader may have noticed, we have tried to obfus-
cate an important aspect of the scenario both in the ver-
bal and the formal description, namekho is performing
which action. In fact, in classical STRIPS-like planning
there is no direct way to model tlagentof an action (even
if telling action names suggest a specific reading). This is
unproblematic for Classical Planning which assumes cen-
tralized control of plan execution, but for MAP one must at
least distinguish the different capabilities of different agents.
Most prior MAP formalizations have recognized this and al-
low actions to be associated with axecutingor controlling
agent For our example, let us assume that the visit@an
move to the house and enter it, but that only her frignd
can open the door. Then, most existing MAP formalisms
would accept the following as a valid plan for the scenario
(where each action is annotated with the controlling agent):
(move2house,; open,; entery,).

However, the main point we will elaborate in the rest of

have designed a variant of PDDL for the semantics defined the paper is that this plan may actually not be executable
in this article. A parser and several sample domains (in- by the two autonomous agents! The reason is that the plan

80 Workshop on Multiagent Planning and Scheduling

ICAPS 2005

constrains two autonomous agents to a specific temporal or- chronization will be necessary to ensure the concurrency
der of actions, but does not guarantee that they can actu- constraints are obeyed by the executing agents. Since in

ally synchronizeheir behavior accordingly. Note that this is
not merely a problem of total-order (TO) vs. partial-order

our model the plan itself is intended to guarantee synchro-
nization, we present an alternative model here which we call

(PO) plans: even a less constrained PO representation like the physical forces approacto concurrency. The underly-

{moveZhouse, < enter,, open,, < enter, } demands agent
x to synchronize hegnteraction with a previouspenaction
by another agent. How is this synchronization achieved?

The example is so simple that the solution seems obvi-
ous: = knowswhen she can enter the house because she
can perceivethe door to be open once she is outside the
house. However, semantically there is no relation between
the propositiorutside describing where is and the propo-
sition closed describing what she is supposed to perceive.
There is not even a distinction between the door being open
and x being aware of it. The key to synchronization thus
lies in modeling not only the state of the world, but also the
beliefs that agents may have about it. Since facts can not
only be believed to be true or false, but alsaknown we
use multi-valued state variables in our framework instead of
propositions. This has the additional advantage of leading to
smaller state spaces. In our scenario, the propositans
sideand atHousecould be fused to one state varialde,,
with possible valuesnHouse, nearHouseand elsewhere
(plus unknownin case of beliefs), thereby eliminating the
combination—at House A —outside which is meaningless
in our scenario.

Actually, many existing MAP formalisms, e.g. Shared-
Plans (Grosz & Kraus 1996), also employ beliefs and even
mutual beliefs among agents. However, to the best of our
understanding these concepts are only used there to describ
beliefsabouta plan (e.g. mutual beliefs about the joint com-
mitment to the plan), but not for describing how (mutual)
beliefs about the world develop and chamgé¢he plan. The
most basic way to change one’s beliefs is thropgincep-
tion. (In Section 5 we will also describe communication.)
We model perceptions sensor ruleshat are automatically

ing idea is that action have only individual effects that do
not directly interact, but which in combination may create
a kind of “force” or “instability” that causes a natural event
according to thecausal rulesof the domain. Fig. 1 shows
the Causal Domain Rule (CDR) of our scenario in PDDL-
like syntax. The rule is modeled as an action caused by the
unigue agengnv representing the environment.

(raction swing-open

:agent env

:precondition (and (doorstate pushed)
(buzzer))

open))

:effect (doorstate
Figure 1: Causal Domain Rule

When synchronization by means of sensing is not possi-
ble, an alternative may be to agree on absolute time points
for action execution. This is just one reason for including
metric time in our model. For most practical problems fea-
turing concurrency it is important to reason not only about
whether some actions can be parallelized, but also about the
guantitative relation between their durations. However, we
also want to describe flexible or unknown durations; to en-
sure synchronized behavior in that case of uncertainty we
€must be able to reason about the qualitative relations be-
tween events. The temporal model used in this paper allows
to describe both qualitative and quantitative temporal rela-
tions between events.

Example 3 The door tay’s house often stands open. If this
is the case whemn arrives she can simply walk in instead of

triggered when the necessary conditions are satisfied. The ringing.

key realization underlying this approach is that perception
is not a consequence of one single action, but is an event
emerging from, firstly, something happening and, secondly,
somebody being there to watch it. In this sense, perception
is a special case of concurrency. Indeed, we will use other
kinds ofdomain rulego describe non-trivial effects of con-
current events, as in the following variation of our scenario:

Example 2 Persony lives in a multi-storey building where
she can operate the entrance door by a buzzetan only
enter the house while the door is temporarily unlocked by
the buzzer. Furthermore; must ring the doorbell first to
notify y that she is there.

This example is fairly common in reality and introduces a
number of new aspects. Firstly, actions must be performed
concurrently in this scenario to achieve a nontrivial joint ef-
fect, namelyz must push the doawhile the buzzer is acti-
vated to cause the door to swing open. Boutilier and Braf-
man (2001) show how such concurrent interacting actions
can be modelled using concurrency constraints and special
conditional effects. The authors note that post-planning syn-

Workshop on Multiagent Planning and Scheduling

One major reason for the difficulty of multiagent plan-
ning is the high dynamics of MAS and, consequently, the
many facts that may be unknown planning time— even
if the planner in question centralizes knowledge of several
executing agents. Usually, however, many things unknown
at planning time will become perceivable to at least one ex-
ecuting agent agxecution time This fact can be exploited
by a planner, since perception models form an explicit part
of our model, and plans can thus include actionsactive
knowledge gatheringHowever, since the actual perceptions
to be made are unknown at planning tingenditional ac-
tion executiormust be possible depending on the outcome
of the perception. In Ex. 3z must first move to the en-
trance ofy’s house to perceive the state of the door (open or
locked) before she can decide whether she can simply walk
in or must ring first. A multiagent plan for Ex. 3 is shown
in Fig. 2; the sensor rule describing the circumstances under
which the agent can perceive the state of the door is shown
in Fig. 3 in the extended PDDL syntax we have defined for
our model.

81

Figure 2: A multiagent plan for scenario 3.

For clearness, temporal constraints and facts supported by causal
links have been omitted. Labels= [(d = o) denote the door
being initally locked (open). Events labeledrc are perception
rules, the CDRwing corresponds to the door swinging open when
being pushed and kept unlocked (by buzzing) simultaneously.

3 Integrating Agency with Planning

In this section, we will describe how basic notions of agency
can be integrated into a Planning formalism. We will, how-
ever, not attempt a definition of what constitues an “agent”.
Instead, an unspecified set of agemtswill be the basic
building block for all further definitions.A is always as-
sumed to include the unique agemntv, the environment
agentwith special characteristics described in Sec. 5.

Some necessary components of agency (like beliefs and
capabilities for sensing and acting) will be defined and at-
tributed to agents: € A. For this we use a function
agt(x) := a wherex can be any such component. We will
use the index notatiom, to denoteagt(x) = a and also
extend this notation straightforwardly to sets.

Facts, beliefs, and mutual beliefs Instead of the proposi-
tional representation used in most Planning formalisms, our
model usesion-boolean state variablegcf. (Backstbm &
Nebel 1995; Helmert 2004) for a discussion of the SAS
formalism where this extension is borrowed from). There
are several reasons for this design choice:

1. Multi-valued state variables occur naturally in most plan-
ning domains. For example, the positions of an agent
can be encoded by one state variakle, with a set of
possible values, thdomain of loc,, dom,.,. Not only
becomes modeling such domains considerably easier, also
the size of the state space can often be dramatically re-
duced (Helmert 2004). Moreover, since propositions are
state variables over the domalitrue,false}, proposi-
tional planning formalisms like STRIPS, ADL and PDDL
are subsumed by state-variable model, anyway. Syntac-
tically, compatibilty with propositional planning can be

maintained by allowing the notatiofigrop) and(not
(prop)) instead of(prop = true) and(prop =
82

ICAPS 2005

false)

. Beliefsof agents can straightforwardly be modeled, with-
out the need for a possible world semantics, by simply
allowing state variables to assume a specific additional
valueunknown. We will call such variableelief state
variables.

. Distributed Systems are usually modelled by means of
private and shared variables. Classical conceptsdi&d-
write conflictsor variablelockscan be easily recognized
in multiagent plans when using a state variable represen-
tation. For example, the Classical Planning concept of
mutually exclusiv@ropositions (Blum & Furst 1997) can
then be expressed asad-write locksbetween state vari-
ables. This shift in perspective is helpful especially when
applying Distributed Algorithms concepts to Multiagent
Planning (Brenner 2003).

Let V be a set ofstate variables eachv € V with an

associate finitelomain dom,,. A partial variable assign-
ment (PVA) over) is a functions on some subset df such
thats(v) € dom,, wherevers(v) is defined.undef; is the set
of undefined variablesin s. If s(v) is defined for alb € V,
s is called astate If s(v) is defined (with valuer) then the
pair (v, x) is called arassignment(also writtenv =z). Two
PVAs s ands’ are calledconsistentif the following holds:
if both s(v) ands’(v) are defined ther(v) = s'(v).

STRIPS, PDDL, and other languages based on proposi-
tional logic use sets of propositions where our model (due
to having non-boolean variables) must use PVAs. To make
this relation easier to see, we will often use set notations
for PVAs, too, e.g. we writdv = z) € pre, instead of
pre.(v) = x, and denote the completely undefined PVA by
(. In particular, we define thenion of two consistenPVAs
s1 ands, as the PVAs = s; U s in which if s1(v) = x or
sa(v) = x then alsos(v) = z.

For a given agent € A\ {env}, a setV of state vari-
ables induces a set btlief state (BS) variables), where
for eachv € V there is av, € V, with dom,,, = dom,, U
{unknown}. The functionagt, defined asigt(v,) := a, re-
turns theowner of a BS variable. The environmesiv does
not have beliefs; to keep some of the following definitions
simple, we defin®,, := V andagt(v) = env forv € V.

We can further generalize this concept to beliefs shared
among subgroups ofl: the setsy and A induce a set of
mutual belief state (MB) variables V4 where for each
v € V and each subgroup C Athereis avy € V4 with
dom,,, = dom,, U {unknown}. The definition of MB vari-
ables includes mutual belief among a singleton set of agents
which is equivalent to individual belief. Thus the definition

It must be noted that some beliefs can be expressed within
a possible world semantics, but not in our model, in particular
constraintsbetweenstate variables. For example, the constraint
loca, = ¢ < locy # x could describe that no two agents can
be believed to be at the same position at the same time. Often,
though, such constraints can be modeled by introducing comple-
mentary state variables, for examplecupant, would describe
who is standing at positiom and could have value or b (plus
some dummynoccupied), but not both.

Workshop on Multiagent Planning and Scheduling

of MB variables subsumes the one for BS variables of in-
dividual agents. For convenience, however, we will keep
the distinction between individual and mutual beliefs, and
also continue to use the notatiop := vy, for individual
beliefs. Since furthermor®.,, = V, the PVAs overV4
enumerate all possible states, beliefs, and mutual beliefs for
a given domaifi A PVA s is knowledge consistentf all
mutual beliefs correspond to the facts, i.e. they are actu-
ally common knowledge Formally, a PVAs is knowledge
consistent ifs(v4) = « implies that alsos(v) = « for all
variablesv and allA € A. In particular, knowledge con-
sistency impliesMB consistency i.e. if s(va) = z then
s(var) =z forall A’ C A.

4 Modelling Multiagent planning domains

We can now define what constitutes a MAP domain. While
the definition contains many agent-specific particularities
that will be explained in the rest of this section, it was nev-
ertheless designed to be compatible wherever possible with
PDDL 2.1 (Fox & Long 2003). Roughly, our definitions
extend PDDL 2.1, level 1 and 3, and by “compatibility” we
mean that there is a large class of domains that are both MAP
and PDDL domains. The main difference, apart from the no-
tions of agency described in the previous sections, is a tem-
poral model that allows more “qualitative” relations between
events than the solely metric time model of PDDL 2. For a
similar treatment of time, see (Younes & Simmons 2003).
We have discussed the importance of a “qualitative” tempo-
ral framework in addition to a quantitative one like PDDL 2
in (Brenner 2003).

Definition 1 A multiagent planning domairis a tupleD =
(A, V,E,0) where
e Ais the set ohgents

e V is the set ofbtate variableseachv € V with an asso-

ciate finitedomaindom,,

£ is the set ofevents eache € &£ of the forme

(a, pre, eff) where

— a € Ais thecontrolling agent

— pre is a knowledge consistent PVA owetJ V, called
theprecondition

— eff is a knowledge consistent PVA owetJ V4 called
theeffectof e.

O is the set ofprocesseseacho € O of the formo =
(a,e®, e, A, inv) where

— a € Ais thecontrolling agent

e® € £ (with agt(e®) = a) is thestart event

e® € & (with agt(e®) € {a,env}) is theend event

inv is a PVA overV UV, called theprocess invariant
the intervalA C R™ is called theduration rangeof o

2The reader will note that we only define individual and mutual
beliefs, but do not attempt to model arbitrary nested beliefs (like “A
believes that B believes that C believes that x"). Firstly, this would
lead to an infinite humber of nested belief variables. Secondly,
nested beliefs (other than mutual beliefs) almost never seem to play
a role in multiagent behavior. Thirdly, if, for specific problems or
domains, beliefs nested to some finite level were needed, the model
could easily be extended.

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

Events Roughly, events corresponds to instantaneous ac-
tions in PDDL. We use the neutral term “event” to hint at
the fact that what for one agent constitutes an action that she
can execute at will is an uncontrollable event for another.

Events differ from classical actions in havikgowledge
preconditionsand knowledge effectsinterestingly, knowl-
edge preconditions are more restricted than knowledge ef-
fects. The reason for this is that the controlling agent can
only refer to her own beliefs when checking whether she can
execute an action. In contrast, we allow agentiangethe
beliefs of other agents directly, at least in principle: this is
the most basic way to modebmmunicationi.e. actions
with knowledge effects can be regarded as speech acts.

We have already seen that for an action to be executable
by an agent: not only must its usual preconditions be satis-
fied, but the agent must also know about3t We therefore
demand the following for alé, € &: if v =1) € pre(e,)
then also(w, = x) € pre(e,). For effects, we will en-
force a similar constraint: ifv = x) € eff(e,) then also
v = x) € eff(e,). The meaning, however, is somewhat
different: an agent will know when it has executed an action
and therefore will believe in its effects to have occured. Of
course, both kinds of constraints can be automatically com-
puted and need not be specified explicitly.

Processes Processes are similar to durative actions in
PDDL, but must be extended for MAP with the notion of
control which was introduced by Vidal and Fargier (1999)
and is extended to the multiagent case here. Control de-
scribes the kind of influence that an agent has on a process.
For some process wherea = agt(e®) we say that has
occurrence control over o. If, additionally, a = agt(e®)
thena also hagduration control overo. The key semantic
difference can be illustrated by the two processes of reading
a book and boiling water with a kettle: | can decide for both
processes whether | want to execute them in my plan (and
thus have occurence control over both), but | have duration
control only of my reading the book, i.e. | can tighten dura-
tion interval A at will in my plan. In contrast, for boiling the
water the plan must be guaranteed to work for all possible
durationss € A.

The process invariantv is used just as in PDDL to de-
scribe facts that must hold throughout the whole process. To
model this semantics an artifical evesit’ = (env, inv,)
will be used. e, e®, ande® together form the sef° of
events appearing in process The set of all events appear-
ing in a set of operator® is denotedc©.

To simplify our later definition of multiagent plans, we
model instantaneous actions as processes, tag; & o
then we extend) by (a, e,, €4, 0, [0, 0]).

Semantics of events The semantics of events is defined
exactly as in other planning formalisms: given a state
and an evenk, e is applicable in s if whenever (v
x) € pre, then also(v = x) € s. Applying an appli-
cable event in a states results in stateipp(s,e) where
(v=2x) € app(s,e) iff (v=x) € eff, or [(v=1x) € sand

SAlthough sometimes one may want to give up this constraint,
resulting in a “leap-before-you-look” approach (Golden 1998).

83

v € undef g]. The occurence of aequenceof events can

be defined inductively in the usual mannees(s, ()) := s
andres(s, (e1,...,en)) = app(res(s,{€1,...,€n—-1)),€n)

if e, is applicable inres(s,{ei,...,e,—1)), otherwise
res(s, {(e1, ..., ey)) is undefined. We will later show how this
Classical Planning semantics relates to our complex tempo-
ral multiagent plans.

5 Modeling Causal Laws of MA Systems

The events and processes controlled by the environment

agentenv differ from those of all other agents in one cru-
cial aspect: the environment does not act deliberately and
willfully; instead events necessarily occur according to the
“physical laws” of the domain, it€ausal domain rules
(CDRs). Formally the CDRs simply consist of all pro-
cesse.,, controlled byenv. The semantic difference is
the fact that preconditions of normal actions describe condi-
tions necessaryor an action to be exectubable, while con-
ditions of CDRs aresufficientto trigger the corresponding
event or process. (The concept of automatically triggered
events was inspired by research in the Theory of Actions
community, in particular by Thielscher (1995)).

Causal domain rules are meant to model the “laws of na-
ture” of a domain. Whenever a rule is triggered the world
is considered to be in amstablestate leading to an event
or the start of a process which in turn removes the insta-
bility (but might create a new one). To capture that aspect
and to prevent the same rule to be triggered repeatedly with
infinitesimal delays, we enforce rules to destroy their own
triggering conditions.pre(e®) and eff (e*) must be incon-
sistent, i.ee® destroys one of its preconditions.

Furthermore, two rules;, ro € Oe,, that are triggered by
the same situation could have inconsistent effects, thereby
introducing nondeterminism into our model. Just as in Clas-
sical Planning we will forbid this, and formally constrain:

If eff(r1) and eff (r2) are inconsistent, thepre(r;) and
pre(ry) must be inconsistent, too.

Within the constraints just defined (destroying the own
precondititon, no rules leading to nondeterminism), causal
domain rules are a powerful tool. In particular, we can use
them to naturally model interactions between concurrent ac-
tions as was demonstrated in Ex. 2. Due to lack of space,
a detailed comparison to alternative models of concurrency
like the one of Boutilier and Brafman (2001) will be done in
an extended version of this paper.

Perception, communication, and mutual belief

ICAPS 2005

The set of these rules is calledensor modeland we write
sensor(a, v, cond) to denote that for alt € dom,, thereis a
rule (env, cond U {(v=2x)}, {(ve =x)}). Fig. 3 shows how
the sensor modeknsor(a, doorstate, {loc, = entrance})

is described in PDDL-like syntax. It specifies that an agent
will perceive the state of the doaogenor closed when she

is at the entrance.

(:sensor door-sensor
:agent ?a
:precondition (loc ?a
:sense (doorstate))

entrance)

Figure 3: Perception rule

We have previously explained how knowledge effects can
be used as an easy means to model speech acts. Addition-
ally, we have assumed that an agent executing an action will
believe its effect to be true afterwards. In combination, those
premises lead to an interesting effect. Assuming that agent
communicates a fagt= (v=ux) to agenb, the effecty, =z
could be expressed &%p in some standard epistemic logic.
However, sincex knows this to be the effect of his action
also B, Byp will be true. We have explicitly not included
such nested beliefs in our framework, but we can do some-
thing else: If me make the additional assumption (not yet
explicit in the semantics) thatwill know who has commu-
nicatedp to her, she will be able to infeB, B, Byp, which
in turn ¢ may infer, etc. In short, under the assumption of
perfect communication and speaker detection, our modeling
of speech acts induces mutual belief. This is not surpris-
ing (Faginet al. 1995), yet welcome, since it allows us to
replace simple knowledge effects with mutual belief effects
(among the speaker and hearer) in speech acts.

Communication is not the only way to achieve mutual be-
lief. Another possibility,copresencégor coperception) was
described already by Lewis (1969). Informally, agents are
copresent when they are in a common situation where they
can not only perceive the same things but also each other.
Such a situation can lead to mutual belief since the agents
can mutually infer their perceptions, the beliefs about other
agents’ perceptions, etc.

We can describe copresence situations as special kinds
of sensor modelsensor(A, v, cond) that have effects on a
mutual belief variablev4 for a group of agentsi. A ba-

Causal domain rules are also used to describe sensor mod-sic example could be a copresence model stating that agents

els of agents. In contrast to other “physical laws” of a do-
main, perception ruleshaveknowledge effectdo simplify
reasoning about perception rules we will enforce the follow-
ing format for them: perception rules € O,,, must be
instantaneous actions, i.e: = (env,e,e,0,[0,0]). Fur-
thermoree has exactly one effedv, = x) wherea € A
and (v = z) € pre,. We callpre, \ {(v = x)} the per-
ception condition for (v = z). Usually, we can assume
that perception does not depend on a specific valoé v
and that there are corresponding rules foraalE dom,,.

84

achieve mutual belief about their respective locations when-
ever those are identical. Based on this “precursory” MB

more MB can be inferred wherever a perception rule is trig-
gered the condition of which does not only hold, but is al-

ready mutual belief. In that situation all copresent agents
could infer the perceptions of the others, plus their infer-

ences, etc. A more formal treatment of this topic will be

given in a future publication where we also describe an ap-
proach to automatically deriving copresence models from
individual sensor models.

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

6 Plans, Problems, and Solutions in Pp, T D {(e e A1), (e, e, Ay), (e™, e, A3)}
Definition 2 A multiagent plan for a domain D = whereA;, Ay, Az C A. If agt(e®) = envthenA; = A.
(A, V,E,0)isatuplePp = (A,0,T, L, B) where Following the literature on conditional planning we de-

mand thatB must be defined such that labels are propagated
along temporal constraints in the plan (Peot & Smith 1992;
Tsamardinos, Pollack, & Horty 2000; Tsamardinos, Vidal,

e A C Aisthe set ohgents
e O C O isthe set obperators
[]

T isl a set oftemporaloconstraintsof the form¢ = & Pollack 2002).
(e,¢', A) wheree, ¢’ € E” andA CR. _ The reader may have noted that, in contrast to, e.g, PDDL
e L = L*YUL" isasetopositiveandnegative causal links 2, there is no way in our formalism to specify absolute time
of the form/ = (e, v =z, ¢’) where(v=z) € pre(e’) and points for events. However, absolute time points can be de-
- (v=x) €eff(e)ifl e LT scribed by referring to a special, mutually knowempo-
— (v=2') € eff(e) if L € L™ (for somex’ #) ral reference eventey, virtually occuring before all other
e Bis a function labeling each event and each causal link actions. Note, however, that in many domains exact time
with a PVA. It is called théranching context points will only complicate plan monitoring, since in gen-

eral it cannot be determined whether a plan should still be
considered correct when some event occured with a slight
temporal difference to its precise scheduled time. The quali-
tative model we propose is thus more flexible than the metric
one of PDDL 2.

We can now generalize the POCL notions of threats and
open conditions to our metric temporal and conditional plan
formalism.

This definition of MA plans is related to single-agent for-
malisms for conditional temporal planning (Tsamardinos,
Pollack, & Horty 2000), but extends prior work with mul-
tiple agents, causal domain rules, and (mutual) beliefs. To
show the relation to classical PO representations of plans,
we say an event is precedesanother one’ if (e, e/, A) €
T andA C R*. In that case, we also wrife < ¢) € T.

In the following, we will assume that in every given plan
P the set of constraintg is complete and unambiguous, i.e. Definition 3 InaplanP = (4,0,T, L, B), an event has

that there is exactly one constraifat e/, A) for all e, e’ € an open conditionc = (v = x) if ¢ € pre(e) and there is
£C9. This is no restriction, but can be achieved easily by no causal linkl € L which supports:, i.e. which is of the
extendingl” with (e, e, [0, 0]) for all eventse € £° and with forml = (¢/, ¢, e) for somee’. An evene, € £° threatensa
(e, €', (—o0, 00)) for previously unrelated evenits#£ e. We causal linkl = (e,,v==x,e.) € L if

further assume thdt is pairwise consistent, i.ge,e’, A) € e ¢, has an effect =2’ wherez’ # zif | € L™, andz’ = =
Tiff. (¢/,e,—A) € T. If (e,¢/,;A) € T andA C R, we ifle -

, ,
B b Sl * ¢ TN OGGurbetueee e, e here ot & <
Temporal Network (STN) (Dechter, Meiri, & Pearl 1991). A & [or WhichT'U{(e;, €1, A), (e, ec, A')} Is consistent
basic prerequisite for giving the plan a meaningful semantics ® ¢ @nde; occur in consistent branching contexts
is that the underlying STN isonsistent Consistency can Natural eventmecessarilffollow the causal rules defined
be checked in small polynomial time; cf. (Younes & Sim- for the domain. As a consequence, valid plans must not only
mons 2003) for a description of how STNs can be used in contain actions that achieve the goals, but must also ensure
a state-of-the-art single-agent planner. In the following we that no harmful natural events can be triggered. An oper-
will assume only plans with consistent underlying STN. ator o is said toenablea ruler if it achieves some trigger
Temporal constraints in a plan must not only form con- condition ofr. Formally, we define a relatioanables C
sistent STNs, they must also not violate the duration range O x O,,, whereenables(o, r) if there exists(v = x) with

defined for the processe8 as defined inD. The du- (v=1x) € eff (o) and(v==1) € pre(r). Note thato might
ration range, however, has a different semantics depend- itself be a causal rule which enables another one. Note fur-
ing on who hasduration control of a process: if env ther that since there may be several trigger conditions,for

controls the duration, the plan must be be valid for any occurence ob alone is not sufficient to actually trigger

possible duration in the duration range. If, on the other Definition 4 A plan Pp — (A,0,T, L, B) for a domain

hand, the agent controlling the duration ofis different . . ;
' 4 . . D = (A V, & 0) is closed wrt. the domain rule®,, if
from env the planner may tighten the duration constraints the following holds:

at will*. Formally, we define a pla®®p to be process- .
consistentwith D if for all processes = (a, e*, e¢, A, inv) o ifenv € Athenenv € A

“This definition ofcontrolis sufficient for the situation assumed if enables(o, r) thens” € O and (o, 1", R™) < T' (where
o . , ndr’ i ni 5

in this paper where there are basically only fwanning(but many 0 € 0,1 € Oeny andr'isau gue_ copy of)

executing agents: a centralized planner who can add and remove In words, a closed plan contains instances of all rules that
actions for all executing agents, and the environment agent might possibly be triggered during its execution. Since rules

Our model ofcontrol is, however, designed to be used also in a may themselves trigger other rules, computing the closure
Distributed Planning paradigm where some planREmner, is

responsible but for one executing agentin that casePlanner, o, namelyPlanneg, to do likewise.
may not change the duration range of any proeessntrolled by 5Such a copy of (or mapping to) a base action is usually called
agentd # a. In fact,Planner, can not even simply removefrom astep Following most of the planning literature, we will ignore

its current plan, since this would not force the planner controlling the distinction between steps and base events wherever possible.

Workshop on Multiagent Planning and Scheduling 85

for a given planP amounts to a fixpoint computation, i.2.
is extended with the enabled rules repeatedly until a stable
plan is reachetd

A MAP problem instance is a tuplell = (D,I,G)
whereD = (A, V,&€,0) is a MAP domain. andG are
knowledge consistent PVAs ovét, called theinitial and
goal knowledge distribution and which, as usual, will be
represented by the dummy actioas = (env, (),) and
eq = (env,G,0). I might be incompletely specified (al-
though the deman for knowledge consistency at least en-
forces that there are no false beliefs). Therefore, a solution
plan for IT must be valid for all possible undefined values.
To ensure this we define the set of possible additional ini-
tial eventsE! := {(env, 0, {(v=2)}) | v € undef; Az €
dom, }. All of these events will conditionally appear in the
plan, labeled with their own effect, thereby defining the only
branching context where they can occur.

Definition 5 A planPp = (4,0,T, L, B) is asolutionto

n=(D,I,G)if

e O=0"U{er,eqgtUE; whereO' C 04

e cr<e=<egande’ <eforallec O andalle’ € &;

e Bley) = B(eg) =0 andB(e) = eff (e) forall e € &7

e T is process-consistent witlP and forms a consistent
STN

e Pis closed wrt. the domain rule8,,,

e P contains no threatened causal links

¢ the only open conditions i are in rulesr € O, not
supporting causal links

This definition is a straightforward extension of what con-
stitutes solutions in POCL planning. One major difference
is the role of individual beliefs in a plan, expressed by the
knowledge preconditons and effects of events. A solution
plan must, in particular, not contain open knowledge con-
ditions. Thus, the definition forces planners to make sure

ICAPS 2005

As the final result of all formalizations, the only theo-
rem in this paper confirms our definition of a “solution”
to a MAP problem to be consistent with the state transition
model of Classical Planning.

To show this relation, we firstly need complete states
to compute transitions on. For a problem instabte=
(D,I,QG), a completely defined PVA is apossible initial
stateif s(v) = I(v) wheneverl (v) is definedZy; is the set
of possible initial statesfor II.

Secondly, we must clarify the relation between the tem-
poral constraint networks of MA plans and the transition
sequences of Classical Planning. We first note that each
possible initial states € Zy; is a branching context for the
execution of a solution pla®, i.e. s induces an uncon-
ditional planP; = (A,0’,T', L',) which only contains
those processes that in the original solutiBrwhere la-
belled consistently with’. Formally: e € £ iff B(e)
is consistent withs. An execution schedule for an uncondi-
tional planP; = (A,O0',T',L',0) is a plansched(P;)
(A,0, 7", L',0) whereT” is an extension of” such that
for each pair of events;, e; € £ either(e; < e) € T”,

(e2 < e2) € T", or (el,e2,[0,0]) € T. An execution
schedule is valid, if, despite the new constraints, the underly-
ing STN remains consistent and process-consistent. A valid
execution schedule describes a possible sequence of events
when executingP;. This schedule, however, may still in-
clude simultaneous events. This is, however, unproblematic
since the definition of threats (Def. 3) prevents simultane-
ous occurence of conflicting events. Therefore, to construct
a transition sequence, it is possible to allow those events to
virtually occur in arbitrary order: we define the set of to-
tally ordered transition sequencesefto consist of all se-
quenceseq = (ey, ..., e,) that are topological sortings of
valid execution scheduleghed(Ps).

Given the set of possible initial states and the induced set
of possible transition sequences for a pfarwe can finally
relate the semantics of multiagent plans to classical plans by

that knowledge necessary for synchronized actions is sharedine following theorem:

among the executing agents. Either agents must be brought

into positions to perceive changes themselves or commu-
nicative actions must be previewed in a plan.

Another novelty is the role of control (embedded in the
notion of process-consistency) that different agents have

Theorem 1 Let Pp = (A,0,T, L, B) be a solution to a
MAP problemIl = (D, I, G). Then, for all possible initial
statess € 7y, G C res(s,p) forall p € TO(Ps).

Proof sketch: Analogously to the semantics of classic

over different actions in the plan, and especially the role that pOCL plans which is also defined in terms of topological
natural events play for modelling concurrency, perception, sortings of a partially ordered sequence of events, we use
and, generally, complex ramifications of events caused by valid execution schedules:hed(P,) to define what Fox &
agents. Since natural events need not happen necessarily, th¢ ong (2003) call a “happening sequence” of a temporal plan.
definition allows conditions of CDRs not used in causal links pef. 5 explicitly orders the possible initial evenf§ be-
to be left open. In this respect, CDRs are similar to condi- fore all other events in a solution plan. Therefore, since
tional effects in POCL planning whose conditions must only those events do not threaten any other®jr{otherwiseP,
be supported if their effect is needed in a causal link. would violate Def. 5 and thus would not be a solution), each
sched(Ps) must be executable in SinceP; must also con-
tain neither open conditions nor threafy, is executable in
s (Penberthy & Weld 1992). In particular, the goal eveat
that is scheduled after all other events will be the last event
occuring in a topological sortings ethed(P;). Therefore
G is true in the final state of the execution.

We have left out another, more interesting theoretical re-
sult, namely how individually executable plan fragments can

8Since we do not prevent cyclic triggering of rules, the closure
of a planP might be infinite. For examplelay may be a durative
action with an end event triggering another procesght, which
in turn triggersdayagain. This is a natural way to model recurring
events. For space reason, we will not discuss it in detail here, but
assume that either cyclic rules do not exist or that the planning and
execution horizon is restricted to sortime windowwithin which
the closure is finite.

86 Workshop on Multiagent Planning and Scheduling

ICAPS 2005

be generated from a global plan that are guaranteed to be Boutilier & Brafman (Boutilier & Brafman 2001) devel-

jointly executable. While the result is rather obvious (since
knowledge preconditions ensure that agents wait until they
perceivethe satisfied preconditions, even if they don’'t know

oped a formalism for multi-actuator plans and a planning
algorithm based on classical POCL techniques. They model
interacting effects of concurrent actions by specific kinds of

about events that have caused the perception) its descriptionconditional effects of the individual agents. A plan must

in terms of mergeable individual plans is beyond the space
of this paper.

7 Planning for Multiple Agents

To show that planning is indeed possible for MAP domains
we will now sketch an algorithm for planning in our formal-
ism. Itis, however, not specifically tailored to MA Planning,
but mainly consists in a transformation of the planning prob-
lem to a well-known representation (POCL plans with con-

provide simultaneity constraints ensuring that the interaction
really takes place as planned. The authors assume that an
external synchronization mechanism will ensure that during
execution the constraints are met by the agents. Our formal-
ism, however, rests on the assumption that executing agents
are truly autonomous and there is no external instance to
synchronize them. Therefore it must allow agents to syn-
chronize on their own. This is achieved by explicit repre-
sentation of changing knowledge and reasoning about indi-
vidual and joint perceptions.

ditional effects) and the subsequent application of a standard The events and temporal constraints in multiagent plans

POCL Planning algorithm. As such, the algorithm is cer-
tainly less efficient than the special-purpose MAP algorithm
we will present in forthcoming work.

In a preprocessing step, all induced belief and mutual be-
lief variables are generated, and all knowledge preconditions
and effects a added explicitly to events. In particular, mutual

form a Simple Temporal Network (STN) (Dechter, Meiri,

& Pearl 1991). Earlier work using this approach to ex-
tending PO plans with quantitative temporal constraints
include (Ghallab & Laruelle 1994; Younes & Simmons
2003). These approaches subsume the temporal model of
PDDL 2 (Fox & Long 2003), but extend it with flexi-

belief effects are added to speech acts, and copresence ruleble action durations that are necessary for our “qualitative”
are derived from sensor models. Then for each instantaneousapproach multiagent synchronization based on perception,

CDR r that is enabled by an eveatwe extende by a con-
ditional effect corresponding to. Afterwards, the original
CDRs are removed from the MAP domain.

The actual planning algorithm works like UCPOP (Weld
1994): it resolves open conditions by supporting them with
causal links, thereby adding processes to the plan if nec-
essary, and threats by promotion, demotion, or confronta-
tion. In particular, confrontation will ensure that no harm-
ful CDRs are triggered. If the current partial plan enables
non-instantaneous CDRs its closure must explicitly be com-
puted for threat and validity checking. Generally, when a
non-instantaneous processs added, this means that all
eventsé, and constraints between them must be added to
the plan. Similarly, when promoting or demoting processes,
their duration constraints must be preserved by moving the
start, end, and invariant event simultaneously.

rather than on absolute time points.

Conditional single-agent plans based on STNs were used
by Tsamardinos et al. (Tsamardinos, Pollack, & Horty 2000;
Tsamardinos, Vidal, & Pollack 2002). The notion of dif-
ferent kinds ofcontrol over intervals in a temporal con-
straint network was introduced by Vidal and Fargier (Vidal
& Fargier 1999). In this paper we provide an extension to
these approaches by specifying conditional tempionaiti-
agentplans. However, we permit flexible action durations,
but no other temporal constraints, which, for the time being,
allows us to abstract from the subtler points of control and
plans with observation nodes.

We do not know of other work on (multiagent) planning
that formalizes the notion of causal domain laws or provides
a similar approach to describing complex ramifications of
concurrent multiagent actions. Our approach is inspired by

Based on the soundness and completeness of UCPOP wework of Thielscher (Thielscher 1995) in the Theory of Ac-
can easily prove soundness and completeness of the mod-tions community.

ified algorithm for the case where duration constraints are
merely ordering constraints. For metric duration constraints,
we must further guarantee that the Simple Temporal Net-
work underlying the plan is consistent. This can be achieved
in low polynomial time (Dechter, Meiri, & Pearl 1991,
Younes & Simmons 2003). The definition of threats from
Def. 3 which uses temporal instead of relational ordering
constraints, ensures that every plan found by the algorithm
can indeed be executed in every possible total order without
endangering causal links.

8 Related Work

This work integrates ideas from several research communi-
ties, in particular Classical and Distributed Planning, Multi-

agent Systems, Epistemic Logic, and Reasoning about Ac-

tions and Change.

Workshop on Multiagent Planning and Scheduling

None of the above mentioned research describes execu-
tion time synchronization, sensor modeling, or communica-
tion. Our approach to planning in the presence of sensing
is inspired by work of Etzioni, Weld & colleagues (Etzioni
et al. 1992; Golden & Weld 1996; Smith & Weld 1999),
Levesque (Levesque 1996), and Petrick & Bacchus (Petrick
& Bacchus 2002; 2004). Again, we extend previous work
to the multiagent case, thereby providing the basis for syn-
chronized action at execution time. In particular, our ex-
plicit modeling of sensing and communication in multiagent
environments complements BDI-inspired MAP models like
(Grosz & Kraus 1996) that describe the role of (mutual) be-
liefs in necessary conditions for planful MA behavior, but
do not explain how these conditions can be achieved during
plan execution.

Since the focus of this paper is Distributed Plan Execu-
tion rather Distributed Planning, we will only briefly relate

87

our representation to some of the formal models used in
that area. An excellent survey on techniques for Distributed
Planning can be found in the paper by desJardins et. al. (Des-
Jardinset al. 2000). Within this field there is a huge body of
work relying on a hierarchical representation of multiagent
plans (Durfee & Lesser 1987; Durfee & Montgomery 1991;
DesJardins & Wolverton 1999; Clement & Durfee 1999b;
1999a). Hierarchical plans are very important in practical
applications and therefore we are planning to extend our for-
malism to account for action decompositions. We believe
that this extension should prove not to be complicated, since
durative actions and their “invariant conditions”, as used in
our model, may be employed to “hide” an action decompo-
sition and its “inconditions”.

9 Conclusion and Future Work

We have presented a rich formal model of multiagent plan-
ning that includes and clarifies many important characteris-
tics of MAP missing or underspecified in previous work. In
particular, our model describes sensing and communication,
and how both explain the evolution of (common) knowledge
during a plan. Perceptions and knowledge provide the ba-
sis for “qualitative” synchronization of plans, i.e. quanti-
tative notions like exact time points and durations become
less important, thereby giving multiagent plans the flexibil-
ity needed by truly autonomous agents.

We have sketched a planning algorithm for MAP do-
mains. A more elaborate algorithm will be presented soon.
It is based on an extension of state-space forward-search
techniques to POCL planning which we call Progressive
Partial-Order Planning. This technique also allows to easily
reason about triggered domain rules (or prevent their firing).

Although efficient algorithms and empirical results are yet
missing in this paper, it is our hope that by defining not only
the formal semantics, but also providing sample domains, a
parser, and a plan validator for a concrete PDDL-like syntax,
we can provide helpful tools for other MAP researchers and
thus help to advance this interesting field of research.

References
Backstbm, C., and Nebel, B. 1995. Complexity results for SAS
planning.Computational Intelligencé1(4):625-655.
Blum, A., and Furst, M. L. 1997. Fast planning through planning
graph analysisArtificial Intelligence90(1-2).
Boutilier, C., and Brafman, R. 2001. Partial order planning with
concurrent interacting actionsAIR
Brenner, M. 2003. Multiagent planning with partially ordered
temporal plans. IfProc. IJCAI '03 Extended version: TR 190,
Inst. for Computer Science, Freiburg Univ.
Clement, B., and Durfee, E. 1999a. Top-down search for coordi-
nating the hierarchical plans of multiple agents Algents-99
Clement, B. J., and Durfee, E. H. 1999b. Theory for coordinating
concurrent hierarchical planning agents using summary informa-
tion. In Proc. of AAAI '99 495-502. Menlo Park, CA: AAAI
Press.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks.Atrtificial Intelligence49.
DesJardins, M., and Wolverton, M. 1999. Coordinating a dis-
tributed planning systemAl Magazine20(4).

88

ICAPS 2005

DesJardins, M.; Durfee, E.; C. Ortiz, J.; and Wolverton, M. 2000.
A survey of research in distributed, continual plannind.Mag-
azine

Durfee, E. H., and Lesser, V. R. 1987. Using partial global plans
to coordinate distributed problem solvers.Rroc. IJCAI-87

Durfee, E., and Montgomery, T. 1991. Coordination as distributed
search in hierarchical behavior spateEE Transactions on Sys-
tems, Man, and Cybernetics

Etzioni, O.; Hanks, S.; Weld, D.; Draper, D.; Lesh, N.; and
Williamson, M. 1992. An approach to planning with incomplete
information. InProc. of KR '92 115-125.

Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995.
Reasoning About KnowledgMIT Press.

Fox, M., and Long, D. 2003. PDDL 2.1: an extension to PDDL
for expressing temporal planning domaid&lR20:61-124.
Ghallab, M., and Laruelle, H. 1994. Representation and control
in IxTeT, a temporal planner. IRroc. of AIPS '94

Golden, K., and Weld, D. S. 1996. Representing sensing actions:
The middle ground revisited. IRroc. of KR '96 174-185.

Golden, K. 1998. Leap before you look: Information gathering
in the puccini planner. IAIPS 70-77.

Grosz, B. J., and Kraus, S. 1996. Collaborative plans for complex
group action Atrtificial Intelligence86(2):269-357.

Helmert, M. 2004. A planning heuristic based on causal graph
analysis. InProc. ICAPS 2004161-170.

Levesque, H. J. 1996. What is planning in the presence of sens-
ing? InProc. AAA| 1139-1146.

Lewis, D. 1969.Convention. A Philosophical Studgambridge,
Massachusetts: Harvard University Press.

Penberthy, J. S., and Weld, D. 1992. UCPOP: a sound, complete
partial order planner for adl. IRroc. KR'92

Peot, M. A, and Smith, D. E. 1992. Conditional nonlinear plan-
ning. InProc. AIPS-92

Petrick, R., and Bacchus, F. 2002. A knowledge-based approach
to planning with incomplete information and sensing. Aroc.
ICAPS-02

Petrick, R. P. A., and Bacchus, F. 2004. Extending the knowledge-
based approach to planning with incomplete information and
sensing. IrProc. of ICAPS '042-11.

Smith, D., and Weld, D. 1999. Temporal planning with mutual
exclusion reasoning. IRroc. IJCAL

Thielscher, M. 1995. The logic of dynamic systems. Pliroc.
1JCAI-95

Tsamardinos, |.; Pollack, M. E.; and Horty, J. F. 2000. Merging
plans with quantitative temporal constraints, temporally extended
actions, and conditional branches.Rroc. AIPS-00

Tsamardinos, |.; Vidal, T.; and Pollack, M. 2002. CTP: A new
constraint-based formalism for conditional, temporal planning.
Constraints Journal

Vidal, T., and Fargier, H. 1999. Handling contingency in temporal
constraint networksJournal of Experimental and Theoretical Al
Weld, D. S. 1994. An introduction to least commitment planning.
Al Magazinel5(4):27-61.

Younes, H., and Simmons, R. 2003. VHPOP: Versatile heuristic
partial order plannerJAIR 20:405-430.

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

From Multiagent Plan to Individual Agent Plans

Olivier Bonnet-Torres
Supaero & Onera-cert DCSD
2, av. E.Belin
31055 Toulouse cedex 4 RANCE
olivier.bonnet@onera.fr

Abstract

This paper focuses on a framework for representing a team
plan and its projections on individual agents. The team plan
is represented with a coloured Petri net. Some structures in
the net provide basic team management possibilities and il-
lustrate notions such as (sub)team splitting or merging and
agent transfer. They in fact describe the dynamic team ergan
isation. Through net reduction they provide means to build
an agenticity hierarchy,e. a hierarchical organisation of the
team in accordance with the goals to be achieved. At each
level of agenticity a local plan is derived from the team plan
reduction.

Mission, Agents and Team Organisation

The general framework is a mission specified in terms of ob-
jectives: agents are operated in order to carry out the amissi
and they are hierarchically organised in a team.

This paper aims at formalising the relationship between
the team plan and individual agents’ plans through the use
of Petri nets. The plan model facilitates plan information
management during mission execution.

Related Work

Hierarchical task networksH{N) (Erol, Hendler, & Nau
1994) consist in decomposing tasks into subtasks until ele-
mentary tasks. A set of methods to achieve each task is then
organised into an agent plan. In the wakeHafN, Grosz

et al. (Grosz & Kraus 1996) base tt&haredPlarapproach

on the hierarchical decomposition of shared plans into a se-
guence of recipes to be applied by a team of agents. Their
work also inherits the logics of beliefs and intentions (Co-
hen & Levesque 1990; 1991; Rao & Georgeff 1995). Tambe
et al. (Tambe 1996; 1997) have focused on team behaviour
in STEAM. The planning module in 8AM uses rules to
produce team reactions to external events.

From a different standpoint the representation of the plan
itself tends to make use of the automata theory and the Petri
net formalism (Murata 1989). For instance El Falkthal.
have modified Petri nets (El Fallah-Seghrouchni & Haddad
1996) in order to take into account the refining of actions, to
be compared to task decomposition. The multi-agent hue is
treated in merging individual plans. Another approach (El
Fallah-Seghrouchni, Degirmencyan-Cartault, & Marc 2004)
has led to using hybrid automata to formalise and execute

Workshop on Multiagent Planning and Scheduling

Catherine Tessier
Onera-cert DCSD
catherine.tessier@onera.fr

agent plans. The automata are generalised into synchdonise
automata in order to represent the team plans. However, in
the domain of individual planning, operational use of Petri
nets is appearing for representing an itinerary and control
ling the execution of the subsequent plan (Chanthery, Bar-
bier, & Farges 2004) or even as a task planning and schedul-
ing tool compatible with Petri net design and analysis envi-
ronments (Kristensen 2003).

The rest of the section presents the Petri net formalism
and introduces the notion of agenticity to denote the organ-
isation of the team. The next section formalises team plan
Petri nets and their relations to team organisation. Thé fina
section exposes a way to extract individual plans from the
team plan using reduction rules and a projection operator.

A Petri Net Reminder

A Petri net< P, T,F,B > is a bipartite graph with two
types of nodes:P = {p1,...,pi,...,pm} IS & finite set of
places;T = {ti,...,t;,....tn} is a finite set of transitions
(Murata 1989). Arcs are directed and represent the forward
incidence function : P x T' — N and the backward inci-
dence functiorB : P x T' — N respectively. Arinterpreted

Petri netis such that conditions and events are associated
with places and transitions respectively. When the condi-
tions corresponding to some places are satisfied, tokens are
assigned to those places and the net is said to be marked.
The evolution of tokens within the net follows transition fir

ing rules. Petri nets allow sequencing, parallelism and syn
chronization to be easily represented.

Mission and Goals

The mission is characterised by ahjectiveto be reached

by the agents team. The objective is decomposed into mis-
siongoals which are in turn decomposed into subgoals until
reaching elementary goals.

Definition 1 (Agent) anagentis a physical entity equipped
with resources (sensors, actuators, communication dsyice
that is implemented to achieve some goals within the mis-
sion, therefore contributing to the achievement of the obje
tive. Anelementary agent an indivisible entity (e.g. a
robot, a drone) whereas @mposite ageris a set of agents
that may themselves be organised as composite agents.

89

ICAPS 2005

OBJECTIVE agenticity co&nd%(r)]?ite
0 team agenticit
) %tthey
19%95’“ 3 tea subteam
2: team goa[n 1| agent agent subteam
'gogl
é’u: t%%a 12: sg%%t]eam
a 2 ent agent| 1
3l team 33 tea gent subsupteam 29
sub-goal sub-goal elementary
122: indivjdual agent
- indivi 121: subteam 3 agent agent 2 = degree of
113 e 18gtftgpm = - ogree o ! et
. - indivi 313: subtean _ e team . . “subteal
/ 311'§$Jalﬂteam 312: 'ggé\f'dual 90;5 = max (agenticity)
1111: indiviclual Lo
b- 1113: ind| al ; .] H
Stbmgod 1112, indidual ST elementary goal Figure 2: Agenticity Hierarchy

Figure 1: Decomposing the objective into a hierarchy of _
goals The father of agent; is denotedfather(a;). child(a;)

is the set of children of;. child(.) and father(.) are func-
tions and as such can be composed. The hierdrthys an
Following Shoham'’s remark that a group of closely inter- lication: A\ {z1,22,...,2n} — A
acting agents can be considered as an agentin itself (Shoharﬁapp ication: a; — child(a;) '

1993) a team of agents is equivalent to a composite agent. Definition 5 (Agenticity) the agenticity of agent with re-

Definition 2 (Goal) for an agent a goal corresponds to a gards to teamX is its depth in hierarchy{ x whose root is
possible state of the environment such that the actionsof th the team:Agx (a;) = depth(a;, Hx) = (u|father*(a;) =
agent tend to bring the environment to that state. X).

The decomposition of the objective gives a hierarchy of The agenticity of agent; with regards to any subteam
goals that must be carried out (Tambe 1996) (see fig. 1). @;: @i C a; is its depth in hierarchy,, whose root is the
Some goals involve elementary agents, other involve com- considered subtean¥g,, (a;) = depth(a;, Ha,;) = u such
posite agents,e. subteams or even the team itself. that father®(a;) = a;.

Definition 3 (Recipe) a recipe is the specification of a Definition 6 The father agent of agent; is agenta;, =
course of actions to be performed by an agent, either com- .father(a;) corresponding to the father node in hierarchy

posite or individual, resulting in the achievement of agoal ~ Hx. The father’s;genticity 'Z less than the child’s by 1:
Definition 4 (Elementary goal) an elementary goal is such aj C child(ax) = Agx(a;) = Agx(ax) +1.

that there exists a known recipe to achieve it (see fig. 1). Examples
Several recipes may be available to achieve one elemen-1. The agenticity of an agent pertaining to no subteam is
tary goal. The team plan is extracted by organising a subset 1 With regards to the teamX = a,,z; = a;, 7k €

of the set of recipes. The initial plan is attached a possible [L...,mI\{j.p} : aj C ar = Agx(x;) = 1 (see

organisation of the team. fig. 3

Agenticity 2. If all agents belong to the same team, the agenticity of
. . the team is 0 with regards to the agent populatiehe

When an agent is involved in a group of agents, some char- ¢y n} i ai € X = Aga(X) = 0,A = {a;,i €

acteristics of the group are inherited by the agent. In parti {1: o : n}}U{X}. ’ ’

ular if the group is involved in some activity, each indivadu o])
agentis committed to that activity and to the interactiothwi ~ Definition 7 (Degree) the degree of an agent is the highest
its fellow agents (Cohen & Levesque 1991). To make use of agenticity of the individual agents that belong to this agen
this property we suggest to consider a team aagemticity deg(a;) = max(Aga, (2,7 € {1,...,n},2; € a;). An
hierarchy, whose leaves are elementary agents and whose €lementary agent has a null degreig(x;) = 0.

nodes are subteamise. composite agents. Each node has Example

for children nodes the agents that compose the subteam it

represents (see fig. 2). One can notice that there is no re-

quirement that an individual agent be represented only.once agentiity Soagent ¢
More formally the teamX is composed of elementary 0 X =2p /

agents{xy,xo,...,z,}. Itis hierarchically organised and / \

each node in hierarch¥{x is considered as an agetf 1 ag Xi= § am

(Shoham 1993). Le# = {aj,aq,...,an} be the set of /l\

agents in teanX . Preliminary properties are that: 2

1. theteamisanagedtce A < Ip e [l,...,m|, X = a,,

2. and each individual has a counterpart in the complex]
agentsetr; € X = 3j € [1,...,m|,x; = a;. Figure 3: Example 1

90 Workshop on Multiagent Planning and Scheduling

agenticity cogé%%?ite
0 X= ap
agenticity
Wrt g
elementary / \) degree =
degree 2 agent Xi, Xj, 1

Figure 4: Example 3

. If two elementary agents compose the only subteam
of a given team, the team has a degree ofd@: =
{zi15$i2}a"4 = {X} U {a’j} U {xzvl € {17777’} \
{i1,i2}} = deg(X) = 2 (see fig. 4). The fathes, of
the two agents;;, andz;, is the composite agent repre-
senting the subteam.

Team Plan Representation
Team Plan Definition

The team plan is designed in terms of a detailed sequence of

tasks achieving the identified elementary goals, repredent
as a Petri net (Bonnet-Torres & Tessier 2005).

Let Px be the detailed team plaf®y is a coloured Petri
net (Jensen 1997Px = (P, T, S, N,C, F), such that (see
fig. 5):

1. P is afinite set of places;, each place; represents the
activity associated to an elementary goal;

. T is afinite set of transitions;;

. S'is afinite set of arcsy;

. N is anode functionfronsto P x TUT x P;
. Cis the colour set;

. I'is a colour function fronP into C.

P—-C
F
{ pi — Hx(pi)

set of agenticity hierarchies. The colour of a given to-
ken in a given place;, ¢(p;), is the branch correspond-
ing to the activity associated to the place in the agentic-
ity hierarchy: c¢(p;) = Hx(pi) = {father®(X|,,),k €
{0,...,deg(X|p,)}}, where the elementary agents involved
in p; are X|,,. Hence each reachable markinlg cor-
responds to an agenticity hierarchx (M) of the whole
teamX.

o O~ WN

. The set of token colours§ is the

Analysing the Team Plan

Petri net analysis can be performed through the use of the in-
cidence matrix4. A represents the relations between places
and transitions, namely the arcs (Murata 1984);, = 1

if p; is an output place of;, andA; , = —1 if p; is an in-

put place oft;. In the analysis of the team plan through the
incidence matrix, colours will be abstracted.

ICAPS 2005

for its output transitions. The is readily composable: for
instance*°p; designates the set of input places of all input
transitions ofp;.

Definition 8 (Source) Lesour ce be the structure repre-
sented by a placg; and a transitiont;, such that’p; = ¢,
and°t; = 0 (see fig. 6).

The hierarchy born by the structure has an agenticity of 1
with respect to the teamH x (p;) = as andchild(as) =

{as,,... as,}

Figure 6: Source structure and its associated agentiaty hi
archy

The sour ce structure allows the introduction gf agents

into the team. It is worth noticing thaj, cannot bear two

or more output places because this would mean that a group
of agents is introduced in the team and immediately split.
Common sense does not allow this, all the more since tran-
sitions in Petri nets are considered indivisible and instan
neous. The signature in the incidence maiixs the fol-
lowing:

OO

|P|

S Aur=1
u=1

Definition 9 (Sink) Letsi nk be the structure represented
by a placep; and a transitiont;, such thatp,® = ¢, and

t;° = 0 (see fig. 7).

The hierarchy born by the structure has an agenticity of 1
with respect to the teamH x (p;) = as andchild(as) =
{asu---vasq}'

Thesi nk structure allows the withdrawal or the abduction
of ¢ agents from the team. It is worth noticing thiatcannot
bear two or more input places because this would mean that
several groups of agents withdraw from the team at the same
time while not being synchronised since they do not pertain

The team plan bears some typical structures that can be to the same subteams. Common sense does not allow this,

identified as modifications of the team organisation. Let us
recall the notation$t; for the input places of;, ¢;° for its
output places’p; for the input transitions of plage andp;°

Workshop on Multiagent Planning and Scheduling

all the more since transitions in Petri nets are considered i
divisible and instantaneous. The signature in the incidenc
matrix A is the following:

91

ICAPS 2005

B
RN
g
e f
9
A
abl a‘bq
4
da
Q) - X AN
pkl pkm a'tkl By abnl"' abns
{kgekr) {1}
{ng...re ={1,....a}
chy
Figure 8: Fork structure and its associated agenticityanier
chies
(tk) ()
0 signature in the incidence matrix is the following:
: ()
0
A = (pz) 0 —1 1 0
0 0
: (o) -1
0 0 7|
. u=1
2 Aug =1 A= o
u=1 (Pry) B |P|
Definition 10 (Fork) Let fork be the structure based : o u;'A l=m+1>
on transition ¢; such that°t; = p; and ¢;° = (p;;)| 1
{p/ﬁapkza N 7pkm} (See flg 8) 0
Firing transition ¢; inserts before the individual level — for :

which Ag = deg(Hx(p;)) — a level of agenticity whose
(composite) agents share out the individual agents among pefinition 11 (Merge) Letner ge be the structure based

themselves:deg(Hx (t;°)) = deg(Hx(°t;)) + 1. Ifin on transitiont; such that°t; = {p;,,pi,,...,pi, } and

pi,‘child(aa) = {ap,,...,ap, }, N pg,,p € ‘{1, co,mb, £;° = py (see %ig. 9). J 11 Digy s Pip,

child(a,) = A{ac,...,ac,} and UL child(ac,) = Firing transition ¢; suppresses the level of agenticity before
by s - - -5 b,) the individual level. It thus fuses the composite agents of

Thef or k structure allows creating from a subteamsub- the truncated leveldeg(Hx (¢;°)) = deg(Hx(°t;)) — 1.

teams whose levels of agenticity are increased by 1. The If in p; ,p € {1,...,m}, child(a,) = {ac,,--.,ac,}

92 Workshop on Multiagent Planning and Scheduling

andUT child(ac,) = {as,,--
{abl, ceey Qp,

- ap, }, i py, child(a,) =

S

g By oy o

{kgrkr I (L)
(s k= {10}

aa
N
8y 8y

Py

Figure 9: Merge structure and its associated agenticity hie
archies

The mer ge structure allows fusingn subteams to form a
single subteam whose level of agenticity is decreased by 1.
The signature in the incidence matrikis the following:

(t5)
0
(pr) -
0 |P|
. ZAu,jZI—m<O
u=1
A= 0 ,
Di -1 |P|
(_1) _ S Aujl=m+1>2
. . u=1
(Pim) -1
0

Definition 12 (Reorganise) Letr eor gani se be the
structure based on transitiont; such that °¢;
{piupiza"'?pim} and tjo = {pk17pk27"'7pkp} (See
fig. 10).

Combining characteristics of the two preceding structures
firing transitiont; modifies the composition and possibly the
number of agents at levekg(H x (°t;)) — 1. However it
does not affect the degree of the subteday(H x (°¢;))

deg(Hx (¢;°)). Ifin p,,,s € {1,...,m}, child(as) =
Qeys ooy e,, } aNd Uy child(ac,) = {ap,,...,ap,}, I
Pr.,s € {1,...,p}, child(as) = {aq,,...,aq,} and

Ub_ child(aq,) = {as, - - -, ap, }-

Ther eor gani se structure allows fusingn subteams to
form p new subteams, all of them bearing the same level of
agenticity. The signature in the incidence matexs the
following:

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

.- abkr
(koo I (L)
{grs I (L.....0}

a
adl/ a\ad
P WA
Bpy -+ Bpy By ab\lq

{Ugeeatt {1}

vi.vsicil,...a

+-Op,,

Figure 10: Reorganise structure and its associated aggntic
hierarchies

()
0
(pil) -1
1 I
(p m) 0 ElA“’j =p—m
A: .) R
(') |P|
> [Aul=m+p>3
(pkl) 1 w1
(plcp) 1
0

Definition 13 (Transfer) Lett r ansf er be the structure
based on a place; such thatt;, = p;,° = °pr, = °ps
andt;, = °pr, = pi,° = p:° (see fig. 11).

It modifies the composition but does not change the number
ofagents atleveleg(H x (°t;, ,))—1: there always remains
two of them. The places in the structure correspond to the
following agents:

o p,y, —a,={ar,uc{l,....m}};
P
L4

® pi, = as ={as,,u€{l,...

o pr —ar ={ap,,ue{l,...

e pr, — a. = {ar,,u € {1,....,m}} \ {az,,u €
{1,....q4}};

® Dky — a‘/s = {asu7u € {L”'ap}}u{a’tuau €
{1,...,q}}.

Thet r ansf er structure allows transferringagents from

the activity associated with;, to the activity associated with
pr,- This is equivalent to collocating ®our ce structure

and asi nk structure where; represents the withdrawing
agents on one side and the arriving agents on the other. The
signature in the incidence matrik is the following:

93

matrix A is the following:

ICAPS 2005

Thechoi ce structure allows exposing possible activities
for the considered subteam. The signature in the incidence

(tky) (k) (Eny) o (En)
0 0 .0
p,) | 0 1 0 -1 0
(i) | -+ o 1 0 0 —i o |
1 g (ps) 0 o0 1 1
0 0 0 0
Figure 11: Transfer structure and its associated agenticit : :
hierarchies
T |7
ZAi,v =[°pil —m and Z il = "pi| +m
=1 =1
(tjl) (tj2) N N
0 o 1P| 1P|
Vs € {1,...,m},ZAu7ks =0 and Z|Au,ks =2
0 0 u=1 u=1
(pi) | -+ - -1 0 -0 ... 7| 7|
Piz) | =+ 0 0 =1 e e Vse{l,....om},» Ai,,=0 and | A, o] =2
1 0
(2 o 1 o 7] 1P|
0 0 Vs € {1,...,m},ZAu7nS =0 and Z|Au,ns =2
. . u=1 u=1
0 0 |T| T
7 7 7 2 Ao =mlps’| and 3 Mol =motIpy”
v=1 v=1
] = =3 . . .
uzz:l A ’ 2:21 Ausa ’ ;::1 A ’ Remark: one can notice that the simple structure with a
|P| |T| |T| transitiont;, and two placeg; andp; such thaip;° = ¢y,
uzl [Aujs| = 3, 021 Atw =0, U; |At,o] =2 °p; = t, t® = p; and°t, = p; (see fig. 13) does not

Definition 14 (Choice) Letchoi ce be the structure lo-
cated between two placgs and p; such thatp,° =

matrix A is the following:

{tkl,th,...,tkm} and Vu € {1,...,m},tku° = Dly» aa
p1,° = tn, andt,, ° = p; (see fig. 12). p; / \
The hierarchy is not modified by the structurg:x (p;) = S
aa A=

p; fa Y

Figure 13: Sequence
structure and its associ-
ated agenticity hierarchy
|7
Y A =pil =120,

v=1

modify the agents involved. The signature in the incidence

|P|
Z Au,k = Oa
u=1

7|

ZAj,v =—|p;°+1<0
v=1

Abstracting the Team Plan

Representing a team plan using hierarchical coloured Petri

Figure 12: Choice structure and its associated agentitity h
erarchies

nets (HCPN) (Huber, Jensen, & Shapiro 1989; Lakos 1995)
— or modular coloured Petri nets (MCPN) (Christensen &

94 Workshop on Multiagent Planning and Scheduling

Petrucci 1992; Lakos 1995) — allows for more flexibility
than coloured Petri nets (CPN) and reduces the amount of
duplicated information.

The netPx can be abstracted so as to represent the activ-
ities at each level of agenticity. To build this informatioe
extend the ordinary Petri net reduction rules. The team plan
Petri net structure is reduced according to the semantics of
basic team management structures, nammelyr ce, si nk,
fork, mer ge, reorgani se, transf er andchoi ce.
Each reduction step builds a sub-hierarchy of agenticity.

Rule 1 — Reduction of late arrival: (fig. 14) Ift; andp;
constitute a source structuree. °p; = t, °ty = 0, p;°
t; and3dj # 4, p;° = t;, they are absorbed by a single place

pj,i* .

tk ac aa
N RN
X ab“l"'abur a‘bvl"'abvs
Pp; B
~/
4 \ 2
! /N
pj’i* 8y vt g

Figure 14: Rule 1 and its effect on hierarchy

Rule 1 preserves the level of agenticity. However the token
is modified so as to encompass the newly introduced (indi-
vidual or composite) agent. The effect ghis to suppress
the line and column correspondingitpandty, respectively.

Rule 2 — Reduction of early withdrawal: (fig. 15) If p;
andt; constitute a sink structuré.e. p;° = ty, tx° = 0,
°p; = t;and3j # i, °p; = 1, they are absorbed by a single
placep;- ;.

tl v ac a.
AN N
b pj By, - By, o, B
v
f Y \ a
Py /\

Figure 15: Rule 2 and its effect on hierarchy

Rule 2 preserves the level of agenticity. However the token
is modified so as to encompass the leaving (individual or
composite) agent. The effect o4 is to suppress the line
and column corresponding ig andt, respectively.

Rule 3 — Fusion of consecutive activities: (fig. 16) If
Diys Disy - - - Di,, @r€ m consecutive places.e. °p,y1 =
pr°,Vr € {i1,...,im-1}, they are substituted by a unique
placePi1,i2,...,im-

Workshop on Multiagent Planning and Scheduling

ICAPS 2005

P, /\
ay By
i - ‘pil,m im abl/‘tiji\ab
B, ? /aa\ X
3 Ay

Figure 16: Rule 3 and its effect on hierarchy

Rule 3 is a transposition of the substitution rule for corsec
utive places in ordinary Petri nets. It preserves the lefrel o
agenticity: the token is not modified. The effect @his
fusing them lines corresponding t@;,,...,p;,, and sup-
pressing then — 1 columns corresponding to the relevant
transitions.

Rule 4 — Fusion of choices between activities: (see
fig. 17) Ifpy,, 1y, - - -, 01, @rem possible places,e. °°p, =
ps, Pr° = s °pr #F °ps, pr° #F ps°, V(rs) €
{li,...,Im}, v # s), they are fused into a single place

b

e}

Figure 17: Rule 4 and its effect on hierarchy

Rule 4 preserves the level of agenticity. However the to-
ken is modified so as to bear, if needed, the different possi-
ble agenticity sub-hierarchies. The agent will be tagged as
encompassing multiple possible organising structureg Th
effect onA is to suppress all lines and columns correspond-
ing to them choices but thé; th line and the two columns
corresponding tey, andt,, .

Rule 5 — Fusion of parallel activities: (see fig. 18) If
Diys Disy - - - Di,, Are m places in parallelj.e. °p, = °pq,

pr® = ps°,V(r,s) € {i1,...,im}), they are replaced by a
single placep;, s.....i,. -

Rule 5 is derived from the suppression rule for implicit
places in ordinary Petri nets. It decreases the level of-agen
ticity by 1: the structure born by the token is shifted up-
wards. Since parallel activities have the same input and out
put transitionsi(e. have the same line i) the effect on4

95

ICAPS 2005

e Reduction and Projection: from Team Plan to
Neffel" Py Individual Plans by the Example
1 Pou By oy B Reduction
\/ The rules are iteratively applied. At the first step rules 1

and 2 are applied. For any following step rule 5 is applied
first on all possible parallel structures. If no parallelstr

ture has been reduced rule 4 is applied. If the previous two
rules do not apply rule 6 reduces transfer structures. Then
rule 3 compresses the sequences without modifying the level
of agenticity: the reduction of all sequences ends the otirre
step in the algorithm. The algorithm stops when the net is
reduced to a single place. Hence the process reduces the
team plan and builds the dynamic hierarchy of agenticity.

Figure 18: Rule 5 and its effect on hierarchy

is to keep a unique line for the structure, forinstance the li ~ Algorithm 1 —Reduction of team plan

corresponding t@;, . e Initialisation:
1. while possibleapply rule 1;
2. while possibleapply rule 2;
e |terate:

1. if 3 parallel structure while possibleapply rule 5;

Rule 6 —Reduction of agent transfer: (see fig. 19) Ip;, ,
Diys Pk, @Ndpy, are the four places of a transfer structure
throughpy, i.e. p;,° = °p, = °pr and°pi, = pi,° = ps°,
they are reduced into two separate branches withp;,
andp;,, pr,.

N\
W SN
P /\\
tia tj, /\ /\ /\

Wy

Pk, /\
/N //\

I aflr#t q, 8 sy By

Pl /\
o\/@% A A
3y i &, 8 8y Ty

Figure 19: Rule 6 and its effect on hierarchy

Rule 6 does not decrease the level of agenticity but modifies and rule 5.

2. elseifd choice structurewhile possibleapply rule 4;
3. elseifd transfer structurewhile possibleapply rule 6;
4. while possibleapply rule 3;

e Until: the netis reduced to a single place.

e End

The reduced places are stored along with their substitutes
at each step. The algorithm is traced back so that each re-
duction place is hierarchically unfolded and is linked as th
father of its reduced places. The resulting plan then con-
sists of a hierarchical Petri net whose levels correspond to
the levels of agenticity in the team. Each place develops
into a sub-net of higher agenticity. The tokens in the sub-
net hold the agents performing the activities correspandin
to the marked places as well as the children of these agents.

Figure 20 shows an example of a hierarchical team plan.
The plan that appears in figure 5 is gradually reduced in
order to yield a single-place Petri net. Let us consider the
marking in greater detailg,, andps are parallel activities.
Their tokens are similar and bear hierarchies respectively
AAA and AAB and their childrers, b andg. They are
reduced intgp, 5 according to rule 5. The resulting token
bears the piece of hierarchyA with its childrenAAA and
AAB. Atthe next level several reductions are possible. First
rule 3 is applied on two sequences,, — psy is reduced into
ps andpy 5 — pg becomew, 5 9. Then on one hangy s o,

D6, P10, P11 @ndpi2 show a transfer structure: they are re-
duced intop™ = pj 5 6.9.10,11,12 @ccording to rule 6, rule 3
In that structure tokens bear from left to right

the contents of the structure: the structure born by thetoke AA and its childrenAAA and AAB, and AB and its chil-

is transformed so that the transferred agents are passed ondrena, d andg. On the other hangy is an alternative t@-.

The father agents corresponding to each branch are taggedThey are reduced intp; s according to rule 4. The token is

as operating a transfer. As a matter of fact the reduction not changed while moving through the sequence and bears
is performed by splitting the transfer plapg and then si- b, ¢, e, f andg. Sequencep, — p* andps — pr.s — P13
multaneously applying rule 1 and rule 2 on the two separate are aggregated into respectively .. and p; ;- ;5 accord-
branches of the structure. The effect.dris to suppress the ing to rule 3. At this stage the structure resulting from all
line corresponding tp;. previous reductions bears these two parallel activitidse T

96 Workshop on Multiagent Planning and Scheduling

ICAPS 2005

agenticity 0 1 2 3
mission l
me 87)

agenticity

0

1

2

3 AA

4 a g

Figure 20: A hierarchical team plan with agenticity hietgrtokens

agenticity 0 1 2

mission

p6
agenticity
0

pl2

Figure 21: Projection of the team plan on ageént

Workshop on Multiagent Planning and Scheduling 97

.....

structure is reduced inte,, . 13 using rule 5. The last stage
of the reduction concatenates sequepce- p2 .. 13 — P14
into a single place,, that represents the mission. The token
in the sequence is composed of the hierarehyn and its
children. Forp; the children are, b, ¢, d, e, f andg. For
po.... 13 they ared andB.

The Petri net in figure 5 in fact corresponds to the
tailed global planbuilt from the leaf-places of the hierarchi-
cal team plan in figure 20.

Projection

The hierarchical structure of the team plan now allows the
agents’ individual plans to be derived. This is done through
a projection mechanism.

Definition 15 (Projection) the projection of the team plan
on agenta; is an agent plan whose hierarchy of places has
been cut to leveAgx (a;) and the hierarchies of agenticity
are cut to levelAgx (a;): deg(Hx(a;)) = Agx(a;).

Definition 16 (Agent plan) the plan of agemt consists in
the path ofa;’s token in the detailed global plan and all
levels above. The corresponding activities all invalyer
its ancestors in the agenticity hierarchies.

The projection of the team plan on agentconsists in
isolating the places at all levels of agenticity in whiech
is involved and extracting the hierarchies of places and of
agenticity associated to the places. This definition ex¢end
the projection operator in coloured Petri nets to hieraahi
nets. In the detailed global plan (see fig. 5) the projection
on agenta; eliminates the other colourgge. all the other

ICAPS 2005

The distribution of the information at all levels of agentic
ity in each agent may facilitate team management. In partic-
ular, in the context of teams of robots, it may help in dynam-
ically responding to an unforeseen event, such as a failure
or an external action. A modification to the initial plan — a
repair — will be provided, involving agents at the most local
level possible. Current and future works concern the devel-
opment of RAAIA, a Petri net-based decision architecture
for local replanning within the team (Bonnet-Torrés 2005).

References

Bonnet-Torrés, O., and Tessier, C. 2005. From team plan
to individual plans: a Petri net-based approach. Ak
MAS’05

Bonnet-Torrés, O. 2005. Local replanning within a team
of cooperative agents. ICAPS’05 Doctoral Consortium
Chanthery, E.; Barbier, M.; and Farges, J.-L. 2004. Inte-
gration of mission planning and flight scheduling for un-
manned aerial vehicles. BBCAI'04 - Workshop on Plan-
ning and Scheduling: Bridging Theory to Practice
Christensen, S., and Petrucci, L. 1992. Towards a modular
analysis of coloured Petri nets. ATPN'92 113-133.

Cohen, P., and Levesque, H. 1990. Intention is choice with
commitment.Artificial intelligence42:213-261.

Cohen, P, and Levesque, H. 1991. Teamwoi¥o(s
25(4):487-512.

El Fallah-Seghrouchni, A., and Haddad, S. 1996. A recur-
sive model for distributed planning. ITMAS’'96

El Fallah-Seghrouchni, A.; Degirmencyan-Cartault, I an

agents, and prunes the branches of the Petri net that are not Marc, F. 2004. Modelling, control and validation of multi-

coloured bya;. The result of the projection is the Petri net
corresponding to the leaves of the hierarchical plam;of

Let us unfold the previous example. Figure 21 shows the
agent plan for the elementary agénfAt each level the team

plan Petri net has been pruned so that the remaining places

involve d or its ancestors. One can notice that the same op-
eration can be performed locally for agehtl. Locality is a
consequence of the fugacity dfA due to its being a com-
posite agent. In this case locality means that the projectio
on AA can only be performed opy 5 9 andp;; and their
ancestory*, pa ., p2.....13 andp,,.

Conclusion

In the general framework of agents carrying out a mission
specified in terms of objectives, a Petri net-based represen
tation of team plans is presented. In this approach ageats ar
hierarchically organised in a team. Each node in the agen-
ticity hierarchy can be regarded as an agent. The plan itself

is represented by a hierarchical Petri net whose places are

agent’s activities. The organisation of the team dynartical
changes as the marking of the net evolves. Therefore the
team plan can be used for team activity monitoring.

From the team plan a projection operator allows to derive
individual plans so that each elementary agent knows for any
activity its interacting agents. The information is heldhe
tokens of its plan as sub-hierarchies. The conjunction of
individual plans allows distributed team coordination.

98

agent plans in dynamic context. FAMAS’'04

Erol, K.; Hendler, J.; and Nau, D. 1994. HTN planning:
complexity and expressivity. IAAAI'94, 1123-1128.

Grosz, B., and Kraus, S. 1996. Collaborative plans for
complex group action.Artificial Intelligence86(2):269—
357.

Huber, P.; Jensen, K.; and Shapiro, R. 1989. Hierarchies
in coloured Petri nets. IATPN’89 192-209.

Jensen, K. 1997.Coloured Petri nets. Basic concepts,
analysis methods and practical uddonographs in Theo-
retical Computer Science. Springer-Verlag, 2nd edition.
Kristensen, L. 2003. Using coloured Petri nets to imple-
ment a planning tool. 4th Advanced Course on Petri Nets.
Lakos, C. 1995. From coloured Petri nets to object Petri
nets. INATPN’'95 278-297.

Murata, T. 1989. Petri nets: properties, analysis and appli
cations. InProc. of the IEEEvolume 77-4, 541-580.

Rao, A., and Georgeff, M. 1995. BDI agents: from theory
to practice. INCMAS’'95

Shoham, Y. 1993. Agent-oriented programmiAgtificial
intelligence60:51-92.

Tambe, M. 1996. Teamwork in real-world, dynamic envi-
ronments. INCMAS’'96

Tambe, M. 1997. Towards flexible teamwordournal of
Artificial Intelligence Researcih:83-124.

Workshop on Multiagent Planning and Scheduling

