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Preface

Planning and scheduling (P&S) systems are finding increased application in safety-
and mission-critical systems that require a high level of assurance. However, tools and
methodologies for verification and validation (V&V) of P&S systems have received rela-
tively little attention. The primary goal of this workshop is to initiate an interaction bet-
ween the P&S and V&V communities to identify specialized and innovative V&V tools
and methodologies that can be applied to P&S. A secondary goal is simply to engage
the two communities in the exploration of cross-cutting technologies.

Model-based P&S systems have unique architectural features that give rise to new
V&V challenges. Most significantly, these systems consist of a planning engine that is
largely stable across applications and a declaratively-specified domain model speciali-
zed to a particular application. Planners use heuristic search to compute detailed plans
that achieve high level objectives stated as an input goal set. Experience has shown
that most errors are in domain models, which can be inconsistent, incomplete or inac-
curate models of the target domains. There are currently few tools to support the model
construction process itself, and even fewer that can be used to validate the structures of
the domains once they are constructed. Another challenge to V&V of P&S systems is to
demonstrate that specific heuristic strategies have reliable and predictable behaviors.

Among the presented papers, some address the topic very directly, by discussing
what forms of checks could be performed on plan models. Two papers address how
formal methods tools such as a theorem prover and a rewriting system can be ap-
plied to model analysis. Two papers target the problem slightly differently and discuss
how a real-time model checker can be used as a planning engine, hence giving an un-
derstanding of how verification and planning tools relate. The reverse direction is also
represented by a paper that discusses how a planning tool can be used for verification.
Other papers deal with compositional verification and runtime monitoring. A single pa-
per addresses the synthesis of robust plans, often stated as an alternative approach
to correctness. The invited talk by Steve Chien, NASA’s Jet Propulsion Laboratory in
Pasadena, California, USA, presents work on validating the autonomous EO-1 science
agent.
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Model Validation in Planware

Marcel Becker and Douglas R. Smith
Kestrel Technology

3260 Hillview Avenue
Palo Alto, California 94304
{becker,smith}@kestrel.edu

Introduction
Planware II is an integrated development environment for
the domain of complex planning and scheduling systems. At
its core is a model-based generator for planning and schedul-
ing applications. Its design and implementation aim at sup-
porting the entire planning and scheduling process including
domain analysis and knowledge acquisition; application de-
velopment and testing; and mixed-initiative, human-in-the-
loop, plan and schedule computation. Based on principles of
automatic software synthesis, Planware addresses the prob-
lem of maintaining the synchronization between a dynamic
model describing the problem, and the corresponding sys-
tem implementation. Planware automatically generates op-
timized and specialized planning and scheduling code from
high-level models of complex problems.

Resources and tasks are uniformly modeled using a hier-
archical state machine formalism that represents activities as
states, and includes constructs for expressing constraints on
states and transitions. A resource model represents all pos-
sible sequences of activities this resource can execute. Fig-
ure 1 shows a simple problem description with 3 resources
– Aircraft, Crew, andAirport; and a top-level task repre-
senting amovement requirement. A schedule or plan will
be composed of concrete activity sequences that can be gen-
erated by simulating the execution, or trace, of these state
machines. For example, a sequence [Idle, Transporting, Un-
loading, Returning, Idle] represents a valid sequence of ac-
tivities for the Aircraft resources. Figure 2 and 3 shows parts
of the source code for the Aircraft resource.

The model-based generator analyzes the state machine
models to instantiate program schemas generating concrete
implementations of backtrack search and constraint prop-
agation algorithms. Coordination between resources and
tasks is achieved through the use ofservices: tasks re-
quire services, and resources provide services. Planware’s
scheduler generator component matches providers with re-
questers, and automatically generates the code necessary to
verify and enforce, at schedule computation time, the ser-
vice constraints imposed in the model. Planware’s user in-
terface is based on Sun’s NetBeans platform and provides
integrated graphic and text editors for modeling complex re-

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Figure 1: Planware Model Example

source systems, automatically generating batch schedulers,
and executing the generated schedulers on test data sets.

Developing scheduling applications and computing
schedules using a model-based generator approach like the
one provided by Planware creates a new set of challenges
to the developer of such tools, namely establishing a con-
nection between the high-level models describing the prob-
lem and the solution produced by the generated application
– the schedule computed for a given set of input data. We
assume the user modeling the problem is the final user of
the generated scheduling application. The planning expert
trying to solve a particular planning problem, must be able
to validate, test, and debug her models without any knowl-
edge about the intermediate software artifacts produced by
the generator. All communication with the user should hap-
pen either at the model level, or at the computed solution
level.

There are two main set of questions regarding V&V of
Planware models:

Model Validity: Does the model correctly express the in-
tentions of the designers? Does the modeler understand
the semantics, assumptions, and limitations of the mod-
eling formalism? Does the model respect physical and
logical constraints? Does the model accurately capture

ICAPS 2005
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mode-machine Aircraft is
constant baseLoc : Location
constant fuelBurnRate : BurnRate
constant maxFuelCapacity : Capacity
input-variable origin, dest : Location
internal-variable duration : Time
external-variable st, et : Time

end-mode-machine

Figure 2: State descriptor parameters for Aircraft Resource

the physical process it is trying to represent? Can the gen-
erator produce an application from the model?

Implementation Correctness: Is the executable behavior
of the generated application consistent with the model?
Any testing performed on the executable depends on this
consistency.

This position paper presents several ways that Planware
could be extended to support the validation and verification
of its models.

Validity of the Model
Model-based software generation reduces the application
development effort by simplifying the problem specification
activity, and by hiding lower level, domain independent im-
plementation details. In an ideal scenario, a user without any
knowledge about the generation engine should be able to de-
scribe the planning problem using only the high-level mod-
eling interface, and the generator would then automatically
produce a high-quality, running application. In reality, how-
ever, the best results are achieved by users with some under-
standing of how models are translated into code, and how
the generated code implements the scheduling algorithms.
Power users can even slightly modify the models to gener-
ate more efficient or more effective implementations. This
tells us that model-driven v&v requires exposing, also in a
model-oriented fashion, some of the internal details of both
the generator and the generated code to the modeler, and
providing additional facilities for model debugging and test-
ing.

There are 3 basic aspects of model validation:

Model Structure: This relates to the well-formedness of
the model. This activity can be performed by a model
compiler that verifies if the model is syntactically correct,
and if the model structure is consistent so that the genera-
tor can produce an application for it.
Planware already provides several syntactical and struc-
tural checks and inform the user about the identified prob-
lems. For example, it requires that all state descriptors de-
fined for a given resource model be initialized, and it com-
plains if some of the defined parameters have not been
initialized.
Some errors, however, like typos and type mismatches,
are only identified when the generated code gets com-
piled. For example, if there is a type mismatch in a vari-
able assignment, this error will be reported by the com-
piler. The user will be responsible to find the place in the
model where this wrong statement is located.

mode-machine Aircraft is
...
mode Idle has end-mode
mode Loading has

required-invariant loadCargo (st, et, ...)
end-mode
mode Positioning has end-mode
mode Refueling has end-mode
mode Deploying has

provided-invariant deliverCargo(st, et, ...)
end-mode
transition from Idle to Loading

when {} is {
duration := loadingDuration }

transition from Loading to Positioning
when {} is {
dest := (if (consumedFuel() ≥

maxFuelCapacity)
then findAirRefLoc(...)
else targetLoc),

airRefTrack := (if (consumedFuel() ≥
maxFuelCapacity)

then dest
else zeroLoc) }

transition from Positioning to Refueling
when { airRefTrack ! = zeroLoc } is {}

transition from Positioning to Deploying
when { dest = targetLoc } is {}

end-mode-machine

Figure 3: Modes, Transitions and Services for Aircraft Re-
source

There are 2 possible solutions to this problem: We can
enhance the simple model compiler to check for all pos-
sible sources of structural errors, or we can enhance the
generator and compiler so that when a compiler error is
encountered, the error message identifies the line of code
in the model responsible for generating the compilation
error. Although the first solution may seem simpler, the
second has the advantage of greatly facilitate the tracing
and debugging of models if the connection to the model
source code is maintained by the generated application.

Model Semantics: This relates to matching, or at least
communicating, the assumptions and design decisions
made by the developer of the generator system with the
user’s representation and execution requirements. The de-
signer of the generation framework assumes some execu-
tion or system behavior model into which the description
defined in the problem specification is embedded. For ex-
ample, Planware implements the scheduling algorithm as
an auction-based mechanism in which different resource
instances bid for tasks. The sequencing of the bids for
different tasks and subtasks is based on the hierarchical
structure of the service tree defined in the model. The
generator synthesize the code implementing the bidding
mechanism for each task and resource type requesting and
providing a certain service (see examples of services in
Figure 3).
The schedule computed by the generated code will reflect
the design decisions made by the generator developer on
how to translate the models into an executable applica-
tion. The main question here is how to communicate to
the user these design assumptions and decisions. The pro-
posed solution is to implement a model simulator or in-
terpreter capable of symbolically executing the model. In
Planware, this would correspond to animating the search
tree used by the scheduler, and simulating the bid cre-
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ation mechanism for each service requester and available
service provider. This animation would expose to the user
the details of the algorithms that would be implemented
for a particular model.

Model Implementation: This relates to debugging and
tracing the execution of the generated application on real
data. One of the major problem we encounter while de-
veloping applications from models is identifying why a
computed solution is different from the expected one, or,
said another way, why the system fails to schedule tasks.
Sometimes this is simply due to the sophisticated rea-
soning performed by constraint propagation algorithms –
the user may not understand the subtle consequences of
runtime choices available to the scheduler. On the other
hand, the problem may be due to faulty input data, or to
the implementation of the automatically generated algo-
rithm, or to modeling mistakes. The simulator described
above may help reduce modeling mistakes but will not
completely eliminate them since they will probably not
exercise all possible scenarios.
The solution is, of course, to instrument the source code,
to trace the execution of the system, and to use this trace to
debug and correct the problem. As developers of the gen-
eration engine, we can add trace statements to the gener-
ated code and execute the application with tracing turned
on. For a model developer, however, this is not appropri-
ate.
The modeler should be able to request the code gener-
ator to add testing and tracing statement directly in the
model. Furthermore, she should also be able to see these
trace statements expressed in terms of the model, and
not in terms of application implementation. For exam-
ple, the bidding mechanism for each service request is
implemented by a chain of 10 different methods. For
the modeler, an error message describing that a particu-
lar method in this chain failed is not very useful. A better
message would be one that describes, for example, that a
bid could not be generated for a particular service because
a particular sequence of transitions needed to provide the
service could not be executed. The user could then ask
the system for more detailed information about the par-
ticular failure, without having to go through a long list of
implementation-specific tracing statements.
The best solution would be achieved by stepping through
the execution using the animation previously described.
At each step, the generated application would execute a
number of instrumented methods, and the execution re-
sults, as well as the trace statement would be communi-
cated to the user using an interface based on the defined
model. This would correspond to a model debugger that
would filter the regular, programming language level trac-
ing of the application and map into the debugging and
symbolic execution of the model.

Verifiably Correct Code from Models
One aspect of V&V is one’s degree of assurance that the ex-
ecutable behavior is consistent with the model. Planware II

automatically generates an executable scheduler from mod-
els of the tasks and resources of the problem domain. It has
no explicit assurance guarantees, but compared with manual
production of similar code, (1) it is far faster (typically a few
minutes for 100k LOC), and (2) it is far more likely to pro-
duce correct code (since the model-to-code transformations
are general and have been tested extensively).

Here are a few approaches to providing more explicit
guarantees of consistency.

1. Design by Classification (Smith 1996) - An earlier im-
plementation, called Planware I (Blaineet al. 1998), used
a refinement process to generate code from a simpler mod-
eling language (see also Designware (Smith 1999)). Each
refinement was expressed as a specification morphism. Plan-
ware I drew from a library of abstract, reusable refinements
that embodied knowledge about global search algorithms
and various data type refinements. A refinement in a library
can be preverified. A refinement is applied by means of a
composition operation that preserves proofs.

To make the verification guarantees of this approach more
formal, suppose that specification objects are extended with
explicit proof objects. The intention is that all proof obliga-
tions of the specification (e.g. consistency between axioms
on a function and its definition, type consistency, and so on)
are packaged together with the specification. IfS is a speci-
fication andP is its corresponding proof set, let〈S, P 〉 be a
spec-proof object. We can make these the objects of a cate-
gory that has a composition operator (aka colimit) in a fairly
straightforward way. Ifm : S → T is a specification mor-
phism that transform specificationS to specificationT , we
can extendm to a spec-proof morphism as follows:

m : 〈S, P 〉 → 〈T,m(P ) ∪ PrfObl(T ) ∪ PrfObl(m)〉

wherePrfObl is a function that maps specs and morphisms
to proofs of their respective proof obligations. For sim-
plicity of presentation, we are assuming a complete logic.
The Specware system (Kes 2003) has an automatic genera-
tor of proof obligations for specs and morphisms and uses
the Snark prover to produce proofs.

The advantage of use this extended category of spec-
proofs is to support the simultaneous development of pro-
grams (e.g. planners and schedulers) from models/specs to-
gether with explicit proofs of consistency between model
and code. A certifying authority can examine the spec-
proofs and check for themselves whether the putative proofs
are in fact proofs and that they establish the desired consis-
tency results. It is much easier to check proofs than to gen-
erate proofs and there is no easier time to generate proofs of
the consistency of models and code than at code generation
time.

2. Refinement Generators – KIDS (Smith 1990) and Plan-
ware I also used a small library of expression optimizers
that were implemented as metaprograms. As metaprograms,
they can in principle produce arbitrary transformations of an
intermediate design. How can we get verification help in this
context? The basic approach is, again, to work in the spec-
proof category discussed above. We treat each refinement
generator as a transformer not only of the source specifica-
tion, but also of its proof set.

ICAPS 2005
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More formally, if R is a refinement generator that applies
to specificationS, thenR(S) is a morphismm : S → T .
Then the work is to extendR so that it generates a spec-proof
morphism from〈S, P 〉 to 〈T,Q〉 whereQ is the proof-set of
T . For the refinement generators in KIDS and Planware I
this work would be fairly straightforward since a construc-
tive prover does most of the work in the generator, so proofs
are available.

Concluding Remarks
Early work on model-based code generation was mainly fo-
cused on rich design spaces (showing that a range of ap-
plications could be generated) and scaling up (showing that
useful work could be done). As generative techniques move
toward production, it becomes more important to integrate
with existing processes for code certification and assurance.
A key advantage of Kestrel’s category-theoretical and log-
ical foundations is its intrinsic ability to produce and carry
along assurance/certification documentation as part of nor-
mal development and evolution. This should result in cost
savings since the information needed for assurance and cer-
tification is available during development.
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Inspection and Verification of Domain Models with PlanWorks and Aver

Tania Bedrax-Weiss∗† and Jeremy Frank‡ and Michael Iatauro§ and Conor McGann¶

Computational Sciences Division
NASA Ames Research Center, MS 269-2

miatauro@email.arc.nasa.gov
Moffet Field, CA 94035

Introduction and Motivation
When developing a domain model, it seems natural to bring
the traditional informal tools of inspection and verification,
debuggers and automated test suites, to bear upon the prob-
lems that will inevitably arise. Debuggers that allow inspec-
tion of registers and memory and stepwise execution have
been a staple of software development of all sorts from the
very beginning. Automated testing has repeatedly proven its
considerable worth, to the extent that an entire design philos-
ophy (Test Driven Development) has been developed around
the writing of tests.

Unfortunately, while not entirely without their uses, the
limitations of these tools and the nature of the complexity
of models and the underlying planning systems make the
diagnosis of certain classes of problems and the verification
of their solutions difficult or impossible.

Debuggers provide a good local view of executing code,
allowing a fine-grained look at algorithms and data. This
view is, however, usually only at the level of the cur-
rent scope in the implementation language, and the data-
inspection capabilities of most debuggers usually consist of
on-line print statements. More modern graphical debuggers
offer a sort of tree view of data structures, but even this
is too low-level and is often inappropriate for the kinds of
structures created by planning systems. For instance, goal
or constraint networks are at best awkward when visualized
as trees. Any any non-structural link between data struc-
tures, as through a lookup table, isn’t captured at all. Fur-
ther, while debuggers have powerful breakpointing facilities
that are suitable for finding specific algorithmic errors, they
have little use in the diagnosis of modeling errors.

Automated testing can take several forms, few of them
convenient. Writing tests explicitly in code can require deep
knowledge of the system in which the model is going to be
executed, are therefore not portable to other planning sys-
tems, even closely related ones, and will break with changes
in the underlying system or the model, adding to the required
maintenance work. Tests written at this level will also have

∗Authors listed in alphabetical order.
†QSS Group, Inc.
‡NASA
§QSS Group, Inc.
¶QSS Group, Inc.

to be much more verbose than those written at a higher level
of abstraction.

EUROPA(Frank & Jónsson 2003), the predecessor to
EUROPA2, as part of its test suite, captured the output of
the final plan and compared it against a known-good output.
This proved to be quite brittle, since changes to the plan-
ner, plan database, model, or heuristics could dramatically
alter the output without implying a bug, and hand-verifying
output for the new known-good was both tedious and labor
intensive. The known-good method also suffers from a lim-
itation of scope—it looks only at the output, and in the case
of planning and model rule execution, the path to the final
plan is at least as important.

Another verification technique that EUROPA employed
was an examination of the final constraint network to ensure
compliance with the rules of the model. While suffering
from the output-scope problem, it also only detects errors in
the code that executes model rules which, while significant,
is only one of a plurality of components. This technique
also only checks the constraint network’s compliance with
the model, not the executed model’s compliance with the
intended model.

Clearly, there is a gap between what traditional tools can
provide and what is necessary to debug and test planning
systems efficiently. To this end, we have built two tools:
PlanWorks, a visualization and query tool for plan inspec-
tion and Aver, a language for the specification of automated
tests.

This paper is organized as follows. We first describe some
fundamentals of the EUROPA2 constraint-based planning
system. We then describe our debugging tool, PlanWorks.
We cover in light detail its views and query tools. We then
describe our test specification language, Aver. We describe
its method of asserting properties of plans with queries and
boolean comparisons. We then describe the use of these
tools to verify the description of a sample problem domain
and instance, the pipesworld, in which we cover test com-
position, a test failure, its investigation with PlanWorks, and
confirmation of the fix with both PlanWorks and the auto-
mated test. Finally, we discuss future work for both tools.

The EUROPA2 Paradigm
The context in which these tools have been developed is
EUROPA2, which provides plan database services that en-
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able the integration of automated planning into a wide vari-
ety of applications.

A detailed discussion of the EUROPA2 paradigm is be-
yond the scope of this paper, but a brief discussion is in-
cluded here. A plan is a complete enumeration of the states
necessary to achieve a set of goal states from a set of initial
states which satisfies the constraints of a planning domain
and problem instance. In EUROPA2, states are represented
as predicates, each of which has a name, start time, end time,
duration, and zero or more parameters. Each instance of a
predicate in a plan is represented by a token and the param-
eters, timepoints, and duration of the predicate are repre-
sented by variables. Predicates are associated with classes
that represent types of objects, with specializations like time-
lines, which require that their sequences of states be totally
ordered, or resources, which allow concurrent states, but re-
quire that rules about consumption and production rates and
resource levels be obeyed. During planning each token is
assigned to an object. Domain rules are assertions that if
a predicate P is in the plan, then other predicates Qi must
also be in a plan and are related to P by constraints among
the variables of the predicates. Domain rules may also assert
that resources are impacted by predicates; resource impacts
are called transactions and also have variables that represent
them.

It is important to emphasize that EUROPA2 does not
implement any planning algorithm; rather, it provides ser-
vices that support different planning algorithms according
to the application, like maintaining plan state and evaluat-
ing plan consistency. The EUROPA2 plan database main-
tains the current plan state and an external planner performs
the search by resolving flaws through variable restrictions,
which amount to operations on the plan database. As such,
it can be used to support progression planners, regression
planners, sequential or causal link planners, and so on. To
enable this generality, EUROPA2 distinguishes between free
tokens (consequences of rules that haven’t been inserted into
plans), active tokens, and merged tokens. Planners can insert
free tokens into plans, making them active, or co-designate
free tokens with active tokens, making them merged.

PlanWorks
Introduction
PlanWorks is a browse-based system for debugging
constraint-based planning and scheduling systems. It as-
sumes a strong transaction model of the entire planning pro-
cess, including adding and removing parts of the constraint
network, variable assignment, and constraint propagation. A
planner logs transactions and plan states for importation into
a relational database that is tailored to support queries for
a variety of components. Visualization components consist
of specialized views to display different forms of data (e.g.
constraints, activities, resources, and causal links). Each
view allows user customization in order to display only the
most relevant information. Inter-view navigation features al-
low users to rapidly exchange views to examine the trace of
the process from different perspectives. Transaction query
mechanisms allow users access to the logged transactions to

visualize activities across the entire planning process.
PlanWorks is implemented in Java and employs a MySQL

relational database back-end. It can be used either online
while planning is performed or offline after capturing the
entire planning process. Furthermore, PlanWorks is an open
system allowing for extensions to the transaction model to
capture new planner algorithms, different classes of entity,
or novel heuristics. While PlanWorks was specifically devel-
oped for EUROPA2, the underlying principles behind Plan-
Works make it useful for many constraint-based planning
systems.

Views
The first view the user is presented with is an overview of
the entire planning sequence, an inverted histogram of the
counts of the tokens, variables, and constraints in the plan
at each step. Moving the mouse over a histogram element
will reveal the the number of elements of a particular type
at that step. At a glance, the user sees how the plan’s size
evolved throughout planning and can see patters (such as
thrashing in a chronological backtracking algorithm, or local
optimum in a local search planner). An indicator above each
histogram bar indicates whether the data for that step is in
the file system or in the PlanWorks database.

The Timeline View is designed to show the sequence of
predicates on a timeline. Since tokens can be co-designated,
the Timeline View shows the number of co-designated to-
kens that each token supports.

Because the EUROPA2 structure can be treated as a di-
rected graph (Objects→Tokens→Variables↔Constraints),
it is useful to visualize the entire graph or certain subgraphs.
Of particular interest are the causal tree, or token network,
and the constraint network. All PlanWorks graph views use
an incremental expansion method for navigation. Clicking
on a node will expand all of its arcs and place in the view
any connected nodes not already visible. Clicking on such
an “open” node closes it, and will cause any entities to which
it is related that are not connected to other open entities to
be removed from the view. To assist navigation, the graph
views provide “find by key” and “find path” to locate a par-
ticular entity in the graph and find a path between two enti-
ties, respectively.

The Token Network View visualizes the causal chain re-
sulting from planner decisions and model rules. Initially
only the root tokens—those created in the initial state—are
visible. Expanding a token node causes the appearance of
rule nodes, which represent the model rules that executed
because of the presence of the parent token in the plan. Rule
nodes can be expanded to see the text of the rule as writ-
ten in the model as well as to see the tokens created through
application of the rule.

The Constraint Network View begins with model invari-
ants, objects, tokens, and instances of rule execution. Each
of these entities is associated with a set of variables, which
in turn are in the scope of constraints. “Opening” a starting
entity will reveal its variables, each of which will reveal its
constraints when opened.

The Navigator View is the union of the Token Network
and Constraint Network views as well as information not
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explicit in any other view. Beginning from an entity present
in some other view and every immediate neighbor entity, the
Navigator view allows incremental exploration of every en-
tity connection present in the plan.

The amount of information in a plan quickly exceeds that
which can be easily treated by these views, so PlanWorks
offers a Content Filter to restrict the visual elements to those
related to particular predicates, the predicates of particular
objects, or predicates within a specified window of time.

Transactions
EUROPA2 has a rich transaction set describing the vari-
ous transformations within the plan database, constraint net-
work, and rules engine that it uses for internal notification,
but which also has value in debugging. PlanWorks offers a
mechanism for querying the transactions on individual en-
tites, of a particular type, that represent the state transforma-
tion from one step to the next, or a combination of these.

Planner Control
Planning can be quite expensive in terms of time and log-
ging data after every planner decision only slows the process
down, which can be counterproductive when one is attempt-
ing to determine the existence of a bug, trace its cause, or
verify a fix. In order to alleviate this, PlanWorks has the
ability to execute the planner on-line, breakpoint, and write
only specified steps.

This planner control mechanism is achieved through the
EUROPA2 notion of a model as a compiled shared library.
From within PlanWorks, the model, planner, and initial state
are initialized and the user is presented with a control panel
offering the ability to execute the next step and write, ex-
ecute and write the next n steps, execute the next n steps
without writing, execute to the end and write the final plan,
or terminate the current run. Execution causes dynamic up-
dates of the Sequence Steps View, ensuring that the user has
an up-to-date view of what the planner is doing.

Beyond this, because models in EUROPA2 are shared ob-
jects and initial states are files loaded at planner execution
time, both can be swapped for different models or states
without re-starting PlanWorks.

Aver
Introduction
“Aver” is a language for specifying run-time tests to ver-
ify proper behavior of a planning system, from the plan
database to the model to the planner. It allows the descrip-
tion of partial or complete plans and events that occur during
planning that constitute correct behavior. Files containing
tests in Aver are converted to XML, which is then compiled
to an internal byte-code and executed at planner run-time.

Aver is used to define tests over a sequence of steps, each
corresponding to a partial plan logged by a planner during
search. This assumption is very generic, as the planner can
use any form of search from backtracking to local search.
Furthermore, the planner can log plans periodically, e.g. ev-
ery 5th decision the planner makes.

Test(’BasicAssertionExample’,
//should be true at the beginning
At first step : 1 == 1;

//should be true at the end as well
At last step : 1 == 1;

//doomed to fail after the third step
At each step > 3 : 0 != 0;

//only needs to be true once
At any step in [0 3] :
Count({1 2 3 4}) == 4;

//must be true at steps 3, 5, 7, and 9
At step in {3 5 7 9} : 1 == 1;

);

Figure 1: Basic assertions in Aver. The first two assertions
show the use of “first” and “last” in specifying steps. The
third assertion specifies a subset of steps. The last two as-
sertions show the differences between the “each” and “any”
semantics.

Tests and Assertions
The largest unit of Aver is the test. Tests are named to allow
for selective execution and contain sets of tests or assertions.
An assertion consists of a specification of the set of steps at
which the assertion must hold followed by a boolean asser-
tion about the plan state.

A step specification consists of a specification of a sub-
set of the sequence of steps, with an additional predicate
of “any” or “each”. An assertion with the “each” predi-
cate must be true at all steps matching the step specification
for the assertion to be considered true, assertions with the
“any” predicate must be true for at least one step matching
the specification. “Each” semantics is assumed if the pred-
icate is omitted. Aver also has two special step identifiers,
“first” and “last”, to refer to those steps logically rather than
numerically.

The boolean part of an assertion is a combination of
queries for plan entites, built-in function calls, value spec-
ifications, and comparisons. All values in Aver are repre-
sented as domains; sets of values represented as either enu-
merations (i.e. “{1 2 3 4}”) or intervals (i.e. “[1 4]” or
“[2.5 2.9]”). Domains that contain only one value or whose
upper and lower bounds are equal are called singleton do-
mains. This is done because, most often, values specified in
Aver are compared with the values of EUROPA2 variables,
which are themselves domains. Figure 1 offers some trivial
example assertions.

Queries and Functions
Aver provides direct queries for three types of EUROPA2

plan entities: objects, tokens, and transactions. These
queries allow for the definition of subsets of entities in the
partial plans matching the step specification through the
specification of relevant properties of the entity type. The
“Objects” query can be restricted by the object name or the
values of object variables. The “Tokens” query can be re-
stricted by the predicate name or the values of the temporal
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Test(’AnotherExample’,
//there should be tokens in the plan
At last step : Count(Tokens()) > 0;

//no backtracking in this plan
At each step :
Count(Transactions(type ==

’RETRACTION’)) == 0;
//a rover can’t exceed the speed of
//light after the 10th step
At step > 10: Property(’m_maxSpeed’,

Objects(name ==
’SpiritRover’))

< 300000000;
//there is only one location the rover
//can be at initially
At first step :
Count(Property(’m_location’,

Tokens(predicate == ’Rover.at’
object == ’SpiritRover’
start == 0)))

== 1;
);

Figure 2: Some more complex assertions. The first assertion
uses the “Count” function and a query on the set of Trans-
actions to ensure that no backtracking occurred during plan-
ning. The second assertion uses the “Property” function and
a query on the set of Objects to ensure that a property holds.
The last assertion demonstrates a query on the set of Tokens
to check a property of the initial state.

or parameter variables. The “Transactions” query can be re-
stricted by the exact name of the transaction, the type of the
transaction, or the object transacted upon.

Aver has three built-in functions: “Count”, “Entity”, and
“Property”. “Count” returns the number of entities in its do-
main argument. “Entity” returns the nth entity in its domain
argument, and “Property” returns the domain of the named
variable of its single entity argument. The semantics of “En-
tity” are defined only for finite ordered domains, and the se-
mantics of “Property” are only defined for single entities.
Figure 2 has some more complex examples of assertions us-
ing queries and functions.

All boolean operators in Aver are defined at the level
of domains, so Aver supports the usual equality, less than,
greater than, less than or equal, and greater than or equal
comparison operators as well as set subset-of, intersection,
and exclusion operators.

A rough analogy can be drawn between Aver assertions
and the assert() facility available in many programming
languages. The common assert() marks a condition that
must be true at a location determined by its position in code,
and an Aver assertion marks a condition that must be true at
a location determined by its step specification. Also, both
indicate upon failure a problem that needs to be examined
with a second tool; with assert(), this is a debugger, with
Aver, PlanWorks.

Application
To demonstrate these tools, we present a model of the
“pipesworld” domain, described in detail in (Milidiú,
dos Santos Liproace, & de Lucena 2003), developed for
EUROPA2 in the modeling language developed for it,
NDDL (New Domain Description Language).

Pipesworld is a domain describing the behavior of the sys-
tems used to store and transport petroleum derivative prod-
ucts. The peculiar constraints in this domain are:

1. The pipes must be pressurized (full) at all times.

2. The tanks have per-product capacities.

3. Because of (1), and the fluid nature of the products, it is
economical to have only specific combinations of prod-
ucts present in a pipe simultaneously.

Products can be shifted onto a pipe from either end, forcing
the product present in the pipe at the opposite end into the
tank at that end.

The petroleum products are transported in units called
“batches.” We chose to represent a batch as a timeline with
predicates representing its status in a pipe or tank or being
shifted from a tank to a pipe, or vice-versa with parameters
for the tank or pipe.

We chose to model only so-called “unitary” pipes—pipes
that contain only one batch at a time—in the interest of sim-
plicity. The model is, however, still interesting because there
is an intermediate time between when the old batch is in
the tank and the new batch occupies the pipe in which both
batches are partially present in the pipe. We represent pipes
as an extension of timelines, which offer automatic mutual
exclusion, that are parameterized on the two tanks they con-
nect.

Finally, tanks are represented as objects containing collec-
tions of EUROPA2 resources, one for each type of product,
each of which is parameterized with the number of batches
of the particular product that tank can hold.

Moving a batch from a pipe to a tank creates a consump-
tion transaction on the tank’s appropriate batch-capacity re-
source at it’s end time and moving a batch from a tank to
a pipe creates a production transaction on the tank’s batch-
capacity resource at it’s end time. The semantics of a re-
source in EUROPA2 ensure that capacity is never exceeded.

In our initial state, there are three identical tanks; A1, A2,
and A3. There are two pipes, one connecting A1 and A2,
called S12, and one connecting A1 and A3, called S13. There
are also 14 batches of various products, two of which start
in the pipes an the rest are in tanks.

The details of the initial and goal states are fairly unin-
teresting, but for the purposes of this discussion, we point
out that batch 12 begins in A3 and should end in A2. Hav-
ing constructed the model and the initial and goal states, we
constructed the test in Aver before knowing what the final
plan looks like.

The most trivial aspects of the Aver test confirm that the
initial and goal states of the test are present in the final plan.
To compose the rest of the test, we had to consider the model
in conjunction with the initial and goal states. While it
isn’t currently possible to test the direct application of model

ICAPS 2005

12 Workshop on Verification and Validation of Model-Based Planning and Scheduling Systems



At last step :
Count(Tokens(predicate=’Batch.inPipe’

object = ’B12’
variable(name = ’m_pipe’

value= ’S13’)
start >

Property(’end’,
Tokens(predicate=’Batch.inTank’

start = 0 object = ’B12’
variable(name = ’m_tank’

value = ’A3’)))))
> 0;

Figure 3: A rule-checking assertion.

rules, it is possible to make assertions about their necessary
effects, and it is this type of assertion that composes the ma-
jority of the test suite. For example, the assertion in Figure 3
checks the property that batch 12 must be in pipe S13 some-
time after it’s in tank A3, which it must necessarily be to end
in tank A2.

We mention this assertion in particular because it was the
first to fail. Inspection in PlanWorks confirms this. A look at
the Timeline View shows that batch B12 is shifted from tank
A3 to pipe S12, a clear violation of the intended semantics
of the model. Images from the Constraint Network View
are shown in Figure 4 to make the parameter values more
visible. This indicates a missing constraint.

Looking at the model text in Figure 5, we see that there
is, indeed, a missing constraint.

This constraint can be achieved using NDDL’s existential
quantification, which selects objects based on filtering cri-
teria. If we add the code in Figure 6 to the rule, where the
comment about the missing constraint occurs, the test should
pass. And, indeed, we find that it does. This is further con-
firmed by PlanWorks as seen in Figure 7.

Future Work
PlanWorks
PlanWorks was originally conceived of as an integrated de-
velopment environment for building and managing projects
with EUROPA2 and it is our intention to continue to de-
velop features to aid in those tasks. In the near future, Plan-
Works will be extended to handle model visualization and
visual model building, and visualizing simple temporal net-
works. We also will use PlanWorks’ plugin system to create
planner-specific views of decision structures and heuristics.

We believe that features like automated examination of
the constraint network and its execution trace to determine
nogoods and the ability to alter the plan state during plan-
ner execution through the planner control mechanism will
greatly add value.

Aver
As Aver becomes a more integral part of EUROPA2’s test
suite, we will add features to extend it’s power. In particular,
extending the step specification to deal with properties of

Figure 4: Top: The inTank token. Bottom: The erroneous
inPipe token.

Batch::inTank {
meets(object.shiftingToPipe stp);
//should be a constraint here
//requiring that the pipe
//have the current tank as an endpoint
starts(Resource.change tx)
eq(tx.quantity, 1);
if(object.m_product == lco) {
eq(tx.object, m_tank.m_lco);

}
if(object.m_product == gasoline) {
eq(tx.object, m_tank.m_gasoline);

}
//...

}

Figure 5: An erroneous rule.
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bool b;
if(b == true) {
PipeSegment p1 : {
eq(p1.m_to, m_tank);

}
eq(stp.m_pipe, p1);

}
if(b == false) {
PipeSegment p2 : {
eq(p2.m_from, m_tank);

}
eq(stp.m_pipe, p2)

}

Figure 6: Existential quantification to fix the model.

Figure 7: The inPipe token correctly constrained.

the step beyond just its number would reduce the fragility
of Aver tests as well as allowing for implicative assertions,
which are much more useful when verifying models.

We will extend the query capabilities to include struc-
tural assertions (entities with properties X are connected to
things with properties Y ), add configurable transaction sets
to allow querying for custom transactions, and allow queries
based on the model types of entities.

The assertion mechanism will be improved to allow for
arithmetic expressions and disjunctive assertions, as well as
optional assertions.
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Abstract

This contribution reports on the considerable effort made re-
cently towards extending and applying well-established timed
automata technology to optimal scheduling and planning
problems. The effort of the authors in this direction has to a
large extent been carried out as part of the European projects
VHS (VHS 2005) and AMETIST (AMETIST 2005) and are
available in the recently released UPPAAL CORA (UPPAAL
CORA 2005), a variant of the real-time verification tool UP-
PAAL (Larsen, Pettersson, & Yi 1997; Behrmann, David, &
Larsen 2004) specialized for cost-optimal reachability for the
extended model of so-called priced timed automata.

Introduction and Motivation
Since its introduction by Alur and Dill (Alur & Dill 1994)
the model of timed automata has established itself as a stan-
dard modeling formalism for describing real-time system
behaviour. A number of mature model checking tools (e.g.
KRONOS, UPPAAL, IF (Bozgaet al. 1998; Larsen, Petters-
son, & Yi 1997; IF 2005)) are by now available and have
been applied to the quantitative analysis of numerous indus-
trial case-studies (UPPAAL 2005).

An interesting application of real-time model checking
that has recently been receiving substantial attention is to
extend and retarget the timed automata technology towards
optimal scheduling and planning. The extensions include
most importantly an augmentation of the basic timed au-
tomata formalism allowing for the specification of the ac-
culumation of cost during behavior (Behrmannet al. 2001a;
Alur, La Torre, & Pappas 2001). The state-exploring algo-
rithms have been modified to allow for “guiding” the (sym-
bolic) state-space exploration in order that “promising” and
“cheap” states are visited first, and to apply branch-and-
bound techniques (Behrmannet al. 2001b) to prune parts
of the search tree that are guaranteed not to improve on so-
lutions found so far. Also new symbolic data structures al-
lowing for efficient symbolic state-space representation with
additional cost-information have been introduced and im-
plemented in order to efficiently obtain optimal or near-
optimal solutions (Larsenet al. 2001). Within the VHS and
AMETIST projects successful applications of this technology

∗Work partially done within the European IST project
AMETIST.

have been made to a number of benchmark examples and in-
dustrial case studies. With this new direction, we are enter-
ing the area of Operations Research with a well-established
and extensive list of existing techniques (MILP, constraint
programming, genetic programming, etc.). However, what
we put forward is a completely new and promising technol-
ogy based on the efficient algorithms/data structures coming
from timed automta analysis, and allowing for very natu-
ral and compositional descriptions of highly non-standard
scheduling problems with timing constraints.

Abstractly, a scheduling or planning problem may be un-
derstood in terms of a number ofobjects(e.g. a number of
different cars, persons) each associated with various distin-
guishing attributes (e.g. speed, position). The possible plans
solving the problem are described by a number ofactions,
the execution of which may depend on and affect the val-
ues of (some of) the objects attributes. Solutions, or feasible
schedules, come in (at least) two flavors:

Finite Schedule:a finite sequence of actions that takes the
system from the initial configuration to one of a desig-
nated collection of desired final configurations.

Infinite Schedule:an infinite sequence of actions that –
when starting in the initial configuration – ensures that
the system configuration stays indefinitely within a desig-
nated collection of desired configurations.

In order to reinforce quantitative aspects, actions may
additionally be equipped with constraints on durations and
have associated costs. In this way one may distinguish dif-
ferent feasible schedules according to their accumulated cost
or time (for finite schedules) or their cost per time ratio in the
limit (for infinite schedules) in identifyingoptimal sched-
ules. It is understood that independent actions, in terms of
the set objects the actions depend upon and may affect, may
overlap time-wise.

One concrete scheduling problem is that of optimaltask
graph scheduling(TGS) consisting in scheduling a number
of interdependent tasks (e.g. performing some arithmetic
operations) onto a number of heterogenous processors. The
interdependencies state that a task cannot start executingbe-
fore all its predecessors have terminated. Furthermore, each
task can only execute on a subset of the processors. An ex-
ample task graph with three tasks is depicted in Figure 1.
The taskt3 cannot start executing until both taskst1 andt2
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t1
(3,−)

t2
(−, 5)

t3
(10, 7)

Processor costs:
Processor 1 - Idle: 2 - InUse: 5
Processor 2 - Idle: 1 - InUse: 4

Figure 1: Task graph scheduling problem with 3 tasks and 2
processors.

have terminated. The available resources are two processors
p1 andp2. The tasks (nodes) are annotated with the required
execution times on the processors, that is,t1 can only exe-
cute onp1, t2 only onp2 while t3 can execute on bothp1 and
p2. Furthermore, the idling costs per time unit of the proces-
sors are 2 and 1, respectively, and operations costs per time
unit are 5 and 4, respectively.

Now, scheduling problems are naturally modeled using
networks of timed automata. Each object is modelled as
a separate timed automaton annotated with local, discrete
variables representing the attributes associated with theob-
ject. Interaction often involves only a few objects and can
be modeled as synchronizing edges in the timed automata
models of the involved objects. Actions involving time dura-
tions are naturally modeled using guarded edges over clock
variables. Furthermore, operation costs can be associated
with states and edges in the model of priced timed automata
(PTA) which was, independently, introduced in (Behrmann
et al. 2001a) and (Alur, La Torre, & Pappas 2001). The sep-
aration of independent objects into individual processes and
representing interaction between objects as synchronizing
actions allows timed automata to make explicit the control
flow of scheduling problems. In turn, this makes the models
intuitively understood and easy to communicate. Figure 2
depicts PTA models for the task graph in Figure 1 and is
explained in detail in Section .

The outline of the remainder of the paper is as follows:
in Sections 2 and 3 we introduce the model of PTA, the
problem of cost-optimal reachability and sketches the sym-
bolic branch-and-bound algorithm used by UPPAAL CORA
for solving this problem. Then in Section 4 we show how to
model a range of generic scheduling problems using PTA,
provide experimental evaluation and describe two industrial
scheduling case-studies. Finally, in Section 5, we comment
on other PTA-related optimization problems to be supported
in future releases of UPPAAL CORA.

Priced Timed Automata
In this section we give a more precise and formal definition
of priced timed automata (PTA) and their semantics1. LetX
be a set of clocks. Intuitively, a clock is a non-negative real
valued variable that can be reset to zero and increments at a

1We ignore the syntactic extensions of discrete variables and
parallel composition of automata and note that these can be added
easily.

fixed rate with the passage of time. A priced timed automa-
ton overX is an annotated directed graph with a vertex set
L, an edge setE and a distinguished vertexl0 ∈ L called
the initial location. In the tradition of timed automata, we
call verticeslocations. Edges are labelled with guard expres-
sions and a reset set. A guard is a conjunction of simple con-
straintsx ⊲⊳ k, wherex is a clock inX, k is a non-negative
integer value, and⊲⊳ ∈ {<,≤,=,≥, >}. We say that an
edge is enabled if the guard evaluates to true and the source
location is active. A reset set is a subset ofX. The intuition
is that the clocks in the reset set are set to zero whenever the
edge is taken. Finally, locations are labelled with invariants.
An invariant is a conjunction of simple conditionsx ≺ k,
wherex is a clock inX, k is a non-negative integer-value,
and≺ ∈ {<,≤}. Intuitively, an invariant must evaluate
to true whenever its location is active. The previous defini-
tion is in fact that of a timed automaton. To form a priced
timed automaton, we annotate the edges and the locations
with costs and cost rates, respectively. Formally, this is done
by introducing a functionP : L ∪ E → N0.

The semantics of a PTA is easily defined as apriced
transition system. Transitions of a priced transition system
are labelled with a non-negative real-valued costp. We
skip the formal definition of a priced transition system
and proceed with the semantics of PTA. A state of a PTA
contains the active locationl ∈ L and a valuation of all
clocksv : X → R≥0 such that the invariant ofl evaluates
to true for v. There are two types of transitions:edge
transitionsand delay transitions. Edge transitions are the
result of following an enabled edge in the PTA. As a result,
the destination location is activated and the clocks in the
reset set are set to zero. The cost of the transition is given
by the cost of the edge.
More formally, we have(l, v)→p (l′, v′) if there is an edge
e from l to l′, such that the guard ofe evaluates to true in
the source state(l, v), v′ is derived fromv by resetting all
clocks in the reset set ofe, andp = P (e) is the cost of the
edge.

Delay transitions are the result of the passage of time
and do not cause a change of location. A delay is only
valid if the invariant of the active location is satisfied by all
intermediate states. The cost of a delay transition is given
by the product of the length of the delay and the cost rate of
the active location.

More formally, we have(l, v)
δ
→p (l, v′) if p = δ · P (l), v′

is derived fromv by incrementing all clocks byδ and the
invariant ofl is satisfied by(l, v), (l, v′) and all intermediary
states.

Finally, the initial state iss0 = (l0, v0), where l0 is
the initial location, andv0 evaluates to zero for all clocks.
For networks of timed automata we use vectors of locations
and the cost rate of a vector is the sum of cost rates in
locations.
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Figure 2: Screen shot of the UPPAAL CORA simulator for the task graph scheduling problem of Figure 1.

Optimal Scheduling
We now turn to the definition of the optimal reachability
problem for PTA and provide a brief and intuitive overview
of UPPAAL CORA’s branch and bound algorithm for cost-
optimal reachability analysis.

Cost-optimal reachability is the problem of finding the
minimum cost of reaching a given goal location. More for-
mally, an execution of a PTA is a path in the priced transi-
tion system defined by the PTA, i.e.,α = s0

a1→p1
s1

a2→p2

s2 · · ·
an→pn

sn. The cost,cost(α), of executionα is the
sum of all the costs along the execution. The minimum cost,
mincost(s) of reaching a states is the infimum of the costs
of all finite executions froms0 to s. Given a PTA with lo-
cationl, thecost-optimal reachability problemis to find the
largest costk such thatk ≤ mincost((l, v)) for all clock
valuationsv.

Since clocks are defined over the non-negative reals, the
priced transition system generated by a PTA can be un-
countably infinite, thus an enumerative approach to the cost-
optimal reachability problem is infeasible. Instead, we build
upon the work done for timed automata by usingpriced
symbolic states. Priced symbolic states provide symbolic
representations of possibly infinite sets of actual states and
their association with costs. The idea is that during explo-
ration, the infimum cost along a symbolic path (a path of
symbolic states) is stored in the symbolic states itself. If
the same state is reached with different costs along differ-

COST :=∞
PASSED := ∅
WAITING := {S0}
while WAITING 6= ∅ do

select S ∈WAITING //based on branching strategy
C← mincost(S)
if PASSED≤/dom S and C + remain(S) < COST then

PASSED← PASSED∪ {S}
if S ∈ GOAL then

COST← C
else

WAITING ← {S ′ | S ′ ∈WAITING or S → S ′}
return COST

Figure 3: branch and bound algorithm.
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ent paths, the symbolic states can be compared, discarding
the more expensive state. Analogous to timed automata,
the priced symbolic states we encounter for PTA are rep-
resentable by simple constraint systems over clock differ-
ences (often refered to as a clock-zone in the timed automata
literature). The cost is given by an affine plane over the
clock-zone. For a formal description of priced symbolic
states and priced zones we refer to (Larsenet al. 2001;
Rasmussen, Larsen, & Subramani 2004).

In UPPAAL CORA, cost-optimal reachability analysis is
performed using a standard branch and bound algorithm.
Branching is based on various search strategies implemented
in UPPAAL CORA which, currently, are breadth-first, ordi-
nary, random, or best depth-first with or without random
restart, best-first, and user supplied heuristics. The latter
enables the user to annotate locations of the model with a
special variable calledheur and the search can be ordered
according to either largest or smallestheur value. Bound-
ing is based on a user-supplied, lower-bound estimate of the
remainingcost to reach the goal from each location.

The algorithm depicted in Figure 3 is the cost-optimal
reachability algorithm used by UPPAAL CORA. It main-
tains a PASSED-list of elements that have been explored and
a WAITING -list of elements that need to be explored and is
instantiated with the initial symbolic stateS0. The variable
COST holds the currently best known cost of reaching the
goal location; initially it is infinite. The algorithm iterates
until no more states need to be explored. Inside the while-
loop we select and remove a state,S, from WAITING based
on the branching strategy. IfS is dominated2 by another
state that has already been explored or it is not possible to
reach the goal with a lower cost than COST, we skip this
state. Otherwise, we addS to PASSED and if S is a goal
location we update the best known cost to the best cost inS.
If not, we add all successors ofS to WAITING and continue
to the next iteration.

Modeling
As mentioned earlier, one of the main strengths of using
priced timed automata for specifying and analyzing schedul-
ing problems is the simplicity of the modeling aspect. In this
section, we show how to model generic scheduling prob-
lems, provide experimental results, and describe two indus-
trial case studies.

Scheduling problems often consist of a set of passive ob-
jects, called resources, and a set of active objects, called
tasks. The resources are passive in the sense that they
provide a service that tasks can utilize. Traditionally, the
scheduling problem is to complete the tasks as fast as pos-
sible using the available resources under some constraints,
e.g. limited availability of the resource, no two tasks can,
simultaneously, use the same resource, etc. The models we
provide in this section are all cost extensions of the classical
scheduling problem.

2A state,S ′, dominates another state,S, if S ′ contains at least
the same actual states asS, all of which have been reached with a
lower cost.

InUse

c <= busy

Idle

c == busy

done! start?

DoneUsingInit
done?start!

busy = x

a) b)

Synchronization

Guard
Invariant

Variable update

Figure 4: a) Resource template with clockc. b) Task tem-
plate.

A generic resource model (see Figure 4a) is a two-location
cyclic process with a single local clock,c. The two loca-
tions indicate whether the resource isIdle or InUse. The
resource moves fromIdle to InUse, when a task initiates a
synchronization over the channelstart and in the process,
c is reset. The resource will maintainInUse until the clock
reaches some usage time,busy, it then initiates synchroniza-
tion over the channeldone.

A generic task model (see Figure 4b) is an acyclic process
progressing from an initial location,Init, to a final location
Done, indicating that the task is complete. Intermediate lo-
cations describe acquiring resources and releasing them, i.e.
the task will transit to stateUsing by initiating synchroniza-
tion over astart channel and setting thebusy variable of
the resource. The task will remain here until the resource
initiates synchronization using thedone channel.

To solve the scheduling problem, we pose the reachability
question of whether we can reach a state in which all tasks
are in the locationDone. In the following three sections we
present some classical scheduling problems, all of which are
slight modifications of the generic templates.

Job Shop Scheduling
Problem: We are given a number of machines (resources)
and a number jobs (tasks) with corresponding recipes. A
recipe for a job dictates the subset of machines that the job
should be processed by, the order in which the processing
should happen, and the duration of each processing step.
Now, the scheduling problem is to assign to each job
a starting time for every required machine such that no
machine is occupied by two jobs at the same time.
Cost:The model can be extended with costs by assigning to
each machine an idling cost and a operation cost.
Modeling: Figure 5a depicts a job and a machine. The
model of the machine is identical to the resource template,
except that both locations have been extended with cost
rates. The job model is a “serial” composition of the
task template, i.e. the job serially requests the machines
described by the recipe, in this case machines 0, 1, and 2 for
7, 5, and 15 time units, respectively.

Task Graph Scheduling
Problem:This problem is described in Section .
Cost: We assign to each processor an energy consumption
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rate while idle and while executing. Now, the overall
objective is to find the schedule that minimizes the total cost
while respecting a global (or task individual) deadline.
Modeling: The models for a task and a processor are
depicted in Figure 2. Again, the processor model is an exact
instance of the resource template with added cost rates.
Tasks 1 and 2 are exact instances of the task template, while
task 3 is not. The reason is that tasks 1 and 2 can only
execute on one processor each, while task 3 can execute
on both, thus, task 3 is an extension of the task template
with a nondeterministic choice between the processors.
Furthermore, the edges leaving the initial state have been
extended with a guard specifying the dependencies of the
task graph, i.e. task 3 requires tasks 1 and 2 to be finished,
f[1] && f[2].

Aircraft Landing
Problem: Given a number of aircrafts (tasks) with desig-
nated type and landing time window, assign a landing time
and runway (resource) to each aircraft such that the aircraft
lands within the designated time window while respecting
a minimum wake turbulence separation delay between
aircrafts of various types landing on the same runway.
Cost: The cost extended problem associates with each
aircraft an additional target landing time corresponding
to approaching the runway at cruise speed. Now, if an
aircraft is assigned a landing time earlier than the target
landing time, a cost per time unit is incurred, corresponding
to powering up the engines. Similarly, if an aircraft is
assigned a later landing time than the target landing time a
cost per time unit is added corresponding to increased fuel
consumption while circling above the airport.
Modeling: Figure 5b depicts a runway that can handle
aircrafts of types B747 and A420, and an aircraft with target
landing time 153, type A420 and time window [129,559].
Unlike the other models, the runway model has only a
single location in its cycle indicating both that the resource
is IdleAndInUse. A single location is used since the
duration that a runway is occupied depends solely on the
types of consecutively landing aircrafts. Thus, the runway
maintains a clock per aircraft type holding the time since
the latest landing of an aircraft of the given type and access
to the runway is controlled by guards on the edges. The
nondeterminism of the aircraft model does not distinguish
between the runway to use, but whether to land early
([129,153]) or late ([153,559]). Choosing to land early, the
aircraft model moves to theOnTime location and must
remain here until the target landing time while incurring
a cost rate per time unit for landing early, similarly, the
aircraft can choose to land late and move toDelayed may
remain there until the latest landing time while paying a
cost rate for landing late.

PTA versus MILP
We only provide experimental results for the aircraft land-
ing problem comparing the PTA approach to that of MILP.
For performance results of the job shop and task graph

RW Planes 10 15 20 20 20 30 44
Types 2 2 2 2 2 4 2

1 MILP (s) 0.4 5.2 2.7 220.4 922.0 33.1 10.6
MC (s) 0.8 5.6 2.8 20.9 49.9 0.6 2.2
Factor 2.0 1.08 1.04 10.5 18.5 55.2 48.1
MILP (s) 0.6 1.8 3.8 1919.9 11510.4 1568.1 0.2

2 MC (s) 2.7 9.6 3.9 138.5 187.1 6.0 0.9
Factor 4.5 5.3 1.02 13.9 61.5 261.3 4.5

3 MILP (s) 0.1 0.1 0.2 2299.2 1655.3 0.2 N/A
MC (s) 0.2 0.3 0.7 1765.6 1294.9 0.6
Factor 2.0 3.0 3.5 1.30 1.28 3.0

4 MILP (s) N/A N/A N/A 0.2 0.2 N/A N/A
MC (s) 3.3 0.7
Factor 16.5 3.5

Figure 6: Computational result for the aircraft landing prob-
lem using PTA and MILP on comparable machines.

scheduling problems, we refer to (Behrmannet al. 2001b;
Rasmussen, Larsen, & Subramani 2004; Abdeddaim, Ker-
baa, & Maler 2003).

Figure 6 displays experimental results for various in-
stances of the aircraft landing problem using MILP and PTA.
The results for MILP have been taken from (Beasleyet al.
2000) and the results for PTA have been executed on a com-
parable computer. Factors in bold indicate the performance
difference in favor of PTA and similarly for italics and MILP.
The experiments clearly indicate that PTA is a competi-
tive approach to solving scheduling problems and for one
non-trivial instance it is even more than a factor 250 faster
than the MILP approach. However, the required computa-
tion time of the PTA approach grows exponentially with the
number of added runways (and thus clocks) while no similar
statement can be made for the MILP approach. Thus, PTA
is a promising method for solving scheduling problems, but
further experiments need to be conducted before saying any-
thing more conclusive.

Industrial Case Study: Steel Production

Problem: Proving schedulability of an industrial plant via
reachability analysis of a timed automaton model was first
applied to the SIDMAR steel plant, which was included as
a case study of the Esprit-LTR Project 26270 VHS (Verifi-
cation of Hybrid Systems). The plant consists of five pro-
cessing machines placed along two tracks and a casting ma-
chine where the finished steels leaves the system. The tracks
and machines are connected via two overhead cranes. Each
quantity of raw iron enters the system in a ladle and depend-
ing on the desired final steel quality undergoes treatments in
the different machines for different durations. The planning
problem consists in controlling the movement of the ladles
of steel between the different machines, taking the topology
(e.g. conveyor belts and overhang cranes) into considera-
tion.

Performance:A schedule for three ladles was produced
in (Fehnker 1999) for a slightly simplified model using UP-
PAAL. In (Hune, Larsen, & Pettersson 2001) schedules for
up to 60 ladles were produced also using UPPAAL. However,
in order to do this, additional constraints were included that
reduce the size of the state-space dramatically, but also prune
possibly sensible behavior. A similar reduced model was
used by Stobbe (Stobbe 2000) using constraint program-
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a) Job: Machine:
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busy[1] = 5
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c <= busy[1]
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c == busy[1]
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time <= 153

Delayed time <= 559 &&
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Done
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land[A420]!
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c[0] = 0

land[A420] ?
c[1] = 0
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c[0] = 0

c[0] >=wait[B747][A420] &&
c[1] >= wait[A420][A420]

land[A420] ?
c[1] = 0

Figure 5: Priced timed automata models for two classical scheduling problems.

ming to schedule 30 ladles. All these works only consider
ladles with the same quality of steel. In (Behrmannet al.
2001b), using a search order based on priorities, a schedule
for ten ladles with varying qualities of steels is computed
within 60 seconds cpu-time on a Pentium II 300MHz. The
initial solution found is improved by 5% within the time
limit. Allowing the search to go on for longer, models with
more ladles can be handled.

Industrial Case Study: Lacquer Production
Problem:The problem was provided by an industrial part-
ner of the European AMETIST project as a variation on job
shop scheduling. The task is to schedule lacquer production.
Lacquer is produced according to a recipe involving the use
of various resources, possibly concurrently, see Figure 7.An
orderconsists of a recipe, a quantity, an earliest starting date
and a delivery date. The problem is then to assign resources
to the order such that the constraints of the recipes and of
the orders are met. Additional constraints are provided by
the resources, as they might require cleaning when switch-
ing from one type of lacquer to another, or might require
manual labor and thus are unavailable during the night or in
weekends.

Cost:The cost model is similar to that of the aircraft land-
ing problem. Orders finished on the delivery date do not in-
cur any costs (except regular production costs which are not
modeled as these are fixed). Orders finishing late are subject
to delay costsand orders finishing too early are subject to
storage costs. Cleaning resources might generate additional
costs.

Modeling: Resources are modeled using the resource

d o s e s p i n n e rl a bf i l l i n g s t a t i o n
d i s p e r g i n g l i n ed i s p e r s e r

w a i ta r b i t r a r y ,i f n o t s p e c i f i e ds y n c h r o n i z e
m i x i n g v e s s e l u n i

[ 0 , 4 ]

[ 2 , 4 ]

1 1 . 0 25 . 1 87 . 3 52 3 . 9 52 5 . 6 9
[ 6 , 6 ]4 8 . 9 8

2 6 . 4 4

Figure 7: A lacquer recipe. Each bar represents the use of
a resource. Horizontal lines indicate synchronization points.
Timing constraints for how long resources are used or sep-
aration times between the use of resources can be provided
either as a fixed time or time window.
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template. Resources requiring cleaning are extended with
additional information to keep track of the last type of lac-
quer produced on the resource. Cleaning costs are typically
a fixed amount and are added to the cost when cleaning is
performed. Orders are modeled similarly to tasks in the task
graph scheduling problem, except that multiple resources
may be acquired simultaneously. Storage and delay costs
are modeled similarly to costs in the aircraft landing prob-
lem.

Other Optimization Problems
At present UPPAAL CORA supports cost-optimal location-
reachability for PTAs. However, a number of other opti-
mization problems are planned to be included in future re-
leases.

For several planning problems the objective is torepeat
a treatment or processindefinitelyand to do so in a cost-
optimal manner. Now letα = s0

a1→p1
s1

a2→p2
s2 · · ·

an→pn

sn · · · be an infinite execution of a given PTA, letcn (tn)
denote the accumulated cost (time) aftern steps (i.e.cn =∑n

i=1
pi). Then the limit ofcn/tn whenn → ∞ describes

the cost per time ofα in the long run and is the cost ofα.
The optimization problem is to determine the (value of the)
optimal such infinite executionα∗. In (Bouyer, Brinksma,
& Larsen 2004) this problem has been shown decidable for
PTA using an extension of the so-called region-technique.
Though this technique nicely demonstrates decidability of
the problem (and many other decision problems for timed
automata) it does not provide a practical implementation,
which is still to be identified. However a method for de-
terminingapproximate optimalinfinite schedules have been
identified and applied to the synthesis of so-called Dynamic
Voltages Scaling scheduling strategies.

Optimization problems may involvemultiple cost vari-
ables (e.g. money, energy, pollution, etc.). Currently UP-
PAAL CORA is only capable of optimizing with respect to
single costs. However, for scheduling problems with multi-
ple costs, there might well be several optimal solutions due
to “negative” dependencies between costs: minimizing one
cost-variable (e.g. money) might maximize others (e.g. pol-
lution). In (Larsen & Rasmussen 2005) an extension of the
priced zone technology for PTA has been extended to multi-
price TA allowing efficient synthesis of solutions optimal
with respect to a chosenprimary cost-variable but subject
to user-specified upper bounds on the remainingsecondary
cost-variables.

Finally, scheduling problems may involveuncertainties
due to certain actions being under the control of an adver-
sary. In this case the (optimal) scheduling problem is a
game-theoretic problem consisting of determining a winning
and optimal strategy for how to respond to any action cho-
sen by this adversary. In (Bouyeret al. 2004a) the prob-
lem of synthesizing optimal, winning strategies for priced
timed games has been shown to be computable under cer-
tain non-zenoness assumptions. However, the problem is
not solvable using zone-based technology, but needs general
polyhedral support in order to represent the optimal strate-
gies (see (Bouyeret al. 2004b) for a methodology using

HYTECH).
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Abstract

We propose a methodology for testing conformance of an im-
portant class of real-time applications in an automatic way.
The class includes all applications for which a specification
is available and can be translated into a network of timed au-
tomata. The method relies on the automatic generation of an
observer from the specification on one hand, and the instru-
mentation of the system to be tested on the other hand. The
testing process consists in feeding the traces generated bythe
instrumented system to the observer, which is a testing de-
vice, used to check conformance of a trace with respect to the
specification. We have validated the approach on the NASA
K9 Rover case study.

Introduction
Computer-aided verification of programs has been studied
for decades by the formal method research community. Dif-
ferent models and specification languages have been pro-
posed to describe systems and express desired properties
about them in a precise way. The expressivity and the appli-
cability of such models to various domains has been studied.
It has been realized quite early, however, that the approach
suffers from two fundamental problems of intractability.
First, undecidability, because of Turing-machine expressive-
ness of many infinite-state models. Second, intractability
because ofstate-explosion, that is, prohibitively large state
spaces to be explored. A large effort then concentrated in
tackling these problems, resulting in a number of significant
advances. Powerful theorem-proving techniques, (semi-
)automatic abstractions, symbolic representations of state
space, on-the-fly algorithms, compositional and assume-
guarantee methods, etc. Despite these, intractability remains
a major obstacle to the applicability of formal verification.

Another major obstacle is the fact that for a number of
systems, a formal model simply does not exist and is too
difficult or costly to build.

A complementary or alternative approach widely used in
the industry today is testing. Testing is less ambitious than
verification, in the sense that it only aims at finding bugs,

∗Work partially supported by European IST projects “Next
TTA” under project No IST-2001-32111 and “RISE” under project
No IST-2001-38117, and by CNRS STIC project “CORTOS”.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

and not at proving correctness. Indeed, most test methods
are not complete (i.e., the system cannot be guaranteed to be
correct even if it passes all tests). Nevertheless, confidence
in the correctness of the system increases as the number of
successful tests increases (Zhu, Hall, & May 1997). This
feature of testing is particularly appealing to the industry,
because it allows engineers to decide how much effort to put
in validation, in contrast to an “all-or-nothing” verification
approach.

Moreover, testing does not require a model of the system
under test (SUT). Most testing methods are “black box”, in
the sense that the only knowledge about the SUT is its in-
terface to the outside world (set of inputs and outputs). A
model of the specification is necessary for automated test
generation, however, this model is usually finite state and
much smaller than a model of the SUT. This, and the feature
above, makes testing tractable.

In this paper, we propose a new methodology of dynamic
testing for real-time applications. It is dynamic in the sense
that it makes use of instrumentation of the SUT and of run-
time verification technology. The class of systems we are
targetting includes all systems where a specification exists
and can be translated into (or given directly as) a network of
timed automata (TA) (Alur & Dill 1994). Many instances of
such systems can be found in the domain of robotics. There,
aplandefines the steps to be performed to achieve a mission,
and also gives detailed information about order, timing, etc.,
of these steps. The plan is fed as an input to anexecution
platform(the term includes software, middleware and hard-
ware) which must implement it, by performing the specified
steps in the specified timing and order. Thus, the plan can be
taken to be the specification and the platform executing this
plan to be the SUT.

Our methodology is illustrated in Figure 1 and is de-
scribed in detail in the next section. Let us briefly summa-
rize it here. The starting point is a plan, which is taken to be
a high-level specification. This plan is automatically trans-
lated into a TA model. From the latter anobserveris auto-
matically synthesized. The observer is also a testing device,
that is, it checks whether a sequence of observations (with
time-stamps) conforms to the specification. The execution
platform is instrumented, so that it can be interfaced with
the observer. This interface must essentially export observ-
able events and time-stamps for these events. The final step
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is the testing itself. It can be done: (1) either on-the-fly, by
running the plan on the instrumented execution platform and
feeding the observations to the observer; (2) or off-line, by
generating a set of “log-traces” from the execution platform,
then feeding these traces to the observer one by one.

The main advantage of our method is that it is potentially
fully-automatic. Plans can be automatically translated into
networks of TA (A. Akhavan & Orfanidou 2004). Observers
for TA can be generated automatically, as we show here. For
the case study reported in this paper, we relied on the help of
Klaus Havelund and Rich Washington at NASA, for the in-
strumentation of the execution platform and the generation
of the traces. However, it should be possible to automate
this part as well, in the general case, by identifying a map-
ping between platform events and specification events, and
automatically scanning the code, adding event/time-stamp
exporting commands to the identified platform events. Fi-
nally, the observation/testing process is automatic as well.

The rest of the paper is organized as follows. The first part
presents the methodology in detail and a short review of the
model of timed automata. The second part describes plans
and their translation to networks of TA. The third part shows
how observers can be generated automatically from TA. In
the last part, we discusse the application of our method on
the K9 Rover case study, and we conclusions and plans for
future work.

Related work (Artho et al. 2003) report work very much
related to ours. Their scheme is also based on the instru-
mentation of the SUT and the runtime analysis of the instru-
mented SUT using an observer. The starting point of their
method is a test-input generator, which generates inputs to
the instrumented SUT. These inputs are also fed to a prop-
erty generator, which generates properties that the SUT must
satisfy on these particular inputs. The properties and the ex-
ecution traces are fed to an observer, which checks whether
the former are satisfied by the latter. The test-input generator
and the property generator are specifically written for the ap-
plication to be tested, while the instrumentation package and
the observer are generic tools used on different applications.
In one of the two case studies reported in (Arthoet al. 2003),
namely, the K9 rover controller, the inputs are plans like the
ones we use in this paper (see Section ”Case Study”). The
test-input generator generates all possible plans up to given
number of nodes and bounds on timing constraints.

The differences between our work and the work of (Artho
et al. 2003) are as follows:

• (Artho et al. 2003) include a test-input generator and an
instrumentation package in their tool-chain. Our work is
still incomplete in these aspects. For the K9 rover case
study, we have relied on NASA personnel and tools for
the input plans, instrumentation and generation of traces.

• In (Artho et al. 2003), a set of untimed temporal logic
properties are automatically generated from each plan (re-
cently, the work has been extended to real-time temporal-
logic (Barringeret al. 2003c)). As stated in (Arthoet al.
2003), “property generation is the difficult step in [the]
process” and “[the] set of properties does not fully repre-
sent the semantics of the plan, but the approach appearred

to be sufficient to catch a large amount of bugs”.
In our work, plans are translated into networks of timed
automata. This is a fully-automatic and efficient process,
which captures the full semantics of a plan (A. Akhavan
& Orfanidou 2004). Notice that, once generated, the TA
corresponding to a plan can be also used for other pur-
poses than generating an observer. For instance, to check
whether the plan meets certain properties, measure delays
of various sub-stages, and so on.

• The observer tools used in (Arthoet al. 2003; Barringeret
al. 2003c) (DBRover (Drunsinsky 2000), JPax (Havelund
& Roşu 2001; Bensalem & Havelund 2003), Eagle (Bar-
ringer et al. 2003b; 2003a)), are generic tools. In our
work, we automatically generate an observer for each
plan. This has the potential of optimizing the observer
for the particular plan.

In conclusion, we believe that our work represents an alter-
native that is worth pursuing.

Methodology
Our methodology is mainly focused at testing robotic appli-
cations, such as the NASA K9 Rover (see Section ). Such
applications are often structured in two layers. A high-level
planning layer and a low-levelexecutionlayer. The plan-
ning layer follows an inputplan, which is a detailed de-
scription of the steps needed to accomplish the mission at
hand. The planning layer issues commands to the execution
layer, which tries to implement them and returns the results,
including status information about success or failure. The
planning layer then plans the next steps depending on this
feedback and the instructions in the plan.

Plan

TA
model

�

�

�

�

Platform
Execution

�

�

�

�

Platform
Execution

Instrumented

�

�

�

�

Observer

?

?
?

?

�

?

translation

instrumentationautomatic
generation

automatic

observation/
testing

input

yes/no
diagnostics

execution

Figure 1: Methodology

A number of planning languages for robotic applications
exist, see, for instance (Lyons 1993; Ingrandet al. 1996;
Konolige et al. 1997; Simmons & Apfelbaum 1998; Pe-
terson, Hager, & Hudak 1999; Muscettolaet al. 2002;
Goldman 2002). These languages allow to specify the or-
dering of the steps, their timing, how to handle exceptions
or failures, and so on. Thus, they can be seen as the spec-
ification of the mission. A correct execution platform must
then meet this specification. Our objective is to check this
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by testing. More precisely, our methodology is illustratedin
Figure 1. It consists of the following phases:
1. Automatic generation of a timed-automaton specification

from the plan.

2. Automatic generation of an observer from the timed-
automaton specification.

3. Instrumentation of the system under test, that is, the exe-
cution platform.

4. Execution and testing of the instrumented execution plat-
form.

In the figure, solid arrows represent model and program
transformations and dashed arrows represent data flow (out-
put/input). We elaborate on each of the above phases in what
follows.

The first step is to translate the plan in the form of a timed
automaton, or a network of timed automata (TA). The trans-
lation must preserve the semantics of the plan, that is, the
semantics of the TA and of the plan must be equivalent. It
may also be the case that the TAdefinesthe semantics of the
plan in a formal way, as in (A. Akhavan & Orfanidou 2004)
and this paper.

Having obtained the TA specificationA, the next step con-
sists in generating automatically anobserverfor A. The ob-
server is a testing device. It observes the system under test
(SUT) and checks whether the trace generated by the SUT
conforms toA. The observed traces are sequences of ob-
servable events and associated time-stamps. The accuracy
of the time-stamps depends on the accuracy of the clocks
of the observer. In this paper, we consider two types of ob-
servers (we follow the terminology of (Henzinger, Manna,
& Pnueli 1992)).Analogobservers, which can observe real-
time precisely, anddigital (or periodic-sampling) observers,
which measure time with a clock ticking at a given period.
Digital-clock observers are clearly more realistic to imple-
ment, since in practice the observer will only have access to
a finite-precision clock. However, analog-clock observers
are still useful, for instance, when the implementation is
discrete-time but its time step is not known a-priori.

An observed trace conforms toA if it can possibly be gen-
erated byA. Notice thatA is typically modeled as a network
of TA, which induces non-determinism and internal commu-
nication between the automata. These are artifacts of the
model, irrelevant to the external behavior and to the specifi-
cation itself. Thus, we “hide” them, by considering them as
unobservable events. This means that the observer checks if
the observed trace is a possible observation resulting from
some trace ofA.

The third step is the instrumentation of the execution plat-
form. It aims at interfacing the latter with the testing device
(the observer). Two possibilities exist here. Either testing
is performedon-the-fly(or on-line), that is, during execu-
tion of the platform, which is connected to the observer at
real-time. Or it is performedoff-line, that is, by first execut-
ing the platform multiple times to obtain a set oflog-traces,
then feeding these traces to the observer. In both cases, the
instrumented platform must be able to expose a set of ob-
servable events to the observer. In the case of testing off-
line, the platform must also record the time-stamps of these

events. For testing on-line, time-stamping can be done by
the platform or by the observer. In the latter case, possible
interfacing delays must be taken into account.

Instrumentation can be done manually or automatically.
Depending on the complexity of the SUT, it can be a non-
trivial task. Care should be taken so that the instrumentation
does not itself alter the behavior of the system. For instance,
the overhead of added code should be minimal, so as not to
affect execution times of the tasks in the system. These are
problems inherent in any instrumentation process, and are
beyond the scope of this paper.

The final step is the testing procedure per-se. The traces
generated by the instrumented platform are fed to the ob-
server, either in real-time (for on-the-fly testing) or off-line.
The observer checks conformance of each trace. If a trace is
found non-conforming to the specification, the SUT is non-
conforming. Otherwise, no conclusion can be made. How-
ever, confidence to the correctness of the SUT is increased
with the number of tests. Obtaining arepresentativeset of
tests, so that somecoveragecriterion is met is an issue in
any testing method (e.g., see (Zhu, Hall, & May 1997)), and
is beyond the scope of the present paper.

Preliminaries
Timed sequences, projections and digitizations Let N
be the set of non-negative integers. LetR be the set of non-
negative rational numbers.

Consider a finite set ofactionsΣ. RT(Σ) (resp.,DT(Σ))
is defined to be the set of all finite-lengthreal-time se-
quences(resp.,discrete-time sequences) overΣ, that is, se-
quences of the form(a1, t1) · · · (an, tn), wheren ≥ 0, for
all 1 ≤ i ≤ n, ai ∈ Σ and ti ∈ R (resp., ti ∈ N),
and for all 1 ≤ i < j ≤ n, ti ≤ tj . ε will de-
note the empty sequence.ti will be called thetime-stamp
of ai. Notice that time-stamps are relative to the begin-
ning of a sequence. Thus, when concatenating sequences,
they need to be adjusted. More precisely, givenρ =
(a1, t1) · · · (an, tn) andσ = (b1, t

′

1) · · · (bm, t
′

n), ρ · σ is the
sequence(a1, t1) · · · (an, tn)(b1, tn + t′1) · · · (bm, tn + t′m).
The time spent in a sequenceρ, denotedtime(ρ), is the time-
stamp of the last action (zero if the sequence is empty). For
example,time((a, 0.1)(b, 1.2)) = 1.2.

GivenΣ′ ⊆ Σ andρ ∈ RT(Σ) (resp.,DT(Σ)), thepro-
jectionof ρ to Σ′, denotedPΣ′(ρ), is a sequence inRT(Σ′)
(resp., DT(Σ′)), obtained by “erasing” fromρ all pairs
(ai, ti) such thatai 6∈ Σ′. For example, ifΣ = {a, b}, Σ′ =
{a} andρ = (a, 0)(b, 1)(a, 3), thenPΣ′(ρ) = (a, 0)(a, 3).
For a set of sequencesL ⊆ RT(Σ) (or L ⊆ DT(Σ)),
PΣobs

(L) = {PΣobs
(ρ) | ρ ∈ L}.

Considerδ ∈ R, δ > 0, andρ ∈ RT(Σ). The digiti-
zation of ρ with respect toδ, denoted[ρ]δ, is a sequence
in DT(Σ), obtained by replacing every pair(ai, ti) in ρ
by (ai, b

ti

δ c), wherebxc is the integral part ofx. For ex-
ample, if ρ = (a, 0.1)(b, 0.9)(c, 1)(d, 2.3), then [ρ]1 =
(a, 0)(b, 0)(c, 1)(d, 2) and [ρ]0.5 = (a, 0)(b, 1)(c, 2)(d, 4).
For a set of sequencesL ⊆ RT(Σ), [L]δ = {[ρ]δ | ρ ∈ L}.

Timed automata We use timed automata (TA) (Alur &
Dill 1994) with deadlinesto model urgency (Sifakis &
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Yovine 1996; Bornot, Sifakis, & Tripakis 1998). Atimed au-
tomaton overΣ (TA) is a tupleA = (Q, q0, X,Σ,E) where
Q is a finite set oflocations; q0 ∈ Q is the initial location;X
is a finite set ofclocks; E is a finite set ofedges. Each edge
is a tuple(q, q′, ψ, r , d , a), whereq, q′ ∈ Q are the source
and destination locations;ψ is theguard, a conjunction of
constraints of the formx#c, wherex ∈ X , c is an integer
constant and# ∈ {<,≤,=,≥, >}; r ⊆ X is the clockre-
set; d ∈ {lazy, delayable, eager} is thedeadline; anda ∈ Σ
is the action. Intuitively,eagertransitions must be executed
as soon as they are enabled and waiting is not allowed;lazy
transitions do not impose any restriction on time passing;
finally, when adelayabletransition is enabled, waiting is al-
lowed as long as time progress does not disable it. We will
not alloweager edges with guards of the formx > c.

A TA A defines an infinite labeled transition system
(LTS). Its states are pairss = (q, v), whereq ∈ Q and
v : X → R is a clockvaluation. ~0 is the valuation assign-
ing 0 to every clock ofA. SA is the set of all states and
sA
0 = (q0,~0) is the initial state. There are two types of tran-

sitions:

• discrete transitions of the form(q, v)
a
→A (q′, v′), where

a ∈ Σ and there is an edge(q, q′, ψ, r , d , a), such thatv
satisfiesψ andv′ is obtained by resetting to zero all clocks
in r and leaving the others unchanged;

• timed transitions of the form(q, v)
t
→A (q, v + t), where

t ∈ R, t > 0 and there is no edge(q, q′′, ψ, r , d , a), such
that: eitherd = delayable and there exist0 ≤ t1 < t2 ≤ t
such thatv + t1 |= ψ andv + t2 6|= ψ; or d = eager and
v |= ψ.

We use notation such ass
a
→A, s 6

a
→A, ..., to denote that

there existss′ such thats
a
→A s′, there is no suchs′, and so

on. This notation extends to sequences inRT(Σ): s
ε
→A s

and ifs
ρ
→A s′ ands′

t
→A

a
→A s′′, thens

ρ·(a,t)
→ A s′′.

A states ∈ SA is reachableif there existsρ ∈ RT(Σ)

such thatsA
0

ρ
→A s. The set of reachable states ofA is

denotedReach(A).
The set oftracesof a TAA overΣ is defined to be

Traces(A) = {ρ ∈ RT(Σ) | sA
0

ρ
→A}. (1)

Let Σobs ⊆ Σ be a set ofobservableactions. The actions in
Σ\Σobs are calledunobservable. The set ofobserved traces
of A with respect toΣobs is defined to be

ObsTraces(A,Σobs) = PΣobs
(Traces(A)). (2)

Givenδ ∈ R, δ > 0, the set ofδ-digital observed tracesof a
TA A is defined to be

DigTraces(A,Σobs , δ) = [ObsTraces(A,Σobs)]δ.(3)

Notice thatTraces(A) ⊆ RT(Σ), ObsTraces(A,Σobs) ⊆
RT(Σobs) andDigTraces(A,Σobs , δ) ⊆ DT(Σobs).

Generating timed-automata from plans
In this section we describe how to obtain TA models from
plans. We give the construction for the concrete language

Plan→ Node
Node→ Block | Task
Block→ (block

NodeAttr
:node-list (Node ... Node))

Task→ (task
NodeAttr
:action Symbol)

NodeAttr→ :id Symbol
:start-condition Condition
:waitfor-condition Condition
:maintain-condition Condition
:end-condition Condition
[:continue-on-failure]

Condition → (time [+] StartTime[+] EndTime)

Figure 2: The concrete grammar of plans.

(block
:id node0
:continue-on-failure
:start-condition ((1 5))
:end-condition ((1 30))
:node-list (

(block
:id node1
:continue-on-failure
:start-condition (1 5))

(block
:id node2
:continue-on-failure
:start-condition (+1 +5)
:end-condition (+1 +30)

)
)
)

Figure 3: A plan example.

of plans performed by the K9 Rover executive, which is ac-
tually our case study (see section ”Case Study”). Neverthe-
less, TA models are general enough to capture most of the
constraints expressed in plan languages.

For the K9 Rover application, a plan is a hierarchical
structure of actions that the executive must perform. Tradi-
tionally, plans are deterministic sequences of actions. How-
ever, increased autonomy requires added flexibility. The
plan language therefore allows branching based on condi-
tions that need to be checked, and also for flexibility with
respect to the starting time of an action. We give here an
example of a language used in the description of the plans
that the executive must execute.

Plan Syntax A plan is a node, a node is either a task, cor-
responding to an action to be executed, or a block, corre-
sponding to a logical group of nodes. Figure 2 shows the
grammar for the language that we considered to describe
plans. All node attributes except the node id are optional.
Each node may specify a set ofconditions. Thestart con-
dition (that must be true at the beginning of the node exe-
cution), thewait-for conditions(wait while the condition is
not true), themaintain condition(that must be true through
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the execution of the node) and theend condition(that must
be true at the end of the node execution). Each condition
includes information about relative or absolute time win-
dow, indicating a lower and upper bound on the time. The
continue-on-failureflag indicates what the behavior will be
if a node failure is encountered.

We propose hereafter a compilation method allowing to
obtain from a plan (that is, a syntactic object) a network of
timed automata (that is, a semantic model) encoding all the
accepted, reasonable executions of that plan.

For sake of simplificity, we consider the following ab-
stract syntax for plans.

Definition 0.1 (plan syntax)
A planP is a tuple(N, δ, λ, n0) where

• N is a finite set of nodes
• δ : N → N∗ is the node decomposition function, defined

such that the image set relation̂δ = {(n, n′)|n′ ∈ δ(n)}
satisfies

– acyclicity: ∀n ∈ N. n 6∈ δ̂+({n})

– disjointness:∀n1, n2 ∈ N,n1 6= n2. δ̂+({n1}) ∩

δ̂+({n2}) = ∅

• λ : N → Σ × I4 × B is the node labeling function,
whereΣ is a set of action labels,I = {[l, u] | l, u ∈ N}
is the set of interval constraints, andB are the booleans.
That is,λ(n) = (an, (sn, wn,mn, en), fn) wherean is
the action symbol,sn, wn, mn, en are respectively the
start, wait-for, maintain and end timed constraints, and
fn is the continue-on-failure flag associated to the node
n.

• n0 ∈ N is the main (or start) node of the plan

Plan Semantics Nodes are executed sequentially. For ev-
ery node, execution proceeds through the following steps :

1. Wait until the start condition is satisfied; if the current
time passes the end of the start condition, the node times
out and this is a node failure.

2. The execution of ataskproceeds by invoking the corre-
sponding action. The action’s status must be fail, if:fail
is true or the time conditions are not met; otherwise, the
status must be success. The execution of a block simply
proceeds by executing each of the node in the node-list in
order.

3. If the time exceeds the end condition, the node fails.

On anode failureoccuring in a sequence, the value of the
enclosing block node’scontinue-on-failureflag is checked.
If true, execution proceeds to the next node in the sequence.
If false, the node failure is propagated to the block enclosing
the node and so on. If the node failure passes out to the top
level block of the plan, the execution is aborted.

We present now the semantics of nodes and plans in terms
of timed automata. The semantics isconstructivein the
sense that, automata can be effectively constructed, depend-
ing on syntactical description of the nodes. The semantics
is alsocompositionalin the sense that, the semantics of the
plan is obtained directly by composing of timed automata
associated to nodes.

ready

?abortn

?abortn

abort

execute

end

fail

!endn

!failn

[[sn]] ∧ [[wn]]

¬[[en]]

¬[[afteren]]

!failn

!failn

[[en]]

?beginn/xn := 0

Figure 4: Timed automaton for the common part.

!an

?abortn

abort

ready

fail

end

execute
¬[[afteren]] ∨ ¬[[mn]]

!failn

Figure 5: Timed automaton for the task specific part part.

¬[[afteren]] ∨ ¬[[mn]]

!abortni

!beginni

?abortn

?abortn

!abortni

?failni
?endni

!failn

abort fail

before ni
¬[[afteren]] ∨ ¬[[mn]]

!failn

execute ni

before ni+1

Figure 6: Timed automaton the pattern for the block specific
part.
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Let us first introduce some notations for some given plan
P = (N, δ, λ, n0). The set of actionsΣP contains the set
of synchronisation actionsbeginn, abortn, failn, endn de-
fined for all nodesn, and the set of elementary actionsan,
defined for task nodesn of the planP .

The set of clocksXP = {xn | n ∈ N} contains one clock
xn for each noden of the plan. This clockxn is set to 0
when the execution of the noden begins. Ifcn = [l, u] is
some constraint of the noden, we will note with [[cn]] the
timed guard(l ≤ xn ∧ xn ≤ u). We note also withafterc
the constraint[−∞, u] where the lower bound ofc has been
removed.

To each noden of P we associate a timed automaton
over clocksXP and actionsΣP . The automaton encodes
the sequential behaviour described by the node execution al-
gorithm. Note that since the execution algorithm is deter-
ministic, the timed automata obtained are deterministic.

Definition 0.2 (node semantics) Figures 6, 5 and 4 illus-
trate the translation. Letn be a node withδ(n) = n1...nk

andλ(n) = (an, (sn, wn,mn, en), fn). The semantics of
the noden is described by the timed automaton for the com-
mon part, shown in the left of the figure. The specific part
is filled according to node attributes as follows. For a task
node (δ(n) = ε), as shown in the top-right part of the fig-
ure. For a block node with continue on failure (fn = true),
as shown in the bottom-right part of the figure. For a block
node without continue on failure (fn = false), as shown in
the bottom-right part of the figure, except that the transition
labeled?failni

leads back to the right-most grey location.
For the sake of simplicity, we represent eager transitions us-
ing solid lines and lazy transitions using dashed lines.! and
? denote communication via CSP-like message passing.

Finally, the semantics of the entire planP is given by the
parallel composition i.e, the network of timed automata de-
fined for all of its nodes. Note that, the product automaton
is deterministic too.

Definition 0.3 (plan semantics) LetP = (N, δ, λ, n0) be
a plan,XP the set of clocks andΣP the set of actions defined
by P . Let Ani

be the timed automata overXP and ΣP

associated to nodesni ∈ N . The semantics of the planP is
given by the networkAn0 ||An1 ||...||Ank

.

An example of a plan and the corresponding timed au-
tomata are given in Figure 7.

Generating observers from timed-automata
In this section, we define two kinds of observers for a TA
specificationA. They are distinguished by their observation
capabilities with respect to time. The first, called analog ob-
servers (the terminology is taken from (Henzinger, Manna,
& Pnueli 1992)) can observe a set of observable actions
and the exact time-stamps of these actions. Thus, these ob-
servers can be thought of possessing a “perfect”, real-time
clock, which they can consult immediately upon observing
an action. The second, called digital observers (or periodic-
sampling observers) can also observe a set of observable ac-
tions, but they only have access to a digital clock, that is,

TA node0 TA node1 TA node2

The plan

mn?abort2

mn?begin2
mnx2 := 0

mn!execute2

mn!fail2

mn[1 ≤ x2 ≤ 5]

mn!success2

mn[x2 ≥ 30]
mn!fail2

mn?begin1
mnx1 := 0

mn!fail1

mn!fail2

mn[x2 ≥ 30]

mn?abort2

mn?abort2

mn[x2 ≥ 30]

mn!fail2

mn?abort2mn?abort1mn!success1

mn?abort1mn!execute1

mn?abort1

mn?abort1mn[1 ≤ x0 ≤ 5]

mn[1 ≤ x2 ≤ 30]

mn?fail2

mn?fail1

mn!fail0

mn!fail0

mn!fail0

mn[x0 ≥ 30]

mn!fail0

mn[x0 ≥ 30]

mn!fail0

mn[x0 ≥ 30]

mn[x0 ≥ 30]

mn!fail0

mn[x0 ≥ 30]

mn[x0 ≥ 30]

mn!abort1!fail0

mn[x0 ≥ 30]

mn!abort2!fail0

mn[x0 ≥ 30]

mn[1 ≤ x0 ≤ 5]

mn[1 ≤ x0 ≤ 30]

mn!success0

mn?success2

mn?success1

mn!begin2

mn!begin1

mn?begin0
mnx0 := 0

mnnode0

mnend(1,30)
mnstart (1,5)

mnnode1

mnstart (+1,+5)
mnend(+1,+30)

mnnode2

mnstart (1,5)

Figure 7: A plan and its translation to a network of three
timed automata.

a counter that ticks with a given periodδ. Thus, when ob-
serving an actiona which occurred at real-timet, the digital
observer only knows the current value of its periodic clock,
i.e.,b t

δ c.
The objective of the observers is to determine whether a

given trace (generated by a system under observation) could
be possibly generated by the specificationA. If so, then the
system under observation passes this test, otherwise, it fails.

Analog and digital observer definition Let us formalize
the above notions. LetA be a TA overΣ and letΣobs ⊆ Σ
be a set of observable actions.

An analog observerfor A with respect toΣobs is a total
function

O : RT(Σobs) → {0, 1}

such that

∀ρ ∈ RT(Σobs)
(

O(ρ) = 1 ⇔ ρ ∈ ObsTraces(A,Σobs)
)

Thus, an analog observer performs nothing else but a
membershiptest: does the observationρ belong to thelan-
guageofA, i.e.,ρ ∈ ObsTraces(A,Σobs). Notice thatA has
no acceptance conditions in our setting, thus, its language
is prefix-closed. Also notice that observers are required to
be deterministic, that is, to provide the same answer each
time they are given the same observation. Thus, analog ob-
servers can be seen as deterministic machines accepting the
language ofA. It follows, from the fact that timed automata
are non-determinizable in general (Alur & Dill 1994), that
an analog observer cannot always be represented as a timed
automaton. Moreover, checking whether this is the case for
a particular automaton is undecidable (Tripakis 2004).
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A digital observer(or periodic-sampling observer) forA
with respect toΣobs andδ > 0 is a total function

D : DT(Σobs) → {0, 1}

such that∀ρ ∈ DT(Σobs) .
(

D(ρ) = 1 ⇔ ρ ∈ DigTraces(A,Σobs , δ)
)

Automatic observer generation using the state-
estimation technique We next show how, given a
timed automatonA, analog and digital observers can be
automatically generated forA. The method relies on the
state-estimationtechnique proposed in (Tripakis 2002),
where it was applied to fault detection.

State estimation consists in computing, given an observa-
tion, the set of states ofA which “match” this observation,
that is, the set of all possible states which can be reached
by some trace which yields the observed trace. If the state
estimate remains non-empty all along the observation, then
the latter can indeed be generated byA, since there exists
at least one trace ofA matching the observation. If, how-
ever, the state estimate becomes empty, then the observation
cannot be generated byA.

State estimation is not more expensive than reachability
analysis. In fact, in some cases it is cheaper.1 As shown
in (Tripakis 2002), (Krichen & Tripakis 2004) state esti-
mates can be represented using standard data structures for
TA, such as DBMs (Dill 1989), and can be computed using
various versions of symbolic successor operators, depending
on the desired estimator (analog or digital).

Generating analog observers Consider a timed automa-
tonA overΣ and a set of observable actionsΣobs ⊆ Σ. The
analog state-estimatorforA with respect toΣobs is the total
functionSEa : RT(Σobs) → 2Reach(A), defined as follows:

SEa(ρ) = {s | ∃σ ∈ RT(Σ) . sA
0

σ
→A s ∧ PΣobs

(σ) = ρ}

SEa(ρ) contains all states whereA can possibly be after
executing a sequence which yields the analog observationρ.

Now, define

O(ρ) =

{

1, if SEa(ρ) 6= ∅
0, otherwise

It follows easily from the definitions thatO defined as above
is a valid analog observer forA w.r.t. Σobs .

We proceed to discuss howSEa can be computed. LetS
be a set of states ofA. Let a ∈ Σ andt ∈ R. Define the
following operators:

asucc(S, a) = {s′ | ∃s ∈ S . s
a
→A s′}

tsucc(S, t) = {s′ |

∃s ∈ S . ∃ρ ∈ RT(Σ \ Σobs)time(ρ) = t ∧ s
ρ
→A s′}

1The worst-case complexity of the membership problem in
timed automata is studied in (Alur, Kurshan, & Viswanathan 1998).
There, it is shown that for automata without epsilon-transitions
(i.e., fully observable), the problem is NP-complete whereas for au-
tomata with epsilon-transitions the problem is PSPACE-complete
(i.e., as hard as reachability).

asucc(S, a) contains all states which can be reached by some
state inS after performing actiona. tsucc(S, t) contains
all states which can be reached by some state inS via a
sequenceρ which contains no observable actions and takes
exactlyt time units.

The following proposition shows howSEa(ρ) can be com-
puted recursively onρ.

Proposition 0.1

SEa(ε) = tsucc({sA
0 }, 0)

SEa(ρ · (a, t)) = asucc(tsucc(SEa(ρ), t− time(ρ)), a)

Generating digital observers Consider a timed automa-
tonA overΣ and a set of observable actionsΣobs ⊆ Σ. Let
δ ∈ R, δ > 0. The digital state-estimatorfor A with re-
spect toΣobs andδ is the total functionSEd : DT(Σobs) →
2Reach(A), defined as follows:

SEd(ρ) = {s | ∃σ ∈ RT(Σ) . sA
0

σ
→A s ∧ [PΣobs

(σ)]δ = ρ}

SEd(ρ) contains all states whereA can possibly be after ex-
ecuting a sequence which yields the digital observationρ.

Now, define

D(ρ) =

{

1, if SEd(ρ) 6= ∅
0, otherwise

It follows easily from the definitions thatD defined as above
is a valid digital observer forA w.r.t. Σobs andδ.

ff -?-?
x := 0
delayable
9 ≤ x ≤ 11

tick!

x := 0
eager
x = 10

tick!

perfectly
periodic

with skew

Figure 8: Two possibleTick automata.

We proceed to discuss howD can be computed. We first
form the product ofA with a Tick automaton like the one
shown on the left of Figure 8. This automaton models the
digital clock of the observer, assumed to be perfectly peri-
odic with periodδ = 10. OtherTick automata can also be
used, like the one on the right of the figure, to model phe-
nomena such as clock skew or drift. (Notice that, in these
cases, the definition ofDigTraces must be modified.) Let
the product automaton beAtick = A‖Tick. We assume that
tick is a new observable event, not inΣ. Let S be a set of
states ofAtick. Define the following operator:

usucc(S) = {s′ | ∃s ∈ S . ∃ρ ∈ RT(Σ \ Σobs) . s
ρ
→Atick

s′}

usucc(S) contains all states which can be reached by some
state inS via a sequenceρ which contains no observable
actions. Notice that, by construction ofAtick, the duration of
ρ is bounded: sincetick is observable and has to occur after
at most1 time unit,time(ρ) ≤ 1.
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Fora ∈ Σ ∪ {tick}, define:

dsucc(S, a) = asucc(usucc(S), a)

dsucck(·, a), for k ∈ N, denotes the application of
dsucc(·, a) k times. That is,dsucc0(·, a) is the identity func-
tion anddsucck+1(·, a) = dsucc(dsucck(·, a), a).

The following proposition shows howSEd(ρ) can be com-
puted recursively onρ.

Proposition 0.2

SEd(ε) = {sAtick

0 }

SEd(ρ · (a, k)) = dsucc(dsucck(SEd(ρ), tick), a)

Implementation We have implemented a prototype ob-
server generation tool, calledIf2Obs, on top of the IF en-
vironment (Bozgaet al. 2000). The IF modeling language
allows to specify systems consisting of many processes com-
municating through message passing or shared variables and
includes features such as hierarchy, priorities, dynamic cre-
ation and complex data types. The IF tool-suite includes
a variety of tools for simulation, model checking and test
generation.If2Obs is written in C++ and uses the basic li-
braries of IF for parsing and symbolic reachability of timed
automata with deadlines.

If2Obs takes as main input the specification automaton,
written in IF language, and generates an off-line observer.
The observer takes as input a trace and the set of unobserv-
able actions of the original IF specification. The observer
can function either as an analog observer (default) or as a
digital observer (-d option).

Case Study
Our case study is the Mars rover controller K9, and in par-

ticular its executive subsystem, developed at NASA Ames.
It is an experimental platform for autonomous wheeled ve-
hicles called rovers, targeted for the exploration of the Mar-
tian surface. K9 is specifically used to test out new auton-
omy software, such as the Rover Executive. The Rover Ex-
ecutive provides a flexible means of commanding a rover
through plans that control the movement, experimental ap-
paratus, and other resources of the Rover - also taking into
account the possibiliy of failure of command actions.

The Rover executive is a software prototype written in
C++ by researchers at NASA Ames. It is a multi-threaded
program that consists of approximately 35,000 lines of C++
code, of which 9600 lines of code are related to actual func-
tionality. The C++ code was manually translated into Java
and C to experiment with tools using three technologies:
static analysis, model checking and runtime analysis (Brat
et al. 2003; Arthoet al. 2003).

System Description The Rover executive is made up of :

• A main coordinating component namedExecutive. It
provides the main control over how the plan is executed.
Executive waits for a plan to be available, and signals at
the end of the plan execution. So, thePlanWatcher sig-
nals when a plan is ready, and waits for end of execution
to send a new plan.

mnActionExecution

mnDatabase
mn(System state)

mnExecutive
mnexecutePlan()

mnexecuteCurrentNode()

mnexecuteTaskAction()

mninternalRunAction()
mninternalDoAction()
mndoAction(),
mnstopAction(),
mnabortAction()

mnPlanWatcher

mnprocessWakeupTimes()

mnExecTimerWaitermnExecTimer
mn...

mn...

mn...

mn...

mnExecCondChecker

mnDBMonitor

mnInternal
mn...

mn...

mn...

mnExecTimeChecker

Figure 9: The K9 Rover Architecture.

• The component for monitoring the state conditionExec-
CondChecker consists of two threads, the database mon-
itor DBMonitor just keeps watching for changes in the
database and the threadInternal decides what needs to be
done about it.

• ExecTimerChecker is the component for monitoring
temporal conditions. It consists of two threadsExec-
Timer andExecTimerWaiter. Both are respectively very
similar toDBMonitor andInternal

• The ActionExecution thread is responsible for issuing
the commands to the Rover. It consists of a list of meth-
odsinternalDoAction, doAction, stopAction, andabor-
tAction. ActionExecution runs theinternalDoAction
method, the other methods are just called by theExec-
utive on its own thread by simple calls.

• Database simply receives calls to its methods. All ac-
cesses to the database through its methods are controlled
by a lock.

Synchronization between these threads is performed through
mutex and conditions variables.

Results Due to intellectual property restrictions, we did
not have access to the execution platform of the K9 Rover.
However, NASA provided us with a set of one hundred plans
and traces, generated by the K9 Rover execution platform.
We applied our method, using the plan-to-IF translator to
obtain IF models for each plan, andIf2Obs to generate an
observer for each IF model of a plan. The observer was then
used to check the traces.

One of the plans is shown in Figure 7. Time units in the
plan are in seconds. A trace generated by the execution plat-
form with input this plan is shown in Figure 10 (times in the
trace are in milliseconds). The trace says that node 0 starts
at time 922, node 1 starts at time 1932 and completes suc-
cessfully at the same time, and so on. This trace does not
conform to the specification, because the latter requires that
node 2 finishes at least 1 second after it starts (fifth line of
the block of node 2 in the plan).If2Obs takes a few sec-
onds to generate the observer (this is a C++ code generation
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start node0 922
start node1 1932

success node1 1932
start node2 2942

success node2 2942
success node0 2942

Figure 10: A trace corresponding to the plan of Figure 7.

process, compilation and linking with IF libraries). The ob-
server needs less than a second to qualify this claim as non-
conforming. In general, all traces were checked in a matter
of seconds.

Conclusions and future work
We have proposed a methodology for testing conformance
of an important class of real-time applications in an auto-
matic way. The class includes all applications for which a
specification is available and can be translated into a net-
work of timed automata. In particular, the class includes
robotic applications where specifications are considered to
be the plans describing the robot mission. Such plans can be
automatically translated to timed automata (A. Akhavan &
Orfanidou 2004).

The method relies on the automatic generation of an ob-
server from the specification, on the one hand, and on the in-
strumentation of the system to be tested, on the other hand.
The testing process consists in feeding the traces generated
by the instrumented system to the observer, which is a test-
ing device, used to check conformance of a trace to the spec-
ification. We have validated the approach on the NASA K9
Rover case study.

Regarding future work, we plan to study the instrumen-
tation and trace generation problems. As mentioned above,
instrumentation should be possible to automate, by identify-
ing a mapping between execution platform events and speci-
fication events, and automatically scanning the code, adding
event/time-stamp exporting commands to the identified plat-
form events. Trace generation has a lot of similarities to
test-case generation, since the system under test must be run
a number of times, with different inputs, to obtain a set of
traces. Input coverage and other techniques can be employed
here to obtain an adequate set of traces. In fact, it is an in-
teresting question how to define coverage in the case where
the inputs are plans.

We also plan to study the representation of observers as
finite automata (timed or untimed). This is not always possi-
ble, because timed automata are non-determinizable in gen-
eral (Alur & Dill 1994). Moreover, checking whether a par-
ticular TA is determinizable and determinizing it is algorith-
mically impossible in general (Tripakis 2004). Identifying
classes of TA (e.g. those generated from plans) for which
the above problems are solvable is a possible step in this di-
rection.

Finally, we envisage extending our approach to other
high-level specification languages and experimenting with
more case studies.
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Havelund, K., and Roşu, G. 2001. Monitoring Java Pro-
grams with Java PathExplorer. In Havelund, K., and Roşu,
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Abstract

Autonomous systems in uncertain dynamic environments
must reconfigure themselves in response to unanticipated
events and goals in real-time. To provide a high assur-
ance of real-time embedded systems, fault-aware executable
specification and verification of this fault-aware specifica-
tion are necessary. We present a method for synthesizing
an executable code from a fault-aware specification. We
approach the problem by framing it as model-based reac-
tive planning. Reactive plans are susceptible to exponen-
tial state space explosion. We address this problem through
transition-based decompositionby generating compactde-
composed goal-directed plans. We further minimize state ex-
plosion by adopting a symbolic representation based on Or-
dered Binary Decision Diagrams. We demonstrate our reac-
tive planner on representative spacecraft subsystem models.

Introduction
Recent failures in NASA’s Mars exploration program point
to the need for increased autonomous response in spacecraft.
The presumed cause of failure for the Mars Polar Lander
(MPL) Mission (Casaniet al. 2000) provides a relevant ex-
ample. During the final stage of MPL’s descent to the Mar-
tian surface, one sensor wrongfully signaled the landing of
the spacecraft. As a result, the descent engines were pre-
maturely shut off, causing MPL to crash into the surface.
During this incident, no communication was possible be-
tween MPL and ground control. Even if it were, the outcome
would likely have been inevitable due to the communication
time delay: when Mars is closest to Earth, commands from
the ground take at least 12 minutes to reach the spacecraft.
Thus, onboard reactive software is necessary to execute their
functions while responding to failures and anomalies.

High assurance of real-time embedded systems is being
achieved through the application of executable specification,
which requires executable code synthesis from specification
and verification of the specification itself. However, with
unforseen failures and anomalies, as in the case of MPL
Mission, the executable specification must be extended to
be fault aware. Hence, code synthesis must be extended to

∗This work was supported in part by NASA’s Cross Enter-
prise Technology Development program under contract NAG2-
1466, DARPA’s MOBIES program under contract F33615-00-C-
1702, and NASA Graduate Student Research Program Fellowship.

handle faults, and this fault aware specification must be for-
mally verified. This paper presents a method for the former,
i.e. automated synthesis of fault tolerant, executable code,
by framing the problem as a form of model-based reactive
planning.

Motivation for Tractable Reactive Planning

While general-purpose onboard planners could be used for
autonomous reconfiguration, due to the PSPACE-complete
nature of planning problems, real-time response cannot be
guaranteed. In time-critical situations, such as the MPL
landing scenario, late response could be disastrous to the
mission. Reactive planning is an approach that guarantees
real-time response. A reactive planner precompiles a plan
offline for all possible situations, and then executes the plan
online.

In general, a reactive planner may not be able to optimize
resource utilization. However, the irreversibility associated
with the use of nonrenewable resources requires careful de-
liberation to ensure system safety and mission success:

Requirement 1. A reactive planner shall consider only re-
versible control actions, unless the effect is to repair failures
(Williams & Nayak 1997).

One of the early approaches to reactive planning is univer-
sal planning, first introduced by (Schoppers 1987). Though
a universal plan can react to a nondeterministic environ-
ment, it cannot react to rapidly changing goals. Furthermore,
(Ginsberg 1989) pointed out the intractability of universal
planning due to the exponential state space explosion prob-
lem. Thus, a new reactive planning approach is necessary.

Handling State Explosion through Decomposition

The method of divide-and-conquer is a well known effec-
tive approach to solving problems. Based on this principle,
we have developed a new transition-based decomposition
method for reactive planning. Though this method is unre-
lated to the structural decomposition used in constraint satis-
faction problems (CSP) (Gottlob, Leone, & Scarcello 1999),
the contribution of our decomposition method to planning is
analogous to that of the structural decomposition methods
for CSP.
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CSPs are known to be NP-complete, but (Freuder 1985)
has shown that a CSP with a tree-structured constraint graph
is solvable in linear time. Similarly, (Williams & Nayak
1997) have shown that if a planning problem has an acyclic
dependency, then the problem can be solved within a state
space that grows only linear in the number of state vari-
ables. For CSPs that do not have tree-structured con-
straint graph, Dechter and Pearl have shown that the con-
straint graphs of those problems can be transformed into
tree-structured graphs using a tree decomposition technique
(Dechter & Pearl 1989). In our approach, for planning prob-
lems with cyclic transition dependency graph (TDG), we use
transition-based decomposition to transform the cyclic TDG
to an acyclic TDG. As a result, even planning problems with
cyclic TDG can be solved within a state space that grows
approximately linear in the number of state variables.

Handling State Explosion through Symbolic
Representation (OBDD)
Through transition-based decomposition, our reactive plan-
ner divides a problem into a set of subproblems. While
transition-based decomposition addresses the state explo-
sion problem at the global level, we also address this issue at
the subproblem level by adopting a symbolic representation.

The logic synthesis and model checking communi-
ties have been using Ordered Binary Decision Diagrams
(OBDD) (Bryant 1986) for compact state space encoding.
An OBDD-based model checking technique has proven par-
ticularly successful in dealing with the state explosion prob-
lem (Burchet al. 1992). Recognizing the similarities be-
tween model checking and planning, (Cimattiet al. 1997)
introduced a new universal planning technique that takes
advantage of the OBDD. Since then, several OBDD-based
universal planning algorithms have been introduced for op-
erating within nondeterministic domains (Cimatti, Roveri,
& Traverso 1998b; 1998a; Jensen 1999). In our approach,
we also take advantage of OBDD, but unlike the universal
planners, our reactive planner generatesgoal-directed plans
(GDP) that can react to the nondeterministic environment as
well as rapidly changing goals. We generate these GDPs for
each decomposed subproblem such that the resultingdecom-
posed goal-directed plan(DGDP) conforms to Requirement
1 while guaranteeing real-time response.

Spacecraft Communication System Example
Throughout the paper, we will use a model of a simplified
spacecraft communication system (Figure 1) to present our
decomposed symbolic approach to reactive planning. Figure
1 depicts the direction of signal flow among components.
The computer sends data to be transmitted through the bus
control. When the data is received, the bus control routes
it to the transmitter. The transmitter receives the data and
generates the corresponding signal. The signal is amplified
by the amplifier and is finally transmitted through the an-
tenna. The computer is also responsible for controlling the
devices: it may command either the transmitter or amplifier
to be turned on or off. Again, these commands are sent to
the appropriate devices via the bus control.

Computer
Bus

Control

Transmitter

Amplifier

Antenna

Figure 1: Simplified spacecraft communication system.

(a) Transmitter

(b) Amplifier

T = on T = off

A = on A = off

cmd
A
 = on

cmd
A
 = off

A = off
cmd

T
 = off

A = off
cmd

T
 = on

T = on

Figure 2: Concurrent automata of a transmitter and an am-
plifier. Idle transitions are omitted for clarity.

Modelling Behavior with Concurrent Automata
We model a system of concurrently operating components
by a set ofconcurrent automata. Figure 2 illustrates the con-
current automata of a transmitter and an amplifier. The tran-
sitions between states are conditioned on commands (e.g.
cmdT = off) and states of other automata. For instance,
the amplifier must be turned off(A = off) before we can
command the transmitter on or off. This particular condi-
tion is necessary for the safety of the system, as the process
of switching the transmitter on or off may generate a tran-
sient signal spike that could damage the amplifier. For the
same reason, the transmitter must be turned on before the
amplifier can be turned on. We define concurrent automata
formally as follows:

Definition 1 A set of concurrent automataCA =
{A(1),A(2), . . . ,A(n)} is composed of concurrently oper-
ating finite automata. Each concurrent automatonA(i) is a
3-tuple〈Q(i), Σ(i), δ(i)〉, whereQ(i) is a finite set of states,
Σ(i) is a finite set of inputs (either commands or states of
other concurrent automata) andδ(i) : Q(i) × Σ(i) → Q(i)

is a transition function.

RepresentingCA Symbolically
For compactness, we encode the concurrent automata in an
OBDD representation. In this representation, states of con-
current automatoni is defined by a vector oflog2(|Q(i)|)
distinct Boolean variables, where|Q(i)| is the number of
elements inQ(i). Similarly, the inputa is represented as
a vector of Boolean variables. The transition relation for
concurrent automatoni is R(i) : Q(i) × Σ(i) × Q(i) → B,
whereB is a set of Boolean values andR(i)(s, a, s′) = (s′ ∈
δ(i)(s, a)), ands′ indicates the state at the next time step.
For example, the transition relationR(A) of the amplifierA
is as follows:

[((A = off) ∧ ¬((T = on) ∧ (cmdA = on))) ⇒ (A
′
= off)] ∧

[((A = off) ∧ (T = on) ∧ (cmdA = on)) ⇒ (A
′
= on)] ∧

[((A = on) ∧ (cmdA = off)) ⇒ (A
′
= off)] ∧

[((A = on) ∧ ¬(cmdA = off)) ⇒ (A
′
= on)]
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T = on

A = on

A' = on

cmd
A
 = on cmd

A
 = on

A' = on

1

A = on

A' = on

cmd
A
 = on

1 0(a) (b)

Figure 3: OBDD representation of (a)((A = on) ∧
(cmdA = off)) ⇒ (A′ = off) and (b) amplifier transition
relationR(A).

D = on

D = off

V = open

V = closed

cmd
V
 = open cmd

V
 = closecmd

D
 = on cmd

D
 = off

D = on D = on

(a) (b)

Figure 4: Concurrent automata for (a) Driver, and (b) Valve.

Figure 3(a) illustrates the OBDD representation of the
transition((A = on) ∧ (cmdA = off)) ⇒ (A′ = off).
Figure 3(b) shows the result of conjoining the OBDDs of
the transitions into the transitionR(A)1. Each node of an
OBDD represents a Boolean variable, and the dotted and the
solid outgoing edges respectively represent false and true
evaluations of the Boolean variable. The terminal nodes 1
and 0 represent the evaluation of the Boolean function (i.e.
OBDD) where each path from the root to a terminal eval-
uates to 1 for true or 0 for false. In Figure 3(b), all paths
that lead to false have been omitted for simplicity. One of
the benefits of using OBDDs to represent transition relations
is in relative compactness of OBDDs. (Cimatti, Roveri, &
Traverso 1998a) shows that the size of an OBDD does not
necessary depend on the number of states, but rather on the
structure of the information the OBDD encodes.

Subgoal Serialization through
Transition-based Decomposition

A set of subgoals are serializable if and only if a goal can be
partitioned into a set of subgoals that can be solved sequen-
tially to achieve the goal (Korf 1987). For example, con-
sider the driver and valve shown in Figure 4. The driver is
a device that commands the valve open or closed. Thus, the
driver must be on(D = on), before the valve can be com-
manded open or closed. Presume that the current state of the
driver and valve system is(D = off , V = closed) and the
goal state to achieve is(D = off , V = open). In this case,
we do not have to figure out how to achieve(D = off) and
(V = open) simultaneously. Rather, we can figure out how
to achieve(V = open) first. Once(V = open) has been
achieved, we can then figure out how to achieve(D = off),
without worrying about potential impact on the(V = open)
subgoal. Hence, the subgoals are serializable.

1In this example, we assumecmdT andcmdA are on or off at
all times.

Computer
Bus

Control

Transmitter

Amplifier

Antenna

Figure 5: Cyclic transition dependency graph of a spacecraft
communication subsystem.

(Williams & Nayak 1997) recognized that a set of sub-
goals are serializable if the transition dependency graph
(TDG) of a system is acyclic, where TDG of a concurrent
automata is formally defined as follows:

Definition 2 A transition dependency graphG of CA is a
directed graph whose vertices are the concurrent automata
{C}. G contains a directed edge from vertexC(i) to vertex
C(j), if C(i) occurs in the antecedent (precondition) of one of
C(j)’s transitions.

For the driver and valve, the valve’s ability to open or
close depends on the state of the driver. The driver, how-
ever, does not depend on the valve, so we can change the
driver state without affecting the valve state. Hence, the de-
pendency relationship is acyclic.

For a system with a cyclic TDG, we can transform it into
an acyclic graph through transition-based decomposition.
For example, TDG of the communication system is cyclic,
as shown in Figure 5. However, if we group the transmit-
ter and the amplifier, and consider them as a single vertex in
TDG, the resulting graph is acyclic. We recognize that a set
of cyclic vertices in TDG directly corresponds to a strongly
connected component (SCC) of the TDG.

Goal-directed Plan
With the TDG decomposed into a set of SCCs, we can gen-
erate a GDP for each SCC individually. As the automata
within a SCC have cyclic dependency, we must consider the
concurrency and interdependence of the automata. With this
in mind, we first compose the automata within a SCC into
a single automaton. Then, we generate a GDP based on the
composed automaton.

Composing Automata
Continuing with the transmitter/amplifier example, we want
to construct a single automaton that represents both com-
ponents, as shown in Figure 6. Notice that one transition
seems missing, the transition from(T = on,A = off) to
(T = off , A = on). According to the model shown in Fig-
ure 2, such a transition may occur if the transmitter is com-
manded off(cmdT = off) and the amplifier is commanded
on (cmdA = on) simultaneously. In controlling concurrent
devices, however, such synchronized control cannot be guar-
anteed; in fact, such commanding is nearly impossible, and
taking such an action could be hazardous, as the amplifier
may be damaged if(cmdA = on) precedes(cmdT = off)
even by a fraction of a second. Thus, before composing au-
tomata, we modify the transition relation for each automaton
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(T = on, A = on)

cmd
A
 = on

cmd
A
 = off

cmd
T
 = on cmd

T
 = off

(T = off, A = on) (T = off, A = off)

(T = on, A = off)

cmd
A
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Figure 6: Automaton of composed transmitter and amplifier
automata. Idle transitions are omitted for clarity.

Current

State

Goal State

T=on,A=on T=on,A=off T=off,A=off T=off,A=on

T=on,A=on idle cmdA=off (1) cmdA=off (2) failure

T=on,A=off cmdA=on(1) idle cmdT =off (1) failure

T=off,A=off cmdT =on(2) cmdT =on(1) idle failure

T=off,A=on cmdA=off (3) cmdA=off (2) cmdA=off (1) idle

Figure 7: Goal-directed plan for the transmitter/amplifier
system. The number next to each command represents the
total number of steps necessary to achieve the goal.

to avoid such hazards. If a transition is conditioned on the
state of another automaton, we require that the state condi-
tion be true before and after the transition occurs.

For example, consider the amplifier’s transition from off
to on:

((A = off) ∧ (T = on) ∧ (cmdA = on)) ⇒ (A
′
= on)

The transition relies on the transmitter being on(T = on).
Thus, we modify the transition to guarantee that the trans-
mitter is on before and after:

((A = off) ∧ (T = on) ∧ (T
′
= on) ∧ (cmdA = on)) ⇒ (A

′
= on)

With the modified transition relations, composing the con-
current automata into a single automaton is trivial. The com-
posed transition relationRSCC of a SCC is

RSCC =
∧

C(i)∈SCC

R
(i)

Generating the Goal-directed Plan
A GDP is comprised of a set of goal-directed rules, where a
goal-directed rule is a 3-tuple〈s, a, s′〉. A goal-directed rule
can be interpreted as “if the current state iss and the goal
state iss′, executea”. Figure 7 is a tabular representation
of the goal-directed plan for the transmitter/amplifier SCC.
Each entry in the table corresponds to a goal-directed rule.
While a in this GDP is only composed of commands,a may
in general contain states of other automata that precede the
SCC in the dependency ordering. For example, one of the
goal-directed rules for the valve is

〈(V = open), (D = on, cmdV = close), (V = closed)〉.

(D = on) is anintermediate subgoalthat must be achieved
before we can command the valve closed.

We generate the GDP by iteratively searching the state
space in parallel, backward, and breadth-first manner. With
OBDDs, states within the search space do not have to be
enumerated; instead, we can generate goal-directed rules of

all goals and initial states simultaneously, thus “in paral-
lel”. The search method is also characterized as a “backward
search”, as the GDP is generated by searching for the states
that can reach the goal, instead of searching for the goals that
can be reached from the current state. Of the goal-directed
rules, we generate the one-step rules (i.e. goal-directed rules
with goals that can be achieved in a single transition) first.
In Figure 7, one-step rules are those with “(1)” next to the
commands. Notice that one-step rules correspond directly
to the transitions in transition relation. Next, we generate
two-step rules, labelled “(2)” in Figure 7. We continue this
process until the fixed-point is reached, thus “breadth-first”.
In general, the fixed-point of the iterative search is defined
by the width of the transition graph of the automaton. In
our transmitter/amplifier example, the fixed-point is reached
after two iterations (i.e. after the three-step rules are gener-
ated). The algorithm for generating the GDP is as follows:

Algorithm 1 CO M P U T EGDP(T )
1: oldP lan ← ∅
2: newPlan ← T
3: while oldP lan 6= newPlan do
4: oldP lan ← newPlan
5: newPlan ← oldP lan ∪

CO M P U T ENE X TST E PRU L E S(T, oldP lan)
6: return newPlan

The algorithmCO M P U T EGDPtakes the transition rela-
tion T of an automaton as its input. As we have discussed,
the one-step rules are exactly the transition relation as re-
flected in line 2 ofCO M P U T EGDP. In lines 3–5, it itera-
tively searches for two-step rules, three-step rules, etc. while
adding them to thenewPlan . The procedure exits once the
fixed-point is reached (line 3), and returns the plan (line 6).

In line 5, CO M P U T ENE X TST E PRU L E S(T,oldPlan)
generatesn-step rules when theoldPlan contains all rules
of less thann-steps. Assume that a relationsi ∧ aj ⇒ s′k
is in the transition relationT and an(n − 1)-step rule
〈sk, al, s

′
m〉 is in the old goal-directed planoldPlan .

Then,〈si, aj , s
′
m〉 is one of the validn-step rules returned by

CO M P U T ENE X TST E PRU L E S(T,P) . For example, from
the 1-step rule

〈(T = on, A = off), (cmdT = off), (T ′ = off, A
′
= off)〉

and the transition relation

((T = on, A = on) ∧ (cmdA = off)) ⇒ (T
′
= on, A

′
= off)

the 2-step rule

〈(T = on, A = on), (cmdA = off), (T ′ = off, A
′
= off)〉

can be deduced.
Formally: CO M P U T ENE X TST E PRU L E S(T,P) gener-

ates a set ofn-step goal-directed rules〈s, a, s′〉, whereT is
a transition relation andP is a goal-directed plan with only
m-step rules, wherem < n. Each rule〈si, aj , s

′
k〉 is re-

stricted such thats′l ⊆ (T ∧ si ∧ aj), 〈sl, am, s′k〉 ∈ P, and
¬∃a.〈si, a, s′k〉 ∈ P.

s′l ⊆ (T ∧ si ∧ aj) states thats′l must be reachable from
statesi through inputaj . The restriction¬∃a.〈si, a, s′k〉 ∈ P
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says that〈si, aj , s
′
k〉 cannot be a new goal-directed rule if

a rule for the current statesi and the goal states′k already
exists in the planP. With this restriction, the resulting GDP
is guaranteed to be optimal, where an optimal plan is defined
as a plan with the shortest control sequence. For example,
while

〈(T = on, A = off), (cmdT = off), (T ′ = on, A
′
= on)〉

is a 3-step rule, it is not a valid rule since the optimal 1-step
rule already exists in the plan:

〈(T = on, A = off), (cmdA = on), (T
′
= on, A

′
= on)〉

The algorithm forCO M P U T ENE X TST E PRU L E S(T,P)
is shown in algorithm 2. This algorithm leverages the OBDD
representation to efficiently search the state space, without
enumeration.

Algorithm 2 CO M P U T ENE X TST E PRU L E S(T, P )
1: nextP lan ← T[sTemp/s′] ∧ ∃a.P[sTemp/s]

2: optimalNextP lanWithNoCmd ← ∃a.nextP lan −
∃a.P

3: return nextP lan∧optimalNextP lanWithNoCmd

Line 1 ofCO M P U T ENE X TST E PRU L E S(T,P) computes
all next step goal-directed rules including the non-optimal
ones2. Line 2 determines which rules are the valid (i.e. op-
timal) rules. Finally, line 3 returns only those rules that are
valid.

Decomposed Goal-directed Plan
Once the TDG is made acyclic, we can generate a GDP for
each SCC successively, instead of generating a single GDP
for the wholeCA. This set of GDPs for all SCCs in the
system is called adecomposed goal-directed plan(DGDP).
The advantage of this composition is that the footprint of the
DGDP is much smaller than a single GDP for the fullCA.
For example, let us assume that the number of concurrent
automata,|CA|, is n, and the average number of states per
automaton,|Q|, is m. If we generate a single GDP forCA,
the number of states in GDP is exponential in|CA|, O(mn).
If the maximum number of automata in an SCC isw, how-
ever, the number of states in the corresponding DGDP is
only O(l ·mw), wherel is the total number of SCCs. Thus,
even if the size of aCA grows, as long asm andw remains
constant, the size of the corresponding DGDP grows only
linearly in l. The algorithm for generating DGDP is ofCA
as follows:

wheren is the number of composed automata (i.e. SCCs),
R is an array of transition relations of the composed au-
tomata sorted in dependency order (i.e. inverse depth-first
order of TDG), andq is an array of current states of the
composed automata, also in dependency order. Lines 2–
5 successively generates the GDP of each SCC in depen-
dece order, storing an array of GDPs inDGDP(line 4). A

2[sTemp/s] symbolizes the replacement of variables with
variablesTemp.

Algorithm 3 CO M P U T EDGDP(n,R, q)
1: revReachAncs ← ∅
2: for i = 0 to (n− 1) do
3: allwdR ← R[i] ∧ revReachAncs
4: DGDP [i] ← CO M P U T EGDP(allwdR)
5: revReachAncs ← revReachAncs ∪

CO M P U T ERRS(R[i], q[i])
6: return DGDP

GDP is computed from a subset of the SCC transition re-
lation, allwdR , where the subset is restricted to the tran-
sitions whose antecedents (subgoals in GDP) are reversibly
reachable from the current stateq. This restriction guar-
antees the aforementioned requirement 1. In line 5, the
reversibly reachable states of thei -th SCC are generated
and added to the set of reversibly reachable ancestor states
revReachAncs to be used in the next iteration.

DGDP Execution
Figure 8 shows a DGDP for a driver and a valve. We exe-
cute DGDP in inverse dependency order (e.g. the valve then
the driver). For example, let us assume the driver and valve
are off and closed, respectively, and the goal is to turn off the
driver and open the valve. First, we must attempt to open the
valve, according to the inverse dependency order. To switch
the valve open from the closed position, the driver must be
on and the valve must be commanded open as shown in Fig-
ure 8. Here,(D = on) is a subgoal that must be achieved be-
fore executing the command(cmdV = open). As the driver
is currently off, we determine how to turn the driver on by
looking up the driver plan in Figure 8. According to the plan,
we simply command the driver on(cmdD = on). Once the
driver is turned on, then we can command the valve to open
(cmdV = open). Once the valve is opened, then the drive
can be turned off again. (Williams & Nayak 1997) discuss
DGDP execution algorithm in detail. The incremental na-
ture of the algorithm allows for robust execution that imme-
diately responds to failures or sudden changes in goals.

Conclusion
Our decomposed symbolic approach to reactive planning is
novel in two ways. First, it leverages transition-based de-
composition to eliminate the state space explosion problem
in reactive planning. When transition-based decomposition
is used to solve a problem, the complexity of the problem be-
comes linear in the size of the SCCs instead of being expo-
nential in the size ofCA. As long as the size of the SCCs re-
mains relatively small, the problem remains tractable. Sec-
ond, we incorporate the use of OBDDs into reactive plan-
ning, which gives us two distinct advantages: (1) we can
search the state space without the need to enumerate the
states, and (2) we can take advantage of the OBDD’s com-
pact state space encoding capability.
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Abstract.  This paper describes the validation process for 
the Autonomous Sciencecraft Experiment, a software agent 
currently flying onboard NASA’s EO-1 spacecraft.  The 
agent autonomously collects, analyzes, and reacts to 
onboard science data.  The agent has been designed using a 
layered architectural approach with specific redundant 
safeguards to reduce the risk of agent malfunction to the 
EO-1 spacecraft.  This “safe” design has been thoroughly 
validated by informal validation methods supplemented by 
sub-system and system-level testing.  This paper describes 
the analysis used to define agent safety, elements of the 
design that increase the safety of the agent, and the process 
used to validate agent safety. 

1 Introduction 
Autonomy technologies have incredible potential to 
revolutionize space exploration.  In the current mode of 
operations, space missions involve meticulous ground 
planning significantly in advance of actual operations.  In 
this paradigm, rapid responses to dynamic science events 
can require substantial operations effort.  Artificial 
Intelligence technologies enable onboard software to detect 
science events, replan upcoming mission operations, and 
enable successful execution of re-planned responses.  
Additionally, with onboard response, the spacecraft can 
acquire data, analyze it onboard to estimate its science 
value, and react autonomously to maximize science return.  
For example, our Autonomous Science Agent can monitor 
active volcano sites and schedule multiple observations 
when an eruption has been detected.  Or monitor river 
basins, and increase imaging frequency during periods of 
flooding. 
 
However, building autonomy software for space missions 
has a number of key challenges; many of these issues 
increase the importance of building a reliable, safe, agent. 
 

1. Limited, intermittent communications to the agent.   
A typical spacecraft in low earth orbit (such as EO-
1) has 8 10-minute communications opportunities 
per day.  This means that the spacecraft must be able 
to operate for long periods of time without 
supervision.  For deep space missions the spacecraft 
may be in communications far less frequently.  
Some deep space missions only contact the 

spacecraft once per week, or even once every 
several weeks. 

2. Spacecraft are very complex.  A typical spacecraft 
has thousands of components, each of which must 
be carefully engineered to survive rigors of space 
(extreme temperature, radiation, physical stresses).  
Add to this the fact that many components are one-
of-a-kind and thus have behaviors that are hard to 
characterize. 

3. Limited observability. Because processing telemetry 
is expensive, onboard storage is limited, and 
downlink bandwidth is limited, engineering 
telemetry is limited.  Thus onboard software must be 
able to make decisions on limited information and 
ground operations teams must be able to operate the 
spacecraft with even more limited information. 

4. Limited computing power.  Because of limited 
power onboard, spacecraft computing resources are 
usually very constrained.  An average spacecraft 
CPUs offer 25 MIPS and 128 MB RAM – far less 
than a typical personal computer.  Our CPU 
allocation for ASE on EO-1 is 4 MIPS and 128MB 
RAM. 

5. High stakes.  A typical space mission costs hundreds 
of millions of dollars, any failure has significant 
economic impact.  The total EO-1 Mission cost is 
over $100 million dollars.  Over financial cost, 
many launch and/or mission opportunities are 
limited by planetary geometries.  In these cases, if a 
space mission is lost it may be years before another 
similar mission can be launched.  Additionally, a 
space mission can take years to plan, construct the 
spacecraft, and reach their targets. This delay can be 
catastrophic.  

 
This paper discusses our efforts to build and validate a safe 
autonomous space science agent. The principal 
contributions of this paper are as follows: 
 

1. We describe our layered agent architecture and how 
it provides a framework for agent safety. 

2. We describe our knowledge engineering and model 
review process including identification of safety 
risks and mitigations. 
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3. We describe our testing process designed to validate 
the safe design of our agent’s architecture and 
model. 

 
We describe these areas in the context of the Autonomous 
Sciencecraft Experiment (ASE), an autonomy software 
package adapted to NASA’s New Millennium Earth 
Observer One (EO-1) spacecraft [4] from a design 
originally proposed for flight on the Air Force’s Techsat-21 
Mission [2].   

2 Autonomy Architecture 
The autonomy software on EO-1 is organized as a 
traditional three-layer architecture [8] (See Figure 1.).  At 
the top layer, the Continuous Activity Scheduling Planning 
Execution and Replanning (CASPER) system [3, 12] plans 
activities to achieve long-term mission objectives.  
CASPER submits the planned sequences of activities to the 
Spacecraft Command Language (SCL) system [10] for 
execution.  Using an internal model, SCL expands the 
activities into sequences of EO-1 commands, which are 
then executed through the EO-1 Flight Software (FSW). 

 

Figure 1. Autonomy Software Architecture 

Operating on the tens-of-minutes timescale, CASPER 
responds to events that have multiple-orbit effects, 
including scheduling science observations and ground 
contacts.  CASPER commands activities traditionally 
initiated through sequences uplinked by the EO-1 ground 
operations team.  Consulting internal models of the 
spacecraft, CASPER searches for plans that combine these 
basic activities to satisfy high-level goals consistent with 
spacecraft operational and resource constraints. 
 
Plans generated by CASPER are given to SCL at this basic-
activity granularity.  SCL expands the CASPER plan to 
detailed sequences of  EO-1 spacecraft commands.  

Operating on the several-second timescale, SCL responds 
to events that have local effects, but require immediate 
attention and a quick resolution.  SCL performs activities 
using scripts to expand activities and rules that monitor and 
enforce flight constraints. 
 
SCL sends commands to the EO-1 FSW [9], the basic 
flight software that operates the EO-1 spacecraft.   The 
interface from SCL to the EO-1 FSW is at the same level as 
ground generated command sequences – in other words the 
FSW does not know, or care, whether commands were 
issued by SCL or EO-1 ground operations. 
 
SCL implements the commanding interface through a 
special component called the Autonomy Flight Software 
Bridge (FSB).  The FSB takes autonomy software 
messages and issues corresponding FSW commands.  The 
FSB also implements a new set of FSW commands to 
perform functions such as startup and shutdown of the 
autonomy software.  This single interface point allows the 
EO-1 operations team to easily turn on and off  the ASE 
commanding path, and thus ASE control, of EO-1. 
 
The FSW accepts low level spacecraft commands.  These 
commands can be either stored command loads uploaded 
from the ground (e.g. ground planned sequences) or real-
time commands (such as commands from the ground 
during an uplink pass).  The autonomy SW commands 
appear to the FSW as real-time commands.  As part of its 
core, the FSW has a full fault and spacecraft protection 
functionality designed to:  
 

1. Reject commands (from any source) that would 
endanger the spacecraft. 

2. Execute pre-determined sequences to enter a “safe” 
mode upon detection of a hazardous state thereby 
stabilizing the spacecraft for ground assessment and 
reconfiguration.   

 
For example, if a sequence issues commands that point the 
spacecraft imaging instruments at the sun, the fault 
protection software will abort the pointing activity; if a 
sequence issues commands that would expend power to 
unsafe levels, the fault protection software will shut down 
non-essential subsystems (such as science instruments) and 
orient the spacecraft to maximize solar power generation.  
While the intention of the fault protection is to cover all 
potentially hazardous scenarios, it is understood that the 
fault protection software is not foolproof.  Thus, there is a 
strong desire to not command the spacecraft into any 
hazardous situation even if it is believed that the fault 
protection will protect the spacecraft.   
 
Finally, the ASE software package includes a suite of 
science analysis algorithms.  These algorithms process,  
interpret, and suggest reactions to onboard science 
observations.  CASPER converts the science analysis 
suggestions to activities, and adds them to the onboard 
schedule for execution. 
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This layered architecture enables each lower layer to 
validate the output of the higher layers – SCL checks 
CASPER activities prior to sending the corresponding 
commands to the FSW, while the FSW fault protection 
checks the command sequences from SCL.  This multiple-
layer safety check emboldens confidence in the safety of 
our agent. 

3 Model Building & Validation 
Both CASPER and SCL rely on high-fidelity internal 
models of the EO-1 spacecraft.  CASPER uses these 
models to delineate what goals can be achieved, and the 
scope of possible reactions.  SCL uses models to generate 
command sequences and monitor activity execution.  Any 
inaccuracies in these models could lead to ASE failing to 
achieve science objectives, or in the extreme, issuing 
unsafe sequences of commands.  As such, these models 
were the product of a methodical development and review 
process designed to ensure they correctly encoded the 
relevant operational and safety constraints of EO-1. 
 
The CASPER and SCL models share many of the same 
EO-1 constraints – including properties of physical 
subsystems, operation modes, valid command sequences, 
command prerequisites, and impacts of commands on 
spacecraft state.  As a general rule however, CASPER 
models EO-1 at a higher level of abstraction than SCL.  
The activities commanded by CASPER are more abstract 
usually requiring tens or hundreds of spacecraft commands 
to achieve.  Conversely, SCL activities sometimes expand 
to only a few spacecraft commands.   
 
CASPER models the basic activities that must be 
assembled to complete the high-level mission goals 
including science observations and downlinks. The 
decomposition from goals to activities continues until a 
suitable level is reached for planning – a level that allows 
CASPER to model spacecraft state and its progression over 
time, discrete states such as instrument modes, and 
resources such as memory available for data storage. At 
this level of abstraction CASPER can commit activities in 
order to generate and repair schedules, track state, and 
monitor resources against predicted evolution. 
 
SCL continues to model spacecraft activities and state at 
finer levels of detail. These activities are modeled as SCL 
scripts, which when chained together and executed, result 
in commands to the EO-1 FSW.  SCL models spacecraft 
state through an internal database where each record stores 
the current value of a sensor, resource, or sub-system 
mode. The SCL model also includes flight rules that 
monitor spacecraft state, and execute appropriate scripts in 
response to transient changes. SCL uses its model to 
generate and execute sequences that are valid and safe in 
the current context.  But while SCL has a detailed model of 

spacecraft state and resources, it does not generally model 
future evolution of state or resources. 
 
The ASE team developed the CASPER and SCL models 
using an iterative multiple step process, that defined, 
modeled, reviewed, and validated EO-1 activities.  Each of 
these steps focused on creating a high-fidelity model that 
was consistent with existing ground operations and 
constraints of the EO-1 spacecraft. 

3.1 Model Development 
The model development process began when a new high-
level goal was tasked to ASE.  At first ASE modeled 
simple goals, such as instrument calibrations.  As we 
gained experience with the spacecraft, our modeling 
activities evolved to more complex multi-activity 
objectives including science observations, data downlinks, 
and spacecraft pointing.   
 
With a new goal in hand, the ASE team would first identify 
the set of activities required to achieve the objective.  
Primarily this process was driven by a review of existing 
operations documents and engineering reports.  For 
example, when ASE was tasked to begin collecting science 
data, prior EO-1 data collects were analyzed to see what 
sequences of commands, and thus activities, were required 
to image a science target.  A science data collect requires 
activities to calibrate instruments, manage hardware 
operational modes, and command data recording from both 
the Hyperion and Advanced Land Imager (ALI) 
instruments.   
 
With the activities defined, the ASE team reviewed formal 
EO-1 operations procedures to identify constraints on the 
selected activities. For example, due to thermal constraints, 
the Hyperion cannot be left on longer than 19 minutes, and 
the ALI no longer than 60 minutes.  The EO-1 operations 
team also provided spreadsheets that specified timing 
constraints between activities. Downlink activities, for 
example, are often specified with start times relative to the 
ground station acquisition of signal (AOS) and loss of 
signal (LOS).  Finally, fault protection documents listing 
fault monitors (TSMs) were consulted, reasoning that 
acceptable operations should not trigger any TSMs. 

3.2 Model Reviews 
Next, the ASE team conducted reviews where the latest 
iterations of the CASPER and SCL models were tabletop 
reviewed by a team composed of EO-1 spacecraft 
engineers and operators.  Their working knowledge of the 
spacecraft,  and experience over three years of operations, 
verified that no incorrect parameters or assumptions were 
represented in the model. 
 
Finally, a spacecraft safety review process was performed.  
In this process, experts from each of the spacecraft 
subsystem areas (e.g. guidance, navigation and control, 
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solid state recorder, Hyperion instrument, power, …)  
studied the description of the ASE software, including the 
commands that the ASE software could execute, and 
derived a list of potential hazards ASE could pose to the 
spacecraft’s health.  For each of these hazards, a set of 
possible safeguards were proposed, and then implemented 
through operations procedures, and constraints embedded 
in the CASPER and SCL models.  This analysis formed the 
basis for the testing of agent safety discussed in section 4.  
A sample analysis for two risks is shown below. 

Table 1. Sample safety analysis for two risks. 

 

Instruments 
overheat from 
being left on too 
long 

Instruments 
exposed to sun 

Operations 

For each turn on 
command, look 
for the following 
turn off 
command. Verify 
that they are 
within the 
maximum 
separation. 

Verify orientation 
of spacecraft 
during periods 
when instrument 
covers are open. 

CASPER 

High-level 
activity 
decomposes into 
turn on and turn 
off activities that 
are with the 
maximum 
separation. 

Maneuvers must be 
planned at times 
when the covers 
are closed  
(otherwise, 
instruments are 
pointing at the 
earth) 

SCL 

Rules monitor 
the “on” time and 
issue a turn off 
command if left 
on too long. 

Constraints prevent 
maneuver scripts 
from executing if 
covers are open. 

FSW 

Fault protection 
software will 
shut down the 
instrument if left 
on too long. 

Fault protection 
will safe the 
spacecraft if covers 
are open and 
pointing near the 
sun. 

 

3.3 Code Generation 
An interesting aspect of model development was the use of 
code generation techniques to derive SCL constraint checks 
from CASPER model constraints.  In this approach, certain 
types of CASPER modeling constraints could be translated 
into SCL code to ensure consistency at execution time.  If 
the CASPER model specifies that activities use resources, 

this can be translated into an SCL check for resource 
availability before the activity is executed.  If the CASPER 
model specifies a state requirement for an activity, a check 
could be auto-generated to verify a valid state before 
executing the activity.  Additionally, if the CASPER model 
specifies sequential execution of a set of activities, code 
can be generated so that SCL enforces this sequential 
execution. 
 
For example, in calibrating the Hyperion instrument, the 
solid state recorder (WARP) must be in record mode and 
the Hyperion instrument cover must be open.  Below we 
show the CASPER model and the generated SCL constraint 
checks. 

Figure 2. Sample model and script for Hyperion 
calibration. 

 
Note that this generated code also enforces the sequential 
execution of the “yscistart” and “yscistop” activities, 
separated by “caldur” seconds.  This shows how code is 
automatically generated from a CASPER defined temporal 
constraint over two activities. 
 
As another example, when initiating the WARP recording, 
there is a limit on the total number of files on the WARP 
recorder (63).  In CASPER we defined the constraint that 
“wfl” new files are created.  We then auto-generated SCL 
code to verify that number of files can be created without 
exceeding the file limit before the WARP recording 
activity is allowed to execute. 
 

// Hyperion calibration 
activity hsi_img_cal 
{ 
  durat caldur; 
  // schedule only when the WARP is in record 
  // mode, recording data, and 
  // when the hyperion cover is open 
  reservations = 
    wrmwmode must_be "rec", 
    ycovrstat must_be "closed"; 
  // start and stop the instrument 
  decompositions = 
    yscistart, yscistop 
    where yscistop starts_after  
          start of yscistart by caldur; 
} 
 
-- Hyperion calibration 
script hsi_img_cal caldur 
  -- verify that the WARP is in record 
  -- mode, recording data, and 
  -- that the hyperion cover is open 
  verify wrmwmode = rec  
     and ycovrstat = closed 
         within 5 seconds 
  -- start and stop the instrument 
  execute yscistart 
  wait caldur sec 
  execute yscistop 
end hsi img cal
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Figure 3. Sample model and script for WARP 

recording. 

3.4 Sequence Generation 
With the model defined, CASPER generated preliminary 
command sequences from past science requests 
representing a range of potential flight situations. These 
sequences were compared with the actual sequences 
generated and uplinked by the EO-1 ground team for the 
same request. Significant differences between the two 
sequences identified potential problems with the model. 
For example, if two commands were sequenced in a 
different order, this potentially revealed an overlooked 
constraint on one or both of the commands. The EO-1 team 
also provided engineering telemetry from the onboard 
execution of these sequences.  This telemetry allowed for 
execution comparisons to the telemetry generated by ASE.  
Additionally a novel “played back” capability was 
developed where the ASE software could be fed the results 
of commands using the actual effects observed onboard. 
The command sequences were aligned with the telemetry 
to identify the changes in spacecraft state and the exact 
timing of these changes. Again, any differences between 
the actual telemetry and the ASE telemetry revealed 
potential errors in the model. We converged on a consistent 
model after several iterations through this sequence 
generation process.  
 
The sequence generation effort was in effect the crossover 
point between our model development process and the 
beginning of our system-level testing.  While feeding 
directly into the iterative development process, it also 
allowed the first validation of the ASE model and software. 

4 Testing Enforcement of Safety 
Testing ASE against prior sequences would not be enough.  
We needed to show that onboard EO-1 the system would 
correctly plan, generate, and execute command sequences.  

Or, more importantly, that the generated command 
sequences would never endanger the safety of the 
spacecraft. 
 
As demonstration software, the effort available for testing 
our agent was severely time and resource constrained.  
Therefore we decided early in the project that testing 
should focus primarily on ensuring that our agent executed 
safely.  Missing a data collect would be an unfortunate 
although tolerable failure - endangering the safety of the 
EO-1 spacecraft would not. 
 
Leveraging the completed safety analysis, we approached 
validation by breaking our testing strategy into three 
verification steps: 
 

1. CASPER generates plans consistent both with its 
internal model of the spacecraft and SCL’s model 
and constraints. 

2. SCL does not issue any commands that violate the 
constraints of the spacecraft. 

3. Both models accurately encode the spacecraft 
operational and safety constraints. 

 
The first two steps build confidence that the ASE software 
executes within the constraints levied by the spacecraft 
model, while the third step verifies that the model encodes 
sufficient information to protect against potential safety 
violations. 
 
We validated these requirements by extensive testing of the 
autonomy software on generated test-cases, using 
simulation and rule-based verification at each step.  Note 
that the steps enumerated above, and the test cases 
described below, address only the top-two layers of the 
onboard autonomy software (CASPER and SCL).  The 
existing EO-1 flight software testing and validation was 
addressed prior to ASE by a separate, more conventional, 
test plan.  Additionally both CASPER and SCL are mature 
and tested software systems.  The majority of the 
development effort for ASE was in the two internal models 
that adapt the systems to EO-1.  Accordingly the testing 
strategy outlined below focuses the majority of the effort 
on exercising those models. 

4.1 Test Case Parameters 
Each EO-1 test case spans seven days of spacecraft 
operations covering multiple science observation and 
reaction opportunities.  Each observation opportunity, 
referred to as a CASPER schedule window, represents an 
time period where ASE has been cleared to command EO-
1.  The test cases vary the state observed by ASE entering 
schedule windows (spacecraft state parameters), and vary 
the goals given to ASE through changes to mission and 
science objectives (mission scenario parameters).  
Additionally we employed simulators that changed the 
spacecraft state during test execution to simulate unknown 
environmental changes.   

// Start the WARP recording 
activity wrmsrec 
{ 
  ... 
    reservations = 
      // reserve the required number of 
      // files on the WARP 
      wrmtotfl use wfl, 
      // change the warp to record mode when 
      // complete 
      wrmwmode change_to "rec" at_end, 
  ... 
} 
 
-- Start the WARP recording 
script wrmsrec 
  ... 
 verify 
        wrmfreebl wrmtotfl + wfl <= 63  
        and wrmtotfl + wfl >= 1 and 
  ... 
end wrmsrec 
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Mission scenario parameters represent the high-level 
planning goals passed to ASE.  They are derived from a 
combination of the orbit and long-term science objectives.  
Mission scenario parameters specify when targets will be 
available for imaging, the parameters of science 
observations (i.e. number of targets to image and science 
analysis algorithms we wish to execute), and reactions to 
observed science events (i.e. follow-up observations). 
 

Table 3. Mission-scenario parameters. 

Parameter Nominal Off-
nominal Extreme 

schedule 
windows 0-3 3-5 5+ 

orbits between 
windows 2-7 1,8 0,8+ 

window start 
time 

start of 
orbit +/- 10 min any 

window 
duration 

expected 
time of 
science 
analysis 

+/- 10 min any 

image start 
anytime in 
orbit, 1 per 
orbit 

1 per 3 
orbits any 

image duration 8 s +/- 2 +/- 5 0,60 

groundstation 
AOS 

anytime in 
orbit, 1 per 
orbit 

1 per 3 
orbits any 

groundstation 
LOS 

AOS + 10 
min +/- 1 +/- 3 any 

eclipse start 
60 min 
after orbit 
start 

+/- 5 any 

eclipse 
duration 30 min +/- 5 any 

science 
algorithm any any any 

science goal 
start fixed not-

specified any 

number of 
science goals 1 per orbit 1-2 >2 

warp allocated 0 32K blocks any 
 
Spacecraft state parameters encode the relevant state of 
EO-1 at the start of a schedule window, and change as a 
result of commanded sequences.  Changes to these 
parameters are simulated using a software simulator.   
 

Table 2. Sample spacecraft state parameters. 

Parameter Expected Initial State 
xband groundstation unknown 
xband controller enabled 

ACS mode nadir 
target selected unknown 
warp electronics mode stndops 
warp mode standby 
warp bytes allocated 0 
warp number files 0 
fault protection enabled 
eclipse state full sun 
target view unknown 
hyperion instrument power on 
hyperion imaging mode idle 
hyperion cover state closed 
ali instrument power on 
ali active mechanism telapercvr 
ali mechanism power disabled 
ali fpe power disabled 
ale fpe data gate disabled 
ali cover state closed 
groundstation view Unknown 
mission lock unlocked 

 
To exhaustively test every possible combination of state 
and observation parameters, even just assuming a nominal 
and failure case for each parameter and ignoring execution 
variations, would require 236 or over 68 billion test cases 
(each requiring on average a few hours to run).  The 
challenge therefore becomes selecting a set of tests that 
most effectively cover the space of possible parameter 
variations within a timeframe that allows for reasonable 
software delivery. 

4.2 Design of Test Cases  
Traditional flight software is designed to be tested through 
exhaustive execution of a known set of command 
sequences.  Command sequences usually must be run 
through a high-fidelity ground testbed before being cleared 
to run onboard. 
 
Autonomy software however enables the spacecraft to 
execute in, and react to, a much wider range of possible 
scenarios.  This flexibility enables new paradigms of 
operations and science, but comes at the price of 
complexity in testing and validation – tests that must 
attempt to intelligently cover the range of possible states 
and mission scenarios.   
 
To trim the set of possible inputs, we took advantage of the 
scenarios identified by the model review process.  For 
example, we never expect to take more than five science 
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data collects before a downlink (and usually exactly five as 
that is the limit of the WARP data storage).  A downlink is 
almost always followed immediately by a format of the 
WARP.  Science collections are always preceded by a slew 
and wheel bias and followed by a slew to nadir.  Together 
these form a baseline mission scenario covering all the 
actions to be commanded by our agent. 
 
Instead of testing every possible combination of spacecraft 
and mission parameters, we instead decided to vary 
parameters off of this baseline scenario, thus reducing the 
number of parameter variations for our test cases to 
consider.  This is a similar approach to that used to validate 
the Remote Agent Planner for NASA’s Deep Space 1 
mission. [11]. 
 
We started the design process by using the nominal 
parameter values identified in the model review process.  
Using these assignments we generated test cases that varied 
each of the parameters across three distinct classes of 
values – nominal (single value), off-nominal (range of 
acceptable values), and extreme (failure conditions).  For 
each parameter, we defined a set of five values at the 
boundaries of these classes – a minimum value, an “off-
nominal-min” value at the boundary between the off-
nominal and the extreme, a nominal value, an “off-
nominal-max”, and a maximum value. 
 
 
 
 
 

nominal

off−nominal maxoff−nominal min

maxmin

 

Figure 4. Parameter Decompositions 
 
Using this decomposition we generated three sets of test 
cases: 
 

1. Baseline scenario test cases that exercised just the 
baseline mission scenario. 

2. Stochastic test cases, grounded in the baseline 
mission scenario, that varied parameters within 
nominal, off-nominal, and extreme ranges. 

3. Environmental test cases that varied initial state, 
and inserted execution uncertainty. 

 
4.2.1 Baseline-Scenario Test Set 
The baseline mission scenario, identified in the model 
review process, was used for the first and most basic test 
set validating ASE. 
 
This scenario provided exactly the expected sequences and 
parameter values to the ASE software.  Any inconsistencies 
or anomalies in execution were easily traced back as the 
scenario was well understood and used previously to 
generate command sequences during the model review 
process.  

4.2.2 Stochastic Test Set 
Clearly the baseline test set did not fully exercise the 
autonomous planning and reaction capabilities of the 
system.  In order to test more nominal scenarios, and also 
gain coverage in the off-nominal parameter ranges, we 
devised a procedure for generating stochastic test sets 
based on parameter value distributions.   
 
Parameters were given normal distributions around their 
nominal value, with standard deviations half the width of 
the off-nominal range (such that 95% of expected values 
will be either nominal or off-nominal).  Nominal test sets 
were then generated assigning values to parameters based 
on the defined distributions.  Furthermore, by modifying 
the construction of the parameter distribution, we were able 
to create off-nominal and extreme test sets that would 
stochastically favor some parameters to choose values 
outside of their nominal range.  
4.2.3 Environmental Test Set 
We further extended the stochastic test sets described 
above to include execution variations based on the 
parameter distributions.  The spacecraft simulator was 
modified to allow as input variations to expected parameter 
values.  During the execution of activities the simulator 
simulated changes to each parameter of the current activity, 
and then varied the value returned based on the provided 
parameter distributions.  Again nominal, off-nominal, and 
extreme test sets were generated that instructed the 
simulator to vary parameter values within the 
corresponding value class. 
 
Finally we needed a way to test how the system responded 
to unexpected or exogenous events within the environment.  
These events could be fault conditions in the spacecraft or 
events outside of the CASPER model.  Unlike the initial-
state and execution-based testing described above, these 
events could happen at any time, and do not necessarily 
correspond to any commanded action or modeled 
spacecraft event.  To accomplish this we added to our 
spacecraft simulator the ability to change the value of any 
parameter, at either an absolute time or time relative to the 
execution of an activity, to a fixed value or a value based 
on the distributions described above.  We added small-
variation events (within appropriate off-nominal and 
nominal classes) to our nominal and off-nominal stochastic 
test sets. 

4.3 Testing Procedure 
The test cases generated using the procedure outlined 
above were used in unit testing the individual agent layers 
and integrated system testing.  Unit testing verified 
primarily the first two decompositions of our test plan – 
that CASPER commanded within its model, and that SCL 
did not violate any spacecraft constraints.  Integrated 
testing verified that these constraints hold within the full 
system, and that the commanded sequences safely achieve 
the mission objectives. 
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The vast majority of tests were run on the Solaris and 
Linux platforms - as they were the fastest and most readily 
available.  However, these test the software under a 
different operating system and processor, and therefore are 
primarily useful for testing assumptions in the CASPER 
and SCL models.  The operating system and timing 
differences are significant enough that many code 
behaviors occur only in the target operating system, 
compiler, and processor configuration.  Therefore every 
effort was made to extensively validate the agent on higher 
fidelity testbeds. 
 

Table 4. Testbeds available to validate EO-1 agent. 

Type Number Fidelity 

Solaris 
Sparc Ultra 5 

Low – can test 
model but not 
timing 

Linux 
2.5 GHz 7 ″ 

GESPAC 
PowerPC  
100-450 MHz 

10 Moderate – runs 
flight OS 

JPL Flight Testbed 
RAD 3000 1 Moderate 

EO-1 Flight Testbed 
Mongoose M5, 
12 MHz 

1 High – runs Flight 
Software 

EO-1 Autonomy 
Testbed  
Mongoose M5,  
12 MHz 

2 High – runs Flight 
Software 

 
On the Linux, Solaris, and GESPAC testbeds we used an 
automated test harness to setup, execute, and evaluate the 
results of each test run.  Tests were run at accelerated 
speeds using the capabilities of our software simulator and 
the resources of the faster processors.  The GESPAC and 
flight testbed configurations do not have similar 
acceleration capabilities, and therefore require tests to be 
run in real-time.  The test harness ran over six years of 
autonomous operations during the first six months of our 
validation process.  
 
To ensure stability, we implemented minimum 
requirements on the number of test cases that must execute 
without an identified failure before a build was cleared for 
flight.  These requirements varied by platform as follows: 1 
year of simulated operations on Linux/Solaris, 1 month on 
the GESPAC single board computers, and 1 week on the 
flight testbeds. 

4.4 Success Criteria 
To be considered successful a test run could not violate any 
spacecraft, operations, or safety constraints.  On the Linux, 
Solaris, and GESPAC testbeds these constraints were 
checked by a software simulator that monitored activities 
committed by CASPER and executed by SCL.  The 

simulator verified the timing, state, and resource 
constraints of the activities against those encoded in the 
CASPER model.   
 
Recalling that our primary testing objective was to verify 
that our agent commanded EO-1 safely, we developed a 
separate “safety monitor” that watched only for violations 
of the safety and operations constraints.  The safety 
monitor was developed with no knowledge of the CASPER 
or SCL models, and parsed the actual spacecraft commands 
issued by the autonomy software (isolated black-box 
testing).  These commands were fed into state machines 
that monitored each of the safety and operations constraints 
– the same constraints that were derived from the safety 
and model review process.  Any violations that were 
discovered were considered high-priority defects. 
 
The flight testbeds used a higher-fidelity “Virtual Satellite 
(VSat)” simulator, developed independently from the 
autonomy software.  The VSat simulator modeled the 
spacecraft at the subsystem level, including systems, states, 
and resources not modeled by CASPER or SCL. 

5 Status & Deployment 
The full ASE software has successfully commanded 
science observations onboard EO-1 since January 2004,  
As of April 2004, ASE has successfully collected target 
observations, analyzed science data onboard EO-1, and 
autonomously retargeted the spacecraft for subsequent 
observations.  The ASE software has been so successful 
that it is currently being used to fly EO-1 in normal 
operations and is expected to be used as such until the end 
of mission (at least Fall 2005). 
 

Test Description Test Date 
First test of onboard  cloud detection 
(science analysis) March 2003 

Verification of ASE-EO-1 FSW 
commanding path May 2003 

Onboard execution of CASPER 
ground-generated command sequences July 2003 

Full ASE software upload August 2003 
First ASE autonomously-commanded 
dark calibration image and downlink October 2003 

First ASE autonomous science 
observation January 2004 

First autonomous science analysis and 
subsequent reaction observation. April 2004 

Expanded EO-1 science operations 
automation. 

May 2004-
Present 

6 Conclusions 
This paper described the design and validation of a safe 
agent for autonomous space science operations.  First, we 
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described the challenges in developing a robust, safe, 
spacecraft control agent.  Second, we described how we 
used a layered architecture to enhance redundant checks for 
agent safety.  Third, we described our model development, 
validation, and review.  Finally, we described our test plan, 
with an emphasis on verifying agent safety. 
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Abstract

We present a translation of a variant of PDDL with re-
stricted continuous effects into linearly priced timed au-
tomata. For the latter notion the model-checker UP-
PAAL CORA is able to find cost-optimal traces. We ex-
plain the PDDL variant and its translation into the syn-
tax of UPPAAL CORA. A case study is used to explain
the approach.

Introduction
An interesting trend in recent years in computer science re-
search is the growing exchange of techniques in two areas
which were rather disjoint previously. On the one side the
planning community dealt with the problem to find valid
plans in domains automatically. A main obstacle is to find
informative and efficient heuristics to guide the search to-
wards the goal. Usually the aspects of quantitative time
and optimality of plans were neglected because finding just
a valid plan in acceptable time was difficult enough in do-
mains with huge state spaces.

On the other side the verification community worked hard
to cope with the problem of state explosion when model-
checking is applied. The standard technique is to find ef-
ficient data structures for symbolic representation of set of
states. In case of discrete time this is rather successful and
even for models with continuous time excellent tools are
available, for example UPPAAL(Larsen, Petterson, & Wang
Yi 1997; Behrmann, David, & Larsen 2004).

The common problem of both research areas are huge
state spaces. Planning usually means to find a way through
this space. Verification usually means to prove the absence
of such a way. On the first sight it seems that the problems
are contrary but there are situations where model-checking
can benefit from heuristics. For example, when the model-
checker

• tests a system that is known to be faulty or

• should check whether a system is able to execute a given
abstract trace. This is rather often a problem when large
systems are abstracted due to limited resources. When the
model-checker finds an abstract trace the question is still

Copyright c© 2005, American Association for Artificial Intelli-
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open whether the abstraction was too coarse or the trace
is feasible in the full model.

In both cases it make sense to guide the search of the model-
checker. Examples of such approaches are (Kupferschmid
et al. 2005; Dierks 2005).

However, the planning community can benefit from the
achievements of the verification community as soon as quan-
titative time and the question for optimality comes into the
play. This is topic of this paper. We introduce a variant of
the standard specification language for planning problems
PDDL. It is an extension of PDDL 2.1 at level 3 towards
duration-dependent and continuous effects. The latter ef-
fects, however, are restricted to the costs. That means it is
allowed to specify the costs of a durative action depending
of the duration of the action. To solve the problem of finding
cost-optimal plans in such domains we translate the planning
problem to linearly priced timed automata for which the tool
UPPAAL CORA exists. It is able to find cost-optimal traces
which represent valid plans.

The paper is organised as follows. You are reading the in-
troduction. The next section introduces briefly our variant of
PDDL. Thereafter we explain (priced) timed automata and
the capabilities of the model-checker UPPAAL. The transla-
tion from PDDL to timed automata is explained in the fol-
lowing section. We end with a case study and conclusions.

PDDL
PDDL (Planning Domain Definition Language) has been in-
troduced in (McDermott & the AIPS-98 Planning Compe-
tition Committee 1998) as common problem-specification
language for the AIPS-98 planning competition. The pur-
pose of PDDL is to describe the nature of a domain by spec-
ifying its entities and actions that may have effects on the
domain. These effects can change the state of the domain.

In order to handle domains with time and numbers PDDL
has been extended hierarchically (Fox & Long 2001b;
2001a): The original PDDL is called PDDL level 1; the first
extension by numeric effects represents level 2. That means
in PDDL at level 2 it is possible to handle functional expres-
sions and effects may change the values of those. The next
extension (level 3) allows to specify durations for actions.
Further extensions introduce duration-dependent effects for
durative actions (level 4) and continuous effects for durative
actions (level 5).
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In this paper we will deal with PDDL at level 3 to-
gether with restricted continuous effects for durative actions
(called PDDLcora) for which we offer an automatic trans-
lation from PDDLcora domain specifications into networks
of timed automata suited for the real-time verification tool
UPPAAL CORA. Thus, the entire collection of data struc-
tures and heuristic search-algorithms developed within the
framework of UPPAAL become available to any planning
problem describable within PDDLcora. An interesting as-
pect in which our approach differs from (Dierks, Behrmann,
& Larsen 2002) is the fact that we leave the decidable set of
timed automata due to our extensions. The reason is that by
duration-dependent effects we can sum up durations. Thus,
we are able to build “stopwatches” and it is known that timed
automata with stopwatches are more expressive than timed
automata (Cassez & Larsen 2000). Moreover, reachability
is undecidable for stopwatch automata.

In Fig. 1 an example of a domain description in PDDLcora

is given. It describes a variation of a planning problem in
which landing planes have to be scheduled to runways. Each
plane has three landing times given:

• earliest denotes the earliest time where the aircraft
can land.

• target describes the desired time. When the aircraft
misses this time it is late.

• latest defines the latest time at which the plane must
land.

Moreover each aircraft is assigned two rates. The optimal
time point for the plane is the target time. In this case it
produces no costs at all. Landing earlier than the target
time increases the costs by the early-rate. Landing
after the target time produces immediate costs, a so-called
late-penalty. The costs for landing late increase with
the late-rate.

In PDDLcora we model this problem as follows. We intro-
duce two types plane and runway. Each plane should be
landed in the goal state and landing requires that a runway
is not occupied and the plane is scheduled to this run-
way. The procedure to land an aircraft requires to schedule
the aircraft to a runway first. This is done by the schedule
action and it action takes 40 time units. After landing the air-
craft has to leave the runway which takes 40 time units also.

The landing is modelled by two actions. The first durative
action is land-on-time which covers the case that plane
lands in-between the earliest and target time. It starts at the
earliest landing time and finishes at the target at latest. This
is achieved by specifying

(at start (= total-time (earliest ?p)))

and

(:duration
(<= ?duration (- (target ?p)

(earliest ?p))))

The costs depend on the time when this action ends. We
compute them by increasing the costs at the beginning and
decrease them by the early rate during execution.

P

p1 x ≤ 11

p2

p3

x > 4

x := 0

x == 6

a?

m := k

Q

q1

c: q2

q3

y == 13

a!

k := 42

b!

R

r1

r2

r3

b?

n := k

z > 28

Figure 4: A simple UPPAAL model.

The second action models a delayed landing of the air-
craft. In this case the action starts at the target time and
takes at most the difference between latest and target time.
The penalty for the delayed landing is paid at the beginning
of the action and during the action the costs increase with
the late-rate.

The problem specification contains concrete objects, ini-
tial values for the functions and predicates of the domain and
the goal specification. In Fig. 2 a problem instance for the
Landing domain is given. In contains a problem with three
aircrafts and a single runway. The goal is to land all aircrafts
with minimal costs.

A valid plan for this is sketched in Fig. 3. The costs of
this plan consist only of the costs for the landing of aircraft
KL101 because the other ones land exactly at target time.
Since KL101 lands at 178 we get

500 + (178− 155) · 10 = 530

as costs for this example plan.

UPPAAL CORA

UPPAAL1 is a modeling, simulation, and verification tool for
real-time systems modeled as networks of timed automata
(Alur & Dill 1990; 1994) extended with data types such as
bounded integer variables, arrays etc. In this subsection we
describe briefly how networks of timed automata are spec-
ified in the syntax of UPPAAL. For more details about this
tool the reader is confered to (Larsen, Petterson, & Wang Yi
1997; Behrmann, David, & Larsen 2004).

1See the web site http://www.uppaal.com/.
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(define (domain Planes)
(:requirements :typing :fluents :negative-preconditions
:conditional-effects :equality :duration-inequalities
:durative-actions)
(:types plane runway)
(:predicates (occupied ?r - runway)

(landed ?p - plane)
(scheduled ?p - plane ?r - runway))

(:functions (earliest ?p - plane)
(target ?p - plane)
(latest ?p - plane)
(early-rate ?p - plane)
(late-rate ?p - plane)
(late-penalty ?p - plane)
(cost))

(:durative-action schedule :parameters (?p - plane ?r - runway)
:duration (= ?duration 40)
:condition (at start (and (not (occupied ?r))

(not (landed ?p))
(not (scheduled ?p ?r))))

:effect (and (at start (occupied ?r))
(at end (scheduled ?p ?r))))

(:durative-action clear :parameters (?p - plane ?r - runway)
:duration (= ?duration 40)
:condition (and (at start (occupied ?r))

(at end (occupied ?r))
(at start (scheduled ?p ?r))
(at start (landed ?p)))

:effect (and (at end (not (occupied ?r)))
(at start (not (scheduled ?p ?r)))))

(:durative-action land-on-time :parameters (?p - plane ?r - runway)
:duration (<= ?duration (- (target ?p) (earliest ?p)))
:condition (and (at end (occupied ?r))

(at end (scheduled ?p ?r))
(at start (= total-time (earliest ?p))))

:effect (and (at end (landed ?p))
(at start (increase cost (* (early-rate ?p)

(- (target ?p) (earliest ?p)))))
(decrease cost (early-rate ?p))))

(:durative-action land-late :parameters (?p - plane ?r - runway)
:duration (<= ?duration (- (latest ?p) (earliest ?p)))
:condition (and (at end (occupied ?r))

(at end (scheduled ?p ?r))
(at start (= total-time (target ?p))))

:effect (and (at end (landed ?p))
(at start (increase cost (late-penalty ?p)))
(increase cost (late-rate ?p))))

)

Figure 1: The planes domain.
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(define (problem plane1)
(:domain Planes)
(:objects KL101,KL108,KL115 - plane

r - runway)

(:init (not (occupied r))
(not (landed KL101)) (not (scheduled KL101 r))
(not (landed KL108)) (not (scheduled KL108 r))
(not (landed KL115)) (not (scheduled KL115 r))

(= (earliest KL101) 129) (= (early-rate KL101) 10)
(= (target KL101) 155) (= (late-rate KL101) 10)
(= (latest KL101) 559) (= (late-penalty KL101) 500)

(= (earliest KL108) 195) (= (early-rate KL108) 10)
(= (target KL108) 258) (= (late-rate KL108) 10)
(= (latest KL108) 744) (= (late-penalty KL108) 500)

(= (earliest KL115) 89) (= (early-rate KL115) 30)
(= (target KL115) 98) (= (late-rate KL115) 30)
(= (latest KL115) 510) (= (late-penalty KL115) 500)

)

(:goal (and (landed KL101)
(landed KL108)
(landed KL115)
(not (occupied r))))

(:metric minimize cost)
)

Figure 2: The planes domain.

Figure 4 contains a simple system of three automata –
called processes in UPPAAL – P , Q and R which work in
parallel. The initial states p1, q1 and r1 are marked by in-
going edges with no source. Initial all three clocks (x, y, z)
are set to 0 and no transition is enabled: The transition from
p1 to p2 is blocked by the guard x > 4. The transition from
q1 to q2 is also blocked by the guard on clock y. Similarly,
the transition from r1 to r2 is initially blocked because it
requires a synchronisation on a channel b. Hence, the only
legal behaviour of this system in the initial state is to let time
pass. All clocks are incremented linearly with rate 1.

As soon as more than 4 time units have passed, the tran-
sition to p2 can be fired. If this happens the clock x will be
reset to 0. Note that the system is not forced to execute this
transition immediately after it is enabled. It may even wait
forever unless an invariant at the source state is given. In this
case p1 is equipped with the invariant x ≤ 11 and therefore
the process P is allowed to select a time point in ]4, 11] to
fire the transition.

In state p2 process P can fire the transition to p3 only
together with another transition since it requires a synchro-
nisation on channel a. The synchronisation on a channel
c is possible if there are two processes with transitions la-
belled with c! resp. c? and both guard are satisfied. Then
both transitions are executed together whereas the actions of
the c! transition are executed before those of the c? transi-
tion. Nevertheless the results of the actions are computed
without any delay. In the example of Fig. 4 the system may

switch from p2 and q1 to the states p3 and q2 simultaneously
provided that y == 13 and x == 6 hold. When executed
the variables k and m are both set to 42. It is easy to see that
this can only happen when P has taken the transition to p2

at the time point 7.

If Q has reached q2 it has to leave this state at the same
point in time because q2 is marked as committed state. That
requires the process to leave this state before time passes
again. Although this behaviour can be expressed by setting
the clock y to 0 and adding the invariant y ≤ 0, this feature is
useful since in can save clocks which is the most expensive
entity when model-checking timed automata. Hence, Q is
forced to synchronise on channel b and process R can serve
as synchronisation partner. Hence at time point 13 but after
the transition to q2 it fires the transition to q3 together with
R which enters r2. The action sets n to 42, too. Finally, R
may change from state r2 to r3 provided that z > 28 holds.

This example highlights only some features of the ex-
tended timed automata which can specified in UPPAAL. Fur-
ther additions are extensions of the data types (enumera-
tions, bounded integers and Boolean variables and arrays of
those). In the latest versions also broadcasting channels are
allowed. If a broadcast c! on channel c is executed all pro-
cesses which have a enabled, c?-labelled transition will take
part.

In Fig. 5 the model of Fig. 4 is given in the ASCII syntax
of UPPAAL. Queries are given in a different file and the tool

ICAPS 2005

Workshop on Verification and Validation of Model-Based Planning and Scheduling Systems 51



schedule(KL115,r)

land-on-time(KL115,r)

clear(KL115,r)

schedule(KL101,r)

land-late(KL101,r)

clear(KL101,r)

schedule(KL108,r)

land-on-time(KL108,r)

clear(KL108,r)

0 40 89 98 138 178155 218 258195 298

Figure 3: A valid plan for the problem of Fig. 2

is basically able to check for reachability properties.2 An
example suitable for Fig. 4 is:

E<> (P.p3 and Q.q3 and R.r3)
A[] (m==k)

Both queries are satisfied. Note that the last query states that
m and k are always equal. Hence, the assignments of the
a-synchronised transitions is executed atomically.

In more recent work (Behrmann et al. 2001; Larsen
et al. 2001) the timed automata model as well as the
underlying verification engine of UPPAAL have been ex-
tended to support computation of optimal reachability with
respect to various cost criteria. The name of this tool vari-
ant is called UPPAAL CORA. In (Behrmann et al. 2001)
the timed automata model has been extended with discrete
costs on edges and the optimality criteria consist in min-
imising either the total accumulated time (for reaching a
goal state) or the total accumulated discrete cost or the sum
of these two. UPPAAL CORA (Behrmann et al. 2001;
Larsen et al. 2001) offer various mechanisms for guiding
and pruning the search for optimal reachability and has been
applied successfully on a number of scheduling problems
(e.g. job-shop scheduling, air-craft landing).

An example of a priced timed automaton is given in Fig. 6.
It models a typical scheduling problem of a traveller from
Paris to London. There are two choices for her: Flying di-
rectly with flight Fl.1 or via Amsterdam using Fl.2 and Fl.3.
Depending on the optimality criterion the best choice is:

• Flying directly to optimise time consumption only. It
takes 20 time units to fly directly and 30 time units via
Amsterdam.

• Flying via Amsterdam optimises the costs. It costs 5 cost
units via Amsterdam and 7 cost units to fly directly.

• If time is costly, i.e. one time unit costs one cost unit,
the best choice is to fly directly (27 cost units vs. 35 cost
units).
2Some extension in the expressiveness of the queries have been

made but they are not used in our approach.

The example demonstrates how costs can be added as as-
signments for the discrete transitions. It is also possible
to set the derivative of the variable cost in order to spec-
ify whether time is costly or not. It is clear that UPPAAL
CORA can prune the search space as soon as a trace to goal
has been found. If the cost of a trace to the goal is c then
all other traces for which the costs are known to be at least
c are irrelevant. This pruning can be improved by adding
information about the remaining costs into the model. To
this end a special variable remaining can be used that is
expected to underestimate the remaining costs to reach the
goal.

Consider again the example above in the setting where
time costs. One could add the assignment remaining := 12
to the transition from state Fl.2 to state Amsterdam because
it might be known that a flight from Amsterdam to London
costs at least 12 time units. With this additional information
the UPPAAL CORA would know that the costs via Amster-
dam are at least 2 + 15 + 12 = 29 as soon as it fires the
transition from state Fl.2 to state Amsterdam. If it has found
the direct flight with the total costs of 27 cost units earlier it
could prune the search for cheaper flights via Amsterdam.

Besides the special variables cost and remaining an-
other variable called heur can be used to guide UPPAAL
CORA finding the optimal solution. Internally the model-
checker maintains a list of reachable states which are wait-
ing for exploration (“waiting list”). It is possible to start UP-
PAAL CORA with a flag such that the waiting list is sorted
by the corresponding values of heur. The effect is that the
state which has the smallest heur value is explored next.
For example, if heur is always equal to cost + remaining
then it is guaranteed that the first successful trace is also the
cheapest one3.

A further extension of priced timed automata is presented
in (Rasmussen, Larsen, & Subramani 2004). It is possi-
ble to define the costrate depending on the current system

3We assume that remaining represents an under-
approximation.
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Paris
z ≤ 0

Fl.2
z ≤ 15

Amsterdam
z ≤ 0

Fl.1
z ≤ 20

London
true

Fl.3
z ≤ 15

z = 0

cost+= 2,
z := 0

z = 15

z := 0

z = 0
cost+= 7,
z := 0

z = 20
z := 0

z = 0
cost+= 3
z := 0

z = 15
z := 0

Figure 6: An example of a priced timed automaton.

clock x,y,z;
int k,m,n;
chan a,b;

process P {
state p1 { x <= 11 },

p2,p3;
init p1;

trans
p1 -> p2 { guard x>4;

assign x:=0; },
p2 -> p3 { guard x==6;

sync a?;
assign m:=k; };

}

process Q {
state q1,q2,q3;
commit q2;
init q1;

trans
q1 -> q2 { guard y==13;

sync a!;
assign k:=42;},

q2 -> q3 { sync b!; };
}

process R {
state r1,r2,r3;
init r1;

trans
r1 -> r2 { sync b?;

assign n:=k; },
r2 -> r3 { guard z>28; };

}

system P,Q,R;

Figure 5: The example of Fig. 4 in the syntax of UPPAAL.

state which consists of a vector of states of all components.
Hence, the current costrate is a linear sum of costrates.
Therefore, this extension is called linearly priced timed au-
tomata (LPTA).

Translation
In this section we explain how to translate the PDDL specifi-
cations into input for UPPAAL CORA. In contrast to (Dierks,
Behrmann, & Larsen 2002) we can exploit additional ex-
pressive power in the syntax of the target and gain therefore
readability. Instead of a formal treatment we explain the
translation by the example of the Landing Domain.

Global Aspects
For the predicates and functions of the domain we add ap-
propriate (global) variables with appropriate type. Since the
type system of UPPAAL CORA supports arrays we can sim-
ply produce the following declarations of global variables
for the Landing domain.

bool occupied[ALL_OF_runway];
bool landed[ALL_OF_plane];
bool scheduled[ALL_OF_plane][ALL_OF_runway];
meta int earliest[ALL_OF_plane];
meta int target[ALL_OF_plane];
meta int latest[ALL_OF_plane];
meta int early_rate[ALL_OF_plane];
meta int late_rate[ALL_OF_plane];
meta int late_penalty[ALL_OF_plane];

It is clear that predicates are translated to Boolean and
functions to integers. The sizes of the arrays depend on the
type of the parameters. For example, for occupied we
need as many Boolean variables as runways are defined in
the problem. ALL OF runway is a constant that is declared
before and depends on the problem specification. In our ex-
ample we get the following constants:

// type plane
const int ALL_OF_plane = 3;
// type runway
const int ALL_OF_runway = 1;

An interesting feature of UPPAAL CORA is the definition
of meta variables. Whenever the model-checker computes

ICAPS 2005

Workshop on Verification and Validation of Model-Based Planning and Scheduling Systems 53



a new state it compare this new state with all previously seen
states. However, some variables are considered to be aux-
iliary only. Hence, it can make sense to leave these vari-
ables out when checking a new state. This feature speeds
up checks and reduces the stored state space since the tool
does not distinguish states which differ only in these auxil-
iary variables. By the prefix metawe can specify such vari-
ables. In our translation we exploit this in the case of pred-
icates and function in the domain which are never changed.
These variables are only set once, namely by the problem
specification. Because all functions of the Landing domain
are never changed by the domain’s actions we can declare
them as meta.

Durative Actions
For the translation of durative actions we use process tem-
plates of UPPAAL CORA. That means that each durative ac-
tion is translated into a corresponding template and in the
final system declaration in UPPAAL CORA we instantiate
some of these templates appropriately. Note that this dif-
fers completely from the way the translation was done in
(Dierks, Behrmann, & Larsen 2002) because here we get a
timed automaton for each instance of a template while in
(Dierks, Behrmann, & Larsen 2002) integer variables where
used. The advantage of this new approach is the direct cor-
respondence between the PDDL specification and its trans-
lation into a template.

These templates can have parameters and the only param-
eter in our case is an unique identifier. We will explain our
translation by the land late action. We get the following
process declaration

process land_late(const int id) {
int p, r;
clock duration;
int costrate=0;
int min_duration,max_duration;

The parameters of the durative action ?p and ?r occur here
as local integer variables p and r. In order to measure
the duration of the action we add a local clock and two
variables min duration and max duration which are
needed to record those duration constraints which are given
at the begin of the durative action. We also add a variable
costrate that defines the rate in which the costs are in-
creased (or decreased resp.) while executing the action.

State Space: Next is the state space declaration of the tem-
plate. The basic idea is that the process starts in a state idle
where the action is not executed. In order to start the dura-
tive action the process guesses instances of the action’s pa-
rameters ?p and ?r. This is done by transitions through
two auxiliary states called guess1 and guess2. The in-
tention is that these states are left at same time point as they
are entered. Finally, a state work is reached that means the
durative actions is executed. To end the action a transition
to idle is fired. In sum, we have the following state space
declaration:

state idle,
guess1 { duration <=0},

guess2 { duration <=0},
work { duration<=max_duration

&& cost’==costrate };
commit guess1, guess2;
init idle;

This specifies that the automaton can stay in state idle
arbitrarily long whereas the guess-states have to be left
within 0 time units. The time it may stay in work is re-
stricted by max duration only, since here only upper
bounds are legal in UPPAAL CORA. The lower bounds are
implemented by transition guards. The cost rate is also spec-
ified here. It simply states that the cost rate is given by the
variable costrate. Hence, we only have to manipulate
this variable to change the current cost rate. In order to min-
imise the search space we also declare the guess-states as
committed. Roughly, the meaning is that the system of all
processes first fires transitions first which leave committed
locations. That reduces the possible interleavings and saves
search space. The declaration of idle as initial state is
clear.

Action Parameters: Actions in PDDL may have param-
eters and our template for UPPAAL CORA implements this
in the following way. Each action parameter is represented
as local variable and for each parameter i we have an aux-
iliary state guessi that guesses the current instance of the
parameter i, ie. for each legal value j of the ith parameter we
get an unrestricted transition from guess(i−1) to guessi
where the ith parameter is set to j. For i = 1 we identify
idle with guess0.

Duration Constraints: In PDDL the duration of durative
actions are constrained by inequalities restricting the spe-
cial variable ?duration. It is possible to use functions
in these inequalities and hence the evaluation may change
during execution of the action due to interference by other
actions. Therefore, duration constraints are either evaluated
at end or at start where the latter is the default. To
models this in UPPAAL CORA we have to store the most
restrictive bounds in the local variables min duration
and max duration. The check whether all duration con-
straints are satisfied can only happen when the state work is
left. Hence, we get the following transitions. Note that only
the parts of the transitions are shown which are relevant for
the implementation of the duration constraints:

trans
idle -> guess1 {

guard ...
assign ...

duration:=0,
...

},
guess1 -> guess2 {

...
},
...
guess2 -> work {

guard ...
assign min_duration:=0,
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max_duration:=MAX_DURATION,
max_duration:=

min(max_duration,
(latest[p]-earliest[p])),

...
duration:=0;},

work -> idle {
guard duration>=min_duration

&& duration<=max_duration;
assign ...

min_duration:=0,
max_duration:=0,
...

};

In our example action we only have an upper bound
which has to be evaluated at start. Therefore
it is computed in the transition from guess2 to
work. The preceding assignments min duration:=0,
max duration:=MAX DURATION make sure that both
variables are initialised properly. MAX DURATION is the
maximal positive integer constant. When work is entered
duration is reset to measure the time the action is exe-
cuted currently. To stop this execution all constraints have
to be satisfied. Hence, the guard of the transition from work
to idle contains the check whether the duration is between
min duration and max duration. This implements
the at start constraints. The land-late actions has
no at end duration constraints. But if it had such con-
straints they would appear here because they have to be eval-
uated exactly in the moment when the transition takes place.

Conditions and Non-Continuous Effects: Similar to du-
ration constraints both conditions and effect come with a
time specification in case of durative actions. The transla-
tion of conditions with at start and at end specifi-
cation is straightforward. The syntax of guards for transi-
tion in UPPAAL CORA has been extended recently to sim-
ple C syntax. Hence it is basically an exchange of syn-
tax because all PDDL operators have a representative in
UPPAAL CORA syntax. The at start-conditions are
checked when the transition to state work is executed. The
at end-conditions are checked in the guard of the work-
to-idle transition.4

An extension to standard PDDL is the possibility of
adding total-time conditions in durative actions. The syn-
tax is

(at start (comp total-time f_expr)
(at end (comp total-time f_expr)

where comp is a comparison operator (=,≥,≤, <, >) and

4In PDDL it is possible to specify over all for conditions.
In this case the semantics requires that this condition has to be sat-
isfied during the whole execution of the action. This could be mod-
elled in UPPAAL CORA by introducing a transition from work to
idle together with the negated condition and a synchronisation
over an urgent channel. This forces UPPAAL CORA to take this
transition as soon as the condition is not satisfied. This interrupt
should also block all further attempts to reach the goal because in-
terrupted actions are not part of valid plans.

f expr is a functional expression. The obvious meaning is
that the total-time of the system and the value of the func-
tional expression should be in the comparison relation. Both
the check and the evaluation of the functional expression
take place as specified at start or at end respectively.
The translation is straightforward by appropriate compari-
son with a global clock measuring the total time.

In the case of non-continuous effects the translation has to
cope with the simultaneous execution of all effects. In case
of Boolean variables this is no problem since it is clear to
which value a Boolean variable is set by an effect. However,
in case of functions our translation has to translate

(and (assign a b) (assign b a))

into a sequence of non-simultaneous assignments that switch
the values of the nullary functions a and b. A naive trans-
lation using auxiliary variables would add an unnecessary
blow up of the search. However, the new feature of meta
variables in UPPAAL CORA allows us to add for each func-
tion f (in PDDL) not only the integer variable f but also a
meta variable new f without any price to pay. That means
that the example above would be translated to

new_a:=b, new_b:=a, a:=new_a, b:=new_b

in UPPAAL CORA. A special treatment is necessary for
the variable cost. It has a special meaning in UPPAAL
CORA and it must not occur in functional expressions. In
our PDDL variant non-continuous assignments to cost are
legal but must use the increase operator. The specifica-
tion of the penalty that a late plane has to pay is

(at start
(increase cost (late-penalty ?p)))

and it is translated into the assignment

cost+=late_penalty[p]

which is placed at the assignment of the transition to state
work.

Continuous Effects for Costs: Our translator deals with a
restricted set of continuous effects. It is possible to specify
cost rates for a durative action in the following way

(increase cost f_expr)
(decrease cost f_expr)

Here, f expr stands for an arbitrary functional expression.
The meaning is that the costs for the durative action depend
on the duration actually needed and (positive or negative
resp.) rate is given by f expr. Note that more than one
durative action may be active at the same time. But we can
exploit that UPPAAL CORA is able to cope with cost rates
for each process. The translation of an effect (increase
cost f expr) is just an assignment to the local variable
costrate. In our example we get

costrate=late_rate[p]

which has to be placed at the assignment of the transition to
state work.
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The Problem Definition

Above we discussed the aspects of the domain translation
but the current problem is given by a problem specification.
The contents of the problem specification can be translated
in a very canonical way. For the problem we add a pro-
cess called problem with three states: initial, work,
goal. The transition from initial to work initialises all
predicates and functions as specified in the (:init ...)
part of the problem definition. The transition from work to
goal can only be fired if the property given in the (:goal
...) section is satisfied. Thus it suffices to ask UPPAAL
CORA how to reach the state problem.goal with mini-
mal costs.

The objects in the (objects: ...) part are used to
instantiate the parameters of the actions. The names are not
important and therefore the translation omits this informa-
tion. It replaces all names by the number of the object with
the same type.

In recent extensions of PDDL timed initial effects were
introduced. It is very easy to add those to the translation of
the problem by adding transitions with a guard that requires
the correct total time and assignments that implement the
desired effects.

Optimisations

The translation introduces further variables in order to avoid
searching invalid plans. This happens when the guessing
part of a process for a durative action selects instances of
the parameters which do not satisfy the conditions given in
the domain specification. In this case the only transition left
for the process is a transition to idle where a special global
Boolean flag blocked is set. As soon as this flag is set
all actions cannot leave the idle state anymore. The effect
is that the computation stops and UPPAAL CORA will not
invest any time anymore in this branch.

Another important aspect is the number of process in-
stances per template. It is clear that durative actions may
overlap and the model-checker should consider such plans
since they are often less time consuming than subsequent
plans. Therefore it is reasonable to have several instances
per template. However, increasing the number of processes
increases the search space significantly. To minimise the
price we have to pay for additional instances we added the
following construction. If a durative action da is repre-
sented n times in the system for UPPAAL CORA, then we
have an Boolean array of size n representing the information
whether an instance is currently executing its action. When
model-checker wants to start a new action it has to select
the unique instance that is currently not active and has the
minimal id of such inactive instances. This avoids that the
tool considers plans which are equivalent up to matching to
process instances.

Case Study

We made a series of experiments based on the planes do-
main.

# Planes # instances # clocks plan time mem
3 2 9 0 1.5 9
3 3 13 0 28 57
4 2 9 860 8 32
4 3 13 860 249 479
5 2 9 1540 36 122
5 3 13 out of mem (165 s)
6 2 9 180 1051 788
6 3 13 out of mem (152 s)
7 2 9 out of mem (123 s)
7 3 13 out of mem (139 s)

We translated each problem specification (the number of
planes is given in the first column of the table above) in two
ways. The first variant contained two instances of each ac-
tion template, the second variant had three instances. Con-
sequently we get either 9 resp. 13 clocks in the input of UP-
PAAL CORA. Since the number of clocks is the most expen-
sive entity w.r.t. complexity we only added information in
the table. The result of the model-checking is given in the
last three columns. In case of success they contain the cost
of the optimal plan, the cpu time needed (on a Xeon with
2.66 GHz with memory limit set to 900MB) in seconds and
the memory needed in MB.

It is an important aspect that UPPAAL CORA was not
guided at all since our prototype does not construct any addi-
tional informative heuristics, ie. remaining and heur are not
used. Hence, only pruning takes place as soon as a plan was
found. It is obvious that appropriate planning techniques can
be applied to improve these results. First attempts in this di-
rection are made in the AVACS project5.

All files of experiments are available at the website of the
author:

http://csd.informatik.uni-oldenburg.de/dierks/

Conclusion
It was shown that due to the recent improvements of UP-
PAAL CORA it makes sense to consider this tool as planning
tool for optimal planning problems provided that the contin-
uous effects are restricted to costs only. A matter of future
work is to find out to what extend this approach can be ex-
tended to less restricted continuous effects.

A key factor whether our approach should be considered
for a certain domain is the relation between discrete state
space and continuous state space. In many domains – for
example those of IPC 2004 – the discrete state space is pre-
dominant even in domains where durative actions are used.
From our perspective this is mainly due to the evolution of
the planning community from the search in huge discrete
state spaces. In case of purely discrete domains the planning
tools are very powerful since much effort has been spent in
the past on such domains. In contrast to that a real-time
model-checker like UPPAAL has been tailored to deal with
continuous state spaces and it is still an open research is-
sue to find efficient symbolic representations of mixed states

5see http://www.avacs.org for more information about
this project.
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spaces. Hence, UPPAAL CORA is a good option for domains
where the continuous state space is predominant. As soon as
durations and continuous effects are missing or are a minor
part of the domain our approach will not be competitive.
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Abstract

Graphs are suitable modeling formalisms for software
and hardware systems involving aspects such as com-
munication, object orientation, concurrency, mobility
and distribution. State spaces of such systems can be
represented by graph transition systems, which are ba-
sically transition systems whose states and transitions
represent graphs and graph morphisms. In this paper,
we propose the modeling of graph transition systems in
PDDL and the application of heuristic search planning
for their analysis. We consider different heuristics and
present experimental results.

Introduction

Graphs are a suitable modeling formalism for software
and hardware systems involving issues such as commu-
nication, object orientation, concurrency, distribution
and mobility. The graphical nature of such systems
appears explicitly in approaches like graph transforma-
tion systems (Rozenberg 1997) and implicitly in other
modeling formalisms like algebras for communicating
processes (Milner 1989). The properties of such sys-
tems mainly regard aspects such as temporal behavior
and structural properties. They can be expressed, for
instance, by logics used as a basis for a formal verifica-
tion method, like model checking (Clarke, Grumberg,
& Peled 1999), which main success is due to the ability
to find and report errors.

Finding and reporting errors in model checking and
many other analysis problems can be reduced to state
space exploration problems. In most cases the main
drawback is the state explosion problem. In practice,
the size of state spaces can be large enough (even infi-
nite) to exhaust the available space and time resources.
Heuristic search has been proposed as a solution in
many fields, including model checking (Edelkamp, Leue,
& Lafuente 2003), planning (Bonet & Geffner 2001)
and games (Korf 1985). Basically, the idea is to ap-
ply algorithms that exploit the information about the
problem being solved in order to guide the exploration
process. The benefits are twofold: the search effort is

Copyright c© 2005, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

reduced, i.e., errors are found faster and by consuming
less memory, and the solution quality is improved, i.e.,
counterexamples are shorter and thus may be more use-
ful. In some cases, like wide area networks with Quality
of Service (QoS), one might not be interested in short
paths, but in cheap or optimal ones based on some no-
tion of cost. Therefore, we generalize our approach by
considering an abstract notion of costs.

Our work is mainly inspired by approaches to di-
rected model checking (Edelkamp, Leue, & Lafuente
2003), logics for graphs (like the monadic second or-
der logic (Courcelle 1997)), spatial logics used to rea-
son about the behavior and structure of processes cal-
culi (Caires & Cardelli 2003) and graphs (Cardelli,
Gardner, & Ghelli 2002), and approaches for the analy-
sis of graph transformation systems (Baldan et al. 2004;
Rensink 2003; Varrò 2003). At the theoretical front,
our approach is very much inspired by cost-algebraic
search algorithms (Sobrinho 2002; Edelkamp, Jabbar,
& Lluch-Lafuente 2005a).

The work also relates to (Edelkamp 2003a) that
compiled protocol software model checking domains in
Promela to PDDL. Two of such domains have served as
a benchmark for the 4th international planning compe-
tition in 2004 (Hoffmann et al. 2005). We extend the
work of (Edelkamp, Jabbar, & Lluch-Lafuente 2005b)
that applies heuristic search for graph transition sys-
tems in the context of the experimental model checker
HSF-SPIN (Edelkamp, Leue, & Lafuente 2003). To the
best of our knowledge this is the first work on action
planning for the analysis of graphically described sys-
tems, probably with the exception of one currently run-
ning master’s thesis (Golkov 2005).

The goal of our approach is to formalize structural
properties of systems modeled by graph transition sys-
tems. We believe that our work additionally illustrates
the benefits of applying heuristic search in state space
exploration systems. Heuristic search is intended to
reduce the analysis effort and, in addition, to deliver
shorter or optimal solutions. We consider a notion of
optimality with respect to a certain cost or weight as-
sociated to system transitions. For instance, the cost of
a transition in network systems can be a certain QoS
value associated to the transition.
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The next section introduces the running example that
is used along the paper to illustrate some of the concepts
and methods. Next, we define our modeling formalism,
namely graph transition systems. We then consider the
kind of properties we are interested in verifying and
discuss their PDDL model. We study two planning
heuristics for the analysis of properties in graph transi-
tion systems and present experimental results obtained
with a heuristic search planner. Finally, we conclude
the paper and outline future research avenues. For the
sake of readability the PDDL model for the arrow dis-
tributed protocol is included in an appendix that follows
the bibliography.

The Arrow Distributed Directory
Protocol

The arrow distributed directory protocol (Demmer &
Herlihy 1998) is a solution to ensure exclusive access to
mobile objects in a distributed system. The distributed
system is given as an undirected graph G, where ver-
tices and edges respectively represent nodes and com-
munication links. Costs are associated with the links in
the usual way, and a mechanism for optimal routing is
assumed.

The protocol works with a minimal spanning tree T
of G. Each node has an arrow which, roughly speak-
ing, indicates the direction in which the object lies.
If a node owns the object or is requesting it, the ar-
row points to itself; we say that the node is terminal.
The directed graph induced by the arrows is called L.
Roughly speaking, the protocol works by propagating
requests and updating arrows such that at any moment
the paths induced by arrows, called arrow paths, either
lead to a terminal owning the object or waiting for it.

More precisely, the protocol works as follows: Ini-
tially L is set such that every path leads to the node
owning the object. When a node u wants to acquire
the object, it sends a request message find(u) to a(u),
the target of the arrow starting at u, and sets a(u) to
u, i.e., it becomes a terminal node. When a node u
whose arrow does not point to itself receives a find(w)
message from a node v, it forwards the message to node
a(u) and sets a(u) to v. On the other hand, if a(u) = u
(the object is not necessarily at u but will be received if
not) the arrows are updated as in the previous case but
this time the request is not forwarded but enqueued. If
a node owns the object and its queue of requests is not
empty, it sends the object to the (unique) node u of its
queue sending a move(u) message to v. This message
goes optimally through G. A formal definition of the
protocol can be found in (Demmer & Herlihy 1998).

Figure 1 illustrates three states of a protocol instance
with six nodes v0, . . . , v5. The state on the left is the
initial one: node v0 has the object and all paths induced
by the arrows lead to it. The state on the right of the
figure is the result of two steps: node v4 sends a request
for the object through its arrow; and v3 processes it by
updating the arrows properly, i.e., the arrow points now

v1 e1

$$III
I v4

e4zzuuu
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Figure 1: Three states of the directory.

to v4 instead of v2.
One could be interested in properties like Can node vi

be a terminal? (Property 1), Can node vi be terminal
and all arrow paths end at vi? (Property 2), Can a
node v be terminal? (Property 3), Can a node v be
terminal and all arrow paths end at v? (Property 4).

Graph Transition Systems
This section presents our modeling formalism. First, an
algebraic notion of costs is defined. It shall be used as
an abstraction of costs or weights associated to edges of
graphs or transitions of transition systems. For a deeper
treatment of the cost algebra we refer to (Edelkamp,
Jabbar, & Lluch-Lafuente 2005a).

Definition 1 A cost algebra is a 6-tuple 〈A,
⊔
,×,�,

0,1〉, such that

1. 〈A,×〉 is a monoid with 1 as identity element and 0
as its absorbing element, i.e., a× 0 = 0× a = 0;

2. �⊆ A×A is a total ordering with 0 =
d
A and 1 =⊔

A;
3. A is isotone, i.e., a � b implies both a × c � b × c

and c× a � c× b for all a, b, c ∈ A (Sobrinho 2002).

In the rest of the paper a ≺ b abbreviates a � b and
a 6= b. Moreover, a � b abbreviates b � a, and a � b
abbreviates a � b and a 6= b. The least element c in A
is defined as

⊔
A, if c ∈ S and c � a for all a ∈ A. The

greatest element c in A is defined as
d
A, if c ∈ A and

c � a for all a ∈ A.
Intuitively, A is the domain set of cost values, × is

the operation used to cumulate values and + is the op-
eration used to select the best (the least) amongst two
values. Consider for example, the following instances of
cost algebras, typically used as cost or QoS formalisms:
• 〈{true, false},∨∧,⇒, false, true〉 (Network and ser-

vice availability)
• 〈R+ ∪ {+∞},min,+,≤,+∞, 0〉 (Price, propagation

delay)
• 〈R+ ∪ {+∞},max,min,≥, 0,+∞〉 (Bandwidth).
In the rest of the paper, we consider a fixed cost algebra
〈A,

⊔
,×,�,0,1〉.

Definition 2 An ( edge-weighted graph) G is a tuple
〈VG, EG, srcG, tgtG, ωG〉 where VG is a set of nodes, EG
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is a set of edges, srcG, tgtG : EG → VG are a source
and target functions, and ωG : EG → A is a weighting
function.

Graphs usually have a distinguished start state which
we denote with sG

0 , or just s0 if G is clear from the
context.

Definition 3 A path in a graph G is an alternating
sequence of nodes and edges represented as u0

e0→ u1 . . .
such that for each i ≥ 0 we have ui ∈ VG, ei ∈ EG,
srcG(ei) = ui and tgtG(ei) = ui+1, or, shortly ui

ei→
ui+1.

An initial path is a path starting at sG
0 . Finite paths

are required to end at states. The length of a finite path
p is denoted by |p|. The concatenation of two paths p, q
is denoted by pq, where we require p to be finite and
end at the initial state of q. The cost of a path is the
cumulative cost of its edges. Formally,

Definition 4 Let p = u0
e0→ . . .

ek−1→ uk be a finite path
in a graph G. The path cost ωG(p) is ωG(e)×ωG(q) if
p = (u e→ v)q and 1 otherwise. If |q| = 0, ωG(q) = 1.

Let γ(u) denote the set of all paths starting at node
u. In the sequel, we shall use ω∗

G(u, V ) to denote
the cost of the optimal path starting at a node u
and reaching a node v in a set V ⊆ VG. Formally,
ω∗

G(u, V ) =
⊔

p∈γ(s)|(p∩V ) 6=∅ ωG(p). For ease of nota-
tion, we write ω∗

G(u, {v}) as ω∗
G(u, v).

Graph transition systems are suitable representations
for software and hardware systems and extend tradi-
tional transition systems by relating states with graphs
and transitions with partial graph morphisms. Intu-
itively, a partial graph morphism associated to a tran-
sition represents the relation between the graphs asso-
ciated to the source and the target state of a transition.
More specifically, it models the merging, insertion, ad-
dition and renaming of graph items (nodes or edges).
In case of a merge, the cost of merged edges is the least
one amongst the edges involved in the merging.

Definition 5 A graph morphism ψ : G1 → G2 is a
pair of mappings ψV : VG1 → VG2 , ψE : EG1 → EG2

such that we have ψV ◦srcG1 = srcG2 ◦ψE, ψV ◦tgtG1
=

tgtG2
◦ ψE,1 and for each e ∈ EG2 we have, ωG2(e) =⊔

{ωG1(e
′) | ψE(e′) = e}.

A graph morphism ψ : G1 → G2 is called injective if so
are ψV and ψE; identity if both ψV and ψE are identi-
ties, and isomorphism if both ψE and ψV are bijective.
A graph G′ is a subgraph of graph G, if VG′ ⊆ VG and
EG′ ⊆ EG, and the inclusions form a graph morphism.

A partial graph morphism ψ : G1 → G2 is a pair
〈G′

1, ψm〉, where G′
1 is a subgraph of G1, and ψm : G′

1 →
G2 is a graph morphism.

The composition of (partial) graph morphisms results
in (partial) graph morphisms. Now, we define a notion

1◦ is the function composition operator. In other words
f ◦ g = f(g(·))

of transition system that enriches the usual ones with
weights.

Definition 6 A transition system is a graph M =
〈SM , TM , inM , outM , ωM 〉 whose nodes and edges
are respectively called states and transitions, with
inM , outM representing the source and target of an
edge respectively.

Finally, we are ready to define graph transition sys-
tems, which are transition systems together with mor-
phisms mapping states into graphs and transitions into
partial graph morphisms.

Definition 7 A graph transition system (GTS) is a
pair 〈M, g〉, where M is a weighted transition system
and g : M → U(Gp) is a graph morphism from M to
the graph underlying Gp, the category of graphs with
partial graph morphisms. Therefore g = 〈gS , gT 〉, and
the component on states gS maps each state s ∈ SM

to a graph gS(s), while the component on transitions
gT maps each transitions t ∈ TM to a partial graph
morphism gT (t) : gS(inM (t)) ⇒ gS(outM (t)).

In the rest of the paper we shall consider a GTS
〈M, g〉 modeling the state space of our running exam-
ple, where g maps states to L, i.e., the graph induced
by the arrows, and transitions to the corresponding par-
tial graph morphisms. Consider Figure 1, each of the
three graphs depicted, say G1, G2 and G3 corresponds
to three states s1,s2,s3, meaning that g(s1) = G1,
g(s2) = G2 and g(s3) = G3. The figure illustrates a
path s1

t1→ s2
t2→ s3, where g(t1) is the identity re-

stricted to all items but edge e4. Similarly, g(t2) is
the identity restricted to all items but edge e3. Thus,
in both transitions all other items are preserved (with
their identity) except the edges mentioned.

Properties of Graph Transition Systems
The properties of a graph transition system can be ex-
pressed using different formalisms. One can use, for
instance, a temporal graph logic like the ones proposed
in (Baldan et al. 2004; Rensink 2003), which combine
temporal and graph logics. A similar alternative are
spatial logics (Caires & Cardelli 2003), which combine
temporal and structural aspects. In graph transforma-
tion systems (Corradini et al. 1997), one can use rules
to find certain graphs: the goal might be to find a match
for a certain transformation rule. For the sake of sim-
plicity and generality, however, we consider that the
problem of satisfying or falsifying a property is reduced
to the problem of finding a set of goal states character-
ized by a goal graph and the existence of an injective
morphism.

Definition 8 Given a GTS 〈M, g〉 and a graph G, the
goal function goalG : SM → {true, false} is defined such
that goalG(s) = true iff there is an injective graph mor-
phism ψ : G→ g(s).

Intuitively, goalG maps a state s to true if and only if
G can be injectively matched with a subgraph of g(s).
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Figure 2: Three graphs illustrating various goal criteria.

It is worth saying that most graph transformations ap-
proaches consider injective rules, for which a match is
precisely given by injective graph morphisms, and that
the most prominent graph logic, namely the Monadic
Second-Order (MSO) logic by (Courcelle 1997) and its
first-order fragment (FO) can be used to express in-
jective graph morphisms. The graph G will be called
goal graph. It is of practical interest identifying partic-
ular cases of goal functions as the following goal types:

1. ψ is an identity - the exact graph G is looked for. In
our running example, this corresponds to Property 2
mentioned in Section . For instance, we look for the
exact graph depicted in left of Figure 2.

2. ψ is a restricted identity - an exact subgraph of G is
looked for. This is precisely Property 1. For instance,
we look for a subgraph of the graph depicted in left
of Figure 2. The graph in center of Figure 2 satisfies
this.

3. ψ is an isomorphism - a graph isomorphic to G is
looked for. This is precisely Property 4. For instance,
we look for a graph isomorphic to the one depicted
in left of Figure 2. The graph in the right of Figure 2
satisfies this.

4. ψ is any injective graph morphism - we have the gen-
eral case. This is precisely Property 3. For instance,
we look for an injective match of the graph depicted
in center of Figure 2. The graph in the right of Fig-
ure 2 satisfies this.

Note that there is a type hierarchy, since goal type 1
is a subtype of goal types 2 and 4, which are of course
subtypes of the most general goal type 4.

The computational complexity of the goal function
varies according to the above cases. For goals of type 1
and 2, the computational efforts needed are just O(|G|)
and O(|ψ(G)|), respectively. Unfortunately, for goal
types 3 and 4, due to the search for isomorphisms, the
complexity increase to a term exponential in |G| for the
graph isomorphism case and to a term exponential in
|ψ(G)| for the subgraph isomorphism case. The general
problem of subgraph isomorphism (SI) can be reduced
polynomially to graph isomorphism. Subgraph isomor-
phism is NP-complete, as CLIQUE ≤p SI. The general
problem of graph isomorphism is not completely clas-
sified. It is expected not to be NP-complete (Wegener
2003).

Now we state the two analysis problems we consider.
The first one consists on finding a goal state.

Definition 9 Given a GTS 〈M, g〉 and a graph G (the
goal graph), the reachability problem of our approach

consists on finding a state s ∈ SM such that goal(s) is
true.

The second problem aims at finding an optimal path
to a goal state.

Definition 10 Given a GTS (M, g) and a graph G (the
goal graph), the optimality problem of our approach
consists on finding a finite initial path p ending at a
state s ∈ SM such that such that goalG(s) is true and
ω(p) = ω∗

M (sM
0 , S′), where S′ = {s ∈ SM | goalG(s) =

true}.
For the sake of brevity, in the following ω∗

M (s) abbre-
viates ω∗

M (s, S′) with S′ = {s ∈ SM | goalG(s) = true},
when goalG is clear from the context.

The two problems defined in the previous section
can be solved with traditional graph exploration and
shortest-path algorithms2. For the reachability prob-
lem, for instance, one can use, amongst others, depth-
first search, hill climbing, best-first search, Dijkstra’s
algorithm (and its simplest version breadth-first search)
or A*. For the optimality problem, only the last two
are suited.

Nevertheless, Dijkstra’s algorithm and A* are tradi-
tionally defined over a simple instance of our cost alge-
bra A, namely algebra 〈R+ ∪{+∞},min,+,≤,+∞, 0〉.
Fortunately, the results that ensure the admissibility of
Dijkstra’s algorithm or A*, i.e., the fact that both al-
gorithms correctly solve the optimality problem, have
been generalized for the cost algebra (Edelkamp, Jab-
bar, & Lluch-Lafuente 2005a).

Encoding of the Arrow Distributed
Directory Protocol

To simplify the discussion, we assume a uniform tran-
sition weight leading to pure propositional planning
problems. But with the extensions that are avail-
able in current planning description languages such as
PDDL2.1 (Fox & Long 2003), the current setting can
be extended to numerical weights. Note that, the for-
mal treatment of the problem presented earlier in this
paper is capable of dealing with non-uniform weights.

In propositional planning, for each state we have
atomic propositions that can either be true or false.
Planning operators or actions change the truth values
of atomic propositions AP . An action a in STRIPS con-
sists of three lists: precondition, add, and delete lists,
commonly denoted as pre(a), add(a), and del(a), re-
spectively (Fikes & Nilsson 1971). Each list consists of
atomic propositions and the application of a to a state
S ⊆ 2AP with pre(a) ⊆ S yields the successor state
(S \ del(a)) ∪ add(a).

To apply a planner to graph transition systems, we
first need a propositional description of graph transition
systems in PDDL. The graph is modeled with the help

2We refer here to a slight modification of the original
algorithms, consisting of terminating the algorithm when a
goal state is reached and returning the corresponding path.

ICAPS 2005

Workshop on Verification and Validation of Model-Based Planning and Scheduling Systems 61



of predicates defining the edges. We use (link u v)
predicate to denote an edge between two nodes u and
v. Since a node cannot exist on its own, we do not
provide any predicate to declare a node. The predicate
(find-pending u v w) is true if the node u receives a
request from its neighbour v to find the object for the
node w. Similarly, the predicate (move-pending u v
w) is true, if the node u receives an object from the
node w to be forwarded to the requesting node. The
parameter v is actually not in use and its just for the
sake of uniformity with the original model and with the
find-pending predicate.

The predicate (not-request-send u) is used to con-
trol the requests generated by the nodes so that a node
cannot request more than once. The contents of a
queue attached with a particular node u are controlled
through the (queue u v) predicate. The ownership of
the object is determined through the (owner u) pred-
icate.

Due to the parametric description facility provided by
planning formalism, it is easier to define morphisms and
partial morphisms as actions. For example, a morphism
operation that inverses an edge can easily be defined as
a very simple action as follows:

(:action morphism-inverse
:parameters(?u ?v - node)
:precondition

(link ?u ?v)
:effect

(and
(not (link ?u ?v))
(link ?v ?u)))

An example description for the Arrow Protocol is pro-
vided in Annex.

Problem description in PDDL
A GTS problem can be described with the help of pred-
icates defining the graph in the initial state. The whole
graph can be described by the use of link predicates
defining the edges between different nodes of the graph.
The owner node, i.e., the node that currently owns the
object is define by the use of owner predicate.

A PDDL problem description for an instance of star -
shaped network topology is shown in the appendix.

Goal Specification in PDDL
Fortunately, PDDL provides a very neat and elegant
mechanism to formulate our goals’ criteria. In the fol-
lowing we explain various methods to describe different
types of goals.

Property 1 goal (subgraph): Perhaps the most sim-
ple to describe are the type 1 goals as we only search
for a specific subgraph. As is evident from the PDDL
specification of the domain, the subgraph can easily be
declared by using the (link u v) predicates. If the
subgraph to be searched for actually asks for an own-
ership predicate to be true for some node w, we simply
declare the (owner w) predicate as our goal criteria.

In Appendix, we see an example problem description in
PDDL where a goal of type 1 is searched for.

Property 2 goal (exact graph): For a Property 2 goal,
we look for an exact matching of the goal graph in
our state space. Just like for the previous type, we
can describe the whole graph with (link u v) pred-
icates. Note that it is true only for the current do-
main, since a spanning tree property of the graphs is
preserved through out the search space, i.e., there can-
not be a reachable state where the graph is a superset
of the goal graph. This might not be the case in other
GTS domains. In such cases we have to describe the
non-existence of all the other edges too.

Property 3 goal (subgraph isomorphism): Given a
goal graph G, the state space is searched for a state
that contains a subgraph isomorphic to G. In such case
goals are strictly more expressive and need an existen-
tial quantification over all the nodes to be described
succinctly. Existential quantification can be incorpo-
rated in STRIPS through ADL (Pednault 1989) by the
following construct:

(:goal <existential-expression> <goal-condition>)

A goal of type 3 can then be included in our problem
specification as:

(:goal (exists (?n - node) (owner ?n))

Property 4 goal (isomorphism): Given a goal graph
G, the state space is searched for a node that contains
a graph isomorphic to G. Having the existential quan-
tifier in our hands, we can describe G using (link u
v) predicates. For our example in Figure 2, a type 4
goal will have the form:

(:goal (exists ?v0 ?v1 ?v2 ?v3 ?v4 ?v5 - node)
(and (link ?v0 ?v0) (link ?v1 ?v0)

(link ?v2 ?v0) (link ?v3 ?v1)
(link ?v4 ?v0) (link ?v5 ?v4)
(owner ?v3)))

Given actions with ADL expressivity, it is not dif-
ficult to transform an existential goal description to a
non-existential one by adding the following special op-
erator to the domain description:

(:action goal-achieving-action
:precondition <old-goal-condition>
:effects (and (goal-achieved)))

The modified goal condition then simplifies to

(:goal (goal-achieved))

With the extended expressivity of PDDL2.2
(Edelkamp & Hoffmann 2004) goal achievement is best
introduced in form of domain axioms, so-called derived
predicates. They are inferred in form of a fix-point
computation with rules that do not belong to a plan.
For this case we include

(:derived (goal-achieved) <old-goal-condition>)

to the domain description.
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Planning Heuristics for Graph
Transition Systems

Heuristic search algorithms use heuristic functions to
guide the state space exploration as apposed to blind
search algorithms that do not utilize any information
about the search space. Two of the most famous heuris-
tic search algorithms are A* and IDA*. A* utilizes a
heuristic estimate for the distance from a state to the
goal, to prioritize states’ expansion. The result is a re-
duced search space; consequently, less consumption of
memory with gain in speed. A* is guaranteed to pro-
duce optimal results in case of admissible and consistent
heuristic.

Most of the modern planners (for example, FF (Hoff-
mann & Nebel 2001) or MIPS (Edelkamp 2003b)) uti-
lize various heuristics to guide the planner. Two of
such heuristics that have performed very good in plan-
ning domains are relaxed planning heuristic and plan-
ning pattern databases.

Relaxed Planning Heuristic

A relaxed planning heuristic (Hoffmann & Nebel 2001)
is computed by solving a relaxed version of a plan-
ing problem. The relaxation a+ of a STRIPS ac-
tion a = (pre(a), add(a), del(a)) is defined as a+ =
(pre(a), add(a), ∅). The relaxation of a planning prob-
lem is the one in which all actions are substituted by
their relaxed counterparts. Any solution that solves the
original plan also solves the relaxed one; and all precon-
ditions and goals can be achieved if and only if they can
be in the relaxed task. Value h+ is defined as the length
of the shortest plan that solves the relaxed problem.

Solving relaxed plans optimally is still computation-
ally hard (Bylander 1994), but the decision problem to
determine, if a relaxed planning problem has at least
one solution, is computationally tractable. The opti-
mization task can efficiently be approximated by count-
ing the number of operators in a parallel plan that solves
the relaxed problem. Note that optimal parallel and
optimal sequential plans may have a different sets of
operators, but good parallel plans are at least informa-
tive for sequential plan solving, and can, therefore, be
used for the design of a heuristic estimator function.

The extension to the numerical relaxed planning
heuristic is a polynomial-time state evaluation function
for mixed integer domain-independent planning prob-
lems (Hoffmann 2003). It has been extended to non-
linear tasks (Edelkamp 2004).

Planning Pattern Databases

Abstraction is one of the most important issues to cope
with large and infinite state spaces, and to reduce the
exploration efforts. Abstracted systems should be sig-
nificantly smaller than the original one while preserv-
ing some properties of concrete systems. The study
of abstraction formalisms for graph transition systems
is, however, out of the scope of this paper. We refer
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Figure 3: A transition system (leftmost) with two dif-
ferent abstractions.

to (Baldan et al. 2004) for an example of such a for-
malism. Assuming that abstractions are available, we
state the properties necessary for abstractions to pre-
serve our two problems (reachability and optimization)
and propose how to use abstraction to define informed
heuristics.

The preservation of the reachability problem means
that the existence of an initial goal path in the con-
crete system must entail the existence of a correspond-
ing initial goal path in the abstract system. Note that
this does not mean the existence of spurious initial goal
paths in the abstract system, i.e., abstract paths that
do not correspond to any concrete path. Similarly, the
preservation of the optimization problem means that
the cost of the optimal initial goal path in the concrete
system should be greater or equal to the cost of the
optimal initial goal path in the abstract system.

Abstractions have been applied in combination
with heuristic search in single-agent games (Culber-
son & Schaeffer 1998; Korf 1997), in model check-
ing (Edelkamp & Lluch-Lafuente 2004) and plan-
ning (Edelkamp 2001) approaches. The main idea is
that the abstract system is explored in order to create
a database that stores the exact distances from abstract
states to the set of abstract goal states. The exact
distance between abstract states is an admissible and
consistent estimate of the distance between the corre-
sponding concrete states. The distance database is thus
used as heuristics for analyzing the concrete system.

When different abstractions are avaliable, we can
combine the different databases in various ways to ob-
tain better heuristics. The first way is to trivially se-
lect the best value delivered by two heuristic databases,
which trivially results in a consistent and admissible
heuristic. Figure 3 depicts a concrete transition system
(left) with three abstractions (given by node mergings).
The two abstractions are mutually disjoint.

Experimental Results
We validate our approach by presenting initial experi-
mental results obtained with the heuristic search plan-
ning system FF. We have implemented the arrow dis-
tributed directory protocol in PDDL2.1, Level 1, i.e.
in the specification language STRIPS/ADL. We per-
formed our experiments on a Pentium IV 3.2 GHz. ma-
chine with Linux operating system and 2 gigabytes of
internal memory. In all our experiments we set a mem-
ory bound of 2 GB.

When running the planner on the instances, we ob-
tain the results as shown in Table 1 in comparison with
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HSF-SPIN FF
star DFS BFShf

EHC + RPH
Stored nodes 6,253 30 6
Sol. length 134 58 5
chain DFS BFShf

EHC + RPH
Stored nodes 78,112 38 6
Sol. length 118 74 5
tree DFS BFShf

EHC + RPH
Stored nodes 24,875 34 6
Sol. length 126 66 5

Table 1: Comparison of results between HSF-SPIN and
FF.

the results that we have obtained in the model checking
domain through our experimental model checker HSF-
SPIN. The goal searched for is of type 2. Column DFS
shows the results while running HSF-SPIN with depth-
first search as the exploration algorithm. The gain in
HSF-SPIN by employing a heuristic guided exploration
as apposed to DFS is noticeable in column BFShf

.
The heuristic estimate used here is based on original
formula-based heuristic (Edelkamp, Leue, & Lafuente
2003) that exploits the length of the specification of
goal states to guide the search algorithm. A discussion
on this heuristic is out of the scope of this paper and we
refer the reader to (Edelkamp, Leue, & Lafuente 2003)
for a detailed treatment.

For all three topologies, namely, star, tree, and chain,
the planner resulted in much lesser expansions of nodes.
Note that, though the results through the use of planner
seem by far better than the one by model checker, we
cannot actually compare the two approaches with each
other for several reasons. A crucial difference is the
dynamic creation of nodes during exploration. PDDL
specifications currently do not support such kind of dy-
namism in models. For a limited case, we can utilize the
visibility paradigm of domain specification by providing
a pool of invisible nodes to the planner along with the
model. These nodes can be made visible whenever a
new node is required to be created. The other crucial
difference is the modeling of finite and bounded chan-
nels - one of the main component of a concurrent sys-
tem. Such channels can be defined in a model checker
but not in PDDL.

In Table 2, we depict the scaling behaviour of the
problem for different topologies. We generated random
graphs with random owners and with random goals.
The second column shows the number of nodes that
composed the graph. Column 3, Stored Nodes, shows
the number of nodes stored during the serach. The
length of the solution obtained is shown in the fourth
column. For star topology, the problem was quite sim-
ple. But a major shift in space and time requirement
was noted when we switched to the chain topology. The
longest running example in chain topology was with 70
nodes that took about 139 secs to be solved. The scal-

# Nodes Stored Nodes Sol. Length

star

10 6 5
25 7 6
50 7 6
70 7 6

chain

10 6 5
25 33 28
50 100 73
70 138 101

tree

10 6 5
25 22 16
50 47 25
70 61 31

Table 2: Scaling behaviour of the model.

ing factor of memory usage turned out to be very sharp.
A 50 nodes problem required about 0.5 GB that jumped
to 1.9 GB for 70 nodes in all the topologies. Unfortu-
nately this was also the capacity of our machine - the
reason that we are unable to show the results for bigger
models.

Conclusion
We have presented an abstract approach for the analysis
of graph transitions systems, which are traditional tran-
sition systems where states and transitions respectively
represent graphs and partial graph morphisms. It is a
useful formalism to represent the state space of systems
involving graphs, like communication protocols, graph
transformations, and visually described systems.

The analysis of such systems is reduced to exploration
problems consisting on finding certain states reachable
from the initial one. We analyze two problems: finding
just one path and finding the optimal one, according
to a certain notion of optimality. As specification for-
malism, we propose the use of ADL. It is capable of ex-
pressing all four types of goals that we have suggested.
In addition, we have proposed the use of abstraction-
based heuristics which exploit abstraction techniques in
order to obtain informed heuristics.

We have illustrated our approach with a scenario in
which one is interested in analyzing structural proper-
ties of communication protocols. As a concrete example
we used the arrow distributed directory protocol (Dem-
mer & Herlihy 1998) which ensures exclusive access to a
mobile service in a distributed system. We implemented
our approach in a heuristic search planning system, and
presented experiments validating our approach. The
PDDL specification presented in this paper is one of
the first steps towards modeling arrow distributed di-
rectory protocol and still has some of the specifications
unmodeled such as a bounded queue to prioritize the
requests.

In the 2004 International Planning Competition
(IPC-4)3, a Promela domain was used for the first time

3http://ipc.icaps-conference.org/
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as an AI planning problem. This opened new horizons
to bridge model checking with AI planning. This paper
is one of the first efforts to model the systems repre-
sented by Graph Transition Systems as an AI planning
problem. There is still a lot of room for expansion for
the ideas presented in this paper.

In future work we would like to investigate further
scenarios for the analysis of graph transformation sys-
tems to planning problems. One such direction is to
model other more complicated protocols than the Ar-
row Distributed Directory protocol. With more chal-
lenging problem instances, we expect that graph tran-
sition system can serve as a challenging benchmark for
upcoming planning competitions.
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Appendix

PDDL model of the arrow distributed directory pro-
tocol as described in The Arrow Distributed Directory
Protocol by M. J. Demmer and M. P. Herlihy.

Domain Description
(define (domain arrow-domain)
(:requirements :typing :strips)
(:types node - object)
(:predicates

(link ?n1 ?n2 - node)
(queue ?n1 ?n2 - node)
(owner ?n1 - node)
(not-request-send ?n1 - node)
(find-pending ?n1 ?n2 ?n3 - node)
(move-pending ?n1 ?n2 ?n3 - node))

(:action request-object
:parameters (?u - node)
:precondition

(and (not-request-send ?u))
:effect

(and
(not (not-request-send ?u))
(find-pending ?u ?u ?u)))

(:action accept-request
:parameters (?u ?v ?w ?z - node)
:precondition

(and
(link ?u ?z)
(not (= ?u ?z))
(find-pending ?u ?w ?v))

:effect
(and

(not (find-pending ?u ?w ?v))
(find-pending ?z ?w ?u)
(link ?u ?v)
(not (link ?u ?z))))

(:action accept-request
:parameters (?u ?v ?w - node)
:precondition

(and
(link ?u ?u)
(find-pending ?u ?w ?v))

:effect
(and

(not (find-pending ?u ?w ?v))
(link ?u ?v)

(not (link ?u ?u))
(queue ?u ?w)))

(:action satisfy-request
:parameters (?u ?x - node)
:precondition

(and
(owner ?u)
(queue ?u ?x))

:effect
(and

(move-pending ?x ?x ?u)
(not (owner ?u))
(not (queue ?u ?x))))

(:action receive-object
:parameters (?u ?w ?v - node)
:precondition

(and (move-pending ?u ?w ?v))
:effect

(and
(not (move-pending ?u ?w ?v))
(owner ?u)))

Problem Instance
(define (problem tree)
(:domain arrow-domain)
(:objects v0 v1 v2 v3 v4 v5 - node)
(:init

(link v0 v0) (link v1 v0)
(link v2 v0) (link v3 v0)
(link v4 v0) (link v5 v0)
(owner v0))

(:goal (owner v1)))
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Exploration of the Robustness of Plans
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Abstract

This paper considers the problem of stochastic robustness
testing for plans. Although plan generation systems might
be proven sound the resulting plans are valid only with re-
spect to the abstract domain model. It is well-understood
that unforseen execution-time variations, both in the effects
of actions and in the times at which they occur, can result
in a valid plan failing to execute correctly. Other authors
have investigated the stochastic validity of plans with non-
deterministic action outcomes. In this paper we focus on
the uncertainty that arises as a result of inaccuracies in the
measurement of time and other numeric quantities. We de-
scribe a probing strategy that produces a stochastic estimate
of the robustness of a temporal plan. This strategy is based
on Gupta, Henzinger and Jagadeesan’s (Gupta, Henzinger, &
Jagadeesan 1997) notion of the “fuzzy” robustness of traces
through timed hybrid automata.

1 Introduction
Classical planning has traditionally been concerned with
construction of plans as either sequences of actions, or
as partially ordered sets of actions. Researchers have ex-
plored beyond the constraints of classical planning and
PDDL2.1 (Fox & Long 2003) represents a formalisation of
the representation of temporal planning domains, in which
plans become collections of time-stampeddurativeactions.
We have shown a close relationship between PDDL2.1 and
models of real-time systems based on timed hybrid au-
tomata (Fox & Long 2002). An important limitation of
PDDL2.1 is that it is concerned entirely with determinis-
tic domains in which no uncertainty is captured. Others
have considered the consequences of extending PDDL2.1
to allow actions to have non-deterministic effects (Younes
& Littman 2004), but we are concerned with a different
form of uncertainty. In this paper we argue that there is an
important reason to relax certainty about precise execution
times of actions (as others have also argued — for example,
see (Muscettola 1994)) even if one adopts a deterministic
model of actions. We then proceed to explore the relation-
ship between temporal uncertainty and work in timed hybrid
automata (Gupta, Henzinger, & Jagadeesan 1997). We dis-
cuss the work we have done in extending our plan valida-
tion system to handle plan validation in the face of temporal
uncertainty, including the implications of temporal uncer-
tainty on plan correctness. We conclude with a discussion

of the further problems of managing metric uncertainty and
our progress in handling them.

2 Temporal Uncertainty in Planning
Although the introduction of metric time into planning
makes it possible to represent and reason about far more re-
alistic domains than with classical planning models, it in-
troduces new problems in the relationship between planning
and execution. Unlike the classical model, in which time is
measured only in a relative sense, in the ordering of actions,
once one has metric time, with actions assigned precise ex-
ecution times, it is possible for the correctness of a plan to
rely on the precise synchronisation of actions as they are per-
formed by the executive. This is unreasonable, since no ex-
ecutive, even under the control of highly accurate microcon-
trollers, can achieve arbitrary levels of accuracy in the syn-
chronisation of actions. This problem is only compounded
when one considers that in translating plans into actions, it
is inevitable that the abstractions in the domain model will
fail to match precisely the reality of the world.

In the planning literature, this problem has been handled
by the introduction oftemporal flexibility in which inter-
vals of uncertainty surround times of execution (Muscettola
1994; Vidal & Ghallab 1996). This is an attractive solution,
although there has been some ambiguity about the precise
semantics of the intervals: it is not always clear whether the
interval indicates freedom in the choice of an executive of
precisely when to execute an action or whether it indicates
uncontrollable uncertainty about precisely when an action
will execute. This matters a great deal, since the former in-
tervals may be subjected to constraints to reduce their size,
while the latter are presumably outside the control of the
executive. Determining the dynamic controllability of a set
of temporal constraints has been explored and efficient al-
gorithms have been proposed (Morris, Muscettola, & Vidal
2001).

3 Robust Automata
In (Gupta, Henzinger, & Jagadeesan 1997), Guptaet al. also
identify the difficulties that arise when trajectories through
hybrid automata are interpreted as defining the timing of
events with arbitrary precision. Again, the problem that is
discussed is that physical interpretations of the execution of
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the trajectories rely on executives that cannot meet the de-
mand for arbitrary precision. The authors observe that a
trajectory in a hybrid automaton can be technically valid,
according to the formal definition of validity of a trace, but
can pass arbitrarily close to trajectories that areinvalid. In
such situations, the theoretical validity of the trace is of little
practical value if a physical system cannot achieve the pre-
cision of execution that would avoid the invalid trajectories.
The solution to the problem proposed by the authors is to
identify robust traces. A trajectory defines a robust trace,
τ , through a hybrid automaton if there is a dense subset of
the trajectories lying within some open tube aroundτ that
contains only acceptable traces. The authors define various
alternative metrics that can be used in determining the open
tube around a trajectory and also indicate that others could
be considered. Amongst these is the metric defining the dis-
tance between two traces to be the maximum of the distances
between pairs of corresponding events in the two traces. We
will call this metric themax-metric.

Although the definition of robust acceptance is a useful
and intuitively appealing one, the authors do not offer any
proposals for how a trajectory might be tested for this prop-
erty in practice. The work described here proposes a practi-
cal strategy for the stochastic determination of plan validity
based on the theoretical foundations established by Guptaet
al (Gupta, Henzinger, & Jagadeesan 1997). In considering
robustness on a stochastic basic, we are forced to consider
the distribution of the trajectories that might be pursued,
around the original planned trajectory. This is in contrast
to the work of Guptaet al, which, by requiring that a dense
subset of trajectories should be valid, is unconcerned with
how unlikely are the possible failing trajectories around the
original planned trajectory.

4 Robust Plan Validation
We have developed a system based on our plan validation
tool, VAL (Howey, Long, & Fox 2004), which allows us to
test the robustness of plans. The approach we adopt is to
probethe plan space in the tube around the plan to be tested,
using Guptaet al.’s max-metric to determine the tube we
sample. The samples are identified by introducing random
perturbations into the timings of the execution points of in-
dividual actions. We call thisjudderingthe plan. Each such
perturbation determines a new plan that can be tested using
the precise deterministic testing implemented inVAL . We
perform a large number of tests (a configurable value, de-
faulting to 1000) and then measure the proportion of suc-
cessful plans. In order for the plan to be robust in an anal-
ogous way to the robust trajectories of Guptaet al., the
successful plans in the plan space we probe should form
a dense subset. This cannot be tested empirically, so in-
stead we report the proportion under the assumption that
a plan can be considered robust if a sufficiently high per-
centage of the plans in the tube are valid. Although we
use themax-metric to define the tube in which we sample,
the samples are selected by applying an approximately nor-
mal distribution in generating perturbations of the times of
the actions. This use of probing plan space has also been
adapted to support planning under uncertainty in the work

of Younes (Younes 2004). In that work, the probing allows
exploration of the space generated by non-deterministic ef-
fects of actions, rather than of the space of plans in the tube
around a specific plan, so the author explores a rather differ-
ent direction to the one explored here.

There are some interesting questions raised in applying
the probing strategy we have described. The time points
that are relevant to a plan include both the times of execu-
tion of actions and also the times at which durative actions
complete execution. In plans for domains that include ex-
ogenous events (as defined in PDDL+ (Fox & Long 2002)),
the timing of events and the timing of actions could both
be perturbed. However, we consider that the perturbations
represent the inability of an executive to apply arbitrary pre-
cision in determining when to execute actions. In contrast,
events model reaction of the world to the actions of the ex-
ecutive, and their timing is not subject to the constraints of
physical limitations of an executive. For example, the event
of a ball bouncing, after the executive executes the action of
releasing it, will occur at a certain time after the release ac-
tion without any need for a conscious reaction. One might
argue that there will be slight variations in the time of flight
of the ball, caused by slight variations in the air pressure, in
the level of the surface the ball strikes and so on. We con-
sider that these fluctuations are at orders of magnitude less
than the accuracy of timing for most feasible executives, so
they can be ignored.

5 Varying the Timestamps of Actions
In the family of languages based onPDDL the representation
of a plan is as a list of timestamped actions. However when
the plan is executed in a real world situation it is unlikely that
the actions within it will be executed atexactlythese times.
Therefore we consider the possibility that these timestamps
are not fixed when validating the plan, and use our probing
strategy to investigate by how much the timestamps may be
displaced. When a juddered plan is executed each action is
executed at a time that is slightly different from the time in
the original plan. Juddering ensures that, on each execution
of the plan, the times of the actions will be (independently)
different and we can identify the robustness of the original
plan with respect to the times at which the actions are speci-
fied to occur. This approach introduces just enough temporal
flexibility into the plan to guarantee a desired level of confi-
dence in its robustness.

For each action,a, at time ta, we execute the action in
the interval[ta − δ, ta + δ] for someδ > 0. The chosen
times of execution are random and follow a normal distribu-
tion aboutta. The exact nature of how the action timestamps
are chosen in this interval is independent of the investigation
of plan robustness. In our initial experiments into plan ro-
bustness we have used both uniformly distributed times and
approximately normally distributed times within the inter-
vals.

If a plan is not robust then it would be very useful to know
where the plan is most likely to fail. This is also a consid-
eration we are investigating. When a plan is not robustVAL
reports where and when a plan is failing. See section 7 for
some examples.
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5.1 ε Separation and Robust Plans

Previously, as defined inPDDL2.1, see (Fox & Long 2003),
it was required that actions must be separated by a minimum
value, namelyε, or thetolerance value. This was a solution
to the problem of actions being so close together that the ex-
ecutive of the plan may not be reliable enough to ensure that
these actions are executed in the correct order. Certain order-
ings may invalidate the plan, so ensuring that the end points
of interfering actions do not coincide is very important. The
solution adopted in the semantics ofPDDL2.1 was the fol-
lowing: if two actions are within this tolerance value then
they are assumed to be executed at the same time. To check
that this results in a valid plan the actions are then checked,
usingVAL , to ensure that they are pairwise non-mutex at the
coinciding end points. However there is a slight difficulty:
suppose that three actions are timestampedt1, t2 andt3 such
thatt1 < t2 < t3, t2 − t1 < ε, t3 − t2 < ε andt3 − t1 > ε
then it is unclear how to handle the interactions between the
actions. Currently inVAL the first two actions are executed
together and the third action escapes any mutex checks with
the second action, which is clearly unsatisfactory.

With the newly proposed approach of executing many
plans with varied timestamps there is no need consider any
suchε separation. When the timestamps of coinciding ac-
tions are juddered it can be determined whether the possible
reordering of actions that occurs as a consequence invali-
dates the plan or not. If juddering the actions invalidates the
plan then the separation between them should be increased.
The size of the gap between actions will depend on how ro-
bust the plan is required to be.

Theε separation approach for ensuring the robustness of
a plan is inadequate when a plan containscontinuous effects.
Suppose we have a plan where all actions are separated by
at leastε, so that when the plan is executed the actions can-
not switch their order of execution. This does not guaran-
tee the robustness of the plan. On executing the plan the
time at which each action executes may differ by up toε

2 .
These small changes may in turn affect the continuous ef-
fects, which may be very sensitive to the times at which ac-
tions are executed, since their effects may interact with one
another. The change in values of continuous effects changes
the values of PNEs for given times which may, of course,
invalidate preconditions, invariants and the plan itself. The
new approach of varying the timestamps of actions takes this
complication into account. In fact, since continuous effects
may be arbitrarily complex this is the only feasible way to
ensure plans with continuous effects are robust.

5.2 Mutex Conditions and Robust Plans

The semantics ofPDDL2.1(Fox & Long 2003) relies on
mutex-checking to ensure that two actions that are executed
at the same time are non-interfering so that the order of in
which actions are actually applied does not change the out-
come. However, with our approach of executing many plans
with varied timestamps we are, indeed, checking that the or-
der of execution of actions that are close to one another does
not change the outcome of the plan. This has the same effect
as checking that coinciding action end points are non-mutex.

In fact, mutex conditions are effectively rendered redundant
when we vary the timestamps. The timestamps of actions
are varied to within certain bounds and the chances of two
actions occurring at exactly the same time is very remote.

The strong mutex constraint in PDDL2.1guaranteesthat
there can be no order in which actions at a single time point
might be executed in practice and interfere with one another.
It is in order to support a guarantee of correctness that the
mutex condition is so strict. In the sampling approach we
consider here we cannot offer a guarantee of plan correct-
ness, but only a stochastic assessment, which can, of course,
be made arbitrarily close to certainty. This is significant, be-
cause, for example, it is possible to construct a family of
planning domains in which a set ofn actions may be exe-
cuted at the same time point and generate the same resulting
state in every possible sequential execution of the actions but
one. This means that there would be only one chance inn!
of the actions producing a failure, and this might well be an
acceptable risk for sufficiently highn, even though the plan
would be rejected byVAL under the mutex rules of PDDL2.1
because it is not guaranteed to execute successfully.

6 Statistical Analysis
Our goal is to judder the times associated with a plan and
check the validity of the resulting juddered plan as often as
is necessary to give an acceptable level of confidence in the
robustness of the original plan. If the plan juddered and
executed one thousand times we can claim to have strong
evidence for the extent of its robustness. In the following
we report the results we have obtained from abinomial ex-
perimentinvestigating the robustness of plans. A binomial
experiment satisfies the four following conditions:

1. There must be a fixed number of trials.

2. Trials must be independent (one trial’s outcome cannot
affect the probabilities of other trials).

3. All outcomes of trials must be in one of two categories.

4. Probabilities must remain constant for each trial.

The number of times that a plan will succeed out ofN
runs of the experiment (each run consisting of juddering the
timestamps and executing the plan), is given by abinomial
distribution, denoted byB(N, p), wherep is the probability
of a plan succeeding. The value ofp is unknown, and we
wish to determine its value. It is not possible to calculate
this value precisely, but we can calculate it to within certain
limits. Firstly we calculate aconfidence interval, calculated
using the following formula, for the number of valid plans
obtained fromN runs of the experiment.

x̄±
t(α2 ,N−1)s√

N
.

The mean of the sample is denoted byx̄, in this case the
number of valid plans, a valid plan counts 1 and an invalid
plan counts 0. The values is the standard deviation of the
population. This is unknown, but (due to the central limit
theorem) the sample standard deviation may be used given
thatN > 30. Finally t(α2 ,N−1) is the upper critical value of
thet student distribution withN − 1 degrees of freedom (a
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number to be retrieved from a table). We setα equal to0.05
so that the level of confidence is95% which is considered
to be significant. There is a95% chance of the mean lying
in this interval. The more often the experiment is run the
smaller the size of the interval. Simply dividing the confi-
dence interval byN gives a confidence interval for the value
of p. Sometimes a value ofp < 1 may be acceptable: for
example, if the plan has high rewards. However, most often
we will be looking for plans that never fail. For this case we
can perform a different statistical test.

We want to know how sure we can be that the plan is ro-
bust if it always executes successfully when the timestamps
are juddered. We can perform a hypothesis test to determine
this. Suppose that we have successfully executedN jud-
dered plans. We wish to be99% certain that the plan will be
valid with a probability greater than99%. If that the proba-
bility of executing a plan successfully is less than or equal to
99% then the probability of the result being a fluke is at most
0.99N . To be99% certain that the result is not a fluke we
need this value to be less than0.01. Therefore we require,
0.99N < 0.01, which implies thatN ≥ 459. Similarly it
can be shown that to be99% certain that the plan will be
valid with a probability of at least95% thenN ≥ 90. Also,
to be95% certain of a valid execution with probability of
at least99% and95%, we requireN ≥ 299 andN ≥ 59
respectively. WhenVAL executesN plans with their times-
tamps juddered and all are valid then it reports that you can
be99% certain that the plan will have a valid execution with
probability of at least some percentage. For example 1000
successful runs grants99% certainty that the plan will exe-
cute with a probability of at least99.77%.

6.1 Calculating the Robustness of a Plan
So far we have only considered juddering action timestamps
by a random amount no larger than some bound, and how
likely the plan is to succeed in these circumstances. It would
be useful to know, for a given plan, what is the maximum
possible judder that results in valid plan execution every
time. Let v be the judder value. The largest value forv
can be calculated by searching amongst its possible values.
For each given value ofv we check that the varied plans will
always be valid with a probability of at least95% with a con-
fidence level of95%. This requires successful execution of
59 plans. In this way the value ofv is calculated to within a
small interval, see section 7 for some examples.

7 Examples
7.1 Thermostat
Consider the temperature of a machine that is controlled by
a thermostat which fluctuates over time as given in figure 1.
The temperature is modelled using events and processes as
specified in the description ofPDDL+ (Fox & Long 2002).
the details of how these are modelled inPDDL+ are omitted
as it is not relevant to the current discussion. It should be
noted that the juddering of action timestamps does not vary
the temperature model in any way. We define the problem
so that a valid plan must place a discrete action at every lo-
cal maximum and minimum of the temperature curve within
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Figure 1: Graph of (temp unit).

a limited time. This is achieved by forcing these actions to
be executed for values above or below certain temperatures,
and by ensuring that the actions must alternate between max-
ima and minima. The best plan to solve this problem is given
below:

Time Action

10: (upper unit)
20: (lower unit)
30: (upper unit)
40: (lower unit)
50: (upper unit)
60: (lower unit)
70: (upper unit)
80: (lower unit)
90: (upper unit)

Firstly, suppose we wish to test how the plan performs
when the action timestamps can vary by up to4 time units.
WhenVAL executes100 randomly altered plans the follow-
ing results are reported:

• 12 plans are valid from 100 plans for each action times-
tamp±4.

• There is a 95% chance that the plan has a valid execution
with probability in the range 12±6.44724.

The plan failures are reported as follows:

Failures Time Action

22 10: (upper unit)
19 20: (lower unit)
6 30: (upper unit)
7 40: (lower unit)
12 50: (upper unit)
5 60: (lower unit)
13 70: (upper unit)
2 80: (lower unit)
2 90: (upper unit)

As the results show, the plan is not highly robust. Each ac-
tion has the same probability of failure as the other actions.
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However, when a plan has failed at some point the execution
stops, so the plan failures listed show the first point at which
the plan fails. As a consequence the actions later in the plan
are less likely to invalidate the plan because they depend on
the other actions not failing first. Figure 2 shows the percent-
age of plans that invalidate the plan at certain times. (These
points are joined by lines.) Figure 3 shows the cumulative
percentage of plans that fail at certain times. The con-
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Figure 2: Percentage of plans failing at different times for
100 plans.
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Figure 3: Cumulative percentage of plans failing by different
times for 100 plans.

fidence interval is quite large, so to reduce the size we can
perform the same test again but this time with 1000 varied
plans.
• 122 plans are valid from 1000 plans for each action

timestamp±4.

• There is a 95% chance that the plan has a valid execution
with probability in the range 12.2±2.03061.

Because of the larger sample size we can be more confi-
dent that the probability of success is about12.2%. The
graphs showing when the plans fail, figures 4 and 5, show
a smoother appearance as we would expect. The probability
of a given action failing is(1 − p)np, wherep is the proba-
bility of one of the actions failing andn is the number of ac-
tions before the action in question. The graphs confirm that

the plans fail following these probabilities. In more complex
plans the probability of each action failing will be different
and their interaction with other actions will need to be taken
into account. For any plan an action can only invalidate a
plan if the preceding plan has been successful, which will
have a given probability.
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Figure 4: Percentage of plans failing at different times for
1000 plans.
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Figure 5: Cumulative percentage of plans failing by different
times for 1000 plans.

If we useVAL to calculate how robust this plan is we get
the following report:

• The plan has a robustness in the range
3.15918±0.00488281.

This shows that provided that the actions do not vary by
more than 3.154 (taking the most conservative bound) then
the plan will be execute successfully. This value can be con-
sidered as the robustness measurement of the plan. For this
example we can, in fact, calculate its robustness exactly, giv-
ing
√

10 = 3.162277..., which is in the range calculated by
VAL . In general it is not possible or feasible to calculate
the robustness measurement of a plan exactly. However, us-
ing VAL , it is easy to calculate this measurement to within a
small interval.
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7.2 The Generator
As another example of calculating the robustness of a plan
consider the generator example. Suppose that a generator
must run continuously for 100 time units. In order to achieve
this it must be refuelled whilst it is generating using two
tanks of fuel. Refuelling starts quickly, but slows down to a
trickle as the tank empties. If refuelling is initiated too early
then the generator fuel tank will overflow. If it is initiated too
late the tank will run dry. Therefore we need we refuel the
generator somewhere near the mid point of the generating
activity. However, the two refuelling actions must not be too
close as they cannot overlap. The graph in figure 6 shows the
fuel level of the generator in a robust plan for this problem.
VAL reports:

• The plan has a robustness in the range
6.26465±0.00488281.
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Figure 6: Graph of (fuel-level generator).

7.3 Robustness to Duration Variation
As well as juddering the start point of an action we can jud-
der the action duration. This reflects the fact that actions
sometimes take slightly less or more time than expected.
However, the impact of this is that end points of actions can
be displaced by up to twice the judder value. This can have
significant impact on plan validity as illustrated in the fol-
lowing example.

Plans generated in the IPC3 competition, using theε tol-
erance value, are often not robust to variations in the action
durations because they have been constructed to be as tightly
packed as possible with respect toε. As an example we con-
sider a plan from the 2002 IPC produced by LPG for the
zeno travel domain with time and numerics. VAL calculates
the robustness of this plan as0.000457764 ± 0.000152588.
The plan was calculated usingε = 0.001, which is the min-
imum distance by which interfering actions should be sepa-
rated. Therefore we would expect the plan to have a robust-
ness of at least 0.0005 (since two actions may move toward
one another). However, testing the plan for a variation of
±0.0004 on 1000 plans yields the result that there is a95%
chance that the plan has a valid execution with probability in
the range98.6±0.728956. This loss of robustness is directly
due to the double judder phenomenon described above.

Now suppose that we wish to use this plan with a varia-
tion of±0.001. The robustness measure is smaller than this
so we do not expect the plan to always work. We wish to
identify how likely the plan is to succeed and where the plan
is most likely to be invalidated. If we test the plan with this
variation on 1000 runs thenVAL reports that ‘there is a 95%
chance that the plan has a valid execution with probability
in the range 43.1±3.07251.’ The plan failures are reported
as below:

Failures Time Action

157 0.002: (board person1 plane1 city0) [0.3]
0 0.303: (fly plane1 city0 city1) [4.870]
164 5.174: (board person3 plane1 city1) [0.3]
10 5.175: (debark person1 plane1 city1) [0.6]
115 7.196: (fly plane1 city1 city0) [4.87]
123 12.067: (debark person3 plane1 city0) [0.6]

Figure 7 shows a graph produced byVAL of the number of
actions that fail at certain times. There is also a list of why
each action failed, together with sample plan repair advice.
The plan repair advice is for only one failed instance, since
in general when numerical values are involved every single
failure could be unique. For example the advice for the first
action is:

1. 157 failures for0.002: (board person1 plane1 city0) [0.3]

(a) 157 failures: The invariant condition is unsatisfied.
Sample plan repair advice:

i. Invariant for (board person1 plane1 city0)has its
condition unsatisfied between times 0.302713 and
0.3029. The condition is satisfied on the empty set.
Set(at plane1 city0) to true.

Failure of the execution of a durative action can be caused
by violation of its invariant condition or failure to satisfy
its precondition. This action has failed because its invariant
condition has been violated. Looking at the plan it can be
seen that the(fly plane1 city0 city1)action starts almost ex-
actly when the boarding operation has finished. It is clear
that theboardaction fails because, as a consequence of jud-
dering, the plane has taken off before the passenger has fin-
ished boarding.

8 Robustness with Metric Fluents
Any plan that is intended to interact with physical processes
will be subject to other sources of uncertainty than simply
the times at which actions are executed. In particular, pro-
cesses generate continuous change in the world that will
only ever be modelled at some level of abstraction. Thus,
a bath filling with water that is flowing at a constant rate can
be modelled as having a volume that increases linearly. This
model abstracts phenomena such as small quantities of wa-
ter splashing out of the bath, minor fluctuations in the rate
of flow due to unpredictable and uncontrollable additional
demands on the water supply and so on. Figure 8 illustrates
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Figure 8: Graph showing water flowing into a bath.

how the volume of a bath might fluctuate from its linearly
increasing estimate, as suggested by the fluctuating curve.
In using the model to predict the volume of the water in the
bath it would be accepted that the predicted volume would
not exactly match reality to arbitrary levels of precision (nor
could the real volume even be measured to arbitrary preci-
sion in order to compare it with the model). The implication
of this for robust planning is that no plan can be considered
robust if its correctness depends on the values predicted by
its models being accurate to arbitrary degrees of accuracy.
Thus, just as the times of execution of actions should be ex-
pected to judder, so also should measurements of metric flu-
ents evolving under the influence of continuous processes.

We distinguish values that are influenced by continuous
processes from values that are affected by discrete change
alone. Where values increase or decrease by discrete quan-
tities then the abstraction of the quantity into these discrete
units is sufficient to ensure that the uncertainty in execution
can be eliminated. Essentially, the uncertainty about the ex-
ecution of actions that depend on these values is abstracted
into the question of how accurately the discrete units can be
measured and how appropriate these units are for the execu-
tion of actions that consume them. We may assume that con-
tinuous processes are only modelled explicitly in domains
where there is a potentially significant sensitivity to thresh-
old values and it is precisely in these cases that we want our

plans to be robust to minor fluctuations in the physical pro-
cesses that drive them.

8.1 Change, Chaos and the Butterfly Effect
In some cases, as is well known, small changes in initial
conditions can lead to dramatically different evolutions of
a physical system. These systems are often said to exhibit
chaotic or highly non-linear behaviour. The so called “but-
terfly effect” is apparent in a wide range of physical phenom-
ena. It is readily apparent that plans are extremely unlikely
to be able to interact with metric fluents with this kind of be-
haviour in any way that is highly sensitive to the actual val-
ues of the fluents. For this reason, it will make more sense to
model systems with these behaviours as abstractions that can
only be managed at a coarse level. For example, we know
that weather patterns have this kind of chaotic behaviour and
it is therefore not reasonable to construct plans that depend
on predicting precise temperatures, cloud cover or precipi-
tation at precise times of day. Instead, we can manage ab-
stractions that use ranges of temperatures across intervals of
time, so that we can, for instance, plan what clothes to take
on holiday.

If we assume that our planning models do not contain ex-
plicit models of physical processes that are highly non-linear
or chaotic, then we can simplify our management of the un-
certainty that can arise in handling the metric fluents that are
affected by the processes. In particular, we can assume that,
over time, the model is an accurate prediction of the evolu-
tion of a process, subject only to a local fluctuation in the
value measured at any given instant.

8.2 Robust Plans with Metric Uncertainty
To test the robustness of plans to uncertainty caused by fluc-
tuations in the behaviours of physical processes we consider
only metric fluents that are subject to continuous change at
points where they occur in comparison conditions. Wher-
ever such comparisons are made as preconditions for execu-
tion of actions we apply a small judder to the value of the ap-
propriate metric fluents before checking the condition. This
process is no more complicated in the case of invariants,
since the judder is treated as a constant shift in the curve
governing the process for the purposes of testing the invari-
ant across its appropriate interval. We do not propagate the
effects of the judder into the use of the corresponding metric
fluents for updating values in the effects of actions, which
is the consequence of our assumption that all processes are
sufficiently accurately modelled and sufficiently predictable
to be adequately handled by the model. We also do not use
judder to adjust the preconditions of events. This decision
is based on the view that events represent consequences of
changing processes in the world and there is no imperfec-
tion in the reaction of the world to those consequences. Of
course, in some models events might be intended to repre-
sent the reactions of external agents to processes initiated
by the planning agent and, in that case, it might be appro-
priate to apply a judder to those reactions. The question of
precisely what is an appropriate way to handle events and
whether to handle some events differently, remains an area
for future work.
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One implication of this approach is that any precondi-
tions that requirestrict equalitytests between continuously
changing metric fluents and some other values will fail. We
consider this to be realistic: it will only ever be possible to
achieve strict equality at the level of abstraction used in mea-
suring discrete units. Otherwise the best that can be achieved
is to obtain a value lying within a particular interval.

Even though we do not judder the effects of metric up-
dates, simply juddering the times at which actions occur is
sufficient to have an impact on the behaviour of metric up-
date processes. It is possible for these effects to be non-
linear and for their propagation into the plan to have dra-
matic consequences for the execution. This is an aspect of
considerable interest and knowing where a plan is vulnera-
ble to non-linear effects caused by apparently minor changes
in the structure of a plan would be of value in determining
whether a plan is useful and how to protect it during execu-
tion.

9 Future Work
In future work we intend to address both an increased level
of non-determinism in the metric components of the plan
and the integration of our approach with the probing strategy
of Younes (Younes 2004) which considers non-deterministic
outcomes of actions. In terms of extending the level of met-
ric non-determinism that we consider, we wish to address the
fact that uncertainty about the time of execution of specific
actions and the uncertainty in the processes that govern met-
ric fluents are not uniform. Our current treatment assumes
that they are. Our current model for introducing judder into
the behaviour of durative actions assumes that the time of
the final point is governed by when the action starts and our
ability to measure the accuracy of its duration. In some cases
the duration will be governed by a process so that a better
model of the uncertainty would be to judder the end point
independently of the start point.

We currently judder the plan and then validate the result-
ing plan, so that events are triggered according to the times
at which the juddered actions occur. In cases where events
are triggered by metric fluents crossing critical thresholds
under the influence of continuous processes our current ap-
proach will judder the value of the metric fluents leading to
a corresponding impact on the timing of events. In some
cases this can lead to significant changes in the behaviour of
the plan and even apparently chaotic outcomes. We are still
considering how best to deal with this.

10 Conclusion
We have presented a stochastic strategy for determining the
robustness of temporal plans to the possible variations in the
timings of actions at execution. We have proposed a probing
strategy which uses a juddering mechanism to sample plans
within a tube around the original plan. The width of the
tube is determined by the judder value. Using this strategy
we can determine whether a plan is robust to the given jud-
der value, and we can also determine the judder value that
gives robustness to a required confidence level. We consider
temporal and metric constraints to constitute a form of non-

determinism because of the inaccuracy inherent in measur-
ing properties of the physical world. We want to increase the
amount of non-determinism that can be handled by our ap-
proach and to integrate our strategy with those that consider
non-deterministic outcomes of actions.
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Abstract 
Autonomy software enables complex, robust behavior in 
reaction to external stimuli without human intervention. It is 
typically based on planning and execution technology. 
Extensive verification is a pre-requisite for autonomy 
technology to be adopted in high-risk domains. This 
verification is challenging precisely because of the 
multitude of behaviors enabled by autonomy technology. 
 This paper describes the application of advanced 
verification techniques for the analysis of the Executive 
subsystem of the NASA Ames K9 Rover. Existing 
verification tools were extended in order to handle a system 
the size of the Executive. A divide and conquer approach 
was critical for scaling. Moreover, verification was 
performed in close collaboration with the system 
developers, and was applied during both design and 
implementation. Our study demonstrates that advanced 
verification techniques are useful for real-world planning 
and execution systems. Moreover, it shows that when 
verification proceeds hand-in-hand with software 
development throughout the lifecycle, it can significantly 
improve the design decisions and the quality of the resulting 
plan execution system. 

Introduction   
Verification is essential for planning and execution 
technology to be adopted in high-risk domains.  This paper 
is a demonstration of how advanced verification 
techniques were used on a plan execution system in the 
domain of Mars rovers.  
 
The work presented here has been performed as part of a 
project at NASA Ames. The objective of the project is to 
develop and demonstrate the use of advanced verification 
techniques for detecting integration problems in the design 
and implementation of NASA autonomy software. 
Traditional testing is hard for autonomous systems due to 
high complexity and unpredictable environments. 
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Moreover, integration problems are difficult to detect, and 
are typically checked during integration testing, i.e. after 
the entire system has been implemented. At that stage, 
fixing such problems may require significant time and 
effort since they may involve major changes in the 
architecture of the system, and possible re-implementation 
of a large part of it. Therefore, we believe that the 
verification of a safety critical system should be addressed 
as early as possible during its design, and should go hand-
in-hand with later phases of software development.  
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Compositional verification throughout the 
software lifecycle 
 
Our work advocates the use of a combination of formal 
analysis techniques (i.e. model checking [11]) and testing 
to analyze autonomous systems throughout their lifecycle. 
The size of such systems is beyond the capabilities of 
existing (formal) verification technologies. Moreover, due 
to the combinatorics of the possible behavior paths, testing 
alone cannot provide the desired degree of confidence. To 
address these issues, our work has the following goals (see 
Figure 1): 

• Apply, extend, and integrate verification tools at 
different phases of software development, i.e. at design 
and implementation phases of the software lifecycle. 

• Use divide and conquer techniques that decompose the 
verification of a software system into manageable 
verification of its components, to achieve scalability in 
software verification. The verification of the components 
can then be composed to verify the entire system, hence 
the name ‘compositional verification’. 
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• Use design level artifacts to subsequently guide the 
implementation of the system and to enable more efficient 
verification at the source-code level. 
 
The main contribution of the work discussed here is the 
development of compositional verification and validation 
techniques for autonomy software, and their integration 
with other verification techniques for an integrated 
lifecycle approach to verification. This approach was 
applied to a significant autonomy software system: the 
Executive of the K9 experimental Martian Rover 
developed at NASA Ames, a concurrent software system 
of 35 K lines of C++ code.  
 
The verification effort was performed in close 
collaboration with the designers and developers of the 
system throughout its lifecycle, and consisted of the 
following steps:  

• Design level modeling. Detailed design level models 
were created. The models describe the overall concurrent 
architecture of the executive (coordinating and monitoring 
components) and advanced features that allow for 
increased autonomy (e.g. alternate plan execution, support 
for concurrent activities, separation of start and end 
constraints). A comprehensive set of requirements were 
also created (both English and formal descriptions). The 
requirements capture key concurrency and plan execution 
properties. We believe that both the models and the 
requirements could be successfully re-used for the design 
and analysis of future advanced executives.  

• Design level analysis. Model checking techniques were 
used for the exhaustive verification of design models 
against requirements. We developed automated 
compositional reasoning techniques to increase the 
scalability of model checking. These techniques were 
applied to the analysis of the design models, achieving a 
10x improvement – in terms of time and memory 
consumed - over monolithic (non-compositional) model 
checking. 

• Code level analysis. Although design level verification 
is important, subsequent code-level verification is needed 
to guarantee that the implemented system indeed satisfies 
the properties. To this aim, the design level artifacts were 
used to perform compositional verification of the actual 
source code, as advocated in [4]. For code-level analysis of 
individual components, we applied software model 
checking, where we obtained a 3x improvement in terms of 
consumed memory. We also investigated automated testing 
technologies (run-time verification, to monitor the 
execution of the system, and automated test input 
generation, to systematically generate test inputs up to a 
given size). 
 
As a result of design level analysis, we discovered several 
integration problems. Based on these results, the developer 
changed the design of the Executive, resulting in a 

simplified architecture with increased modularity. We 
analyzed both versions of the Executive. While for the first 
version, we created the models after coding (partly by 
reverse engineering), for the second version, we created 
the design models before coding. During this process, we 
re-used component models from the previous version.  
 
This experiment convinced developers that there is 
considerable benefit in using verification techniques at the 
design level. Models were used to quickly experiment with 
design decisions. Moreover, several integration issues 
were identified and corrected. It was acknowledged that 
the later in the lifecycle design errors are identified, the 
more costly it is to fix them, especially if such errors 
require major design changes in the system. Our 
techniques are directly applicable to the analysis of other 
complex autonomous systems. This is particularly so for 
systems that make the notions of components explicit (e.g. 
the Mission Data Systems [7]), since our techniques take 
advantage of the modular architecture of the system.  
 
Our work builds on a previous effort [15] that compared 
the performance of tools based on formal methods to 
traditional testing for the code-level analysis of the K9 
Executive. Some timed aspects of the Executive were also 
analyzed in [19-20]. What differentiates the work 
presented here is 1) the integrated application of 
techniques throughout the lifecycle and 2) the 
development and application of novel compositional 
techniques as a way of addressing scalability issues. 
 
The rest of the paper is organized as follows. In the next 
section we describe the architecture of the K9 Rover 
Executive and the design changes made as a result of our 
analysis. We then describe the compositional technologies 
that were used for design- and code-level verification. We 
follow with a discussion on the design-level modeling of 
the Executive; we also describe the properties that were 
checked and the results obtained from the lifecycle 
verification of the Executive. Finally, we close the paper 
with conclusions and some plans for future work. 

K9 Rover Executive   
The NASA Ames K9 Rover is an experimental platform 
for autonomous wheeled vehicles called rovers, targeted 
for the exploration of a planetary surface such as Mars. K9 
is specifically used to test out new autonomy software, 
such as the Rover Executive [16]. Previous to the 
development of autonomy software, planetary rovers were 
controlled through sequences of detailed, low level 
commands uploaded from Earth. The Rover Executive 
provides a more flexible means of commanding the rover 
through the use of high-level plans, which the Executive 
interprets and executes in the context of the execution 
environment. The Executive monitors execution of 
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primitive actions, and performs appropriate responses and 
cleanup when execution fails. The Rover executive is a 
software prototype written in C++ by researchers at NASA 
Ames (approximately 35K lines of C++ code). 
 
Plans are programs written in a language that specifies 
actions and constraints on the movement, experimental 
apparatus, and other resources of the Rover. The 
operational semantics of the language takes into account 
the possibility of failure of atomic-level command actions.  
The structure of a plan is a hierarchy of actions that the 
Rover must perform: each plan is a node; a node is either a 
task, corresponding to a primitive action, a (possibly 
concurrent) block, corresponding to a logical group of 
nodes, or a branch, representing a conditional branch 
within the plan. The plan language allows the association 
of each action with a number of state or temporal start, 
maintenance, and end conditions, which must hold before, 
during, and on completion of the action execution, 
respectively. A continue-on-failure flag is associated with 
each node. The flag being set signifies that the plan should 
continue execution even if the current node fails. In 
addition, floating branches, which are plan fragments 
triggered dynamically, may be inserted into the plan, 
allowing a limited form of run-time plan modification. 
 
In contrast to programming language interpreters, the 
executive is expected to be robust under many plan 
primitive execution failures. The operational semantics for 
recovery from primitive failures are extensive. 

Architecture of the K9 Executive 
Figure 2 illustrates the architecture of the executive, prior 
to the design changes that the developer made partly as a 
result of our analysis. The executive has been implemented 
as a multi-threaded system, made up of a main 
coordinating component named Executive, components for 
monitoring the state conditions ExecCondChecker, and 
temporal conditions ExecTimerChecker - each further 
decomposed into two threads - and finally an 
ActionExecution component that is responsible for issuing 
the commands to the Rover. Synchronization between 
components is performed through mutexes and condition 
variables (implemented using the Posix libraries).  
  
During the design level analysis of the executive, we 
discovered several concurrency problems with the inter-
thread communication between different components of 
the executive. To eliminate these problems, the developer 
changed the architecture of the system, as illustrated in 
Figure 3. The main change is the use of an Event Queue as 
a communication mechanism between the Executive and 
the rest of the components. As a result, the communication 
between different components became much simpler and 
less prone to errors.  E.g., our analysis of the first version 
revealed a concurrency problem (i.e. race condition) with a 
variable shared between the ExecCondChecker and the 

Executive. This shared variable was eliminated in the 
second version, its role being replaced by the Event Queue. 
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Figure 2. Original architecture of the executive 
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Figure 3. Updated architecture of the executive 

Besides the changed architecture, the “new” executive 
presents several functional changes from the original one: 
added support for concurrent activities and “floating 
branches” (dynamically inserted branches and plan 
fragments), separation of temporal constraints from other 
pre- and post-conditions, and addition of relative temporal 
constraints to arbitrary actions within the plan. The high-
level changes are summarized below: 
 
• The Executive was changed to be event-based. An Event 
Queue was added. Both ExecTimer and ExecCondChecker 
were simplified to return all events, leaving the task of 
processing and ignoring events to the Executive. The 
Executive acts on an “execution context” - a data structure 
representing the current state of execution. This execution 
context was augmented to support concurrent activities and 
floating branches. The design documents were changed 
from state diagrams into event-processing loops. 

• The ActionExecution was changed to support parallel 
execution threads. 

• Simpler usage and removal of condition variables: there 
were a number of places in the first version where 
condition variables were used to coordinate information 
passing between modules (such as the ExecCondChecker 
and the Executive).  By simplifying the information flow 

ICAPS 2005

Workshop on Verification and Validation of Model-Based Planning and Scheduling Systems 77



(via the event queue), tight coordination is no longer 
necessary. 

• Design simplicity over code re-use: there were a few 
places in the first version where code, locks, or features 
were re-used for conciseness.  However, in some cases this 
made the design much more convoluted.  For example, the 
return value of ActionExecution was routed through the 
Database and then the ExecCondChecker for uniformity 
with other conditions being checked during execution.  
However, this makes the information flow in the system 
circuitous, unclear, and error-prone. 

Design-Level Verification  
At design level, we use verification techniques that 
exhaustively explore all the possible executions of a 
system. Although exhaustive exploration is typically 
intractable at the code level, designs tend to be more 
abstract, making them more amenable to efficient 
verification. Specifically, we use model checking: given 
some formal description of a system and of a required 
property, model checking [11] automatically determines 
whether the property is satisfied by the system. Since 
scalability can also be an issue at the design-level, we 
enhance model checking with compositional techniques. 
 
In this section, we describe the LTSA verification tool for 
design-level software analysis. We also summarize the 
compositional techniques [1,2] with which we extended 
the LTSA.  

The Labeled Transition System Analyzer (LTSA)  
The LTSA [8] is an automated tool that supports 
Compositional Reachability Analysis (CRA) [9] of a 
software system based on its architecture. In general, the 
architecture of a concurrent system has a hierarchical 
structure. CRA incrementally computes and abstracts the 
behavior of composite components based on the behavior 
of their immediate children in the hierarchy.  
 
The input language FSP (Finite State Processes) of the tool 
is a process-algebra style notation with Labeled Transition 
Systems (LTS) semantics. An LTS is a finite-state machine 
whose transitions are labeled by actions, representing the 
internal and communication events in which a component 
may engage. LTSs are composed by synchronization of 
common actions and interleaving of local, internal actions. 
Safety properties are expressed as LTSs with extended 
semantics, and are treated as ordinary components during 
composition. Properties are combined with the components 
to which they refer. They do not interfere with system 
behavior, unless they are violated. In the presence of 
violations, the properties introduced may reduce the state 
space of the (sub) systems analyzed. 
 

The LTSA framework treats components as open systems 
that may only satisfy some requirements in specific 
contexts. By composing components with their properties, 
it postpones analysis until the system is closed, meaning 
that all contextual behavior that is applicable has been 
provided. The LTSA tool also features graphical display of 
LTSs, interactive simulation and graphical animation of 
behavior models, all helpful aids in both design and 
verification of system models. 

Compositional Analysis 
We extended the LTSA model-checking tool with the 
compositional verification techniques presented in [1, 2]. 
Compositional verification decomposes the properties of a 
system into properties of its components, so that if each 
component satisfies its respective property, then so does 
the entire system. Components are thus model checked 
separately. It is often the case, however, that components 
only satisfy properties in specific contexts (also called 
environments). This has given rise to the assume-guarantee 
style of reasoning. 
 
Assume-guarantee reasoning [12,13,14] first checks 
whether a component M guarantees a property P, when it 
is part of a system that satisfies an assumption A. 
Intuitively, A characterizes all contexts in which the 
component is expected to operate correctly. To complete 
the proof, it must also be shown that the remaining 
components in the system (M's environment) satisfy A. 
This style of reasoning is captured by the following 
assume-guarantee rule. 

〈A〉 M1 〈P〉   (Premise 1) 
〈True〉 M2 〈A〉 (Premise 2) 

 

            〈True〉 M1 || M2 〈P〉 

Several frameworks have been proposed to support this 
style of reasoning. However, their practical impact has 
been limited because they require extensive human input in 
defining assumptions that are strong enough to eliminate 
false violations, but that also reflect appropriately the 
remaining system. 
 
In previous work, we developed several techniques that 
automate assume-guarantee reasoning. We implemented 
these techniques in the LTSA tool and used them in the 
analysis of the design models of the Rover Executive. We 
should note that our techniques are general; they rely on 
standard features of model checkers and could therefore 
easily be introduced in any model checking tool.  
 
In [2], we present an approach to synthesizing the 
assumption that a component needs to make about its 
environment for a given property to be satisfied. The 
assumption produced is the weakest, that is, it restricts the 
environment no more and no less than is necessary for the 
component to satisfy the property. The automatic 
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generation of weakest assumptions has direct application 
to the assume-guarantee proof. More specifically, it 
removes the burden of specifying assumptions manually 
thus automating this type of reasoning.  
 

 
Figure 4. Framework for assume-guarantee reasoning 

The technique presented in [2] does not compute partial 
results, meaning no assumption is obtained if the 
computation runs out of memory, which may happen if the 
state-space of the component is too large.  
 
We address this problem in [1], where we present a model 
checking framework for performing assume-guarantee 
reasoning using the above rule in an incremental and fully 
automatic fashion. The framework is illustrated in Figure 
4. To check that a system made up of two components M1 
and M2 satisfies a property P, our framework automatically 
learns and refines assumptions Ai for component M1 to 
satisfy the property, which it then tries to discharge on 
component M2. The framework uses an automata learning 
algorithm [17] to construct the assumptions for the 
compositional analysis of the models. 
 
At each iteration i, the learning algorithm is used to build 
an approximate assumption Ai, based on querying the 
system and on the results of the previous iteration. The two 
premises of the assume-guarantee rule are then checked. 
Premise 1 is checked to determine whether M1 guarantees 
P in environments that satisfy Ai. If the result is false, it 
means that this assumption is too weak, and therefore 
needs to be refined with the help of the counterexample 
produced by checking premise 1. If premise 1 holds, 
premise 2 is checked to discharge Ai on M2. If premise 2 
holds, then according to the assume-guarantee rule P holds 
in M1||M2. If it doesn’t hold, further analysis is required to 
identify whether Ai is indeed violated in M1||M2 or whether 
Ai is stronger than necessary, in which case it needs to be 
refined. The new assumption may of course be too weak, 
and therefore the entire process must be repeated. For 
finite state systems, this process is guaranteed to terminate. 
In fact, it converges to an assumption that is necessary and 
sufficient for the property to hold in the specific system.  
 

A useful characteristic of our framework is that the 
generated assumptions are minimal; they strictly increase 
in size as the learning algorithm progresses, and grow no 
larger than the weakest assumption for M1 to satisfy P. 
Moreover, in our experience, the interfaces between 
components are small for well designed software. 
Therefore, assumptions are expected to be significantly 
smaller than the environment that they represent in the 
compositional rules, and the cost of assume-guarantee 
reasoning will be significantly smaller than monolithic 
(non-modular) model checking, both in terms of time and 
consumed memory. Recently, we have extended our 
frameworks to handle more assume-guarantee rules and 
more than two components. 

Code Level Verification   
In this section, we describe our methodology [4] for using 
the artifacts of the design level analysis to decompose the 
verification of the implementations (see Figure 5).  
 

 
 
Figure 5. Using design level assumptions for source 
code verification 

At the design level, the architecture of a system is 
described in terms of components and their behavioral 
interfaces modeled as LTSs. Design models are intended to 
capture the design intentions of developers, and allow 
early verification of key integration properties. For 
example, consider a system that consists of two design 
level components M1 and M2, and a property P, describing 
the sequence of events that the system is allowed to 
produce, or equivalently the bad behaviors that the system 
must avoid. 
 
To check in a scalable way that the composition of M1 and 
M2 satisfies P, we use the assume-guarantee frameworks 
described in the previous section. We expect that, with the 
feedback obtained by our verification tools, the developers 
of the system will correct their design models until the 
property is achieved at the design level. At that stage, our 
frameworks will have automatically generated an 
assumption A that is strong enough for M1 to satisfy P but 
weak enough to be discharged by M2.  
 
To then establish that the property is preserved by the 
implementation, our approach uses the automatically 
generated assumption A, to perform assume-guarantee 
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reasoning at the source code level. The implementation is 
decomposed as specified by the architecture at the design 
level (i.e. components C1 and C2 implementing M1 and M2, 
respectively), and we establish that C1 composed with C2 
satisfies P by checking that C1 satisfies P under 
assumption A, and by discharging A on C2. If both these 
checks return true then the property is preserved by the 
implementation. Otherwise, the counterexample(s) 
obtained expose some incompatibility between the models 
and the implementations, and are used to guide the 
developers in correcting the implementation, the model, or 
both. For the actual verification of source code, we 
investigated two technologies: software model checking 
and run time verification, which are described below. 

Software Model Checking 
We used the Java Pathfinder software model checker (JPF) 
[18] developed at NASA Ames.  JPF is an explicit state 
model checker that analyzes programs written in Java (an 
implementation for C++ analysis is currently being 
developed). JPF checks for deadlocks and assertion 
violations. JPF is built around a special purpose Java 
Virtual Machine (JVM) that allows Java programs to be 
analyzed. JPF supports depth-first, breadth-first and 
several heuristic search strategies to search systematically 
explore the state spaces of the analyzed programs.  

Run Time Verification and Automated Test Input 
Generation 
For the first version of the Executive we focused on 
checking implementations using compositional reasoning 
and software model checking tools. In the second version 
we experimented with methods that provide more 
scalability at the price of exhaustiveness. Specifically we 
investigated the use of lighter-weight analysis techniques, 
i.e. run time verification, for the compositional analysis of 
the second version of the executive.  
 
Run time verification is an advanced testing technique that 
provides a means for constructing oracles that examine not 
just the output and interfaces of a system, but the internal 
computational status of the system. In run time 
verification, a program is instrumented to emit events 
which are then monitored to check for conformance to 
formalize requirements, either stated as temporal logic 
assertions, or as specialized algorithms looking for 
common errors, such as deadlocks and data races.  
 
For the analysis of the Rover Executive, we used the Eagle 
temporal logic runtime verification framework [5]. In order 
to generate different executions for thorough testing, we 
used automated test input generation techniques to create 
all (non-isomorphic) input plans up to a pre-defined size 
[5]. Given a formal description of the inputs to a system, 
the test input generation techniques combine symbolic 
execution, model checking and heuristic search to 

systematically search and generate the input state space 
and to achieve full coverage of the input specification.  

Modeling and Analysis of the Rover Executive   

Initial Modeling 
We produced abstract models of the Rover Executive that 
contained enough information – but at a higher level – to 
allow us to study architectural properties of the system and 
detect potential integration problems. The developer of the 
executive initially described the architecture of the system 
as a hierarchy of threads as illustrated in Figure 2. 
Moreover, he provided some design documents in his own, 
ad-hoc flowchart-style notation, describing the main 
functionality of the threads in the Rover Executive.  

 

db unlock

db condvar signal 

return 

Database::dbChanged = true 

changes to Database

db lock 

Database::DBAssert

 

 

 

Database_DBAssert =        
 (db.lock ->     
  info.assign[Data] ->  
  dbChanged.assign[True]->  
  SignalCV('dbCV);Unlock), 
Unlock =(db.unlock->END). 

Figure 6. Original design (left) and corresponding FSP 
model (right) produced for a method in the database  
 
These documents were produced “after the fact”, meaning 
after a first implementation of the Rover was available. It 
took the developer only a few hours to produce these 
documents. Moreover, he found the diagrams that we 
produced of the architecture of the system helpful, and 
subsequently maintained it for communicating the 
structure of the system to his collaborators. 
 
Figure 6 illustrates the original design provided to us and 
the corresponding (FSP) model that we produced. In the 
model, Data is the domain of values for variable info. 
SignalCV is the method that needs to be called to signal a 
specific condition variable, in this case dbCV. Unlock is 
simply a state alias – mutex db must get unlocked after 
signaling dbCV and before returning. 
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We made a systematic effort to keep the architecture 
explicit in the model. Each thread has a unique instance 
name – the name of the thread in the architecture – which 
prefixes all the actions in its behavior, thus clearly 
differentiating its behavior from that of other threads in the 
system. This was achieved by the instantiation operator 
that the LTSA tool provides. Moreover, communication 
points were modeled by binding the associated actions, 
captured by the renaming operator of the LTSA. The 
resulting model was approximately 600 lines of FSP code 
that had a very close correspondence to the design 
documents provided by the developer. 

Modeling the New Executive 
As mentioned, the developer changed the design of the 
Executive, partly as a result of our analysis. We created 
two new models for the design level analysis of the new 
executive. Model 1 (~800 lines of FSP code) captures the 
new architecture of the executive, the queuing mechanism 
and the detailed event handling for block and task nodes. 
Model 2 (~900 lines of FSP code), which captures 
synchronous and asynchronous execution of floating 
branches. 
 
Model 1: Queuing and Event Handling  
We reused from our previous model the FSP encoding of 
the functionality of mutexes and condition variables. We 
added a model for the FIFO Queue and the event handling 
mechanism in the Executive and we updated the 
ExecCondChecker and ActionExecution models according 
to the new design, as illustrated in Figure 3.  

Model 2: Floating Branch Execution  
We extended Model 1 to handle the execution of floating 
branches. This execution is triggered by pre-defined 
conditions. Floating branches can be synchronous (i.e. 
triggered at action transitions within the plan) or 
asynchronous (i.e. monitored continuously in parallel with 
execution). The execution of floating branches involves 
suspending execution of the principal plan, executing the 
floating branch, and resuming execution in the principal 
plan.  In the case of asynchronous floating branches, the 
currently executing action is suspended, and then it 
resumes after completion of the floating branch.   We 
extended the Executive’s main loop to deal with new 
events (e.g. Task Suspension/Suspended, Task Resume, 
Floating Branch Expand and Floating Branch Terminate). 
We also extended the event handling mechanism in node 
(i.e. block or task) execution, to deal with 
suspension/resuming of the execution of the current node 
when a floating plan is activated. We added functionality 
for event handling in nodes of synchronous and 
asynchronous floating branches. 

Properties 
Our analysis focused on properties related to the correct 
execution of the plans, according to the plan semantics, 
and to the synchronization issues between threads. 
Specifically, we analyzed the following properties: 

P1: Absence of local and global deadlocks. 

P2: No irrelevant action execution events can happen. 

P3:  No irrelevant condition checker events can happen. 
 
P4: If the last task in the plan terminates successfully, then 
the only possible outcome for the plan is successful 
termination. 

P5: When a task fails, the continue-on-failure flag on the 
block will always be checked before any outcome is 
produced; moreover, if continue-on-failure is true, the 
outcome is success, otherwise it is failed. 

P6: The Executive only receives ExecCondChecker events 
if it has registered for them. 

P7: The ExecCondChecker only puts events in the queue if 
the Executive registered for them. 

P8: When a task fails, it will always check its continue-on-
failure flag; moreover, if the continue-on-failure flag is 
false, no subsequent task in the block will be started; new 
tasks can be started after the parent block reports the 
results (i.e. other block is expanded). 

P9: If the Executive thread reads the value of the shared 
variable savedWakeupStruct, then the ExexcCondChecker 
thread should not read it until the Executive clears it first.  

P10: (Race condition) All accesses to shared structure 
conditionSetChanged by the Executive and the 
ExecCondChecker threads will be protected by locks.  

P11: (Race condition)   All accesses to shared structure 
existConditions by the Executive and the 
ExecCondChecker threads will be protected by locks. 

P12: Floating branches and principal plans cannot execute 
concurrently. 

Design Level Verification 
  
Our initial analysis uncovered a number of synchronization 
problems such as deadlocks and data races. Moreover, the 
design models were used for quick experimentation with 
alternative solutions to exiting defects, leading eventually 
to the re-design of the software. 

As mentioned, safety properties are expressed as LTSs. For 
example, Figure 7 illustrates property P9 that was 
formulated by the developer. The property is represented 
as two states, corresponding to the shared variable 
savedWakeupStruct being cleared or not cleared, and with 
a third state representing the error state. The developer 

ICAPS 2005

Workshop on Verification and Validation of Model-Based Planning and Scheduling Systems 81



expected the property to be satisfied. We applied assume-
guarantee reasoning as supported by our tools, were 
assumptions were generated for the ExecCondChecker 
thread (module M1) and discharged on the Executive thread 
(module M2). 

 

0 

error

exec.savedWkupStr.read[0..1] 

1 

exec.savedWkupStr.assign[0] 
execCondCh.savedWkupStr.assign[0..1] 

execCondCh.savedWkupStr.read[0..1]

 

Figure 7. Example property  
 
The results obtained from the design-level analysis are 
summarized in the first row of Table 1. The design level 
model is an order of magnitude smaller than the 
corresponding Java implementation. The largest state space 
that our modular verification techniques compute consists 
of 541 states, as opposed to 4672 states computed by 
monolithic model checking. We therefore achieved an 
order of magnitude savings in terms of space.   

Table 1. Analysis results at design & code level 

Analysis Tool LOC Monolithic 
model 
checking 

Modular 
verificatio
n 

Design 
level 

LTSA 700 FSP 4672 states 541 states 

Code 
level 

JPF 7.2K 
Java 

183K states 53K states 

 
The generated assumption consists of 5 states. It describes 
an environment where the Executive thread reads the 
savedWakeupStruct variable after acquiring the exec mutex 
and holds the mutex until it clears (assigns value 0) the 
variable. The assumption is illustrated below (in FSP).  

Assumption = Q0, 
Q0 = ( executive.exec.lock -> Q2), 
Q2 = (executive.exec.unlock -> Q0 
    | executive.savedWakeupStruct.read[1] -> Q3 
    | executive.savedWakeupStruct.assign[0] -> Q4 
    | executive.savedWakeupStruct.read[0] -> Q5), 
Q3 = ( executive.savedWakeupStruct.read[1] -> Q3 
    | executive.savedWakeupStruct.assign[0] -> Q4), 
Q4 = ( executive.exec.unlock -> Q0 
   | executive.savedWakeupStruct.assign[0] -> Q4 
   | executive.savedWakeupStruct.read[0] -> Q5), 
Q5 = ( executive.savedWakeupStruct.assign[0] -> Q4 
    | executive.savedWakeupStruct.read[0] -> Q5). 

This assumption could not be discharged on the Executive 
thread. The counterexample obtained describes a scenario 
where the Executive thread reads savedWakeUpStruct and 
then it performs wait on a condition variable associated 
with the exec lock (a wait operation automatically releases 
the lock). The problem was temporarily fixed by adding to 
the Executive thread a statement that clears the shared 
variable. Note that the variable savedWakeupStruct was 
eliminated altogether when the Executive was re-designed. 
 
Stage I In the first stage, we checked several simple 
properties (P1, P2, P3). To do this, we decomposed the 
system into two modules, M1 that consists of the Executive, 
the ActionExecution and the EventQueue, and M2 that 
consists of the ExecCondChecker and the remaining 
threads in the system. The results of our analysis are 
summarized in Tables 2a-2c. 
 
Table 2a. Analysis results - stage I 
Property Subsyste

m 
#States, #Trans |A| Result 

P1 M1 3805, 10450 n/a false 
P2 M1 8478, 22875 n/a true 
P3 M1 8478, 22875 37

4 
false 

 
Table 2b. Analysis results – property P3 
Subsystem #States 
M1 8478 
M2 (discharge) 18080 
M1 || M2  (CRA) 74649 
M1 || M2  (monolithic) 84690 
 
Table 2c. Reachable state space computation 
Subsystem #States 
M1 8478 
M2  14448 
M1 || M2  (monolithic) > 10 Million 
 
We first checked local and global deadlocks (P1) by 
incrementally putting components of M1 and M2 together. 
Note that, in the LTSA, the assumption is that environment 
inputs are always available. This is a significant benefit for 
modeling partially specified systems (or verification of 
modules of systems), because one does not need to 
explicitly model drivers for the component. Moreover, 
uninteresting cases where the Executive is deadlocked 
because no plans are available at the input are ignored. 
 
A local deadlock was detected in M1. Two threads, 
Executive and ActionExecution, synchronize on shared 
transitions (in order to start and stop the execution of 
actions) and they also synchronize via the EventQueue 
(i.e., the ActionExecution sends events when the execution 
of the action is completed). The counterexample represents 
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a behavior where the Executive tries to stop the current 
action, without knowing that the current action was 
completed (i.e., before processing the respective event), 
while the ActionExecution is waiting to start a new action. 
This was a problem in our design, which we fixed (by 
adding self-loops for “unconsumed” stops from the 
previous actions). 
 
Property P2 was checked on M1. This property holds in 
any environment. Property P3 was checked on the same 
subsystem. This property does not hold in any 
environment, since it depends on the behavior of the 
ExecCondChecker, which is in M2. We generated 
automatically the assumption that M1 needs to make about 
the ExecCondChecker for the property to hold. We 
obtained an assumption of 374 states. By minimizing M1 
using compositional reachability analysis as supported by 
the LTSA, we obtain a subsystem of 1493 states; the 
assumption is therefore more concise to use for analysis. 
  
When we tried to discharge this assumption on the 
ExecCondChecker, after exploring 18080 states we 
obtained a counterexample describing the following 
scenario: the ExecCondChecker detects the fact that a 
maintenance condition has been broken, sends an event to 
the EventQueue, but the action terminates before this event 
gets handled. As a result, the event remains unconsumed in 
the EventQueue and gets handled in the context of the next 
node, at which time it is irrelevant. The counterexample 
exhibited the fact that the system is highly asynchronous, 
as a result of which it is possible for the EventQueue to 
hold “obsolete” events that are no longer relevant to the 
execution of the current node.  
 
As illustrated in Table 2b, our assume-guarantee 
framework enables a significant reduction in the state 
space that needs to be explored (18080 states) as compared 
both to CRA (74649 states) and to monolithic model 
checking. Note that, as illustrated in Table 2c, if we disable 
error detection and simply compute the reachable state 
space of the model, monolithic model checking runs out of 
memory after exploring 10 million states.  
 
Stage II After we enriched our models with advanced 
autonomy features (i.e. detailed task and block execution, 
floating branch execution, etc.) we checked the remaining 
properties (P4, P12 – except P9 which was no longer 
applicable). We should first note that we could not 
compute the reachable states of the whole system (the 
computation runs out of memory when using 1GB of 
memory); this means that checking any property on the 
whole system would not complete.  
 
We therefore used compositional techniques. Again, we 
decomposed the system into components: M1 (the 
Executive thread, the Event Queue and the ActionExecution 
thread) and M2 (the ExecCondChecker thread). M1 has 
47906 states, M2 has 14496 states. We analyzed the 
properties using assume guarantee reasoning. Checking 

properties P6, P7, P10, P11 required small assumptions 
(the largest obtained assumption has 7 states). 
Interestingly, properties P4, P5, and P8 were checked 
locally (no environment assumption was necessary). This 
reflects the modularized architecture of the new executive. 
 
During our analysis we discovered a problem with the 
design (reflected in the implementation) due to the 
asynchronous communication between components 
through the queue. Specifically, property P4 did not hold 
because of the order of events arriving in the queue: if a 
task terminates successfully and at the same time a time-
out occurs or a condition fails for the parent block, then, 
the outcome for the parent block can be non-
deterministically success or failure, depending on the order 
in which the corresponding events are put in the queue. 
Similar problems were found in relation to the execution of 
synchronous floating branches. The problems were 
corrected according to the developer’s suggestions, by 
adding an extra test for cases when events signaling time-
outs or failed conditions are received by the Executive 
thread. 
 
It is interesting to note that compositional reachability 
analysis fails for this large case study. E.g. for M1 
composed with property P6 which has 47918 states, 
compositional reachability analysis runs out of memory, 
while the generated assumption has only 5 states computed 
in 16.165 seconds.    

Code Level Verification 
 
Model Checking We used JPF for the analysis of the 
software components of the first version of the Executive 
code (which was manually translated in Java). To check 
each component in isolation, we used the assumptions that 
were generated during design level analysis to build 
appropriate environments. Techniques for automated 
generation of environments from user supplied 
assumptions are presented in [6]. These environments 
provide stubs for the methods called by the component that 
are implemented by other components, or test drivers that 
execute a component by calling methods that the 
component provides to its environment. Moreover, these 
environments are constrained by the design level 
assumptions. 
 
Some of the results of this analysis are reported in the 
second row of Table 1. Compositional verification yields a 
3x improvement (in terms of memory used) over 
monolithic verification. E.g., when we checked property 
P9 on the corrected system, monolithic (non-
compositional) model checking explored 183K states and 
it consumed 952 Mb of memory in 12 minutes and 12 
seconds. In contrast, compositional verification explored at 
most 60K states, and it consumed 315 Mb in 6 minutes and 
55 seconds. 
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Run Time Verification We used Eagle for the run time 
verification of the C++ code of the Executive. The design-
level artifacts (properties and assumptions) were 
automatically translated into Eagle monitors. We 
instrumented (by hand) the code of the Executive, to emit 
events that appear in these assumptions and properties. To 
generate test input plans, we encoded the plan language 
grammar as a non-deterministic input specification. 
Running model checking on this specification generates 
hundreds of input plans in a few seconds. 
 
We developed a tool that integrates run time verification 
and test input generation to perform assume guarantee 
style reasoning about the run-time behavior of the 
executive. The tool generates a set of test input plans. A 
script runs the Executive on each plan and it calls Eagle to 
monitor the generated run-time traces. The user can choose 
to perform a whole program (monolithic) analysis or to 
perform assume-guarantee reasoning. In the latter case, the 
Executive is broken in two parts: M1 consists of the 
Executive thread, the Event Queue and the ActionExecution 
thread, and M2 consists of the ExecCondChecker thread 
and the remaining threads. 
 
We ran several experiments for different input plan 
configurations. For Property P6, we found a discrepancy 
between the implementation and the models, due to the 
fact that nodes can send null conditions. Instead of putting 
these in the condition list (and altering the values of 
variables conditionSetChanged and existConditions), the 
ExecCondChecker code immediately pushes an event to 
the queue. We corrected this in the model. 
 
One benefit of our approach is that the use of design-level 
assumptions in the verification of software 
implementations enables the detection of costly integration 
problems well prior to system integration. In fact, assume-
guarantee verification can detect such problems as soon as 
one component of a software system becomes “code 
complete” (while the remaining software components may 
not be even implemented yet). Whenever the complete 
implementation of one component becomes available, we 
can check it against the required properties, under 
environments that are suitable restricted by the design-
level assumptions. When the rest of the components 
become available, we check the assumptions on these 
components. As a result, we guarantee that the whole 
system behaves correctly, without being necessary to 
perform verification/testing on the integrated components.  
 
Also note that assume-guarantee verification provides 
better unit testing. We only test components (i.e. units) in 
the environments in which it can be expected that the units 
will be integrated. Moreover, assume-guarantee reasoning 
provides increased behavioral coverage of the integrated 
system. We have found that, in some cases, assume-
guarantee verification uncovers errors that escape 
integration testing. The reason is that by generating and 
analyzing traces for each component in isolation, we can 

predict, by mathematical inference, properties about all the 
possible inter-leavings of these traces, while at system 
integration, one could generate only a subset of these 
interleavings.  

Conclusions and Future Work   
We described the development and application of 
compositional verification techniques to a significant 
autonomous system throughout its lifecycle. Subtle errors 
in the design and implementation of a rover executive have 
been detected Compared to testing by itself, these 
techniques are aimed at two challenging aspects of 
autonomy verification:  

1) Assuring correct execution of plans. Robust execution 
of plans, especially plans with contingencies, is a 
significant advantage of autonomy software compared to 
traditional sequence execution. Automatic verification of 
such extended features is a prerequisite for their 
introduction in missions. 

2) Concurrency is an inherent feature of autonomy. First, 
responding robustly to asynchronous environmental 
changes introduces concurrency. Second, in contrast to 
sequence execution or simple sequential plans, plans for 
rovers consist of multiple concurrent tasks overlapping in 
time. Third, modern programming practices for complex 
software favors encapsulating control into multiple 
threads, introducing concurrency at the implementation 
level. However, concurrency is difficult to debug with 
testing alone: concurrency errors are typically manifested 
only as transient faults in black-box testing, and are often 
masked by thread scheduling and computational resource 
profiles that differ subtly and uncontrollably between the 
testing environment and actual field conditions. Our 
techniques provide high assurance that autonomy software 
is free of concurrency errors. 
 
The techniques presented have several benefits. First, they 
can be applied early in the software development life 
cycle, when it is cheaper to detect and fix bugs. Second, 
our compositional techniques provide a way to 
automatically decompose global (system-level) 
requirements into local properties, which are cheaper – in 
terms of time and consumed memory – to check, with an 
increased level of confidence. Third, assumptions allow 
checking global properties (that are usually checked at 
integration testing) at unit testing level, thereby increasing 
the chances of detecting costly integration errors early. 
Fourth, our results show that compositional reasoning can 
enhance integration testing at the source-code level (by 
exploring multiple inter-leavings in concurrent programs). 
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In our work we consider a top-down software development 
process where design models are first created and 
debugged, and are subsequently used to guide the 
implementation. It goes without saying that it is not a 
straightforward task to obtain a correct model. However, 
verification tools provide several features such as 
interactive simulation, which facilitate the debugging of 
models. Moreover, as our results show, it is essential to 
make connections between verification performed at the 
design level with the actual implemented system. Note that 
we are currently investigating a complementary approach 
that uses abstraction techniques to automatically extract 
models from source code [3]. 
 
In the future, we plan to leverage our work for the analysis 
of other executives (and autonomy software), with minimal 
modifications (e.g. for plan generation, we could simply 
modify the plan language grammar; for properties and 
assumptions, we expect to build upon the existing 
specifications). For example, we plan to participate in the 
development and analysis of next generation executives, 
built within the CLARAty decision layer distribution [10].   
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Abstract

In this paper we examine the specification and validation of
Artificial Intelligence Planning domain models using the B
Abstract Machine Notation and its associated tool support.
We compare this to the use ofOCL (object-centred language)
within its tool-supported environment, GIPO. We present en-
codings of two well-known AI planning domain models, the
Blocks world and the Tyres world, with the aim of finding a
correspondence between the B and the OCL languages. We
also compare the tool-supported validation offered by their
respective environments.

Introduction
As AI Planning and Scheduling systems become mature
enough to be deployed in safety-related and safety critical
systems, the reliability of the systems themselves, and the
accuracy of the knowledge models that underlie the systems,
need to be certified to a high level. Planning systems typi-
cally contain planning engines, plan execution architectures,
plan generation heuristics and application domain models.
In this paper we focus on techniques for the rigorous con-
struction and validation of the application domain model.
This typically contains a structural model of the objects and
constraints in the planning world, and a model of the ac-
tions/events that affect objects in that world.

It is likely that any reasonably sized realistic domain
model will continue to contain errors and inconsistencies for
some time. A planner may manage to produce a solution de-
spite the fact that the domain model is flawed. Alternatively
no plan will be produced because of inconsistencies in the
domain model. Whatever the case it is desirable to be able to
validate the domain modelbeforean attempt is made to gen-
erate a plan. One approach to this is to use model checking
for validation, as in (Penix, Pecheur, & Havelund 1998), but
this is limited by potential state space explosion. Another
approach could be to assumea priori that the domain model
will be incomplete as in theSiN algorithm (Munoz-Avilaet
al. 2001). SiN can generate plans given an incomplete do-
main theory by using cases to extend that domain theory,
and can also reason with imperfect world-state information.
This is a fruitful assumption in many ways, as philosophi-
cally no model can ever be ‘proved’ complete and correct.
However, this approach neglects the issue of correctness -

the incomplete parts must still be validated and bugs identi-
fied and eliminated.

In this paper we investigate the use of a formal method
from the area of software specification to capture planning
domain models. These mathematically based methods are
chiefly for use in applications where safety-critical software
has to be produced, and where validation (of the specifica-
tion) and verification (of software derived from the specifi-
cation) are important considerations. The method we chose
is B, in conjunction with its tool support the B-Toolkit (B-
Core (UK) Ltd ). B is an industrial-strength method which
has been used in a wide variety of software applications.

To facilitate this, we compare it to a language and method
specifically aimed at capturing planning domain models: the
planning language OCL (object-centred language) and its
platform GIPO (Graphical Interface for Planning with Ob-
jects) (Simpsonet al. 2001)). GIPO is a GUI and tools envi-
ronment for building AI planning domain models in OCL
which supports some validation activities such as consis-
tency and animation. GIPO provides both a graphical means
of defining a planning domain model and a range of val-
idation tools to perform syntactic and semantic checks of
emerging domain models.

Superficially at least, formal specification languages and
planning domain description languages are similar in that
they share

1. the concept of a ‘state’

2. the technique of using pre and post conditions in state
transformation, via operations to specify state dynamics

3. the assumptions of closed world, default persistence and
instantaneous operator execution

4. the presence of state invariants for validity and documen-
tation purposes. State invariants are also used in OCL.

In the paper we use this correspondence to help in the
comparison. In the next sections we apply both B and OCL
methods to the acquisition of the two domains, and finish by
making a comparison of their performance with respect to
validation and consistency checking,

The Blocks World in OCL
As a case study that all planning researchers are aware of,
we use a version of the well known ‘Blocks world’, show-
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ing how this can be modelled in both languages, and what
opportunities there are for validation. The version we use
will consist of a table, on which there are a number of
blocks. There are robot arms capable of gripping individ-
ual blocks and moving them from one location to another.
The complete specification is in theResourcesection at
http://scom.hud.ac.uk/planform/.

The object-centred family of languages (OCL) and their
associated development method (embedded in the GIPO
tool) forms a rigorous approach to capture the functional
requirements of classical planning domains. OCL derives
from the work in reference (McCluskey & Porteous 1997).
Originally designed for classical goal achievement planning,
OCLh has been developed for HTN models and PDDL+ –
like models (Simpson & McCluskey 2003). We will use the
basic version of OCL and the tools available in GIPO to sup-
port this.

A specification of the modelM of a domain of interest
D, is composed of sets of:

• sort names and object names: A sort (or object class) is
a set of object identifiers representing objects that share a
common set of characteristics and behaviours. A sort is
primitive if it is not defined in terms of other sorts.Sorts
in the Blocks world areblock andgripper and are both
primitive.

• predicate definitions: (Prds) A predicate fromPrdsrepre-
sents a functional property of an object. Predicates can be
static or dynamic - static predicates include built-in ones
such as ‘ne’ (not equal). ThePrdsof the Blocks world are
in Figure 1.

• invariant expressions on individual sortsExps: this is a
set of invariants which define all the possible “states” that
an object of each sort can inhabit. These are called sub-
states to distinguish them from a world state. An object
description is specified by a tuple (s, i, ss), wheres is a
sort identifier,i is an object identifier, andssan object’s
substate. For example,(gripper, G,[free(G)]) is an object
description meaning that some objectG of sort gripper
is free. Substates operate under aclosed worldassump-
tion local to this restricted set - thus in Figure 1 a block
can either be gripped, stacked on another block and clear,
stacked on another block and not clear, on the table and
clear, or on the table and not clear. For objectblock B,
substategripped(B, G) means that other predicates relat-
ing to blockarenot true: it is not on the table or clear or
on another block.

• general domain invariants: Within OCL general con-
straints linking sorts can be stated and used in
tools. A typical example in the Blocks world is
the assertion “for any blocks B, B1, gripper G,
gripped(B, G), on block(B, B1) is inconsistent”.

• operator schema: An action in a domain is represented
by anoperator schema. Actions or events change objects
substates. An operator shows the set of object transitions
for each object affected by the action. It is specified by
a name, a set ofprevail conditions, a set ofnecessary
changes and a set ofconditionalchanges.

predicates:
on_block(block,block)
on_table(block)
clear(block)
gripped(block,gripper)
busy(gripper)
free(gripper)

invariants of ’block’: an object B must be
described by exactly one of the following
expressions:

gripped(B,G)
on_block(B,B1),clear(B),ne(B,B1)
on_block(B,B1),ne(B,B1)
on_table(B),clear(B)
on_table(B)

Figure 1: The Predicates and Substates of Blocks World

name: grip_from_table
parameters: B - block, G - gripper
prevail - none
necessary transitions -
block, B: [on_table(B),clear(B)]

=> [gripped(B,G)]
gripper,G: [free(G)]

=> [busy(G)])
conditional - none

Figure 2: Operator for Gripping a Block from a Table

Operators in the Blocks world contain only necessary transi-
tions. These show the conditions on objects that must be true
before an action can take place, and specify the new state of
an object after the action has been executed. For example,
thegrip from tableoperator has a necessary transition:

For any block B
[on_table(B),clear(B)] => [gripped(B,G)]

meaning that block B has to be clear and on the table as a
precondition and that its state after the transition is that it is
gripped. An exampleOCLoperator,grip from table, shows
the state changes for two objects, a block and a gripper (see
Figure 2 and Figure 3).

Transitions are only shown for objects which are changed.
By default all other objects are assumed to remain un-
changed. If an object is required to be in a particular state
before the transition but does not itself change, it is included
as aprevail condition. However it is not used in any of the
actions of the Blocks world. The meaning ofconditional
change is thatif a condition on an object is true before an
action takes place,then the object changes to a new spec-
ified state. There are no conditional changes in the Blocks
world domain model.

Validation and debugging in OCL
There are several built-in security checks in OCL. Firstly, the
user has to capture the space of possible descriptions (sub-
states) of an object of each sort within the sort invariants.
Thus world states are formally defined as being a set of le-
gal substates - one for each object declared. This gives an
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grip from blocks(B, G):
[on_block(B,B1),clear(B),ne(B,B1)]

=> [gripped(B,G)]
[on_block(B1,B2),ne(B1,B2)]

=> [on_block(B1,B2),clear(B1)]

grip from one block(B, G):
[on_block(B,B1),clear(B),ne(B,B1)]

=> [gripped(B,G)])
[on_table(B1)]

=>[on_table(B1),clear(B1)]

Figure 3: Transitions for Blocks when being Gripped from
a Block

explicit specification of all possible world states, allowing
bugs in state expressions to be prevented. It also restricts
the set of goal expressions to those that are feasible in the
domain. Secondly, the object transitions in operator schema
must conform to the invariants, and hence the transitions are
restricted so that operator schema make objects transform to
a legal state according to the invariant.

These checks are embedded in GIPO, the GUI and tools
environment for building domain models. GIPO prevents
errors being introduced (by restricting values in menus etc)
and in some cases GIPO’s validation checks reveals errors.
Other kinds of validation supported by GIPO include: a
Stepperwhich aids the user to interactively build up a plan,
selecting and applying operator schema for a chosen task;
and aPDDL interface, allowing third party planners to be
bolted on, and their output returned back into a GIPO ani-
mator, so that the user can step through a complete plan.

The Blocks World in B
A specification in B will be constructed from one or more
abstract machines, with the components of a machine being
its variables, invariant, initialisation and operations. A typi-
cal abstract machine state comprises several variables which
are constrained by the machine invariant and initialised. Op-
erations on the state contain explicit preconditions; the post-
conditions are expressed as ‘generalised substitutions’. Fur-
ther information describing B can be found in (Schneider
2001).

Some of the sets and logic notation of B is ‘standard’.
There follows a brief explanation of other parts which may
not be familiar to the reader.
If R is a relation fromS to T andA⊆ S, B⊆ T:
A C R means ‘restricting the domain ofR to setA’;
A−C R means ‘restricting the domain ofR to setS− A’;
RB B means ‘restricting the range ofR to setB’;
R−C B means ‘restricting the range ofR to setS− B’;
If R1, R2 are relations fromS to T:
R1 <+ R2 means ‘domain overriding ofR1 by R2 ’. Hence
on the domain ofR2, the value is given byR2. Outside
dom(R2), the value is given byR1.

In applying B to AI Planning, our strategy was to find a
correspondence between B specifications of planning worlds
and planning-specific languages, hence we used reverse en-

gineering on the OCL model. This gives the correspondence
in Table 1.

OCL B
primitive sorts sets

predicate names variable names
operator schema operations

properties boolean-valued functions
predicates(x,y) relations between x and y

Table 1: OCL - B correspondence

Sets in B translate to ‘primitive sorts’ in OCL. For example
Block, Gripper in B map to corresponding primitive sorts
in OCL;

Boolean valued functions in B map to OCL predicates of
arity one. For example functionOn Table(block) maps to
predicateon table(block) in OCL;

Relations in B whosedomain is the type ofx and whose
rangeis the type ofy (∈ X ↔ Y) map to OCL predicates
of arity 2, pred(x, y). For exampleOn Block ∈ Block
7½ Blockbecomes the predicateon block(block, block) in

OCL. (Note that we have restricted ourselves to domains
capable of being modelled via predicates of arity two. )

The following comprises the B machine header, sets and
variables clauses:

MACHINE BlocksWorld
SETSBlock; Gripper
VARIABLES
On Block, On Table, Clear, Gripped, Free

Note that the predicate ‘Busy’ from OCL is not represented
for it is simply the negation of ‘Free’. This exception was
made to avoid unnecessary replication in the B model. A
fragment is presented in the next subsection. The complete
specification and that of the Tyres World is in
http://scom.hud.ac.uk/scommmw/PlanningDomains/

Invariant and Initialisation of Blocks World in B
The types of the variables were reverse engineered - OCL
predicates of arity one,pred(x) were modelled by B total
functions whosedomainis the type ofx and whoserange
is the booleans. OCL predicates of arity 2,pred(x, y), were
modelled by B relations whosedomainis the type ofx and
whoserange is the type ofy. Modelling in this manner al-
lowed us to take advantage of the fact that in the Blocks
world all the relations were functions and some were 1-1.

A simple initialisation condition (below) was specified -
that each block is on the table, clear and not gripped. The
‘ ||’ stands forparallel substitutionwhere all variable sub-
stitutions are assumed to take place in parallel rather than in
sequence. The idea of a fixed initialisation differs from OCL
where the domain is initialised at the start of each plan.

INITIALISATION
On Block := {} ||
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INVARIANT
On Block∈ Block 7½ Block∧ (1)
On Table∈ Block→ BOOL∧ (2)
Clear∈ Block→ BOOL∧ (3)
Gripped∈ Block 7½ Gripper∧ (4)
Free∈ Gripper→ BOOL∧ (5)
∀ blk . ( blk ∈ dom On Block⇒ On Block( blk ) 6= blk ) ∧ (6)
ran On Block∪ dom Gripped= dom ( Clear B { FALSE} ) ∧ (7)
ran Gripped∩ dom ( FreeB { TRUE} ) = {} ∧ (8)
ran Gripped∪ dom ( FreeB { TRUE} ) = Gripper∧ (9)
dom On Block∩ dom Gripped= {} ∧ (10)
dom Gripped∩ dom ( On TableB { TRUE} ) = {} ∧ (11)
dom On Block∩ dom ( On TableB { TRUE} = {} ∧ (12)
dom Gripped∩ dom ( Clear B { TRUE} ) = {} ∧ (13)
dom Gripped∩ dom On Block= {} ∧ (14)
dom Gripped∩ ran On Block= {} ∧ (15)
dom Gripped∪ dom ( On TableB { TRUE} )

∪ dom On Block= Block (16)

Figure 4: B Invariant for the Blocks World

On Table:= Block× { TRUE} ||
Clear := Block× { TRUE} ||
Gripped:= {} ||
Free:= Gripper× { TRUE}

Blocks World Operations in B
It is only necessary to have one operation for gripping a
block in B. However,Grip Block On Tablewas represented
plus one operationGrip Block On Block to represent the
two actions required by OCL. (See Figure 5). This was so
that we could compare the representations more closely. For
a similar reason two operations were also specified to release
a block:Put Block On Table, Put Block On Block.

Validation
Reasoning about a formal specification and animation of a
formal specification are both activities concerned withvali-
dation, and these are complementary activities.

A way of reasoning about a formal specification is via the
generation and discharge of ‘proof obligations’. A set of
proof obligations involvingconsistency propertiesof a sys-
tem can be automatically generated by the BTool. An exam-
ple of two of these is (1) Consistency of initialisation: the
initialisationmustestablish the invariant. (2) Consistency of
operation: each operation mustpreservethe invariant. Other
consistency properties involve the static parts of the machine
(sets, constants, properties etc.). It is also possible to check
the machine invariant during animation.

The B-Toolkit includes an animator to ‘execute’ opera-
tions, and a proof tool to check that proof obligations are
met. The Blocks world in B was validated using the B-
Toolkit. Each new version was animated to check for er-
rors. The version was run for each operation with the invari-
ant displayed and this provided a quick method for rooting
out errorsbeforethe prover was used. The proof obligation
generator and prover were then run - in all 72 proof oblig-
ations were generated with 40 undischarged by the prover -

these were subsequently hand-checked, which was a labo-
rious process. During this procedure the invariant was fre-
quently scanned and it was discovered that an unnecessary
conjunct was present in the original versions:
ran ( On Block) ∩ dom ( Clear B { TRUE} ) = {}
was found to be already covered by (7) and (13).

As part of the checking process of the two models, we ran
one of the planners in GIPO on a particular task, and then
simulated this in the B-Toolkit using the animator. We used
the well-known task (in AI planning literature), the Sussman
Anomaly, as shown in Figure 6. This solution was obtained

1

2

3

3

21

Goal StateInitial State

Figure 6: Initial and Goal States

from one of the planners:

grip_from_one_block(block3,block1,tom)
put_on_table(block3,tom)
grip_from_table(block2,tom)
put_on_one_block(block2,tom,block3)
grip_from_table(block1,tom)
put_on_blocks(block1,tom,block2,block3)

It was obviously not possible to generate an automatic se-
quence of operations using the B-Toolkit - as in the case of
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Grip Block On Table ( blk , grp ) =̂
PRE

grp∈ dom ( FreeB { TRUE} )∧
blk ∈ dom ( Clear B { TRUE} ) ∧
On Table( blk ) = TRUE

THEN
Free( grp ) := FALSE||
Clear ( blk ) := FALSE||
On Table( blk ) := FALSE||
Gripped( blk ) := grp

END

Grip Block On Block ( grp , blk ) =̂
PRE

grp∈ dom ( FreeB { TRUE} ) ∧
blk ∈ dom ( On Block) ∧
blk ∈ dom ( Clear B { TRUE} )

THEN
On Block := { blk } −C On Block ||
Free( grp ) := FALSE||
Clear := Clear <+ { blk 7→ FALSE, On Block( blk ) 7→ TRUE} ||
Gripped( blk ) := grp

END Put Block On Block ( blk1 , grp ) =̂
PRE

grp = Tom∧
blk1∈ Block∧
Gripped( blk1 ) = grp∧
Free( grp ) = FALSE

THEN
Free( grp ) := TRUE||
Gripped:= {} ||

ANY blk2
WHERE

blk2$ in Block∧
Clear ( blk2 ) = TRUE
THEN

On Block( blk1 ) := blk2 ||
Clear := Clear <+ { blk1 7→ TRUE} <+ { blk2 7→ FALSE}

END
END

Figure 5: Operations in B
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the planner. However the equivalent of the ‘Sussman Anom-
aly’ configurations was achieved by commencing from the
initial state and placing block 3 on block 1, as shown in
the following animation (where * means the variable has
changed):

* On_Block {block3 |-> block1}
On_Table {block3 |-> FALSE ,

block1 |-> TRUE ,
block2 |-> TRUE ,

block4 |-> TRUE ,
block5 |-> TRUE ,
block6 |-> TRUE ,
block7 |-> TRUE}

* Clear {block1 |-> FALSE ,
block3 |-> TRUE ,
block2 |-> TRUE ,

block4 |-> TRUE ,
block5 |-> TRUE ,
block6 |-> TRUE ,
block7 |-> TRUE}

* Gripped {}
* Free {Tom |-> TRUE}

The desired final state was achieved using the operations

Grip_Block_On_Block ( block3, Tom )
Put_Block_On_Table ( block3 )
Grip_Block_On_Table ( block2 , Tom )
Put_Block_On_Block ( block2 )

(Local Variable blk2 in ‘ANY’ set to block3)
Grip_Block_On_Table ( block1 , Tom )
Put_Block_On_Block ( block1 )

(see Figure 5) with end state:

* On_Block {block2 |-> block3 ,
block1 |-> block2}

On_Table {block1 |-> FALSE ,
block2 |-> FALSE ,
block3 |-> TRUE, .. }

* Clear {block2 |-> FALSE ,
block1 |-> TRUE ,
block3 |-> FALSE, .. }

* Gripped {}
* Free {Tom |-> TRUE}

Tyres World Case Study
We used a similar strategy (i.e. reverse engineering in mod-
elling variables) when we modelled the ‘Tyres World’ in B.
The Tyres world involves the changing of a faulty wheel us-
ing a wrench and a jack, both of which are (usually) initially
in the car boot. Wheel changing involves loosening and re-
moving wheel nuts, then changing the wheel. The wrench,
jack and spare wheel must be available when required and
the actions must take place in the correct order. The objec-
tive of the case study was (first) as a preliminary investiga-
tion into the relationship between B and OCL and (second)
to test the adequacy of the validation tools (fully described
in (West & Kitchin 2003)). The ‘Tyres World’ domain (Rus-
sell 1992) was chosen because, in the field of Planning, it is
a well-known and well-used model that is unlikely to have
any hidden errors. In the case of OCL, two wheels, hubs and

their attached nuts were modelled plus a spare wheel in the
car boot. The additional wheel (as compared with the ‘usual’
model in (Russell 1992)) was introduced so that extra valida-
tion checks could be introduced. In contrast, in the B model
four wheels plus hubs and nuts were modelled, although as
it turned out, two would have been sufficient. Actions in
the OCL model include ‘opening the car boot’, ‘loosening
the nuts’, ‘removing the wheel’ etc. and the B specification
contained operations equivalent to these. Some exceptions
were made where simplifications were possible in B; an ex-
ample is the use of a single operation for ‘fetching a tool’.

The approach was the deliberate introduction of equiva-
lent errors into both the B and OCL models to see if the
use of the stepper/animator and validation checks and proof
tool, would identify these faults. Various tasks were tried
out in GIPO using both the stepper and planning engines to
see if errors and inconsistencies in the domain model were
detected, and to compare its performance with that of the
B-Toolkit. Validation checks in GIPO include checks on op-
erators and checks on tasks. Thus operators must consist of
legal expressions with respect to invariant expressions on the
individual sorts; and initial states and goal expressions must
likewise consist of a legal substate expressions.

Figure 7: Task and Plan for changing a wheel

A screen-shot of GIPO (Figure 7) shows a plan generation
for a task: initially all the tools and spare wheel (wheel2) are
in the car boot and the goal is a change of wheel (wheel1).
The next section describe the errors introduced and the re-
sults of validation for each of the two tools.

Challenging the Models
Errors in the initial state We introduced errors such as the

obviously incorrect state of two wheels on a single hub.
The result for the OCL model was that GIPO did not ob-
ject to this inconsistent initial state - no errors were found
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by the validation checks. When tried with a planner (FF
(Hoffmann 2000)), it reported that the goal was impossi-
ble. Another initial state was created in which the nuts
were on one of the hubs but no wheel was on that hub.
The other hubs were in a correct state. This inconsistency
is not found by the validation checks in GIPO. The user
can find it by using the stepper or using a planner that in-
corporates such checks: FF for example reports that the
goal is impossible. This uncovered a simple insecurity in
the GIPO tool itself - although individual sort invariants
were actively used in its tools, the general domain invari-
ants were not being used to check state validity.
The errors were introduced in the B model by altering the
initial state. Both of these errors introduced inconsistency
in the B specification - of the initial state with respect to
the invariant. They were discovered by the B-Toolkit most
simply by using the animator. However the proof tool also
provided a check.

Errors in setting tasks Errors were introduced in the OCL
task description within GIPO. These involved an attempt
to reach an illegal state (i.e. one which was inconsistent
with the domain model). One example involved jacking
up two hubs using the same jack. Again the validation
checks of GIPO don’t report an impossible task. When
tested, the FF planner very quickly says the problem is
proven unsolvable. It was subsequently discovered that
the domain model in OCL did not contain the ‘inconsis-
tency constraint’ in the prohibition of the jack on two dif-
ferent hubs.
Of course there is no equivalent function of ‘setting a task’
in B so in order to correspond with the GIPO task, a sin-
gle operation, of attempting to jack up a wheel where the
jack is already in use on a different wheel was tried using
the animator. However the invariant of the Tyres World B
specification was such that there is a 1-1 relationship be-
tween a wheel hub and a jack - and the operation ‘JackUp-
Car’ supported this in its precondition that the jack should
not be in use already and an error was generated.

Errors in pre- and postconditions Prevail conditions in
OCL are pre-conditions that persist - that is, the ob-
ject concerned does not change state during the opera-
tion. An example of this would be the prevail condition
havewrenchof theloosenoperator: in order to loosen the
nuts we must have the wrench - and we will still have the
wrench after the nuts have been loosened. We removed
the havewrenchprevail condition from theloosenoper-
ator. This error, as expected, was not detected by vali-
dation checks, but became apparent when using GIPO’s
stepper. The operator was not able to be applied because
the wrench was not available. This type of error does not
affect overall consistency of the domain model, but is just
concerned with a specific object being part of a particular
operation.
In the case of the B model there was no problem with
contravention of the pre-condition and no problem with
the invariant. (Note that the OCL prevail condition can be
modelled as a pre-condition in B as, by default, any vari-
able for which there is no substitution does not change.)

The error is only demonstrated by the showing of a ‘silly’
result in that the wrench is still in the car boot. This
is a ‘domain-specific’ error which could only have been
demonstrated by animation.
Because of the manner in which actions are described in
OCL - by the change in state of individual objects - it was
similarly not possible for a ‘post’ condition to be removed
on its own. For example: for the operatorfetch jack the
jack object changes state from being in the car boot (pre-
condition for the transition) to being available for use
(post-condition for the transition). In an attempt to in-
troduce this kind of error, we removed the transition for
the ‘jack’ object from the ‘fetch jack’ action. The error
became apparent when using the stepper.

The experiments also uncovered a previously unknown
omission in the B model - a missing precondition for putting
away the tyre.

Comparison of Operations
Two operations in B are compared with the equivalent ac-
tions in the OCL model.

Gripping a Block from the Table If we compare the op-
erationGrip Block On Table in B with its equivalent in
OCL (Figures 5 and 2 ) we see the same pre and postcondi-
tions. However they are structured differently in OCL where
the precondition for each object is an appropriate substate
from the substate classes:

1. The precondition that the block is on the table and clear
becomes the left hand side of the necessary condition for
the block.

2. The precondition that the gripper is free becomes the left
hand side of the necessary condition for the gripper.

3. The substitution in B for the block, that it is gripped, be-
comes the right hand side of the necessary condition for
the block. However in B it is stated explicitly that the
gripped block is no longer on the table and not clear. In
OCL this is assumed from the substate.

4. The substitution in B that gripper is in use becomes the
right hand side of the necessary condition for the gripper.

Gripping a Block from a Block Comparing B and OCL
versions of ‘gripping block1 from block2’, (Figures 5 and 3)
we see that there is a change in the state of both blocks after
the operation. For B, it is enough to state that block2 is now
clear. However for OCL this is not enough and we must dis-
tinguish between 2 substates - where block2 is on the table
and where block2 is on another block. Since we have made
a change in the state of block2 we must be precise about the
whole of its state. The different outcomes for block2 give
rise to the two actions in OCL. As in the previous operation,
what is implicit in OCL must be explicit in B. Thus we must
say that the gripped block is no longer free.

A Comparison of the use of B and OCL to
acquire planning domain knowledge

Here we summarise the results of our comparison:
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1. The B language and toolkit is an industrial strength formal
specification and development method, whereas OCL is a
tool used in research and education. The exercise showed
some problems with GIPO - in particular that its static val-
idation checks should be extended to test the consistency
of the initial state and goal expressions against the general
domain invariants.

2. B allows the user to encode more precise details about the
relations in the domain than GIPO - they can be be rela-
tions, 1-1 functions etc. This level of precision is certainly
not available in most planning languages, and is attractive
in safety-related applications.

3. As OCL is aimed specifically at planning, it has inbuilt
structures and mechanisms that anticipate the entities that
are to be represented. This makes the encoding rather
more compact than the B specification. Encoding in B,
as one would expect from a general language, one is left
with more choices and decisions in the encoding process.
The correspondence we used in our case reduced the en-
coding choices, but still the B encoding is rather ’flat’ in
that the invariant list contains all predicate and invariant
information.

4. Both languages assume default persistence and a closed
world. The differences in this respect are subtle, in that
in B a variable involved in a precondition remains unal-
tered by default. However in OCL a ‘prevail’ is required
if precondition variables are unchanged.

5. Regarding validation and debugging, both languages have
effective, automated tool support which performs vali-
dation/consistency checks and identifies the presence of
bugs. Not surprisingly, the B toolkit was more reliable
at finding inconsistencies in some cases, as it demands a
more detailed specification.

To further explore the comparison, we show how, in the
Blocks world, the OCL specification of substates can be de-
rived from the B invariant conjuncts (1–16) in Figure 4. We
observe that the following three sets are disjoint and ‘parti-
tion’ Block:

dom(Gripped),
dom(On Table) B {TRUE},
dom(On Block)

Although the partition is not the same as the substate parti-
tion in OCL, it is possible to obtain an equivalent partition if
we first note that:
dom(ClearB {TRUE}) and dom(ClearB {FALSE}) parti-
tion Blockand we have

domOn TableB {TRUE} = domOn TableB {TRUE} ∩
(domClearB {TRUE}) ∪ (domClearB {FALSE})

and from (10) the partition now becomes:

domGripped,

(domOn TableB {TRUE}) ∩ (domClearB {TRUE}),
(domOn TableB {TRUE}) ∩ (domClearB {FALSE}),
domOn Block.

This can be made explicit and in a similar format to the
OCL version using conjuncts from the invariant. For ex-
ample from (2):

domOn Block∩ (dom(ClearB {FALSE}) =

domOn Block∩ (dom(ClearB {FALSE}) ∩ Block=

domOn Block∩ (dom(ClearB {FALSE})∩
(domOn TableB {FALSE} ∪ domOn TableB {TRUE}) =
domOn Block∩ (dom(ClearB {FALSE})
∩(domOn TableB {FALSE}

In a similar manner using other conjuncts, this set can be
equivalently expressed:

domOn Block∩ (dom(ClearB {FALSE})
∩(domOn TableB {FALSE}
∩ (Block− domGripped)

This, with (6) can be expanded out:

∀blk1 ∈ Block.(∃blk2 ∈ Block.(On Block(blk1) = blk2

∧ blk1 6= blk2 ∧ Clear(blk1) = FALSE))

. . .

which is equivalent to the substate

[on_block(B,B1),ne(B,B1)],

given the local closed world assumption.

Conclusions
In this paper we have investigated the use of a formal method
to capture planning domain models. We have compared
the method (together with its commercially-available tool
support) with a planning-oriented method. The compari-
son shows a remarkable similarity between the two. The
advantages in using a method such as B are that it is math-
ematically based so that formal reasoning can be used to
deduce desirable (and potentially undesirable) properties.
Support for the method is available via tools - such as the
Toolkit. However, the disadvantages are that there are no
special planning - oriented features, and that the B specifica-
tion, once validated, would have to be translated into a more
planner-friendly language in order to be used with current
planning engines.
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Abstract

We introduce a capability for online monitoring and diagnosis
of stochastic systems with complex behavior. Our work com-
plements offline verification techniques for embedded sys-
tems. In most complex systems today, hardware is augmented
with software functions that influence the system’s behav-
ior. In this paper hardware models are extended to include
the behavior of associated embedded software, resulting in
more comprehensive estimates of a system’s state trajecto-
ries. Capturing the behavior of software is much more com-
plex than that of hardware due to the potentially enormous
state space of a program. This complexity is addressed by
using probabilistic, hierarchical, constraint-based automata
(PHCA) that allow the uniform and compact encoding of both
hardware and software behavior. We introduce a novel ap-
proach that frames PHCA-based diagnosis as a soft constraint
optimization problem over a finite time horizon. The problem
is solved using efficient, decomposition-based optimization
techniques. The solutions correspond to the most likely evo-
lutions of the software-extended system.

Introduction
Traditionally, model-based verification of embedded sys-
tems has focused on determining program correctness using
techniques such as symbolic model checking (J. R. Burch
& Hwang 1992). However, verification is performed offline
during design and development, and is not guaranteed to ver-
ify against all possible system failures. To complement of-
fline verification techniques, we introduce a novel capability
for online monitoring and diagnosis of systems with com-
plex, non-deterministic behavior. While verification tech-
niques typically result in counterexamples, monitoring and
diagnosis result in estimates of the system’s state trajecto-
ries.

Model-based monitoring has mainly operated on hard-
ware systems (de Kleer & Williams 1987; Dressler & Struss
1996). For instance, given an observation sequence, the Liv-
ingstone (Williams & Nayak 1996) diagnostic engine esti-
mates the state of hardware components based on hidden
Markov models that describe each component’s behavior in
terms of nominal and faulty modes. Researchers at the other
end of the spectrum have applied model-based diagnosis to
software debugging (Mayer & Stumptner 2004). This paper
explores the middle ground between the two, in particular

the online monitoring and diagnosis of systems with com-
bined hardware and software behavior.

Many complex systems today, such as spacecraft, robotic
networks, automobiles and medical devices consist of hard-
ware components whose functionality is extended or con-
trolled by embedded software. Examples of devices with
software-extended behavior include a communications mod-
ule with an associated device driver, and an inertial naviga-
tion unit with embedded software for trajectory determina-
tion. The embedded software in each of these systems in-
teracts with the hardware components and influences their
behavior. In order to correctly estimate the state of these
devices, it is essential to consider their software-extended
behavior.

As an example of a complex system, consider vision-
based navigation for an autonomous rover exploring the sur-
face of a planet. The camera used within the navigation sys-
tem is an instance of a device that has software-extended
behavior: the image processing software embedded within
the camera module augments the functionality of the cam-
era by processing each image and determining whether it’s
corrupt. A sensor measuring the camera voltage may be used
for estimating the physical state of the camera. A hardware
model of the camera describes its physical behavior in terms
of inputs, outputs and available sensor measurements. A di-
agnosis engine such as Livingstone that uses only hardware
models will not be able to reason about a corrupt image.
The embedded software provides additional information on
the quality of the image that is essential for correctly diag-
nosing the navigation system. To see why this is the case,
consider a scenario in which the camera sensor measures a
zero voltage. Based solely on hardware models of the cam-
era, the measurement sensor and the battery, the most likely
diagnoses will include camera failure, low battery voltage
and sensor fault. However, given a software-extended model
of the camera that models the process of obtaining a corrupt
image, the diagnostic engine may use the information on the
quality of the image. Knowing that the processed image is
not corrupt, the most likely diagnosis that the measurement
sensor is broken may be deduced.

The above scenario demonstrates that a monitoring engine
for complex systems with software-extended behavior must:
1) monitor the behavior of both the hardware and its embed-
ded software so that the software state can be used for di-
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agnosing the hardware, and 2) reason about the system state
given delayed symptoms. An instance of a delayed symp-
tom is the image quality determined by the camera software
after it has completed all stages of image processing.

In this paper we introduce a novel model-based mon-
itoring and diagnostic system that operates on software-
extended behavior models, to meet requirements 1) and 2)
listed above. In contrast to previous work on model-based
verification and software debugging (Mayer & Stumptner
2004), the purpose of this work is to leverage information
within the embedded software to refine the estimates of
physical systems. As such, we are not addressing the prob-
lem of diagnosing software bugs. Without loss of generality,
we assume that software bugs discovered at runtime are han-
dled by a separate exception handling mechanism.

First, we address modeling issues. Capturing the behav-
ior of software is much more complex than that of hard-
ware due to the hierarchical structure of a program and
the potentially large number of its execution paths. We
address this complexity by using probabilistic, hierarchi-
cal, constraint-based automata (PHCA) (Williams, Chung,
& Gupta 2001) that can uniformly and compactly encode
both hardware and software behavior. Building upon our
previous work, we introduce a novel capability for moni-
toring systems with software-extended behavior in the pres-
ence of delayed symptoms. While Livingstone-2 (L2)
(Kurien & Nayak 2000) handles delayed symptoms for di-
agnosing hardware systems, our approach generalizes this
capability to software-extended behavior by posing the
PHCA-based diagnosis problem over a finite time hori-
zon. We frame diagnosis as constraint optimization prob-
lem based on soft constraints that encode the structure and
semantics of PHCA. The problem is solved using efficient,
decomposition-based optimization techniques, resulting in
the most likely estimates of the software-extended system.

Modeling Software-Extended Behavior
Figure 1 shows the software-extended camera module for
the vision-based navigation scenario described above. In
this example, the failure probabilities for each of the bat-
tery, camera and sensor are 10%, 5% and 1% respectively.
A typical behavioral model of the camera is shown on the
left of Figure 2. The camera can be in one of 3 modes: on,
off or broken. The hardware behavior in each of the modes is
specified in terms of inputs to the camera such as the power
and the behavior of camera components such as the shutter.
The broken mode is unconstrained in order to accommodate
novel types of failures. Mode transitions can occur proba-
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bilistically, or as a result of issued commands. The battery
and the sensor components can be modeled in a similar way.
For the scenario introduced above, the most likely diagnoses
of the module can be generated based on the hardware mod-
els alone, as shown on the right of Figure 2. However, the
image processing software provides extended functionality
that is not described by the model in Figure 2. The specifica-
tion of the embedded software can offer important evidence
that substantially alters the diagnosis. A sample specifica-
tion of the behavior of the image processing software may
take the following form:

If an image is taken by the camera, process it to deter-
mine whether it’s corrupt. If the image is corrupt, dis-
card it and reset the camera; retry until a non-corrupt
image is obtained for navigation. Once a high quality
image is stored, wait for new image request from navi-
gation unit.

Such a specification abstracts the behavior of the image
processing software implemented in an embedded program-
ming language such as Esterel (Berry & Gonthier 1992) or
RMPL (Williams, Chung, & Gupta 2001). For the above
scenario, the behavior of the embedded software provides
diagnostic information necessary to correctly estimate the
state of the camera module. Given that the image is not cor-
rupt, the possibility that the camera is broken becomes very
unlikely. This is illustrated in Figure 3.

Unlike a hardware component that can typically be de-
scribed by a single mode of behavior, monitoring soft-
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ware behavior necessitates tracking simultaneous hierarchi-
cal modes. A modeling formalism that will allow the spec-
ification of software behavior must support: 1) full concur-
rency for modeling sequential and parallel threads of be-
havior, 2) conditional behavior, 3) iteration, 4) preemption,
5) probabilistic behavior for modeling uncertainty and 6)
propositional logic constraints for specifying co-temporal
relationships among variables. The following section re-
views the modeling framework for handling these require-
ments.

Probabilistic, Hierarchical Constraint-based
Automata (PHCA)

Probabilistic, hierarchical, constraint-based automata
(PHCA) were introduced in (Williams, Chung, & Gupta
2001) as a compact encoding of Hidden Markov Models
(HMMs), for modeling complex systems.

Definition 1 (PHCA)
A PHCA is a tuple< Σ, PΘ, Π, O, C, PT >, where:

• Σ is a set of locations, partitioned into primitive locations
Σp and composite locationsΣc. Each composite location
denotes a hierarchical, constraint automaton. A location
may be marked or unmarked. A marked location repre-
sents an active branch.

• PΘ(Θi) denotes the probability thatΘi ⊆ Σ is the set of
start locations (initial state). Each composite locationli ⊆
Σc may have a set of start locations that are marked when
li is marked.

• Π is a set of variables with finite domains.C[Π] is the set
of all finite domain constraints overΠ.

• O ⊆ Π is the set of observable variables.

• C : Σ → C[Π] associates with each locationli ⊆ Σ a
finite domain constraintC(li).

• PT (li), for eachli ⊆ Σp, is a probability distribution over

a set of transition functionsT (li) : Σ(t)
p × C[Π](t) →

2Σ(t+1)
. Each transition function maps a marked location

into a set of locations to be marked at the next time step,
provided that the transition’s guard constraint is entailed.

Definition 2 (PHCA State)
The state of a PHCA at timet is a set of marked locations
called a markingm(t) ⊂ Σ.

Figure 4 shows a PHCA model of the camera module in
Figure 1. The ”On” composite location contains three sub-
automata that correspond to primitive locations ”Initializ-
ing”, ”Idle” and ”Taking Picture”. Each composite or prim-
itive location of the PHCA may have behavioral constraints.
The behavioral constraint of a composite location, such as
(power in = nominal) for the ”On” location, is inherited
by each of the subautomata within that composite hierarchy.
In addition to the physical camera behavior, the model incor-
porates qualitative software behavior such as processing the
quality of an image. Furthermore, based on the image qual-
ity, the possible camera configurations may be constrained
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Figure 4:PHCA model for the camera/image processing module.
Circles represent primitive locations, boxes represent composite lo-
cations and small arrows represent start locations.

by the embedded software. For example, if the image is
determined to be corrupt, the software attempts to reset the
camera. This restricts the camera behavior to transition to
the Initializing location.

Recall that Figure 3 shows the most likely state trajecto-
ries based on the software-extended PHCA model. At time
step 2, as the sensor measurement indicates zero voltage, the
most likely diagnosis trajectories are 1) battery = low with
10% probability, 2) camera = broken with 5% probability
and 3) sensor is broken with 1% probability. For the first
trajectory that indicates that the battery is low, the power to
the camera is not nominal, hence the camera will stay in the
”Off” location. For the second trajectory, the camera will be
in the ”Broken” location. For the third trajectory that indi-
cates that the sensor is broken, the power input to the camera
will be unconstrained, and hence the PHCA state of the cam-
era may include a marking of the ”On” location. Although
the evolutions of this third trajectory have an initially low
probability of 1%, at time step 6 they become more likely
than the others as the embedded software determines that
the image is valid. The reason is because the second most
likely trajectory at time 2 with camera = ”Broken” location
marked has a 0.001 probability of generating a valid image,
thus making the probability of that trajectory 0.005% at time
6. This latter trajectory is less probable than those trajecto-
ries stemming from the sensor being broken with 1% prob-
ability. Similarly, the first trajectory with battery = low and
camera = Off becomes less likely at time step 6 as there is
0.001% probability of processing a valid image while the
camera is ”Off”.

PHCA models have the following advantages that support
their use for diagnosing systems with software-extended be-
havior. First, since HMMs may be intractable, PHCA en-
coding is essential to support real-time, model-based deduc-
tion. Second, PHCAs provide the expressivity to model the
behavior of embedded software by satisfying requirements
1)-6) above. Third, the hierarchical nature of the automata
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enables modeling of complex concurrent and sequential be-
haviors, similar to hierarchical Statecharts (Harel 1987). As
an example of concurrency, the PHCA in Figure 4 allows
the simultaneous marking of the ”On” location of the cam-
era, as well as the ”Initializing”, ”Idle”, or ”Taking Picture”
locations. This is in contrast to diagnosis based on non-
hierarchical models that can estimate each component to be
in a single mode of operation. State estimates of compo-
nents may be required at different levels of granularity. For
example, an image-based navigation function may require
high level camera state estimates such as ”On” or ”Off”. On
the other hand, a function that coordinates imaging activi-
ties may need more detailed camera state estimates such as
”Initializing” or ”Taking Picture”. Simultaneous marking
of several camera locations such as ”On” and ”Initializing”,
allows their use within functions that require estimates at
different levels of granularity.

The following sections introduce a novel diagnostic sys-
tem based on the PHCA modeling framework. We first
introduce our approach for diagnosis over a single time
step, and then extend it to handle delayed symptoms. Our
approach results in a capability for diagnosing systems
with software-extended behavior in the presence of delayed
symptoms. Furthermore, our formulation of the diagnosis
problem enables the use of powerful decomposition tech-
niques for efficient solution extraction.

Diagnosis as Constraint Optimization based
on PHCA Models

We frame diagnosis based on PHCA models as a soft
constraint optimization problem (COP) (Schiex, Fargier,
& Verfaillie 1995). The COP encodes the PHCA models
as probabilistic constraints, such that the optimal solutions
correspond to the most likely PHCA state trajectories. The
soft constraint formulation allows a separation between
probability specification and variables to be solved for.
Thus, we can associate probabilities with constraints that
encode transitions, while solving for state variables.

Definition 3 (Constraint Optimization Problem)
A constraint optimization problem (COP) is a triple
(X, D,F ) whereX = {X1, ..., Xn} is a set of variables
with corresponding set of finite domainsD = {D1, ..., Dn},
andF = {F1, ..., Fn} is a set of preference functionsFi :
(Si, Ri) → Ci where(Si, Ri) is a constraint andCi is a
set of preference (or cost) values. Each constraint(Si, Ri)
consists of a scopeSi = {Xi1, ..., Xik} representing a
subset of variablesX, and a relationRi ⊆ Di1 × ... ×Dik

onSi that defines all tuples of values for variables inSi that
are compatible with each other. Each preference function
Fi maps the tuples of(Si, Ri) to valuesCi. The solution
to variables of interest (solution variables)Y ⊆ X is an
assignment toY that is consistent with all constraints, has
a consistent extension to all variablesX, and minimizes (or
maximizes) a global objective function defined in terms of
preference functionsFi.

Given a PHCA state at timet and an assignment to ob-

servable and command variables inΠ (see Definition 1) at
timest andt + 1, in order to estimate PHCA state at time
t + 1, we encode both the structure and execution semantics
of the PHCA as a COP, consisting of:

• Set of variablesXΣ ∪ Π ∪ XExec, where XΣ =
{L1, ..., Ln} is a set of variables that correspond to PHCA
locationsli ∈ Σ, Π is the set of PHCA variables, and
XExec = {E1, ..., En} is a set of auxiliary variables used
for encode the execution semantics of the PHCA.

• Set of finite, discrete-valued domainsDXΣ ∪ DΠ ∪
DXExec

, whereDXΣ = {Marked, Unmarked} is the
domain for each variable inXΣ, DΠ is the set of domains
for PHCA variablesΠ, andDExec is a set of domains for
variablesXExec.

• Set of constraintsR that include the behavioral constraints
associated with locations within the PHCA, as well as en-
coding of the PHCA execution semantics.

• Preferences in the form of probabilities associated with
tuples of constraintsR. Tuples of hard constraints that are
disallowed by the constraint are assigned probability 0.0,
while the tuples allowed by the constraint are assigned
probability 1.0. Tuples of soft constraints are mapped to
a range of probability values based on the PHCA model.
These probability values reflect the probability distribu-
tion PΘ of PHCA start states and probabilities associated
with PHCA transitionsPT .

• The optimal solution to the COP is an assignment to so-
lution variablesXΣ that represent the state of the PHCA,
while maximizing the probability of the transitions that
lead to that state from the previous time step. This corre-
sponds to a state assignment that maximizes the product
of the probabilities of the enabled constraint tuples.

A key to framing PHCA-based diagnosis as COP is the
formulation of the constraintsR that capture the execu-
tion semantics of the PHCA. PHCA execution involves de-
termining the entailment of behavioral constraints, identi-
fying enabled transitions from a current PHCA state, and
taking those transitions to determine the next state. Re-
ferring back to the PHCA example in Figure 4, if we as-
sume that at time t the PHCA state is< On < Idle >>
and that the transition guard constraint(command =
TakeP icture) is entailed, and at time t+1 the behavioral
constraint(shutter = moving) of the transition’s target
location is entailed, then the PHCA state at time t+1 will
be< On < TakingP icture >>. To encode entailment of
conditions such as(command = TakeP icture), a variable
ET is introduced with domain{Entailed,Not−Entailed}
to denote whether the transition guard condition is entailed.
Entailment of a condition is then formulated as a COP con-
straint that allows the assignmentET = Entailed to be as-
sociated with tuples that list all possible assignments to the
variablecommand that entail the condition(command =
TakeP icture). Entailment constraints are generated for all
locations that have behavioral constraints and for all transi-
tions that have guard constraints.

The following example on the left of Figure 5 shows a
probabilistic choice between two transitions for a section of
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the PHCA in Figure 4. In order to encode this probabilistic
choice, we first introduce a location variableX

(t)
Off for time

t, with domain {Marked, Unmarked}. Then auxiliary
variablesE(t)

T1 andE
(t)
T2 with domain{Enabled,Disabled}

are introduced for transitions T1 and T2 respectively.

Off Broken
0.05

0.95

1.0DisabledDisabledUnmarked

0.05EnabledDisabledMarked

0.95DisabledEnabledMarked

Prob.ET 2
(t)ET1

(t)XOff
(t)

T1
T2

Figure 5: left: PHCA with two probabilistic transitions.right:
Probabilistic transition constraint.

The COP constraint that encodes the probabilistic choice
among the two transitions T1 and T2 is formulated logically:

X
(t)
Off = Marked ≡ (∃ T ∈ {T1, T2} | : E

(t)
T =

Enabled ∧ (∀ T ′ ∈ {{T1, T2} − T} | : E
(t)
T ′ = Disabled))∧

X
(t)
Off = Unmarked ≡ (∀ T ∈ {T1, T2} | : E

(t)
T =

Disabled)
This logical formula is compiled into a set of tuples with

associated probability values, as shown in Figure 5 (right).
The tuples are mapped to probability values by the following
preference function:

FT =
{

Prob(Ti) if (∃T (t)
i : E

(t)
Ti

= Enabled)
1.0 otherwise

The above constraint identifies the enabled transition, but
does not encode taking the transition. In general, the follow-
ing constraint encodes taking enabled transitions, unless the
behavior constraint of the transition’s target location is not
entailed:

(∀ L ∈ Σ | : ((∃ τ ∈ {T |Target(T ) = L} | :
E

(t−1)
τ = Enabled) ∧ Behavior

(t)
L = Entailed) ⇒

X
(t)
L = Marked)
whereEτ represents a transition variable,BehaviorL is

an entailment variable for the behavior constraints of loca-
tion L ∪ its composite parent if L is within a hierarchy, and
XL is the location variable of L. The constraint is instanti-
ated for each location of the PHCA, as indicated by∀ L ∈
Σ.

Some semantic rules apply to PHCA hierarchies. For ex-
ample, when a composite location becomes marked, all of its
start locations become marked. Since ”Initializing” is a start
location of the composite ”On” location, a PHCA in state<
Off > may transition to state< On < Initializing >>.
Furthermore, a composite location should be marked if any
of its subautomata are marked. The COP constraints must
correctly capture such PHCA semantics and encode mu-
tual exclusions to avoid interference and conflicting effects
among the constraints. For brevity, the complete encoding
of constraints is not presented.

The formulation of diagnosis as COP is performed offline.
Given a PHCA, we have implemented a compiler that auto-
matically generates the corresponding COP. The COP is then
used in an online solution phase by dynamically updating it

to incorporate constraints on new observations and issued
commands. The solutions to the COP can be generated up
to a given probability threshold using a constraint optimiza-
tion solver for soft constraints (Sachenbacher & Williams
2004). The solutions incorporate the probability distribution
on the initial states as encoded by the COP. The most likely
solutions generated at a time step t dynamically update the
COP to constrain the set of start states for solving the COP
at time step t+1. For example, as Figure 3 shows, state esti-
mates at time 2 may only be reached through those at time
1. Thus limiting the number of state trajectories maintained
at each time step has implications for diagnosing faults that
manifest delayed symptoms.

Diagnosis with Delayed Symptoms
Ideally, diagnosis will maintain a complete probability dis-
tribution of all possible system states. However, maintaining
all possible state trajectories at each time step is intractable
because of exponential growth in state space. Thus at every
time step a limited number of trajectories are typically main-
tained. A potential problem with this approach is that it
may miss the best diagnosis if a trajectory through a pruned
state that is initially very unlikely becomes very likely af-
ter additional evidence. Figure 6 illustrates this situation
for the camera module, where the initially unlikely state
(Sensor = Broken) is pruned, resulting in the best diagno-
sis to be unreachable when additional evidence is available
at time 6.
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Figure 6:Missed diagnosis as a result of tracking a limited num-
ber of trajectories (K-Best)

Dealing with delayed symptoms is particularly impor-
tant for diagnosing systems with software-extended behav-
ior, due to typically delayed observations associated with
software processing. Livingstone-2 (L2) (Kurien & Nayak
2000) addresses the problem of delayed symptoms for diag-
nosing hardware systems. We generalize the L2 capability
to PHCA-based diagnosis.

We extend our COP formulation of PHCA-based diagno-
sis to provide flexibility for regenerating the most likely di-
agnoses over a finite time horizon rather than a single pre-
vious step. Thus, we frame the COP over a finite time hori-
zon (N -stages) and leverage theN -stage history of obser-
vations and issued commands to generate the most likely
diagnosis trajectories over the horizon. This involves aug-
menting the COP in the previous section to include model
variables and constraints for each time step within theN -
stage horizon. The solutions to the COP become assign-
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ments to location variablesX(t)
Σ , t ∈ {0..N}, represent-

ing PHCA state trajectories that have maximum probabil-
ity within the horizon. This probability corresponds to the
product of transition probabilities enabled within that tra-
jectory, multiplied by the probability of the initial state of
the trajectory. As time progresses during the online solution
phase, theN -stage horizon is shifted from (t → t + N ) to
(t + 1 → t + N + 1) and the COP over the new horizon is
dynamically updated by constraining its start states at time
t+1 to match the solutions from the previous iteration. This
reformulation still limits the number of trajectories tracked
to a given probability threshold, as described in the previous
section. Referring to Figure 6, if we consider a time horizon
(0 → 6), diagnosis trajectories will be regenerated starting
from the (Nominal) state at time 0. Therefore, even though
the number of trajectories is limited, the trajectory ending
at state (Sensor = Broken) at time 6 will have the highest
probability based on the delayed observation. Consequently,
the state(Sensor = Broken) at time 2 will be maintained
because it is part of the most likely trajectory at time 6.

Decreasing the probability threshold for the trajecto-
ries being tracked solves the delayed-symptom problem by
maintaining a larger number of states at each time step.
However, for a system with many combinations of similar
failure states with high probability, the number of trajecto-
ries maintained will have to be very large in order to be able
to account for a delayed symptom that supports an initially
low probability state. For such systems, considering even a
small number of previous time steps gives enough flexibility
to regenerate the correct diagnosis.

Implementation and Discussion
The PHCA model-based monitoring capability, described
above, has been implemented in C++. Figure 7 shows the
offline compilation phase and the online solution phase of
the diagnosis process.
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S/W specs

(code)

Optimal

Constraint
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Dynamic update

of COP;

Horizon shifting
t0 t1 t2 t3

observations commands

Offline compilation phase Online solution phase

Figure 7:Process diagram for PHCA-based diagnosis

In the offline phase, theN -Stage COP is generated auto-
matically, given a PHCA model and parameterN . To en-
hance the efficiency of the online solution phase, tree de-
composition (Gottlob, Leone, & Scarcello 2000) is applied
to decompose the COP into independent subproblems. This
enables backtrack-free solution extraction during the online
phase (Dechter 2003). In our implementation, the COP is
decomposed using a tree decomposition package that imple-
ments bucket elimination (Kask, Dechter, & Larrosa 2003).

The online monitoring and diagnosis process uses both
the COP and its corresponding tree decomposition. The on-

line phase consists of a loop that shifts the time horizon,
updates and solves the COP at each iteration. The COP is
updated by incorporating new observations and commands,
and constraining the start states to track the trajectories ob-
tained within the previous horizon. At each iteration of the
loop, the updated COP is solved using an implementation of
the decomposition-based constraint optimization algorithm
in (Sachenbacher & Williams 2004) that can generate diag-
noses up to a given probability threshold.

For the camera model withN = 2, the COP has∼ 150
variables and∼ 100 constraints and is solved online in∼ 1
sec, resulting in more comprehensive diagnoses than previ-
ous hardware models. Future work includes evaluating the
efficiency of the COP formulation using several complex
scenarios, optimizing the COP formulation by minimizing
the number of variables and constraints generated, investi-
gating the optimal size of the diagnosis horizon and its rela-
tionship to the number of trajectories tracked.
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Abstract

Planning systems are often not very transparent because
details about plan generation are hidden inside software
components. This makes it difficult to understand, and
in consequence, to trust them. We propose a formal
framework for planning systems that incorporates all
important aspects ranging from plans, to domain mod-
els, to planning and execution. Our framework uses a
formal language and analysis to specify and validate the
correctness of planning system components and their
interactions. The result is a formal checklist to which
planning systems can be exposed to increase their level
of dependability.

1. Introduction
Model-based planning systems (PSs) provide tools for de-
veloping autonomous remote agents. However, system de-
signers and engineers are reluctant to use PSs due to their
impression that such systems are unpredictable and not con-
trollable. We are developing a formal framework for anal-
ysis of PSs including verification and validation methods
based on the use offormal checklistsfor providing increased
dependability of PSs. Formal checklists specify light weight
formal analyses intended to detect a variety of potential
problems such as errors in the underlying domain models,
inconsistencies in complex plans or execution schedules,
and failure to provide for unexpected conditions. Apply-
ing different levels of formal checklist give different levels
of assurance of dependability.

Our formal framework is inspired by the MDS model-
based goal-operated architecture for autonomous space sys-
tems (Dvoraket al. 2000). Key ideas of the MDS approach
include:

• All knowledge of system state is maintained in a collec-
tion of state variables.

• The system is operated by specifying goals, that is, con-
straints on state variables over an interval of time.

• Complex goals are elaborated to goal nets consisting of a
network of time points linked by (sub)goals and time con-
straints (timed constraint nets). The elaboration process

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

is a form of planning. At the lowest level are executable
goals.

• There is a goal achiever for each state variable that inter-
acts with the environment (typically a device such as a
rover), issuing commands to meet the constraints of exe-
cutable goals, and reading sensors to maintain a model of
the system state.

We use the rewriting logic language Maude (Clavelet al.
2003a; 2003b) to specify the formal framework as well as
instantiations to be analyzed. Maude supports a variety
of light-weight analysis techniques (see Section 5). archi-
tecture and interactions between architectural components
and domain/device models, as well as goals, goal nets, goal
elaboration and scheduling. Constraints on the behavior of
each component are specified that support modular analysis.
These give rise to checklist elements to be verified for spe-
cific instantiations. We also model how components such
as the goal net and goal achievers interact in carrying out a
goal-based operation. The formalization of timed constraint
nets provides an abstract notion of time that can be instanti-
ated to reason about timing properties at appropriate levels
of detail. The result is a comprehensive formal specification
of PS components and their interactions that can be exposed
to a variety formal verification and validation tests to detect
possible errors.

In this paper we focus on the formalization and analysis
of goal nets. In an earlier paper (Denker & Talcott 2004)
we described the formalization of goal achievers and an in-
stantiation to a very simple rover device. In the future, we
will extend the framework to encompass goal elaboration
and further develop the checklist suite to cover additional
properties and aspects of planning and execution. In Sec-
tion 2 we introduce the kinds of goal net analyses that we
intend to support with our formal framework. The seman-
tic concepts and formal notation that form the basis for our
specification and analysis are presented in Section 3. In
Section 4 we sketch the formal model of goal nets. We
briefly explain in Section 5 which analysis capabilities of
the Maude toolkit make this language particularly suitable
for the task at hand. In addition, we propose several vali-
dation and verification checklist elements for goal nets. We
discuss related work and future extensions of our framework
in Section 6 and conclude with a brief summary in Section
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7. More details about the framework presented in this paper
(including Maude specifications of some of the components)
can be found athttp://www.csl.sri.com/users/
denker/remoteAgents .

2. Objectives
A goal net represents a plan for the successful execution of
higher-level tasks. Depending on the abstraction level of the
goal net, it can correspond to a fully instantiated plan with
executable steps, it can relate higher-level goals to lower-
lever, executable goals, it can represent several alternatives
out of which one is selected only at runtime when system
parameters are defined, or it can leave certain goals or tasks
under-specified and requires re-planning at runtime or ad-
vice from a user.

Device

Goal
Achiever

Scheduler

Goal
Elaboration Goal Net

Advice

Figure 1: Components Formalized

The purpose of our formal framework is to capture the
most important aspects of goal net representation, elabora-
tion, and advice and to provide a list of checks for these
three aspects of goals nets so as to increase the level of de-
pendability that a goal net will ultimately be executable and
achieve the overall goals. The framework will treat at least
the components shown in Figure 1. Executing a goal net
requires information exchange among several components
including the goal net, goal achievers, device and scheduler.
The goal net issues constraint requests to the goal achiever.
The goal achiever issues commands to the device and takes
sensor reading. The scheduler synchronizes the goal net and
the goal achievers. The goal elaboration and the advice com-
ponents both interact with the goal net, though they are used

in different contexts. The goal elaboration process is an au-
tomated process whereas the advising component involves a
human being.

We propose a goal net analysis taxonomy that defines a
set of tests that result in increasingly dependable goal nets.

Static goal net analysis.We can perform static checks on
goal nets that are fully refined into executable goals.
Checks are, for example, well-formedness and consis-
tency checks, or testing to what extent executable goals
may have side effects on the system state that would re-
sult in goals interfering with one another. These checks
are done offline, before the goal net is deployed into a sys-
tem. This kind of static analysis can be performed on fully
refined goal nets that only refer to executable goals, as
well as on hierarchical goal nets that are fully refined into
executable goals. Though, in general our framework can
handle both, hierarchical goal nets and goal nets that are
only comprised of executable goals, the current formal-
ization does only handle goal nets with executable goals.
In the future we will investigate what kinds of checks can
be performed on hierachical goal nets. Moreover, we will
also extent the framework to include alternatives in goal
nets and propose static checks for those cases.

Dynamic goal elaboration analysis.The next step will be
to incorporate the process of dynamic goal net elabo-
ration. Assume a situation where the specific plan for
achieving a goal depends on past values of state variables
or the history of exchanged messages between system
components. Elaboration of a not yet fully refined goal
has to be postponed until runtime, when history informa-
tion becomes available. Effectively, goal net planning and
execution will become interleaved processes. We intend
to capture this by extending our formal framework with
a formalization of the goal elaboration process and its in-
teraction with the other processes and components in the
architecture.

Analysis of interactive goal net advice.Finally, we will
also address the issue of interactive goal net modification.
Users may change the goal net dynamically during its ex-
ecution. One may add a new subnet that addresses run-
time problems or increases the functionality of a goal net
to handle exceptions. In addition, the user may decide
on alternative or additional goals as a mission proceeds.
Future extensions of our formal framework will have a
presentation of the advice component and its interactions
with other components.

Analyses of static goal nets is simpler and can be more
precise as more is known about possible behaviors than for
the case of dynamically generated or modifiable goal nets.
Modular analysis is especially important to support safe run-
time editing.

In summary, the formal models of all architectural com-
ponents, their behavior and their interactions enables the use
of formal analysis models to uncover errors and unexpected
behavior. In this paper we present the first steps towards
to this formal framework that models (possibly hierarchical)
goal nets, goal achievers, schedulers and devices.
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3. The Formal Framework
We build our formalization on the concepts of object and
component. Objects are independent computational units
(like actors) that interact via message passing. Components
are collections of (sub) components and objects encapsu-
lated by an interface. A component interface specifies which
objects are visible from outside (receptionists) and which
external objects are visible from inside (externals) as well
as the messages that can be sent or received. We will treat
single objects as components when convenient. Treating ob-
jects as components makes it easy to refine an object to a
collection of objects suitably encapsulated. For example, the
light colored box of Figure 1 is a component containing Goal
Net, Goal Elaboration, Goal Achiever and Scheduler (sub)
components. The goal net and goal achiever components
contain multiple objects while we have chosen to model the
scheduler component as a single object. Often interfaces can
be organized as a set of sub-interfaces, each corresponding
to interactions with another component. The interface of the
component in Figure 1 has two parts: the Advice interface
and the Device interface.

The semantics of components can be given at several lev-
els of detail: the possible computations (sequences of state
transitions and interactions with external objects); event-
partial orders (message receives) including external interac-
tions); interaction paths (just observing interactions with ex-
ternal objects). The hierarchical organization of components
provides modularity at both the syntax and semantics levels
(Talcott 1998). Thus, we can specify and analyze subsys-
tems and their interactions at different levels of granularity.
For example we can compose the semantics (at any level of
detail) of the Goal Net, Goal Achiever, Goal Elaboration,
and Scheduler to obtain the semantics of the whole com-
ponent, and each of these sub components can be analyzed
separately.

Figure 2 abstractly depicts the four main components and
their interactions of the framework that we have formalized
so far. The components are device (such as a rover), goal
achiever, goal net, and a scheduler that coordinates the goal
achiever and goal net—and their interactions. The structure
and behavior of a goal net is described in some detail in the
next section. We conclude this section with a short introduc-
tion to rewriting logic and Maude, and a brief summary of
the goal-achiever and the scheduler structure and behavior.
Details for the latter can be found in (Denker & Talcott 2004;
2003).

3.1 Rewriting Logic and Maude
Rewriting logic (Meseguer 1992) is a logical formalism that
is based on two simple ideas: states of a system are repre-
sented as elements of an algebraic data type; and the behav-
ior of a system is given by local transitions between states
described byrewrite rules. A rewrite rule has the form
t ⇒ t′ if c wheret and t′ are terms representing a local
part of the system state andc is a boolean term. This rule
says that when the system has a subcomponent matchingt
such that the instantiation ofc holds, that subcomponent can
evolve tot′, possibly concurrently with changes described
by rules matching other parts of the system state.

GoalAchiever (GA)

2. tasks

GoalNet (GN)

Scheduler (S)

1. time

8. ackTime 7. reports

Device (D)

5. cmds 6. signals

3. tick

4. ackTick

Figure 2: Architecture: showing the four main components
and overall flow of data and control.

Maude (Clavelet al. 2003a; 2003b) is a language and
specification environment based on rewriting logic. The
Maude environment includes a very efficient rewrite engine
with several built-in rewrite strategies for prototyping as
well as tools for analysis (see Section 5). Maude sources, ex-
ecutables for several platforms, the manual, a primer, cases
studies and papers are available from the Maude web site
http://maude.cs.uiuc.edu .

Objects and messages are represented as terms in Maude.
We use object syntax of the form

[ oid : C | a1: v1, ... an: vn ]

whereoid is an object identifier,C is a class identifiera1:
v1 is an attribute with namea1 and valuev1 . Object be-
havior is specified by giving rules for receiving messages. A
typical object rule has the form

[ oid : C | atts ] msg
=> [ oid : C | atts’ ] newmsgs

wheremsg is a message addressed tooid , newmsgs is a
(possibly empty) multiset of messages sent, andatts’ is
the object’s updated attribute set. A configuration is a mul-
tiset of objects and messages. If a configuration contains an
object and message matching the left-hand side of the above
rule, then the whole configuration will rewrite by replacing
the object and message by the corresponding instantiation of
the right-hand side of the rule. Components are represented
as terms with two parts, an interface and a configuration.

3.2 Goal Achievers
A system has a set of state variables that encompass all
knowledge of system (and environment) state: quantities
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StateVariable(SV)

Controller(Ctrl)

Actuator(Act) Sensor(Sens)

Estimator(Est)

Device

cmds  signals

tasks reports

Figure 3: Goal Achiever and Device

that can be computed from sensor readings and domain mod-
els. There is a goal achiever component for each state vari-
able. Each goal achiever encompasses five components as
shown in Figure 3, namely state variable, controller, actua-
tor, sensor, and estimator. In our framework each of these
components is formalized as a single object. The state vari-
able is the interface of a goal achiever component to the goal
net and to other goal achiever components. The actuator and
sensor form the device interface. Start constraint requests
are sent to a state variable by an executable goal. If not al-
ready busy, the state variable informs the controller of the
new constraint and the controller generates a course of ac-
tion (a sequence of device commands) expected to lead to
satisfaction of the constraint. To achieve a constraint a goal
achiever operates in a cycle controlled by the state variable.
When triggered, by a tick event from the scheduler, the state
variable enters an MDS cycle or so-called goal achiever cy-
cle, sending the current value to the controller. The con-
troller checks to see if the constraint is satisfied. If so, it
reports success to the state variable, which in turn reports
success to its goal. Otherwise the controller issues the next
command in its course of action to the actuator, which in
turn issues the appropriate instruction to the device. The de-
vice reports state changes to the sensor that, in turn, forwards
the latest measurements to the estimator. The estimator up-
dates the value of state variable. The state variable reports
new values to any objects (other state variables, goals, . . . )
registered for notification.

3.3 Scheduler
The scheduler controls system operation using clock cycles.
Each clock cycle has two phases: a goal net phase, and a goal
achiever phase. For the goal net phase the goal net is sent a

time message. In response, the goal net updates its internal
state according to the new time. This may result in new con-
straint requests sent to goal achievers. For the goal achiever
phase, a tick event is sent to each goal achiever (one for each
state variable). In response each goal achiever with an active
constraint will execute one goal achiever cycle. This may re-
sult in commands sent to the device, sensor reading, notifi-
cation of new state variable values, and reports of success or
failure sent by state variables to requesting goals. When the
goal-achiever phase completes the clock time is incremented
and the scheduler starts a new cycle.

We specify interaction invariants that must hold for the
system that are useful in carrying out component analyses
and lifting these to overall system properties. One example
is that if an executable goal has start time t, then the state
variable will have received the constraint request before it
receives the tick for the clock cycle a time t. Another ex-
ample is that if a state variable deems a constraint satisfied
or failed during its phase, then the requesting goal will have
received a report to this effect before the next clock cycle
starts. Also, all activity of the goal-net phase must complete
before the goal-achiever phase is started, and all activity of
the goal-achiever phase must complete before the next clock
cycle is initiated.

4. Goal Nets

Formally, a goal net is a graph whose nodes are time points
and whose edges are goals and time constraints. A time
point has a time value, that can be unspecified, or a time
value in some time domain (for example 3pm Earth time on
July 30, 2005). As the goal net is executed time points ac-
quire specific values by ‘firing’. Each goal has two time
points associated with it, the beginning time point (edge
source) and the ending time point (edge target). It also spec-
ifies a state variable constraint that is to hold in the time
interval between its starting and ending time points. Each
time constraint also has a beginning and ending time point.
A time constraint contains an interval[min,max ] that speci-
fies the minimum and maximum allowed difference between
the values of its ending and beginning time points. For ex-
ample, a constraint[20, 30] for two time pointsTP0 and
TP1 means that the time pointTP1 cannot fire earlier than
20 time units after time pointTP0 fired, and it must fire
within 30 time units afterTP0 fired. We classify goals as
achieving (for example driving to a location, or heating to a
specified temperature) or maintaining (parking at a location,
keeping the temperature during a certain interval, or moni-
toring the battery level). A goal net must be acyclic, and thus
determines a partial order on time points (and their values).
Figure 4 shows an example goal net.

In this figure, squares denote goals, ovals denote time
points and hexagons denote time constraints. On the left side
of Figure 4 we have a goalG1 with starting time pointTP1
and ending time pointTP2. This means, that the constraint
of goal G1 should hold in the time interval betweenTP1
andTP2. SupposeG1 is ‘park at locationL’ for 10-15 time
units. Suppose further that the flight rules say that the bat-
tery level must stay above30%. ThenG1 might elaborate
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Figure 4: Goal Nets: Time points and Goals

to the goal net on the right side of Figure 4. The elabora-
tion has three subgoalsG1.1, G1.2, andG1.3. G1.1 is an
achieving goal to drive to locationL, and this must be done
before parking. Thus a new time pointTP0 is introduced
as its starting time point withTP1 as its ending time point.
There is a time constraint[20, 30] on time pointsTP0 and
TP1. The constraint says thatTP1 cannot fire earlier then
20 time units afterTP0 has fired and it has to fire at the latest
30 time units afterTP0 has fired. If driving does not reach
locationL within 30 time unitsG1.1 is not achieved.G1.2 is
a maintaining goal, to park at the current location, andG1.3
is a maintaining goal that monitors the battery level, thus en-
suring that the battery level flight rule is obeyed. The time
constraint betweenTP1 andTP2 expresses the desired du-
ration of parking.

In general a goal net will have both executable and non-
executable goals. Non-executable goals are elaborated to
subnets containing subgoals with additional time points and
possibly additional time constraints. Thus, goal nets are
structurally organized using two dimensions. One dimen-
sion is the partial order on time points. The other dimen-
sion represents the hierarchical structure of goals in the goal
net due to goal elaboration. For example in Figure 4G1 is
a non-executable goal and has the executable goalsG1.1,
G1.2, andG1.3 as subgoals. Time points, goals, and time
constraints, are formally represented as objects with the un-
derlying graph connectivity information recorded in object
attributes. In addition to the time point, goal, and time con-
straint objects, a goal net component contains a goal net ob-

ject that serves as the interface to the scheduler and and ad-
visor. In this paper we only consider interactions with the
scheduler, that is, the response to time messages. The inter-
actions of a goal net component during the goal net phase is
illustrated in figure 5.

send(SV,startCstr(cstr),G)*)

rcv(G,startCstrAck,SV)*)

rcv(GN,time(t),S)

send(S,ackTime,GN)

Figure 5: Goal Net Interactions

The goal net object receives a time event from the sched-
uler. The goal net object forwards time messages to each
time point that has not fired, giving it an opportunity to
fire if it is ready. Internally a time point will consult its
constraints and possibly trigger firing of goals. All that
is observed at the component level is constraint requests
startCstr(...) sent to state variables from goals, fired
as a result of the propagating time message, and the corre-
sponding acknowledgments. Internally, after all goals re-
ceived acknowledgements from the state variables, the goals
will in turn send acknowledgements of the time event to the
timepoints, which will acknowledge the time event to the
goal net. All these message interchanges are not visible at
the component level. Only the resulting acknowledgement
ackTime of the goal net to the scheduler is visible.

In the following subsections we outline the formalization
in Maude of the behavior of goal net objects, time points,
time constraints, and goals. These behaviors have been for-
malized in Maude. Here we use an informal notation de-
scribing the interactions from each objects point of view
inspired by the specification diagram formalism (Smith &
Talcott 2002). The notation essentially describes regular ex-
pressions of send/receive events and local state updates.
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4.1 Goal net objects
A goal net object keeps track of all time points, stored in
two attributes:openTPs , time points that have not fired; and
firedTPs , time points that have fired. A goal net object is
formalized as a Maude term of the form

[ GN: GoalNet | openTPs: tps,
firedTPs: tps’, atts]

whereatts represents additional attributes needed for keep-
ing track of processing state.

When a goal net object receives a time event
(GN,time(t),S) from schedulerS, it forwards this event
to all open time points, processes all acknowledgments, and
then reports completion toS. The following specifies this
interaction from the goal net object’s point of view.
rcv(GN,time(t),S):

for tp in tps do
send(tp,time(t),GN)

endFor;
for tp in tps do

rcv(GN,ack,tp)
if ack == Fired
then move tp from openTPs to firedTPs

endFor;
send(S,ackTime(t),GN) .

In practice, at the cost of some additional bookkeeping,
the goal net object needs to only forward time events to time
points that might be affected.

4.2 Time Constraints
Time constraints express requirements on the minimum and
maximum time interval between firing of two time points. A
time constraint knows its start and end time points, the value
of the start time point and the upper and lower bounds on the
time interval. The value of a time point is unspecified until it
fires. To handle this situation, we use a sortTime? , that ex-
tends the sortTime with an undefined time value,unkTime .
A time constraint also knows its parent goal identifier, in or-
der to be able to report constraint failures for the parent goal
to handle. Time constraint objects are formalized in Maude
as terms of the form

[ C : Constraint |
startTp: tp0, endTp: tp1,
start-time: t?, parent: p,
imin: i, imax: j ]

A time constraint can receive a fired event from its start-
ing time point, time events and resolve events from its end-
ing time point. A fired event sets the starting time. A re-
solve eventresolve(t,reason) signals a time constraint
conflict and is forwarded to the time constraint’s parent. A
time eventtime(t) is interpreted as a request for the time
constraint statuscstatus(?t,t,i,j) wherecstatus is
defined, using the notation above, by
cstatus(t?,t,i,j) =

if t? = unkTime
then unkStatus
else status endIf;
where status = early if t < t? + i

status = ok if t? + i <= t < t? + j
status = fire if t = t? + j
status = late if t > t? + j

The following summarizes the behavior of a time constraint
object.
rcv(c, fired(t), tp0):

start-time := t;
send(tp0,firedAck,c) .

rcv(c, resolve(t,reason), tp1):
send(p,resolve(t,reason),c);
rcv(c,resolveAck,p);
send(tp1,resolveAck,c) .

rcv(c, time(t), tp1):
send(tp1, cstatus(t?,i,j), c) .

The rule describing the behavior of the time constraint
upon receipt of a fired event from a timepoint is formalized
in Maude as follows:

[ c : Constraint |
startTp: tp0, endTp: tp1, start-time: t?,
parent: p, imin: i, imax: j ]

msg(c, fired(t), tp0)
=>
[ c : Constraint |

startTp: tp0, endTp: tp1, start-time:t,
parent: p, imin: i, imax: j ]

msg(tp0,firedAck,c) .

4.3 Time points
Time points are partially ordered via time constraints and
goals. Each time point knows the goals for which it is the
start point as well as those goals for which it is the endpoint.
We separate the ”end goals” into those goals which are re-
quired for the endpoint to fire and those that are not required.

For example, in Figure 4 one can imagine that goalG1.1
is required forTP1 whereas goalG1.2 is not required for
TP2. This means, thatTP2 can fire even if goalG1.2 has
not reported completion. Time points also know the con-
straints for which they are start- and end-points. Time points
that have fired have a time value assigned, open time points
will have the valueunkTime . Time point objects are for-
malized in Maude as terms of the form

[ tp : Timepoint |
value: t?, startC: cstrs, endC: cstrs’,
startG: goals, endGReq: goals’,
endGOther: goals’’]

where t? is a (possibly unknown) time value,cstrs ,
cstrs’ are sets of identifiers of constraint objects, and
goals , goals’ , goals’’ are sets of identifiers of goal ob-
jects.

Time points receivetime events from the goal net object
anddone events from goal objects for which they are the
end point. When a time point receives a time event from
the goal net it first forwards the events to all constraints for
which it is the ending time point, and collects a summary
of the status reports using a combination function& that is
associative, commutative, and idempotent with identityok .
The summary result is one ofok , fire , late , conflict
where

late & early = late & fire = conflict
late & unkStatus = late
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fire & early = fire & unkStatus = conflict
early & unkStatus = early

The time point uses the collected status reports to decide
whether to timeout (a constraint upper bound has been ex-
ceeded), request time constraint conflict resolution, fire (fir-
ing preconditions hold), or pass (some firing precondition
fails or firing is not forced).

The behavior of time point response to time events is sum-
marized in the following

rcv(tp, time(t), GN):
for c in endC do

send(c, time(t), tp);
endFor;
result := ok;
for c in endC do

rcv(tp, cstatus, c);
result := result & cstatus;

endFor;
if result = late
then for x in endGReq + endGOther

send(x, timeout(t), tp);
rcv(tp, timeoutAck, x);

endFor;
for x in endC do

send(x, resolve(t,late), tp);
rcv(tp, resolvetAck, x);

endFor;
for x in startG + startC do

send(x, fired(t), tp);
rcv(tp, firedAck, x);

endFor;
send(GN, timeAck(false), tp);

else if result = conflict
then for x in endC do

send(x, resolve(t), tp);
rcv(tp, timeouAck, x);

endFor;
send(GN, timeAck(false), tp);

else if result = fire
then do fire(t)
else choose
(send(GN, timeAck(false), tp)

or fire(t));
endIf endIf endIf

where
fire(t):

for x in startG + endGOther + startC
send(x, fired(t), tp);
rcv(tp, firedAck, x);
send(GN, timeAck(true), tp)

endFor .

Note that waiting too long (passing too often), or firing too
soon can cause later constraints to fail. Checklist properties
and constraint net analysis can be employed to avoid this.

When a time point receives adone message from a goal,
the time point deletes this goal from the set of required goals
and acknowledges the receipt of thedone message.

rcv(tp, done, g):
remove g from endGreq;
send(g, doneAck,tp) .

4.4. Goals
Goals are either executable or non-executable. Non-
executable goals maintain a set of children that constitute
the result of elaboration of the goal. For example, in Figure
4, the goalG1 has childrenG1.1, G1.2, andG1.3. Once
elaborated, the main role of a non-executable goal is to re-
solve conflicts and recover from constraint failures. Here we
focus on executable goals.

Executable goals simply manage interaction with the goal
achiever component. Each executable goal represents a con-
straint on a state variable over a time interval represented by
a pair of time points. Thus an executable goal knows its con-
straint, the state variable being constrained, its starting and
ending time points and its parent goal. It also knows whether
or not its completion is required for the ending time point to
fire. This is represented by a boolean flag.

Executable goals are formalized as Maude terms of the
form

[ g : ExecGoal |
cstr: C, statevar: sv, parent: p,
startTp: tp0, endTp: tp1, req: b ]

When a goal receives a fire message from its starting time
point it starts the goal achiever cycle by sending a start con-
straint message to the corresponding state variable. It is pos-
sible that the state variable is busy with another constraint.
In that case, the state variable will acknowledge the start
constraint message with a ”busy failure”. Thus, the goal
cannot be achieved at the moment. This is reported to the
parent goal and could cause a different mechanism, such as
goal elaboration, to adjust the goal net. In addition, if the
goal is required for its ending time point, this time point
is notified that the goal has completed. In either case the
goal acknowledges the fired message. The+ in the following
pseudo code denotes an internal non-determinism, meaning
that not the goal is to decide which one of the two branches
it will execute.

rcv(g, fired(t),tp0):
send(sv,startConstr(cstr), g);

( rcv(g,startCstrAck,sv)
+
((rcv(g,cstrFail(reason),sv);

(send(p,cstrFail(reason),g);
rcv(p,reportAck,tp1);)
||

(send(tp1,done,g);
rcv(g,doneAck,tp1);)))

) ;
send(tp0,firedAck,g);

When a goal receives a report (of successful or unsuccessful)
constraint satisfaction from is state variable, it notifies its
parent and, if required, its end time point.

rcv(g, report, sv):
send(p,report,g);
rcv(p,reportAck,tp1);
if b
then send(tp1,done,g);

rcv(g,doneAck,tp1);
endIf;
send(sv,reportAck,g);
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A non-required goal may receive a fired message from its
endpoint. Such goals are typically maintaining goals, and
the end time point firing means that the goals job is done. In
this case the goal notifies its state variable and its parent.
rcv(g, fired(t),tp1):

send(sv,stopConstr(cstr), g);
rcv(g,report,sv);
send(p,report,g);
rcv(p,reportAck,tp1);
send(tp1,firedAck,g) .

A goal may also receive timeout events from its end time
point or an abort event from its parent. We omit the details.

5. Analysis Checklist for Goal Nets
Now we describe in more detail some of the goal net anal-
yses that we expect to include as checklist items. Besides
the modeling and execution capabilities, Maude also pro-
vides efficient built-in search and model checking capabil-
ities. Thus, many of the analyses can be carried out using
tools in the Maude environment. In addition, Maude is re-
flective (Clavel 1998; Clavel & Meseguer 1996) providing a
meta-level module that reflects both the syntax and seman-
tics of Maude. Using reflection, special purpose execution
and search strategies, module transformations, special pur-
pose analyses, and user interfaces can be programmed. Also
using reflection, theory mappings can be defined that map
Maude specifications to a form that can be analyzed by tools
developed for other logics.

As discussed in (Denker & Talcott 2004), a simple test is
just to execute a goal net by composing it with goal achievers
and a device (modeled at some appropriate level of abstrac-
tion). Then one can use the Maude search capability to look
for expected and unexpected outcomes.

In the following we discuss three general classes of anal-
ysis referred to briefly as structural, behavioral, and domain.

Structural analyses
Structural analyses are intended to insure that basic architec-
tural constraints are met within and across components.

Time Constraint Consistency. This analysis checks that
for all constraints the value of theimax attribute (the up-
per bound) is greater than or equal to the value of theimin
attribute (the lower bound).

Link Consistency. Connectivity of a goal net is represented
implicitly and redundantly in thestartTp endTp at-
tributes of its goals and time constraints and thestartG ,
endGReq, andendGOther attributes of its time points. It
is important that these attributes present a consistent view.
For example, if theendC attribute of a time pointtp has
a constraintC as one of its elements, then theendTp of
C must have the valuetp . Similar consistency conditions
must hold for time constraint start points, and for goal
start and end points and the corresponding time point at-
tributes. The link consistency analysis checks that these
conditions are satisfied. In addition, it must check that if a
goal is a member of theendGReq attribute of a time point
(the goal must report done before the time point can fire),
then the required attribute of the goal is set totrue .

Acyclicity. The underlying graph of a goal net, and the sub-
goal relation must both be acyclic. The acyclicity analysis
checks that this is the case.

Behavior analyses

Behavior analysis is intended to insure that during execution
a system will not reach a “bad” state.

Goal Net Consistency.One of the checks applied to a for-
mally specified goal net is to verify that the goal net be-
havior does not result in inconsistent reply messages from
time constraint objects. For example, it should not be pos-
sible that one time constraint object replies to atime(t)
message from a time point withearly and another one
with late . Similarly, the combinationearly and fire
is inconsistent. Using the formal specification of goal
nets, we can expose a given goal net to check for those
inconsistencies. For this purpose, we use Maude’s model
checking capabilities. We try to contradict the statement
that there is no reachable state in which two inconsistent
replies from time constraints were received. If the model
checker finds a counter example it will provide details
about the inconsistency in the goal net.

Timely constraint checking It is important that time con-
straints are checked as soon as possible, i.e. as soon as the
start time point is known, satisfaction by putative end time
points can be checked. The timely constraint checking
analysis checks that each time constraint has the neces-
sary information available to accurately determine status
when it receives a time(t) request from its end time point.

Mission rules In most situations there are global con-
straints on the system state that must hold independent
of particular goals. For example a remote rover activity
should not drain the battery dangerously low. Or the some
sensor temperature reading should remain within certain
bounds (to avoid equipment damage). These global con-
straints are called flight or mission rules. It is the respon-
sibility of the mission designer to spell out all such rules.
Then model checking, possibly in combination with do-
main specific analyses, can be used to check that a goal
net does not violate mission rules.

Avoiding time constraint failure. In general, a time point
has some flexibility as to when it fires. That is, there may
be several clock cycles when it is OK for it to fire, but
not required. Without additional information, firing as
soon as all constraints report ok could lead to later time-
constraint violations as could postponing until some con-
straint says fire. There are algorithms (Dechter, Meiri, &
Pearl 1991) to label nodes of a time constraint net with
intervals representing constraints on the value of the time
point. For example the minimal net algorithm assigns fea-
sible intervals to each time point so that if for a given
node, any value in the interval is picked, there is an as-
signment for the rest of the nodes with in their specified
interval, that meet the initial constraints. This sort of in-
strumentation can help to avoid the above problem or to
detect unrealizable constraints before execution.
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Avoiding timeouts. If estimates of goal achievement time
(how many cycles a goal achiever will take to succeed
with given constraints) are given this analysis uses simple
scheduling ideas to determine if it is possible to meet the
time constraints. In the absence of estimates it can try to
provide plausible bounds.

Adequacy of the formal device model.
The device model of the goal achiever component is for-
mally modeled. This allows to analyze goal nets with re-
spect to the formal device model, that is, under the assump-
tion that the device model is correct, we can test the level
of dependency of the goal net. Tests like this can be per-
formed in an laboratory environment that does not require
expensive equipment. If we also have an interface imple-
mented between the goal achiever component and the real-
world device, then we can rerun the same tests that we per-
formed on the formal device model. Comparing the results
from both test suites allows us to compare the formal device
model with the actual real-world behavior of the device. We
envision that in the future a formally defined module, the
so-calledDevice Model Correctorwill process the results
of this comparison and initiate changes in the formal device
model.

6. Related Work and Future Directions
One of the differences of our approach to more classical
planning systems is that we consider all different compo-
nents in the planning and execution process. Instead of fo-
cusing on a particular planning algorithm, our focus is on
the formalization of the planning system components and
their interactions. In particular, we aim to take advantage
of model checking approaches to validate the correctness of
component interfaces and to uncover possible inconsisten-
cies due to the inherent concurrency of components such as
goal nets, goal achievers, goal elaboraton, external advice,
scheduler, etc.

Our framework uses a very abstract notion of time that
can be further refined into more concrete notions of time as
required by the application domain. In the future we will in-
vestigate to what extent discretized and continuous actions
and plans as supported by PDDL2.1 (Fox & Long 2003)
are expressible within our framework. Some concepts in
PDDL2.1, such as numeric expressions, conditions and ef-
fects are directly expressible within our framework, since
Maude supports these features. Nevertheless, the current
PDDL2.1 language is more flexible with respect to tempo-
rally annotated conditions and effects and we will investigate
whether extensions to our framework will be straightforward
and what effect they have on the component behavior speci-
fications and the component interface specifications.

Wilkins and desJardins compare knowledge-rich plan-
ning approaches that use domain knowledge with minimal-
knowledge planning approaches in (Wilkins & desJardins
2001). They argue that the use of domain knowledge in-
creases expressiveness, allows for plan modification during
execution and is more scaleable. Our formal framework uses
formal domain models in various places (e.g., goal structures

and human advise among others), and thus, falls into the
knowledge-rich planning category. Other domain-specific
information such as search-control techniques can be imple-
mented in the goal elaboration module. One could for ex-
ample imagine that the goal elaboration process exploits the
formal device models. This could be done by using model
checking approaches to determine the reachability of a cer-
tain device state. A model checker would also deliver the
sequence of states that lead to the desired state. Doing this
for several devices and goals, the resulting information can
be fed into the goal elaboration process to optimize an over-
all strategy that achieves multiple goals.

One of the areas that we have not yet investigated is
the extensibility of our framework to probabilistic planning
techniques (cf. (Pro 2004)) and the integration of planning
and learning techniques (cf. (Velosoet al. 1995)).

Though the framework already provides for hierachical
goal nets, only the behavior of goal nets that are comprised
of executable goals has been formalized in Maude. Not only
do we have to define the behavior of hierarchical goal nets,
but we also have to investigate the consquences for our for-
mal checklists. A hierarchical goal may be refined into sev-
eral executable or non-executable goals. These goals may
have constraints for different state variables. Thus, a hier-
archical goal might need to refer to a list of state variables
for which it attempts to achieve constraints. Hierarchical
goals have start and end time point associated. These time
points may have time constraints with other time points that
are start or end time points of goals of a different hierar-
chy level. Overall, there will be challenges to overcome in
defining the behavior of hierarchical goal nets as well as in-
teraction constraints to be defined that assure correct goal
net execution.

7. Concluding Remarks
In this paper we presented a formal framework for planning
systems. In contrast to other work in the area of planning,
we use a comprehensive approach to specifying and validat-
ing planning system components and their interaction. We
propose to use a formal language and checklists of formal
analyses. This paper constitutes a first step in the direction
of a general formal framework for planning systems. We fo-
cussed on goal nets and their dependability. In the future we
will extend our framework and investigate the incorporation
of other existing planning concepts, and we will also provide
an extended list of checklists. Our vision is to identify ver-
ification and validation mechanisms that can be applied to
planning systems with the goal of increasing their depend-
ability and the trust of users in their adequacy.
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