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Preface

Autonomous systems UAVs, UUVs, UGVs, planetary rovers and space probes among
them operate with limited human intervention in changing and partially known environ-
ments. These systems must plan and control internal behaviour while responding to
mission updates and environment changes. The promise of greater mission capability
at lower cost is leading to increasing interest in autonomy across a spectrum of scienti-
fic, commercial and military application domains. The papers accepted for this workshop
form a representative sample of real-world autonomous systems, operating in air, sea,
space and ground environments.

Since simple heuristic approaches dramatically reduce the operational scope of au-
tonomous systems, planning problems appear to be system centric and critical for the
success of challenging missions. Various theoretical and practical aspects of planning
for such systems are considered in the workshop. Extensions to classical modelling
techniques are explored, based on constraint programming or probability representa-
tions. Combining uncertainty and resource management highlights the borderline bet-
ween stochastic and non-stochastic modelling approaches. Multiple approaches to al-
gorithms are also investigated to target search problems relevant to autonomous sys-
tems, such as path planning in navigation, and planning the mode of operations for
equipment and on-board systems management. These works provide a strong basis
to architect systems which deliver good plans just in time, finding the right balance
between off-line and reactive methods. Lastly, managing multiple systems with some
degree of autonomy constellations of spacecraft and swarms of UAVs introduces un-
certainty, biased and incomplete data. Papers in the workshop provide perspectives to
tackle part of these problems at planning time.

In addition to the seven accepted technical papers, the workshop features two short
position papers, and the invited talk Intelligent Mission Planning and Control of Autono-
mous Underwater Vehicles by Roy Turner from the Maine Software Agents and Artificial
Intelligence Laboratory, University of Maine.

We would like to thank members of the Programme Committee who provided ex-
cellent, timely, and constructive reviews. Special thanks are due to Gerard Verfaillie for
managing the commentary process. We are also grateful to the ICAPS conference and
workshop chairs for their help in organizing this workshop.
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Intelligent Mission Planning and Control of Autonomous Underwater Vehicles

Roy M. Turner
Maine Software Agents and Artificial Intelligence Laboratory

Department of Computer Science
University of Maine
Orono, ME 04469

rmt@umcs.maine.edu

Abstract

Autonomous underwater vehicles (AUVs) undertaking com-
plex missions require plans to carry out those missions. In
an ideal world, this planning could be done off-line, with the
AUV being given the plan to execute in the water. The real
world is not this nice, of course. Knowledge about the under-
water environment is uncertain and incomplete. The world
is dynamic, with processes and other agents that change the
world in unpredictable ways. Sensors for AUVs are notori-
ously imprecise and noisy, and the AUV, being a real physi-
cal system, often responds to commands in imprecise, unpre-
dictable ways. The resulting uncertainty can cause off-line
plans to fail at execution time as assumptions upon which
they were based are violated. Consequently, AUVs need on-
board planners with the ability to modify or replan and, in
many cases, to create new plans.
This paper and the accompanying talk discuss the sources and
results of uncertainty in AUV mission control. The talk also
provides an overview of past and current planning technolo-
gies used in the AUV domain and a discussion of future di-
rections.

Autonomous underwater vehicles (AUVs) are unmanned,
untethered submersibles. AUVs have great promise for a
variety of purposes, both civilian and military. For example,
AUVs have been used or proposed for use for ocean science
applications, global change and other environmental mon-
itoring, oil spill and other pollution remediation, ground-
truthing satellite date, underwater construction and inspec-
tion, cable laying, aquaculture, military missions, and in-
dustrial applications.

AUV hardware is mature enough for many of these pur-
poses. Today, there is a wide variety of vehicles, with differ-
ing ranges, depth capabilities, sensors, and effectors. Vehi-
cles range from very low-cost vehicles with limited duration
and depths, such as the Virginia Tech Miniature AUV (Stil-
well et al. 2004), to very capable, medium-range scientific
vehicles, such as Florida Atlantic University’s Ocean Ex-
plorer and Ocean Odyssey vehicles (e.g., Smithet al. 1996;
see Fig. 1) and the Naval Postgraduate University’s Phoenix
(Brutzmanet al. 1998) and ARIES vehicles (Fig. 2), to long-
range vehicles such as the Autonomous Undersea Systems
Institute’s solar-powered AUVs (Jalbertet al. 1997; see

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Figure 1: Florida Atlantic University’s Ocean Explorer.

Fig. 3) and various versions of the Slocum gliders (Bach-
mayeret al. 2004), to full-ocean depth, long-duration ve-
hicles such as Woods Hole’s ABE (Yoerger, Bradley, &
Walden 1991). Military AUVs run the gamut from experi-
mental scientific vehicles (e.g., ARIES) to sophisticated sen-
sor platforms and intelligent torpedoes. While some AUVs
require substantial support, including vessels and trained
support staff, others are fieldable by graduate students op-
erating from shore or from a small boat.

Vehicle software has lagged behind hardware, however.
While low-level controllers, based on control theory, are
quire competent and robust, as are path-planning algorithms,
overall high-level mission control is generally done by rel-
atively simple, inflexible software. Some AUVs are con-
trolled by subsumption-based controllers (e.g., Bellingham
et al. 1994) or controllers based on finite state machines
(e.g., Phoha, Peluso, & Culver 2001), and so are not partic-
ularly compatible with on-board planning. For others, if au-
tomated mission planning is done at all, it is almost always
done off-line, with the plans downloaded to the AUV’s mis-
sion controller for execution (e.g., (Brutzmanet al. 1998)).

Part of the reason for this is the typical origin of AUVs
in mechanical engineering or ocean engineering rather than
computer science. Part, too, is due to the difficulty of the do-
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Figure 2: Naval Postgraduate School’s ARIES AUV.

main in terms of the high degree of uncertainty and incom-
plete knowledge, its dynamic nature, and its complexity—
given the state of the art in planning technology, most plan-
ners are simply not up to the task. Part, too, is due to the
needs of the users of the AUVs. Scientists want assurance
that data is collected where they specify, when they spec-
ify, not at the whim of an AUV controller with too much
autonomy. The military, too, has often been opposed to
on-board planners, since it is critical for most of their mis-
sions that an AUV’s behavior be predictable: one does not
want a weapon, for example, with too much of a mind of its
own.1 And, finally, part is due to the fact that current non-
planning control software is adequate to the rather simple
uses to which AUVs have so far been put.

For more advanced missions, however, this will have to
change. Missions in which the AUV must exhibit a high
degree of autonomy, long-duration missions, missions in
highly dynamic environments, and complex missions in-
volving multiple vehicles all will require capabilities far be-
yond the current state of the art in AUV control. In partic-
ular, such missions will require AUVs that are capable of
replanning or repairing downloaded missions or of planning
their own missions in the first place.

Here, I will briefly discuss some causes of the uncertainty
that, in large part, makes planning in the AUV domain diffi-
cult. In the accompanying talk, I will survey some of the past
and current approaches to planning in the AUV domain, dis-
cuss the state of the art, and conclude with a look at what the
future may hold for planner-based AUV mission controllers.

The most basic reason to use planning technology for
AUVs is, of course, the same as for any other agent: to cor-
rectly sequence actions to accomplish users’ goals. If there
is no uncertainty involved, then off-line planning is suffi-
cient. This means that the agent must be operating a well-
known, static environment, and it must have certain knowl-
edge about the environment and itself as well as accurate

1For a humorous treatment of this idea, see the 1974 movie
“Dark Star”.

Figure 3: The Autonomous Undersea Systems Institute’s
Solar AUV.

sensors.
If there is uncertainty, however, then the AUV needs to be

able at least to modify its plan or even replan completely.
Uncertainty undermines the assumptions upon which the
off-line plan was based. For example, if the AUV is follow-
ing a plan to retrieve the black box from a downed aircraft
from locationx, but the AUV’s knowledge is imprecise so
that the black box could be anywhere in an area of radiusε
around that point, then there is a good chance that AUV will
not be able to find the target simply by following its plan.

An AUV will encounter uncertainty to one degree or an-
other on almost any mission. This is due to a variety of fac-
tors in the AUV’s environment, the mission, and itself. One
factor is the inherent incompleteness of the AUV’s knowl-
edge about its environment. In many respects, relatively
little is known about the ocean, especially the deep ocean.
Indeed, it was noted some time ago that we know less about
Neptune’s realm than we do about the planet Neptune (Blid-
berg, Turner, & Chappell 1991); this is still true to a large
extent. Consequently, predications about the environment
upon which anya priori plan is based will often be violated
during the plan’s execution.

A dynamic environment can also lead to uncertainty. If
the world were completely deterministic, complete knowl-
edge of the world would allow predictions to be made with
complete certainty about how it will change. However, this
is not the case. In general, stochastic processes, as well as
uncertain or incomplete knowledge of processes operating
in the world, will lead to changes occurring that a planner
cannot predicate ahead of time. This, too, can undermine
the plan at execution time.

Imprecision in the AUV’s sensors also contributes to un-
certainty. For example, sonar is notoriously undependable,
especially underwater, being susceptible to such things a
bouncing off thermoclines or other density changes in the
water. Even localization is uncertain. Except in very shal-
low water, AUVs cannot make use of GPS on a regular ba-
sis to determine their position. Unless it is feasible to have
transponders placed for long-baseline navigation, they have
to rely on such things as inertial guidance or dead reckoning
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to estimate their position between GPS fixes. Even cam-
eras suffer problems in some underwater environments. For
example, in the temperate and boreal ocean, suspended par-
ticulate matter severely reduces visibility. This also means
that for all practical purposes, in these environments com-
puter vision is not viable for an AUV, thus depriving it of
a valuable sensory modality and consequently increasing its
uncertainty about the world around it.

The AUV’s own state and the effects of its actions may be
uncertain, as well. For example, fault indicators may them-
selves be faulty, battery charge indicators may be wrong, and
so forth. In addition, effectors are mechanical devices that
may not perform as expected: robot arms may miss their tar-
gets, thrusters may not turn propellers the number of revolu-
tions expected, the entire AUV may fail, etc. Consequently,
the AUV may not be able to predict with complete accuracy
its own state (or trends that predict its future state) or the
results of its own actions.

The likelihood and severity of uncertainty is increased by
long-duration or multiagent missions. Not only does uncer-
tainty accumulate in such things as position estimates, but
the effects of uncertainty on the plan also accumulate. Mul-
tiagent missions increase uncertainty by the actions of the
often unpredictable agents that are part of the MAS. In ad-
dition, in some “open” multiagent systems, such as some
visions for autonomous oceanographic sampling networks
(AOSNs; e.g., Turner & Turner 2001), which AUVs are
present may change over time as vehicles exit (e.g., due to
failure or for maintenance) or enter the system. This in-
creases the dynamic nature of the environment and, hence,
the AUV’s uncertainty about the world.

There are planning techniques that can deal with some
uncertainty in the environment, of course, such as condi-
tional planners (see, e.g., Russell & Norvig 2003), including
the extreme case of so-called universal plans (e.g., Schop-
pers 1987), as can some non-planning techniques, such as
reactive planning (e.g., Georgeff & Lansky 1987) and the
subsumption architecture (Brooks 1986; Bellinghamet al.
1994). However, uncertainty, if severe, can still be catas-
trophic toa priori plans, and the latter approaches are not
able easily to sequence actions in service of goals.

In some circumstances, the AUV has no choice but to cre-
ate its plan in the field. This could happen if the AUV was
re-tasked while on-site. This is likely for long-duration mis-
sions, such as missions in which the AUV is acting in the
capacity of an “underwater satellite” that remains on station
for long periods of time to return data. It could also hap-
pen if the AUV is part of a multi-AUV system (i.e., a mul-
tiagent system, or MAS), such as an autonomous oceano-
graphic sampling network (Curtinet al. 1993). For some
MAS control approaches, agents are assigned tasks on the
fly by other agents or bid for tasks and must create plans to
accomplish them (e.g., Smith 1980). In still other cases, off-
line planning may be impossible for the mission goal due to
a lack ofa priori knowledge. For example, a goal such as
“photograph any interesting objects in an area”, even where
“interesting” is well-defined, is impossible to plan for fully
before the objects are seen.

Other challenges for planners in the AUV domain abound.

For example, even for non-covert missions, communication
with AUVs is extremely limited. Unless the AUV breaks the
surface, in the ocean the only practical way to communicate
over any significant distance is via acoustic modem. This
can require a great deal of the AUV’s limited power, and the
bandwidth is quite limited: from around 20 Kbps in the open
ocean to 20 bps in the surf zone. One implication of this is
that an AUV mission controller for many missions needs to
be capable of autonomy. Another implication for multiagent
missions is that the organizational structure and coordination
mechanism for MAS must be selected so as to tread lightly
on the communication channel.

Figure 4: AUSI’s EAVE (Experimental Autonomous under-
water VEhicle).

The accompanying talk will discuss approaches to plan-
ning for AUVs, starting with very early work on the EAVE
architecture (Blidberg & Chappell 1986; see Fig. 4), through
current off-line approaches (e.g., for ARIES), and contin-
uing with emerging approaches to on-board planners (in-
cluding our own Orca intelligent mission controller [Turner
1995; Turner 1998]). The talk will discuss both single-agent
and multiagent systems, and it will also discuss future direc-
tions for planning in the AUV domain.
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A Guide to Heuristic-based Path Planning

Dave Ferguson, Maxim Likhachev, and Anthony Stentz
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA

Abstract

We describe a family of recently developed heuristic-
based algorithms used for path planning in the real
world. We discuss the fundamental similarities between
static algorithms (e.g. A*), replanning algorithms (e.g.
D*), anytime algorithms (e.g. ARA*), and anytime re-
planning algorithms (e.g. AD*). We introduce the mo-
tivation behind each class of algorithms, discuss their
use on real robotic systems, and highlight their practi-
cal benefits and disadvantages.

Introduction
In this paper, we describe a family of heuristic-based plan-
ning algorithms that has been developed to address various
challenges associated with planning in the real world. Each
of the algorithms presented have been verified on real sys-
tems operating in real domains. However, a prerequisite for
the successful general use of such algorithms is (1) an analy-
sis of the common fundamental elements of such algorithms,
(2) a discussion of their strengths and weaknesses, and (3)
guidelines for when to choose a particular algorithm over
others. Although these algorithms have been documented
and described individually, a comparative analysis of these
algorithms is lacking in the literature. With this paper we
hope to fill this gap.

We begin by providing background on path planning in
static, known environments and classical algorithms used to
generate plans in this domain. We go on to look at how
these algorithms can be extended to efficiently cope with
partially-known or dynamic environments. We then intro-
duce variants of these algorithms that can produce subop-
timal solutions very quickly when time is limited and im-
prove these solutions while time permits. Finally, we dis-
cuss an algorithm that combines principles from all of the
algorithms previously discussed; this algorithm can plan in
dynamic environments and with limited deliberation time.
For all the algorithms discussed in this paper, we provide
example problem scenarios in which they are very effective
and situations in which they are less effective. Although
our primary focus is on path planning, several of these al-
gorithms are applicable in more general planning scenarios.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Our aim is to share intuition and lessons learned over the
course of several system implementations and guide readers
in choosing algorithms for their own planning domains.

Path Planning
Planning consists of finding a sequence of actions that trans-
forms some initial state into some desired goal state. In path
planning, the states are agent locations and transitions be-
tween states represent actions the agent can take, each of
which has an associated cost. A path is optimal if the sum of
its transition costs (edge costs) is minimal across all possi-
ble paths leading from the initial position (start state) to the
goal position (goal state). A planning algorithm is complete
if it will always find a path in finite time when one exists,
and will let us know in finite time if no path exists. Simi-
larly, a planning algorithm is optimal if it will always find
an optimal path.

Several approaches exist for computing paths given some
representation of the environment. In general, the two most
popular techniques are deterministic, heuristic-based algo-
rithms (Hart, Nilsson, & Rafael 1968; Nilsson 1980) and
randomized algorithms (Kavraki et al. 1996; LaValle 1998;
LaValle & Kuffner 1999; 2001).

When the dimensionality of the planning problem is low,
for example when the agent has only a few degrees of free-
dom, deterministic algorithms are usually favored because
they provide bounds on the quality of the solution path re-
turned. In this paper, we concentrate on deterministic al-
gorithms. For more details on probabilistic techniques, see
(LaValle 2005).

A common technique for robotic path planning consists
of representing the environment (or configuration space) of
the robot as a graph G = (S, E), where S is the set of pos-
sible robot locations and E is a set of edges that represent
transitions between these locations. The cost of each edge
represents the cost of transitioning between the two endpoint
locations.

Planning a path for navigation can then be cast as a search
problem on this graph. A number of classical graph search
algorithms have been developed for calculating least-cost
paths on a weighted graph; two popular ones are Dijkstra’s
algorithm (Dijkstra 1959) and A* (Hart, Nilsson, & Rafael
1968; Nilsson 1980). Both algorithms return an optimal path
(Gelperin 1977), and can be considered as special forms of
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ComputeShortestPath()

01. while (argmins∈OPEN(g(s) + h(s, sgoal)) 6= sgoal)
02. remove state s from the front of OPEN;
03. for all s′ ∈ Succ(s)

04. if (g(s′) > g(s) + c(s, s′))

05. g(s′) = g(s) + c(s, s′);
06. insert s′ into OPEN with value (g(s′) + h(s′, sgoal));

Main()

07. for all s ∈ S

08. g(s) = ∞;
09. g(sstart) = 0;
10. OPEN = ∅;
11. insert sstart into OPEN with value (g(sstart) + h(sstart, sgoal));
12. ComputeShortestPath();

Figure 1: The A* Algorithm (forwards version).

dynamic programming (Bellman 1957). A* operates essen-
tially the same as Dijkstra’s algorithm except that it guides
its search towards the most promising states, potentially sav-
ing a significant amount of computation.

A* plans a path from an initial state sstart ∈ S to a goal
state sgoal ∈ S, where S is the set of states in some finite
state space. To do this, it stores an estimate g(s) of the path
cost from the initial state to each state s. Initially, g(s) =
∞ for all states s ∈ S. The algorithm begins by updating
the path cost of the start state to be zero, then places this
state onto a priority queue known as the OPEN list. Each
element s in this queue is ordered according to the sum of its
current path cost from the start, g(s), and a heuristic estimate
of its path cost to the goal, h(s, sgoal). The state with the
minimum such sum is at the front of the priority queue. The
heuristic h(s, sgoal) typically underestimates the cost of the
optimal path from s to sgoal and is used to focus the search.

The algorithm then pops the state s at the front of the
queue and updates the cost of all states reachable from this
state through a direct edge: if the cost of state s, g(s), plus
the cost of the edge between s and a neighboring state s′,
c(s, s′), is less than the current cost of state s′, then the cost
of s′ is set to this new, lower value. If the cost of a neighbor-
ing state s′ changes, it is placed on the OPEN list. The al-
gorithm continues popping states off the queue until it pops
off the goal state. At this stage, if the heuristic is admissible,
i.e. guaranteed to not overestimate the path cost from any
state to the goal, then the path cost of sgoal is guaranteed to
be optimal. The complete algorithm is given in Figure 1.

It is also possible to switch the direction of the search in
A*, so that planning is performed from the goal state to-
wards the start state. This is referred to as ‘backwards’ A*,
and will be relevant for some of the algorithms discussed in
the following sections.

Incremental Replanning Algorithms
The above approaches work well for planning an initial path
through a known graph or planning space. However, when
operating in real world scenarios, agents typically do not
have perfect information. Rather, they may be equipped with
incomplete or inaccurate planning graphs. In such cases, any

Pioneers Automated E-Gator

Figure 2: D* and its variants are currently used for path
planning on several robotic systems, including indoor pla-
nar robots (Pioneers) and outdoor robots operating in more
challenging terrain (E-Gators).

path generated using the agent’s initial graph may turn out to
be invalid or suboptimal as it receives updated information.
For example, in robotics the agent may be equipped with an
onboard sensor that provides updated environment informa-
tion as the agent moves. It is thus important that the agent
is able to update its graph and replan new paths when new
information arrives.

One approach for performing this replanning is simply to
replan from scratch: given the updated graph, a new opti-
mal path can be planned from the robot position to the goal
using A*, exactly as described above. However, replanning
from scratch every time the graph changes can be very com-
putationally expensive. For instance, imagine that a change
occurs in the graph that does not affect the optimality of the
current solution path. Or, suppose some change takes place
that does affect the current solution, but in a minor way that
can be quickly fixed. Replanning from scratch in either of
these situations seems like a waste of computation. Instead,
it may be far more efficient to take the previous solution and
repair it to account for the changes to the graph.

A number of algorithms exist for performing this re-
pair (Stentz 1994; 1995; Barbehenn & Hutchinson 1995;
Ramalingam & Reps 1996; Ersson & Hu 2001; Huiming et
al. 2001; Podsedkowski et al. 2001; Koenig & Likhachev
2002). Focussed Dynamic A* (D*) (Stentz 1995) and D*
Lite (Koenig & Likhachev 2002) are currently the most
widely used of these algorithms, due to their efficient use
of heuristics and incremental updates. They have been
used for path planning on a large assortment of robotic sys-
tems, including both indoor and outdoor platforms (Stentz &
Hebert 1995; Hebert, McLachlan, & Chang 1999; Matthies
et al. 2000; Thayer et al. 2000; Zlot et al. 2002;
Likhachev 2003) (see Figure 2). They have also been ex-
tended to provide incremental replanning behavior in sym-
bolic planning domains (Koenig, Furcy, & Bauer 2002).

D* and D* Lite are extensions of A* able to cope with
changes to the graph used for planning. The two algorithms
are fundamentally very similar; we restrict our attention here
to D* Lite because it is simpler and has been found to be
slightly more efficient for some navigation tasks (Koenig &
Likhachev 2002). D* Lite initially constructs an optimal so-
lution path from the initial state to the goal state in exactly
the same manner as backwards A*. When changes to the
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planning graph are made (i.e., the cost of some edge is al-
tered), the states whose paths to the goal are immediately
affected by these changes have their path costs updated and
are placed on the planning queue (OPEN list) to propagate
the effects of these changes to the rest of the state space. In
this way, only the affected portion of the state space is pro-
cessed when changes occur. Furthermore, D* Lite uses a
heuristic to further limit the states processed to only those
states whose change in path cost could have a bearing on
the path cost of the initial state. As a result, it can be up to
two orders of magnitude more efficient than planning from
scratch using A* (Koenig & Likhachev 2002).

In more detail, D* Lite maintains a least-cost path from a
start state sstart ∈ S to a goal state sgoal ∈ S, where S is
again the set of states in some finite state space. To do this,
it stores an estimate g(s) of the cost from each state s to the
goal. It also stores a one-step lookahead cost rhs(s) which
satisfies:

rhs(s) =
{

0 if s = sgoal

mins′∈Succ(s)(c(s, s′) + g(s′)) otherwise,

where Succ(s) ∈ S denotes the set of successors of s and
c(s, s′) denotes the cost of moving from s to s′ (the edge
cost). A state is called consistent iff its g-value equals
its rhs-value, otherwise it is either overconsistent (if
g(s) > rhs(s)) or underconsistent (if g(s) < rhs(s)).

Like A*, D* Lite uses a heuristic and a priority queue to
focus its search and to order its cost updates efficiently. The
heuristic h(s, s′) estimates the cost of moving from state s
to s′, and needs to be admissible and (backward) consistent:
h(s, s′) ≤ c∗(s, s′) and h(s, s′′) ≤ h(s, s′) + c∗(s′, s′′) for
all states s, s′, s′′ ∈ S, where c∗(s, s′) is the cost associated
with a least-cost path from s to s′. The priority queue OPEN
always holds exactly the inconsistent states; these are the
states that need to be updated and made consistent.

The priority, or key value, of a state s in the queue is:
key(s) = [k1(s), k2(s)]

= [min(g(s), rhs(s)) + h(sstart, s),
min(g(s), rhs(s))].

A lexicographic ordering is used on the priorities, so that pri-
ority key(s) is less than or equal to priority key(s′), denoted
key(s) ≤̇key(s′), iff k1(s) < k1(s′) or both k1(s) = k1(s′)
and k2(s) ≤ k2(s′). D* Lite expands states from the queue
in increasing priority, updating their g-values and their pre-
decessors’ rhs-values, until there is no state in the queue with
a priority less than that of the start state. Thus, during its
generation of an initial solution path, it performs in exactly
the same manner as a backwards A* search.

To allow for the possibility that the start state may change
over time D* Lite searches backwards and consequently fo-
cusses its search towards the start state rather than the goal
state. If the g-value of each state s was based on a least-cost
path from sstart to s (as in forward search) rather than from
s to sgoal, then when the robot moved every state would
have to have its cost updated. Instead, with D* Lite only the
heuristic value associated with each inconsistent state needs
to be updated when the robot moves. Further, even this step
can be avoided by adding a bias to newly inconsistent states
being added to the queue (see (Stentz 1995) for details).

key(s)
01. return [min(g(s), rhs(s)) + h(sstart, s); min(g(s), rhs(s)))];

UpdateState(s)
02. if s was not visited before
03. g(s) = ∞;
04. if (s 6= sgoal) rhs(s) = mins′∈Succ(s)(c(s, s′) + g(s′));
05. if (s ∈ OPEN) remove s from OPEN;
06. if (g(s) 6= rhs(s)) insert s into OPEN with key(s);

ComputeShortestPath()

07. while (mins∈OPEN(key(s)) <̇ key(sstart) OR rhs(sstart) 6= g(sstart))
08. remove state s with the minimum key from OPEN;
09. if (g(s) > rhs(s))

10. g(s) = rhs(s);
11. for all s′ ∈ Pred(s) UpdateState(s′);
12. else
13. g(s) = ∞;
14. for all s′ ∈ Pred(s) ∪ {s} UpdateState(s′);

Main()

15. g(sstart) = rhs(sstart) = ∞; g(sgoal) = ∞;
16. rhs(sgoal) = 0; OPEN = ∅;
17. insert sgoal into OPEN with key(sgoal);
18. forever
19. ComputeShortestPath();
20. Wait for changes in edge costs;
21. for all directed edges (u, v) with changed edge costs
22. Update the edge cost c(u, v);
23. UpdateState(u);

Figure 3: The D* Lite Algorithm (basic version).

When edge costs change, D* Lite updates the rhs-values
of each state immediately affected by the changed edge costs
and places those states that have been made inconsistent
onto the queue. As before, it then expands the states on the
queue in order of increasing priority until there is no state in
the queue with a priority less than that of the start state. By
incorporating the value k2(s) into the priority for state s, D*
Lite ensures that states that are along the current path and on
the queue are processed in the right order. Combined with
the termination condition, this ordering also ensures that a
least-cost path will have been found from the start state to
the goal state when processing is finished. The basic version
of the algorithm (for a fixed start state) is given in Figure 31.

D* Lite is efficient because it uses a heuristic to restrict at-
tention to only those states that could possibly be relevant to
repairing the current solution path from a given start state to
the goal state. When edge costs decrease, the incorporation
of the heuristic in the key value (k1) ensures that only those
newly-overconsistent states that could potentially decrease
the cost of the start state are processed. When edge costs
increase, it ensures that only those newly-underconsistent
states that could potentially invalidate the current cost of the
start state are processed.

In some situations the process of invalidating old costs

1Because the optimizations of D* Lite presented in (Koenig &
Likhachev 2002) can significantly speed up the algorithm, for an
efficient implementation of D* Lite please refer to that paper.
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may be unnecessary for repairing a least-cost path. For ex-
ample, such is the case when there are no edge cost de-
creases and all edge cost increases happen outside of the
current least-cost path. To guarantee optimality in the fu-
ture, D* Lite would still invalidate portions of the old search
tree that are affected by the observed edge cost changes even
though it is clear that the old solution remains optimal. To
overcome this a modified version of D* Lite has recently
been proposed that delays the propagation of cost increases
as long as possible while still guaranteeing optimality. De-
layed D* (Ferguson & Stentz 2005) is an algorithm that ini-
tially ignores underconsistent states when changes to edge
costs occur. Then, after the new values of the overconsis-
tent states have been adequately propagated through the state
space, the resulting solution path is checked for any under-
consistent states. All underconsistent states on the path are
added to the OPEN list and their updated values are prop-
agated through the state space. Because the current propa-
gation phase may alter the solution path, the new solution
path needs to be checked for underconsistent states. The en-
tire process repeats until a solution path that contains only
consistent states is returned.

Applicability: Replanning Algorithms
Delayed D* has been shown to be significantly more effi-
cient than D* Lite in certain domains (Ferguson & Stentz
2005). Typically, it is most appropriate when there is a rel-
atively large distance between the start state and the goal
state, and changes are being observed in arbitrary locations
in the graph (for example, map updates are received from a
satellite). This is because it is able to ignore the edge cost
increases that do not involve its current solution path, which
in these situations can lead to a dramatic decrease in over-
all computation. When a robot is moving towards a goal in a
completely unknown environment, Delayed D* will not pro-
vide much benefit over D* Lite, as in this scenario typically
the costs of only few states outside of the current least-cost
path have been computed and therefore most edge cost in-
creases will be ignored by both algorithms. There are also
scenarios in which Delayed D* will do more processing
than D* Lite: imagine a case where the processing of un-
derconsistent states changes the solution path several times,
each time producing a new path containing underconsistent
states. This results in a number of replanning phases, each
potentially updating roughly the same area of the state space,
and will be far less efficient than dealing with all the under-
consistent states in a single replanning episode. However, in
realistic navigation scenarios, such situations are very rare.

In practise, both D* Lite and Delayed D* are very effec-
tive for replanning in the context of mobile robot navigation.
Typically, in such scenarios the changes to the graph are hap-
pening close to the robot (through its observations), which
means their effects are usually limited. When this is the case,
using an incremental replanner such as D* Lite will be far
more efficient than planning from scratch. However, this is
not universally true. If the areas of the graph being changed
are not necessarily close to the position of the robot, it is pos-
sible for D* Lite to be less efficient than A*. This is because
it is possible for D* Lite to process every state in the envi-

ronment twice: once as an underconsistent state and once
as an overconsistent state. A*, on the other hand, will only
ever process each state once. The worst-case scenario for D*
Lite, and one that illustrates this possibility, is when changes
are being made to the graph in the vicinity of the goal. It is
thus common for systems using D* Lite to abort the replan-
ning process and plan from scratch whenever either major
edge cost changes are detected or some predefined threshold
of replanning processing is reached.

Also, when navigating through completely unknown envi-
ronments, it can be much more efficient to search forwards
from the agent position to the goal, rather than backwards
from the goal. This is because we typically assign optimistic
costs to edges whose costs we don’t know. As a result, areas
of the graph that have been observed have more expensive
edge costs than the unexplored areas. This means that, when
searching forwards, as soon as the search exits the observed
area it can rapidly progress through the unexplored area di-
rectly to the goal. However, when searching backwards, the
search initially rapidly progresses to the observed area, then
once it encounters the more costly edges in the observed
area, it begins expanding large portions of the unexplored
area trying to find a cheaper path. As a result, it can be sig-
nificantly more efficient to use A* rather than backwards A*
when replanning from scratch. Because the agent is moving,
it is not possible to use a forwards-searching incremental re-
planner, which means that the computational advantage of
using a replanning algorithm over planning from scratch is
reduced.

As mentioned earlier, these algorithms can also be applied
to symbolic planning problems (Koenig, Furcy, & Bauer
2002; Liu, Koenig, & Furcy 2002). However, in these cases
it is important to consider whether there is an available pre-
decessor function in the particular planning domain. If not,
it is necessary to maintain for each state s the set of all states
s′ that have used s as a successor state during the search, and
treat this set as the set of predessors of s. This is also useful
when such a predecessor function exists but contains a very
large number of states; maintaining a list of just the states
that have actually used s as a successor can be far more effi-
cient than generating all the possible predecessors.

In the symbolic planning community it is also common to
use inconsistent heuristics since problems are often infeasi-
ble to solve optimally. The extensions to D* Lite presented
in (Likhachev & Koenig 2005) enable D* Lite to handle in-
consistent heuristics. These extensions also allow one to
vary the tie-breaking criteria when selecting states from the
OPEN list for processing. This might be important when a
problem has many solutions of equal costs and the OPEN
list contains a large number of states with the same priori-
ties.

Apart from the static approaches (Dijkstra’s, A*), all of
the algorithms that we discuss in this paper attempt to reuse
previous results to make subsequent planning tasks easier.
However, if the planning problem has changed sufficiently
since the previous result was generated, this result may be a
burden rather than a useful starting point.

For instance, it is possible in symbolic domains that alter-
ing the cost of a single operator may affect the path cost of
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a huge number of states. As an example, modifying the cost
of the load operator in the rocket domain may completely
change the nature of the solution. This can also be a prob-
lem when path planning for robots with several degrees of
freedom: even if a small change occurs in the environment,
it can cause a huge number of changes in the complex con-
figuration space. As a result, replanning in such scenarios
can often be of little or no benefit.

Anytime Algorithms
When an agent must react quickly and the planning problem
is complex, computing optimal paths as described in the pre-
vious sections can be infeasible, due to the sheer number of
states required to be processed in order to obtain such paths.
In such situations, we must be satisfied with the best solution
that can be generated in the time available.

A useful class of deterministic algorithms for address-
ing this problem are commonly referred to as anytime al-
gorithms. Anytime algorithms typically construct an initial,
possibly highly suboptimal, solution very quickly, then im-
prove the quality of this solution while time permits (Zil-
berstein & Russell 1995; Dean & Boddy 1988; Zhou &
Hansen 2002; Likhachev, Gordon, & Thrun 2003; Horvitz
1987). Heuristic-based anytime algorithms often make use
of the fact that in many domains inflating the heuristic values
used by A* (resulting in the weighted A* search) often pro-
vides substantial speed-ups at the cost of solution optimality
(Bonet & Geffner 2001; Korf 1993; Zhou & Hansen 2002;
Edelkamp 2001; Rabin 2000; Chakrabarti, Ghosh, & De-
Sarkar 1988). Further, if the heuristic used is consistent2,
then multiplying it by an inflation factor ε > 1 will produce
a solution guaranteed to cost no more than ε times the cost of
an optimal solution. Likhachev, Gordon, and Thrun use this
property to develop an anytime algorithm that performs a
succession of weighted A* searches, each with a decreasing
inflation factor, where each search reuses efforts from pre-
vious searches (Likhachev, Gordon, & Thrun 2003). Their
approach provides suboptimality bounds for each successive
search and has been shown to be much more efficient than
competing approaches (Likhachev, Gordon, & Thrun 2003).

Likhachev et al.’s algorithm, Anytime Repairing A*
(ARA*), limits the processing performed during each search
by only considering those states whose costs at the previous
search may not be valid given the new ε value. It begins
by performing an A* search with an inflation factor ε0, but
during this search it only expands each state at most once3.
Once a state s has been expanded during a particular search,
if it becomes inconsistent (i.e., g(s) 6= rhs(s)) due to a cost
change associated with a neighboring state, then it is not
reinserted into the queue of states to be expanded. Instead, it
is placed into the INCONS list, which contains all inconsis-
tent states already expanded. Then, when the current search
terminates, the states in the INCONS list are inserted into a

2A (forwards) heuristic h is consistent if, for all s ∈ S,
h(s, sgoal) ≤ c(s, s′) + h(s′, sgoal) for any successor s′ of s,
and h(sgoal, sgoal) = 0.

3It is proved in (Likhachev, Gordon, & Thrun 2003) that this
still guarantees an ε0 suboptimality bound.

key(s)
01. return g(s) + ε · h(sstart, s);

ImprovePath()

02. while (mins∈OPEN(key(s)) < key(sstart))
03. remove s with the smallest key(s) from OPEN;
04. CLOSED = CLOSED ∪ {s};
05. for all s′ ∈ Pred(s)

06. if s′ was not visited before
07. g(s′) = ∞;
08. if g(s′) > c(s′, s) + g(s)

09. g(s′) = c(s′, s) + g(s);
10. if s′ 6∈ CLOSED
11. insert s′ into OPEN with key(s′);
12. else
13. insert s′ into INCONS;

Main()

14. g(sstart) = ∞; g(sgoal) = 0;
15. ε = ε0;
16. OPEN = CLOSED = INCONS = ∅;
17. insert sgoal into OPEN with key(sgoal);
18. ImprovePath();
19. publish current ε-suboptimal solution;
20. while ε > 1

21. decrease ε;
22. Move states from INCONS into OPEN;
23. Update the priorities for all s ∈ OPEN according to key(s);
24. CLOSED = ∅;
25. ImprovePath();
26. publish current ε-suboptimal solution;

Figure 4: The ARA* Algorithm (backwards version).

fresh priority queue (with new priorities based on the new ε
inflation factor) which is used by the next search. This im-
proves the efficiency of each search in two ways. Firstly, by
only expanding each state at most once a solution is reached
much more quickly. Secondly, by only reconsidering states
from the previous search that were inconsistent, much of the
previous search effort can be reused. Thus, when the infla-
tion factor is reduced between successive searches, a rela-
tively minor amount of computation is required to generate
a new solution.

A simplified, backwards-searching version of the algo-
rithm is given in Figure 44. Here, the priority of each state s
in the OPEN queue is computed as the sum of its cost g(s)
and its inflated heuristic value ε ·h(sstart, s). CLOSED con-
tains all states already expanded once in the current search,
and INCONS contains all states that have already been ex-
panded and are inconsistent.

Applicability: Anytime Algorithms
ARA* has been shown to be much more efficient than com-
peting approaches and has been applied successfully to path
planning in high-dimensional state spaces, such as kinematic
robot arms with 20 links (Likhachev, Gordon, & Thrun
2003). It has thus effectively extended the applicability of

4The backwards-searching version is shown because it will be
useful when discussing the algorithm’s similarity to D* Lite.
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Figure 5: The ATRV robotic platform.

deterministic planning algorithms into much higher dimen-
sions than previously possible. It has also been used to plan
smooth trajectories for outdoor mobile robots in known en-
vironments. Figure 5 shows an outdoor robotic system that
has used ARA* for this purpose. Here, the search space
involved four dimensions: the (x, y) position of the robot,
the robot’s orientation, and the robot’s velocity. ARA* is
able to plan suboptimal paths for the robot very quickly,
then improve the quality of these paths as the robot begins
its traverse (as the robot moves the start state changes and
therefore in between search iterations the heuristics are re-
computed for all states in the OPEN list right before their
priorites are updated).

ARA* is well suited to domains in which the state space
is very large and suboptimal solutions can be generated ef-
ficiently. Although using an inflation factor ε usually expe-
dites the planning process, this is not guaranteed. In fact, it is
possible to construct pathological examples where the best-
first nature of searching with a large ε can result in much
longer processing times. The larger ε is, the more greedy
the search through the space is, leaving it more prone to get-
ting temporarily stuck in local minima. In general, the key to
obtaining anytime behavior with ARA* is finding a heuris-
tic function with shallow local minima. For example, in the
case of robot navigation a local minimum can be a U-shaped
obstacle placed on the straight line connecting a robot to
its goal (assuming the heuristic function is Euclidean dis-
tance) and the size of the obstacle determines how many
states weighted A*, and consequently ARA*, will have to
process before getting out of the minimum.

Depending on the domain one can also augment ARA*
with a few optimizations. For example, in graphs with con-
siderable branching factors the OPEN list can grow pro-
hibitively large. In such cases, one can borrow an interesting
idea from (Zhou & Hansen 2002) and prune (and never in-
sert) the states from the OPEN list whose priorities based
on un-inflated heuristic are already larger than the cost of
the current solution (e.g., g(sgoal) in the forwards-searching
version).

However, because ARA* is an anytime algorithm, it is

only useful when an anytime solution is desired. If a solution
with a particular suboptimality bound of εd is desired, and
no intermediate solution matters, then it is far more efficient
to perform a weighted A* search with an inflation factor of
εd than to use ARA*.

Further, ARA* is only applicable in static planning do-
mains. If changes are being made to the planning graph,
ARA* is unable to reuse its previous search results and must
replan from scratch. As a result, it is not appropriate for dy-
namic planning problems. It is this limitation that motivated
research into the final set of algorithms we discuss here: any-
time replanners.

Anytime Replanning Algorithms
Although each is well developed on its own, there has been
relatively little interaction between the above two areas of
research. Replanning algorithms have concentrated on find-
ing a single, usually optimal, solution, and anytime algo-
rithms have concentrated on static environments. But some
of the most interesting real world problems are those that are
both dynamic (requiring replanning) and complex (requiring
anytime approaches).

As a motivating example, consider motion planning for a
kinematic arm in a populated office area. A planner for such
a task would ideally be able to replan efficiently when new
information is received indicating that the environment has
changed. It would also need to generate suboptimal solu-
tions, as optimality may not be possible given limited delib-
eration time.

Recently, Likhachev et al. developed Anytime Dynamic
A* (AD*), an algorithm that combines the replanning ca-
pability of D* Lite with the anytime performance of ARA*
(Likhachev et al. 2005). AD* performs a series of searches
using decreasing inflation factors to generate a series of solu-
tions with improved bounds, as with ARA*. When there are
changes in the environment affecting the cost of edges in the
graph, locally affected states are placed on the OPEN queue
to propagate these changes through the rest of the graph, as
with D* Lite. States on the queue are then processed until
the solution is guaranteed to be ε-suboptimal.

The algorithm is presented in Figures 6 and 75. AD* be-
gins by setting the inflation factor ε to a sufficiently high
value ε0, so that an initial, suboptimal plan can be generated
quickly. Then, unless changes in edge costs are detected, ε
is gradually decreased and the solution is improved until it
is guaranteed to be optimal, that is, ε = 1. This phase is
exactly the same as for ARA*: each time ε is decreased, all
inconsistent states are moved from INCONS to OPEN and
CLOSED is made empty.

When changes in edge costs are detected, there is a chance
that the current solution will no longer be ε-suboptimal. If
the changes are substantial, then it may be computation-
ally expensive to repair the current solution to regain ε-
suboptimality. In such a case, the algorithm increases ε so

5As with D* Lite the optimizations presented in (Koenig &
Likhachev 2002) can be used to substantially speed up AD* and
are recommended for an efficient implementation of the algorithm.
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key(s)
01. if (g(s) > rhs(s))

02. return [min(g(s), rhs(s)) + ε · h(sstart, s); min(g(s), rhs(s)))];
03. else
04. return [min(g(s), rhs(s)) + h(sstart, s); min(g(s), rhs(s)))];

UpdateState(s)
05. if s was not visited before
06. g(s) = ∞;
07. if (s 6= sgoal) rhs(s) = mins′∈Succ(s)(c(s, s′) + g(s′));
08. if (s ∈ OPEN) remove s from OPEN;
09. if (g(s) 6= rhs(s))

10. if s 6∈ CLOSED
11. insert s into OPEN with key(s);
12. else
13. insert s into INCONS;

ComputeorImprovePath()

14. while (mins∈OPEN(key(s)) <̇ key(sstart) OR rhs(sstart) 6= g(sstart))
15. remove state s with the minimum key from OPEN;
16. if (g(s) > rhs(s))

17. g(s) = rhs(s);
18. CLOSED = CLOSED ∪ {s};
19. for all s′ ∈ Pred(s) UpdateState(s′);
20. else
21. g(s) = ∞;
22. for all s′ ∈ Pred(s) ∪ {s} UpdateState(s′);

Figure 6: Anytime Dynamic A*: ComputeorIm-
provePath function.

Main()

01. g(sstart) = rhs(sstart) = ∞; g(sgoal) = ∞;
02. rhs(sgoal) = 0; ε = ε0;
03. OPEN = CLOSED = INCONS = ∅;
04. insert sgoal into OPEN with key(sgoal);
05. ComputeorImprovePath();
06. publish current ε-suboptimal solution;
07. forever
08. if changes in edge costs are detected
09. for all directed edges (u, v) with changed edge costs
10. Update the edge cost c(u, v);
11. UpdateState(u);
12. if significant edge cost changes were observed
13. increase ε or replan from scratch;
14. else if ε > 1

15. decrease ε;
16. Move states from INCONS into OPEN;
17. Update the priorities for all s ∈ OPEN according to key(s);
18. CLOSED = ∅;
19. ComputeorImprovePath();
20. publish current ε-suboptimal solution;
21. if ε = 1

22. wait for changes in edge costs;

Figure 7: Anytime Dynamic A*: Main function.

that a less optimal solution can be produced quickly. Be-
cause edge cost increases may cause some states to become
underconsistent, a possibility not present in ARA*, states
need to be inserted into the OPEN queue with a key value
reflecting the minimum of their old cost and their new cost.
Further, in order to guarantee that underconsistent states
propagate their new costs to their affected neighbors, their
key values must use admissible heuristic values. This means
that different key values must be computed for underconsis-
tent states than for overconsistent states.

By incorporating these considerations, AD* is able to
handle both changes in edge costs and changes to the in-
flation factor ε. Like the replanning and anytime algorithms
we’ve looked at, it can also be slightly modified to handle
the situation where the start state sstart is changing, as is the
case when the path is being traversed by an agent. This al-
lows the agent to improve and update its solution path while
it is being traversed.

An Example6

Figure 8 presents an illustration of each of the approaches
described in the previous sections employed on a simple
grid world planning problem. In this example we have an
eight-connected grid where black cells represent obstacles
and white cells represent free space. The cell marked R de-
notes the position of an agent navigating this environment
towards a goal cell, marked G (in the upper left corner of
the grid world). The cost of moving from one cell to any
non-obstacle neighboring cell is one. The heuristic used by
each algorithm is the larger of the x (horizontal) and y (ver-
tical) distances from the current cell to the cell occupied by
the agent. The cells expanded by each algorithm for each
subsequent agent position are shown in grey. The resulting
paths are shown as grey arrows.

The first approach shown is (backwards) A*. The initial
search performed by A* provides an optimal path for the
agent. After the agent takes two steps along this path, it
receives information indicating that one of the cells in the
top wall is in fact free space. It then replans from scratch
using A* to generate a new, optimal path to the goal. The
combined total number of cells expanded at each of the first
three agent positions is 31.

The second approach is A* with an inflation factor of
ε = 2.5. This approach produces an initial suboptimal so-
lution very quickly. When the agent receives the new infor-
mation regarding the top wall, this approach replans from
scratch using its inflation factor and produces a new path
(which happens to be optimal). The total number of cells
expanded is only 19, but the solution is only guaranteed to
be ε-suboptimal at each stage.

The third approach is D* Lite, and the fourth is D* Lite
with an inflation factor of ε = 2.5. The bounds on the qual-
ity of the solutions returned by these respective approaches
are equivalent to those returned by the first two. However,
because D* Lite reuses previous search results, it is able to
produce its solutions with far fewer overall cell expansions.

6This example and the ensuing discussion are borrowed from
(Likhachev et al. 2005).
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left: A*
right: A* with ε = 2.5

ε = 1.0 ε = 1.0 ε = 1.0 ε = 2.5 ε = 2.5 ε = 2.5

left: D* Lite
right: D* Lite with ε = 2.5

ε = 1.0 ε = 1.0 ε = 1.0 ε = 2.5 ε = 2.5 ε = 2.5

left: ARA*
right: Anytime Dynamic A*

ε = 2.5 ε = 1.5 ε = 1.0 ε = 2.5 ε = 1.5 ε = 1.0

Figure 8: A simple robot navigation example. The robot starts in the bottom right cell and plans a path to the upper left cell.
After it has moved two steps along its path, it observes a gap in the top wall. The states expanded by each of six algorithms
(A*, A* with an inflation factor, D* Lite, D* Lite with an inflation factor, ARA*, and AD*) are shown at each of the first three
robot positions. Example borrowed from (Likhachev et al. 2005).

D* Lite without an inflation factor expands 27 cells (almost
all in its initial solution generation) and always maintains an
optimal solution, and D* Lite with an inflation factor of 2.5
expands 13 cells but produces solutions that are suboptimal
every time it replans.

The final row of the figure shows the results of (back-
wards) ARA* and AD*. Each of these approaches begins
by computing a suboptimal solution using an inflation factor
of ε = 2.5. While the agent moves one step along this path,
this solution is improved by reducing the value of ε to 1.5
and reusing the results of the previous search. The path cost
of this improved result is guaranteed to be at most 1.5 times
the cost of an optimal path. Up to this point, both ARA* and
AD* have expanded the same 15 cells each. However, when
the robot moves one more step and finds out the top wall
is broken, each approach reacts differently. Because ARA*
cannot incorporate edge cost changes, it must replan from
scratch with this new information. Using an inflation fac-
tor of 1.0 it produces an optimal solution after expanding 9
cells (in fact this solution would have been produced regard-
less of the inflation factor used). AD*, on the other hand, is
able to repair its previous solution given the new informa-
tion and lower its inflation factor at the same time. Thus, the
only cells that are expanded are the 5 whose cost is directly
affected by the new information and that reside between the
agent and the goal.

Overall, the total number of cells expanded by AD* is 20.
This is 4 less than the 24 required by ARA* to produce an
optimal solution, and substantially less than the 27 required
by D* Lite. Because AD* reuses previous solutions in the
same way as ARA* and repairs invalidated solutions in the
same way as D* Lite, it is able to provide anytime solutions

in dynamic environments very efficiently. The experimental
evaluation on a simulated kinematic robot arm performed
in (Likhachev et al. 2005) supports these claims and shows
AD* to be many times more efficient than ARA*, to be able
to operate under limited time constraints (an ability that D*
Lite lacks), and finally to consistently produce significantly
better solutions than D* Lite with inflated heuristics.

Applicability: Anytime Replanning Algorithms
AD* has been shown to be useful for planning in dynamic,
complex state spaces, such as 3 DOF robotic arms operat-
ing in dynamic environments (Likhachev et al. 2005). It
has also been used for path-planning for outdoor mobile
robots. In particular, those operating in dynamic or partially-
known outdoor environments, where velocity considerations
are important for generating smooth, timely trajectories. As
discussed earlier, this can be framed as a path planning prob-
lem over a 4D state space, and an initial suboptimal solution
can be generated using AD* in exactly the same manner as
ARA*.

Once the robot starts moving along this path, it is likely
that it will discover inaccuracies in its map of the environ-
ment. As a result, the robot needs to be able to quickly re-
pair previous, suboptimal solutions when new information is
gathered, then improve these solutions as much as possible
given its processing constraints.

AD* has been used to provide this capability for two
robotic platforms currently used for outdoor navigation: an
ATRV and a Segway Robotic Mobility Platform (Segway
RMP) (see Figure 9) (Likhachev et al. 2005). To direct the
4D search in each case, a fast 2D (x, y) planner was used to
provide the heuristic values.
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Figure 9: The Segway Robotic Mobility Platform.

Unfortunately, AD* suffers the drawbacks of both any-
time algorithms and replanning algorithms. As with replan-
ning algorithms, it is possible for AD* to be more computa-
tionally expensive than planning from scratch. In fact, this
is even more so for AD*, since the version presented here
and in (Likhachev et al. 2005) reorders the OPEN list every
time ε is changed. It is thus important to have extra checks
in place for AD* to prevent trying to repair the previous so-
lution when it looks like it will be more time consuming
than starting over (see lines 12 - 14 in Figure 7). For the
outdoor navigation platforms mentioned above, this check
is based on how much the 2D heuristic cost from the cur-
rent state to the goal has changed based on changes to the
map: if this change is large, there is a good chance replan-
ning will be time consuming. In general it is worth taking
into account how much of the search tree has become in-
consistent, as well as how long it has been since we last re-
planned from scratch. If a large portion of the search tree
has been affected and the last complete replanning episode
was quite some time ago, it is probably worth scrapping the
search tree and starting fresh. This is particularly true in
very high-dimensional spaces where the dimensionality is
derived from the complexity of the agent rather than the en-
vironment, since changes in the environment can affect a
huge number of states.

There are also a couple optimizations that can be made
to AD*. Firstly, it is possible to limit the expense of re-
ordering the OPEN list each time ε changes by reducing the
size of the queue. Specifically, OPEN can be split into a pri-
ority queue containing states with low key values and one
or more unordered lists containing the states with very large
key values. The states from the unordered lists need only be
considered if the element at the top of the priority queue has
a larger key value than the state with minimum key value in
these lists. We thus need only maintain the minimum key
value (or some lower bound for this value) for all states in

the unordered lists. Another more sophisticated and poten-
tially more effective idea that avoids the re-order operation
altogether is based on adding a bias to newly inconsistent
states (Stentz 1995) and is discussed in (Likhachev et al.
2005).

Conclusions
In this paper, we have discussed a family of heuristic algo-
rithms for path planning in real world scenarios. We have
attempted to highlight the fundamental similarities between
each of the algorithms, along with their individual strengths,
weaknesses, and applicable problem domains. A common
underlying theme throughout this discussion has been the
variable value of previous solutions. When the problem be-
ing solved does not change significantly between invoca-
tions of our planner, it can be highly advantageous to take
advantage of previous solutions as much as possible in con-
structing a new one. When the problem being solved does
change, previous solutions are less useful, and can even be
detrimental to the task of arriving at a new solution.
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Abstract

In this paper, we present the problem of management of an
Earth watching mission (detection, observation, and tracking
of forest fires and volcanic eruptions) by means of a constel-
lation of low-orbit satellites. We show that the mission reac-
tivity requirements and the communication constraints make
on-board decision capabilities absolutely necessary. After
showing how tracking tasks can be shared on the ground
between satellites, we focus on on-board decision-making
mechanisms. We show how a continuous anytime planning
module can be designed to deal as optimally and reactively as
possible with observation and data down-loading decisions.
After an analysis of simulation results, we try to draw from
this particular setting general lessons about continuous any-
time decision-making mechanisms for permanent missions in
dynamic unforeseeable environments.

An Earth global watching mission
Fire and eruption detection, observation, and
tracking
The space mission we discuss in this paper has been
provided to us by the French Space Agency (CNES,
(Charmeau 2002)), in order to assess the interest and the
feasibility of on-board autonomous planning and schedul-
ing modules. Although it is not an actual mission
yet, it is a realistic mission, inspired from the Bird
(http://spacesensors.dlr.de/SE/bird/) and Fuego (Escorial,
Tourne, & Reina 2001) projects.

The mission objectives are to detect, to observe, and to
track forest fires or volcanic eruptions. More precisely, start-
ing fires and eruptions must be automatically detected, lo-
calized and roughly identified. In case of detection of a fire
or an eruption by a satellite, this satellite must immediately
send an alarm to the concerned ground mission center and
trigger an observation of the associated ground area. After
that and as long as it is necessary, this area must be tracked
by this satellite and by the other ones of the constellation i.e.,
observed as regularly as possible. After each observation,
data must be delivered as early as possible to the concerned
ground mission centers.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

A constellation of Earth watching satellites
To fulfill this mission, we assume to have at our disposal the
following space and ground physical components:

1. a constellation of 12 identical low-orbit (LEO) satellites,
arranged according to a Walker schema (Walker 1970):
3 orbital planes, each with an inclination angle of 47, 5◦
with regard to the polar axis, 4 satellites per orbital plan,
evenly distributed on a circular orbit at an altitude of 700
km;

2. a set of 3 geostationary (GEO) satellites which together
cover the whole Earth surface;

3. a set of ground mission centers, possibly dedicated to a
specific area and to a specific kind of event (either forest
fire, or volcanic eruption).

4. a ground constellation control center.

Given their altitude, the LEO satellites have a revolution
period round the Earth of about 100 minutes. Figure 1 is
a schematic 3D view of the movement of the constellation
within a 25 minute period. It represents the trajectory of
each LEO satellite within this period with, for one of them,
the ground strip that is swept by its detection instrument (see
below). It represents also as examples three ground stations
(only two are visible on this figure) with the cuts of their
reception/emission cones at an altitude of 700km: a LEO
satellite can receive or emit data from or to a station only
when it is inside the associated circle.

Figure 2 is the 2D ground counterpart of Figure 1. For
each LEO satellite, its represents the track on the ground
of its trajectory within a 25 minute period and the ground
strip that is swept by its detection instrument. Note the three
orbital planes and the shift between the track of a satellite
and the track of the following one in the same orbital plane,
due to Earth rotation on itself. Simulations show that the
time between two successive flights over a given ground area
by any of the satellites of the constellation depends on the
area latitude, but is very irregular at each latitude: from some
minutes to some hours.

The GEO satellites can be used to relay alarms from the
LEO satellites to the ground. At any time, each LEO satel-
lite is covered by one of the 3 GEO ones and can thus send
an alarm to it. From the GEO satellite, this alarm can be
sent to the ground reception station associated with it, and
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Figure 2: Track on the ground of the 12 satellites of the constellation within a 25 minute period.

Figure 1: Movement of the constellation within a 25 minute
period.

then to the concerned ground mission center via any ground
communication network.

The ground mission centers can receive observation data
from the LEO satellites, but only when they are in visibility
of the associated reception station.

The ground constellation control center can send obser-
vation requests to the LEO satellites, but, as with mission
centers, only when they are in visibility of the associated
emission station.

Detection and observation instruments
We assume that each LEO satellite is equipped with two in-
struments (see Figure 3):

1. an infrared detection instrument, the swath of which is
2500 km wide. This instrument is permanently active and
pointed 30◦, that is 400 km, in front of the satellite. Data
analysis is instantly performed on board. In case of fire

176 km
400 km

2500 km

Detection

satellite
orbit
Satellite

swath

swath
instrument

Observation

Low−orbiting

Performed
observations

Satellite
trackinstrument

Figure 3: Detection and observation on-board each LEO
satellite.

or eruption detection, an alarm is sent to the concerned
ground mission center via the currently visible GEO satel-
lite and an observation request is sent to the observation
system;

2. an observation instrument, the swath of which is only 176
km wide. Four observation modes, in the visible, near
infrared, and thermal infrared spectrums, are available,
according to the kind of phenomenon to observe. This
instrument is not permanently active. It is permanently
pointed under the satellite, but a mobile mirror in front of
it allows it to observe laterally any ground area in the strip
that is swept by the detection instrument. Data that re-
sult from an observation are not analyzed on-board. They
are down-loaded to the concerned ground mission center
within visibility windows.

Note that, because the detection instrument is systemat-
ically pointed 30◦ in front of the satellite, there is an one
minute delay between the detection of an unexpected phe-
nomenon by a satellite and its possible observation by the
same satellite.

Because the satellite can observe a ground area only when
it arrives roughly at the same latitude, the starting and ending
times of the observation of a given area from a given revolu-
tion of a given satellite are fixed and two areas the latitudes
of which are too close may be incompatible: they cannot be
observed by the same satellite from the same revolution be-
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cause either a temporal overlapping, or an insufficient time
to modify the mirror orientation (see Figure 4).
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Figure 4: Incompatibilities between observations from the
same satellite and the same revolution.

On-board energy and memory
Each LEO satellite is limited in terms of energy and memory
available on-board. Figure 5 shows the permanent and tem-
porary productions and consumptions of energy and mem-
ory that must be taken into account.

Detection instrument

Platform

Observation instrument

Observation data downloading

Batteries

memory
Mass Detection instrument data

Observation instrument data

Permanent
Intermittent

Data downloading

Solar panels

Figure 5: Productions and consumptions of energy and
memory.

It is assumed that solar panels are powerful enough to
cover the maximum energy consumption during day win-
dows, but enough energy must be stocked into batteries to
cover night windows. Energy and memory are not indepen-
dent because observations consume energy and memory and
because data down-loading produces memory (by releasing
memory space), but consumes energy.

Observation data down-loading and request
up-loading
As previously said, data down-loading is possible from a
LEO satellite to a ground mission center as soon as the satel-
lite is in visibility of the reception station. But, at any time, a
satellite cannot down-load data to more than one station and
a station cannot receive data from more than one satellite.

Similarly, request up-loading is possible from the ground
control center to a LEO satellite as soon as the satellite is
in visibility of the emission station. But, at any time, the
station cannot send requests to more than one satellite.

Communication constraints
Figure 6 summarizes the communications that are possible
between space and ground components.

Ground

centre
control

Ground
mission
centre

Low
orbiting
satellites

Alarms

Observation
data

Observation
requests

Geostationary
satellite

Figure 6: Possible communications between space and
ground components.

It must be stressed that:

• communications between the LEO satellites and the
ground, via the GEO satellites, are possible at any time,
but limited to unidirectional low rate communications,
only able to support alarms in case of fire or eruption de-
tection;

• only direct visibility windows between LEO satellites and
ground stations can be used for higher rate communica-
tions, able to support observation data down-loading and
request up-loading.

• no direct communication is possible between LEO satel-
lites;

Let us add that the time between two successive visibility
windows between a given LEO satellite and a given ground
station depends on the station latitude, but is very irregular
along time: from 100 minutes (one revolution) to more than
15 hours.

Decision-making organization between the
ground constellation control center and the

LEO satellites
Together, the global mission objectives and the physi-
cal/technological setting that have been presented so far
strongly constrain the kind of decision-making organiza-
tion that is possible between the ground constellation control
center and the LEO satellites.

The first objective of the mission is to detect starting fires
and eruptions and, in case of detection, to send alarms, to
trigger observations, and to down-load observation data. Be-
tween a detection and the triggering of an observation of the
associated area, there is only one minute. Between the ob-
servation and the associated data down-loading, there is a
highly variable time that depends on the next visibility win-
dow between the satellite and the concerned ground mission
center. This means that the satellite cannot wait for decisions
from the ground control center (which could arrive only via
visibility windows) to trigger an observation and to down-
load associated data after detection. It must be able to make
these decisions autonomously on-board and to manage for
that possible conflicts with previously planned observations
and data down-loadings.

The second objective of the mission is to track areas
where fires or eruptions have been detected, by triggering
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observations as regularly as possible and by down-loading
associated data as early as possible. Because the time be-
tween two successive flights of a given satellite over a given
ground area can go up to 15 hours, this task cannot be per-
formed by a satellite alone, but by the whole constellation.
Thus, tracking must be planned between all the constella-
tion satellites. But, each satellite alone has only a partial
view of the current fires and eruptions, and cannot commu-
nicate directly with the others. This turns out any choice for
a decentralized task sharing mechanism between constella-
tion satellites. In fact, via the alarms that are immediately
relayed by the GEO satellites, the ground control center has
at any time a complete view of all the fires or eruptions de-
tected by all the constellation satellites. It can consequently
share tracking tasks among satellites, with however two lim-
itations. The first one is that it may be not aware of the actual
state of each satellite, particularly of the actual levels of en-
ergy and memory available on-board. The second one is that
it has no permanent communication with each satellite and
that the result of its sharing will be sent to a given satellite
only when this satellite will be in visibility. Both points do
not rule out any interest in a sharing of the tracking tasks
performed on the ground, but limit its impact: the result of
the sharing shall be seen by LEO satellites only as advice or
requests, not as orders; each LEO satellite shall remain able
to deal autonomously with conflicts between requests com-
ing either from the ground or from on-board detection, by
taking into account its actual levels of energy and memory.

The organization that seems to fit the best the physi-
cal/technological setting at hand is thus a mix of central-
ized and decentralized decision-making: a central entity has
at any time a global view of the work to do, shares this
work between local entities, and communicates the sharing
result to them when it can do it; each local entity does at
any time the best it can, taking into account its state, the re-
quests/advice of the central entity, and events that may occur
unexpectedly.

This setting is strongly different from the one of Earth
observation, which has been extensively studied for many
years, in the setting of individual satellites and in the one of
fleets or constellations of satellites (Sherwood et al. 1998;
Bensana, Lemaı̂tre, & Verfaillie 1999; Wolfe & Sorensen
2000; Pemberton 2000; Vasquez & Hao 2001; Frank et al.
2001; Lemaı̂tre et al. 2002; Globus et al. 2002). In Earth
observation, there is no detection on-board and all the re-
quests come from the ground. This is why there has been no
very strong interest in the design of autonomous decision-
making capabilities, with only some exceptions (Born-
schlegl, David, & Schindler 1998; Verfaillie & Bornschlegl
2000): observation plans can be built on the ground and reg-
ularly up-loaded to the satellites. But things change as soon
as information is produced and analyzed on-board. This is
the case when on-board decisions need information about
the actual state of the satellite that is not accurately avail-
able on the ground at the planning time. This is also the case
when on-board detection of the actual cloud cover allows
the satellite to avoid useless observations in the visible spec-
trum (Lachiver et al. 2001), or when rough on-board image
analysis allows the satellite to remove data associated with

unusable observations, and thus to save on-board memory
and to avoid useless data down-loading (Khatib et al. 2003;
Morris et al. 2003). This is finally the case with Earth
watching, because of the ability of the satellite to detect new
ground phenomena and the need for immediate reaction in
case of detection (Chien et al. 2004).

Ground sharing of tracking tasks
Because this topic is not central in this paper, we offer only
a global view of the way this sharing can be performed on
the ground and we focus on its output: the requests that are
sent to the LEO satellites.

Because requests can be up-loaded to a LEO satellite only
when this satellite is in visibility of the ground control cen-
ter, the control center must prepare requests to this satellite
just before a visibility window and for the period between
this window and the next one. For this period, it must share
tracking tasks among all the satellites, taking into account
the fact that, for the other satellites, it will be able to up-load
requests to them only later, when they will be in visibility:
for these satellites, requests cannot be modified till their next
visibility window (see Figure 7).

Time

Time

Time

Decision and reasoning horizon

Visibility windows

Commitment horizons

s1

s2

s3

Decision
time

Figure 7: Decision time, commitment, decision and reason-
ing horizons for the sharing module just before a visibility
window for the satellite s1.

With each area where a fire or an eruption has been de-
tected, is associated a tracking request. With each one, are
associated a priority level p, 1 ≤ p ≤ pmax − 1, a tracking
starting time st, and a tracking period tp. Ideally, this area
should be observed at each time st + i · tp, i ≥ 0 and data
should be down-loaded immediately after observation. In
reality, even by using all the constellation satellites and all
the ground stations, one can be only nearing this objective
(see Figure 8).

The objective is then to assign each observation of each
tracking request one (or more) satellite able to perform it, in
such a way that all the tracking requests are satisfied as best
as possible : observation times as close as possible to the ref-
erence times, data down-loading times as close as possible to
the observation times. We associate an observation note and
a down-loading note with each candidate local assignment.
These notes are normalized in order to be compared. The
note of a candidate local assignment is defined as the min-
imum of its observation note and of its down-loading note.
We use then lexicographic and leximin orderings to compare
two candidate global assignments, and randomized greedy
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Figure 8: Tracking of a ground area: objective and example
of assignment.

algorithms, inspired from (Bresina 1996), to produce good
quality global assignments. Note that only direct incompat-
ibilities between observations by the same satellite from the
same revolution are taken into account when checking the
consistency of a candidate global assignment.

The result is, for each satellite s, a set R(s) of observation
requests. With each one, is associated a priority level p, 1 ≤
p ≤ pmax−1, inherited from the associated tracking request.
In fact, when sending R(s), the control center sends also the
set P of ground phenomena of which it is currently aware.
If satellite s detects a ground phenomenon which is in P
(already known) and the observation of which is not in R(s)
(not assigned to s), it assigns it the lowest priority level 0,
which can be interpreted as to do only if nothing other to do.
If it detects a ground phenomenon which is not in P (not
already known), it assigns it the highest priority level pmax.

Note that the sharing mechanism should take care of a
reasonable sharing of the observations to perform between
all the constellation satellites, in order to get no overloaded
satellite, because an overloaded satellite might be compelled
to ignore some ground requests in order to satisfy on-board
high priority requests resulting from the detection of new
ground phenomena. Inversely, if there are only few track-
ing requests, the control center could decide to assign each
observation more than one satellite, in order to get more fre-
quent observations and above all to be sure that at least one
of the satellites performs it successfully.

On-board decision-making organization
Because the detection instrument is permanently active and
has only one working mode, the only decisions to make on-
board are related to the use of the observation instrument (to
trigger observations), of the mass memory (to record or to
remove data), and of the antennas (to down-load data).

Although the management of observations and the one of
resulting data physically interfere, we present them first sep-
arately, at least for the sake of clarity. Then, we show how
they can be maintained separate, while guaranteeing consis-
tency between decisions.

Observation decisions
Let us recall that each LEO satellite is provided at any time
with a set of observation requests, coming either from the
ground via the visibility windows, or from the on-board de-
tection at any time. With each request r, are associated a

priority level p(r), 0 ≤ p(r) ≤ pmax, an energy consump-
tion e(r), and a memory consumption m(r). The starting
and ending times of the associated observation is completely
determined by the geographical position of the target ground
area.

The basic problem is then, just before the starting time
of each candidate observation, to decide upon its triggering
or not. This decision must be made by taking into account
not only the priority of this observation and the ability to
trigger it (eventual observation in progress, current mirror
orientation, current energy and memory levels), but also the
impact of this decision on future possible observations. This
implies to reason as far as possible ahead. But, how to set the
length of this ahead reasoning horizon? Roughly speaking,
the larger it is, the more precisely assessed the impact of the
current decision is, but the more uncertain data are, and the
more time consuming the reasoning process is.

The choice we made is to design an anytime reasoning
mechanism which adapts itself to the time it has at its dis-
posal. Because candidate observations can be ordered ac-
cording to their starting time, the reasoning horizon at step i
is the sequence made of the first i candidate observations and
the problem is to extract from this sequence a optimal con-
sistent sub-sequence. When the reasoning process is started
or restarted, it begins with a horizon of length 1: only the
next candidate observation is taken into account. When rea-
soning at step i is finished and time is still available for rea-
soning, the length of the reasoning horizon is incremented:
the (i+1)th candidate observation is now taken into account.

The main advantage of such an approach is that a decision
is available at any time, in fact as soon as the reasoning at
step 1 is finished, that is very quickly. This decision is at
any time the first candidate observation in the last computed
optimal consistent sub-sequence: at step i − 1 if reasoning
is stopped when reasoning at step i. Although this is not
always the case (Pearl 1983), we may expect that the quality
of this decision increases with the length of the considered
horizon, that is with the time available for reasoning.

This iterative mechanism is illustrated by Figure 9: after
reasoning at step 7, the optimal sequence of observations is
{1, 4, 6} and the associated decision is 1, but after reasoning
at step 8, the optimal sequence of observations is {2, 5, 8}
and the associated decision is now 2.
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1 3
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Optimal plan
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time
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Reasoning horizon at step 8

Figure 9: Reasoning on larger and larger horizons.
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To reason, we need to compare two consistent sub-
sequences. This is done by associating with any sub-
sequence an evaluation vector that indicates for each priority
level p the number of selected observations of priority p and
by comparing two vectors lexicographically1.

In fact, provided that energy and memory levels are dis-
cretized, the whole iterative mechanism can be implemented
using a dynamic programming approach2. This approach is
based on the recursive computing of the optimal evaluation
vector V ∗(i, e,m) that can be associated with any candidate
observation i, any possible level of energy e, and any possi-
ble level of memory m, and represents the best that can be
obtained from the current time to the ending time of i, by
going out of i with an energy level e and a memory level m.
Equations 1, 2, 3, 4, and 5 are a simplified version of the
equations that are used by this recursive computing. In these
equations, n is the current number of requests, emin, emax,
mmin, and mmax are the minimum and maximum levels of
energy and memory, e0 and m0 are the current levels of en-
ergy and memory, e(i) and m(i) are the consumptions of i in
terms of energy and memory, C(i) is the set of observations
that start before i and are compatible with it (no overlapping
and sufficient transition time3), ∅ is a special vector used to
represent what is impossible4, 0 is a vector only made of 0s.
v(i) is a vector made of 0s but one 1 for the priority level of
i, V ∗(i) is the best that can be obtained with the set of the
observations that start before i (i included), + represents the
addition of two vectors, and max represents the maximum
using a lexicographic comparison.

Real equations take into account the actual productions
and consumptions of energy and memory, as far as they can
be forecast (permanent consumptions, day periods of energy
production, energy consumption and memory production re-
sulting from data-downloading).

∀i, 1 ≤ i ≤ n, (1)
∀e, emin ≤ e ≤ emax − e(i),
∀m, mmin ≤ m ≤ mmax −m(i),
V ∗(i, e,m) = max(∅,maxj∈C(i)

[v(i) + V ∗(j, e + e(i),m + m(i)])

∀i, 1 ≤ i ≤ n, (2)
∀e, emin ≤ e ≤ emax,

1For example, with 4 priority levels from 0 to 3, selection
{8, 4, 7, 5} is preferred to selection {6, 10, 6, 5}, because both con-
tain the same number of observations of priority 3 (5), but the first
one contains more observations of priority 2 (7) than the second
one does (6). In this case, observations of priority 1 or 0 do not
matter.

2In fact, the problem to solve can be seen as the search for one
of the longest paths in a multi-partite oriented graph, where a node
is associated with each triple < i, e, m > and a partition with each
value of i.

30 ∈ C(i) iff the current state of the satellite (eventual observa-
tion in progress, current mirror orientation) allows i to be triggered.

4It is smaller than all the other vectors and the result of adding
it to any other vector is itself (minimum absorbing element).

∀m, mmin ≤ m ≤ mmax,

(e > emax − e(i)) ∨ (m > mmax −m(i))
⇒ V ∗(i, e,m) = ∅

V ∗(0, e0,m0) = 0 (3)

∀e, emin ≤ e ≤ emax, (4)
∀m, mmin ≤ m ≤ mmax,

(e 6= e0) ∨ (m 6= m0)
⇒ V ∗(0, e,m) = ∅

V ∗(i) = maxj≤i,e,mV ∗(j, e,m) (5)

The most interesting feature of this recursive computing
is that the optimal vectors V ∗(i) can be computed one after
the other, by starting with i = 1 and by using at any step
i what has been previously computed. Each time reasoning
at step i is finished with the computing of V ∗(i), a decision
can be extracted from the associated optimal consistent sub-
sequence.

Another interesting feature is its low complexity: at any
step i, a quadratic function of i and a linear function of the
number of discretization steps used for energy and memory.

The last but not the least feature is the optimality of the
result, at least in the restrictive frame resulting from the lim-
itation of the reasoning horizon at any step i and from the
discretization of energy and memory.

This choice of dealing with observation decisions one af-
ter the other differs from the classical choice in planning and
scheduling, which consists in building a plan over a gen-
erally large horizon H , in executing it as far as it remains
valid, and in building another one over the next horizon be-
fore the end of H . The justifications for such a choice are
mainly three: (1) we are in a dynamic unforeseeable envi-
ronment where anything may happen at any time, (2) there
is time for reasoning during observations which last some
tens of seconds and between observations which are often at
wide intervals, (3) the iterative mechanism we implemented
is very efficient (see experimental results) and can be started
and restarted at any time.

Data down-loading decisions
The setting of data down-loading is significantly different
from the one of observation. Whereas an observation lasts
some tens of seconds, the associated data down-loading lasts
only some seconds. Whereas observations are sparsely dis-
tributed along time, data down-loading is concentrated on
visibility windows, with no transition time between two suc-
cessive data down-loadings in a visibility window, but up
to 15 hours or more between two successive visibility win-
dows. Such a setting justifies different choices in terms of
decision-making organization.

The basic problem we consider is, just before the starting
time of each visibility window w, to decide upon the data
that will be down-loaded to the ground mission center c that
will be in visibility. Let dmax be the duration of w. Let
O be the set of observations whose data is currently mem-
orized on-board and is dedicated to c. With each o ∈ O,
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are associated a priority level p(o), 0 ≤ p(o) ≤ pmax and
a down-loading duration d(o). It may be also interesting
to consider the down-loading note dn1(o) of o if it would
be down-loaded in w and its down-loading note dn2(o) if it
would be down-loaded in the next visibility window of c5.

For the sake of clarity, let us consider the case of an iso-
lated visibility window (no overlapping with another visi-
bility window). In this case, the problem is to extract from
O a consistent optimal selection O′ ⊆ O, that is a simple
mono-dimensional knapsack problem6.

To compare two consistent selections, we associate with
any selection O′ ⊆ O an evaluation vector that contains for
each priority level p the vector of the notes of all the can-
didate down-loadings of priority p: dn1(o) if o ∈ O′ and
dn2(o) otherwise. Two vectors are compared lexicographi-
cally between priority levels and using a leximin comparator
inside each priority level7.

As with the observation problem studied in the previ-
ous section, provided that time is discretized, this problem
can be solved using a dynamic programming approach (see
for example (Skiena 1998)). This approach uses any arbi-
trary ordering of the candidate down-loadings. It is based
on the recursive computing of the optimal evaluation vector
V ∗(i, d) that can be associated with any candidate down-
loading i and any duration d, and represents the best that can
be obtained from the first i down-loadings by using exactly
duration d (sum of the down-loading durations equal to d).
This recursive computing exploits Equations 6, 7, 8, 9, and
10. In these equations, n is the number of candidate down-
loadings, dmax is the duration of the visibility window, d(i)
is the down-loading duration of i, ∅ is the special vector used
to represent what is impossible, 0 is the special vector used
to represent an empty selection (down-loading note dn2(o)
assigned to each candidate down-loading o), v(i) is a vector
where the down-loading note dn2(o) is assigned to each can-
didate down-loading o except i which is assigned the down-
loading note dn1(i), V ∗ is the best that can be obtained with
the set of candidate down-loadings, + applied to two vectors
results in a vector whose each component is the maximum
of the associated components in both vectors8, and max rep-
resents the maximum using a lexicographic comparator be-
tween priority levels and a leximin comparator inside each
level, as explained above.

∀i, 1 ≤ i ≤ n, (6)
∀d, d(i) ≤ d ≤ dmax,

5These notes are functions of the distance between observation
and down-loading.

6In the case of overlapped visibility windows, the problem to
solve is no more a simple knapsack problem, it becomes a schedul-
ing problem because not all the data down-loading orderings are
consistent with the visibility windows.

7For example, for a given priority level, the note vector
{0.5, 0.6, 0.2} is preferred to the note vector {0.2, 0.9, 0.4} be-
cause the worst note is the same in both vectors (0.2), but, after
removing the worst in both vectors, the worst in the first vector has
a better note (0.5) than the worst in the second vector (0.4).

8Because ∀o ∈ O, dn2(o) ≤ dn1(o).

V ∗(i, d) =
max(∅, V ∗(i− 1, d), v(i) + V ∗(i− 1, d− d(i)))

∀i, 1 ≤ i ≤ n, (7)
∀d, 0 ≤ d < d(i),
V ∗(i, d) = max(∅, V ∗(i− 1, d))

V ∗(0, 0) = 0 (8)

∀d, 0 < d ≤ dmax, (9)
V ∗(0, d) = ∅

V ∗ = maxd≤dmax
V ∗(n, d) (10)

As with observations, the optimal vectors V ∗(n, d) could
be computed one after the other from 0 up to dmax, and used
to extract an optimal down-loading decision in the first part
of any duration d of the visibility window. But, we decided
not to use this anytime version, mainly because of the very
low complexity of the complete computing: a linear function
of the number of candidate down-loadings and of the num-
ber of discretization steps used for time. Note that, as with
observations, the result is optimal, at least in the restrictive
frame resulting from time discretization.

However, there exists another algorithmic option, often
used to solve approximately knapsack problems, that is
a greedy algorithm using three criteria to order candidate
down-loadings: firstly the priority level p(o) in a decreas-
ing order, secondly the down-loading note dn2(o) in an in-
creasing order, and thirdly the downloading duration d(o)
in an increasing order. This greedy algorithm is still quicker
than the dynamic programming one. It is not optimal, but of-
fers guarantees about the distance to the optimum. It could
be consequently used each time new data are memorized in
order to assess what could be downloaded in the next vis-
ibility windows, and then which amount of energy will be
consumed and which amount of memory will be released
in each of them: forecasts that are useful to decide about
observations (see below). As to the dynamic programming
algorithm, it could be used just before the starting time of
a visibility window, in order to compute an optimal down-
loading plan in this window.

Two interconnected decision problems
We presented observation and data down-loading as separate
decision problems. This was for the sake of clarity, but also
because we made actually the choice of separate decision
modules. The justifications for such a choice are mainly two:

1. decision dynamics are very different: different decision
times (before each possible observation for observation,
before each visibility window for down-loading), differ-
ent decision horizons (the next observation for observa-
tion, the next visibility window for down-loading), differ-
ent reasoning horizons (variable for observation, the next
visibility window for down-loading);

2. separately, both problems are simple and can be dealt
very efficiently via dynamic programming or greedy al-
gorithms.
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But, in reality, both problems are not independent for
mainly two reasons:

1. the global objective of the mission is to track important
ground areas as regularly as possible and to deliver data as
soon as possible after observation: there is one objective,
not two;

2. observation and data down-loading interfere through en-
ergy and memory: observation consumes energy and
memory, and data down-loading consumes energy and
produces memory.
Between both decision modules, consistency in terms of

mission objective is obtained via the maintenance for each
request of the same level of priority from ground tracking
sharing to observation and data down-loading.

About energy and memory, it can be observed that the
situation is not symmetric: observation consumes energy
and memory, but data down-loading consumes energy and
produces memory. If data down-loading is insufficient, on-
board memory gets quickly full, either observation is no
more possible, or previously recorded data is removed. In
the opposite direction, if observation is insufficient, data
down-loading remains possible. Data down-loading is thus
a bottleneck for the whole system. This is why we decided
to give it priority for the access to energy.

In such conditions, data down-loading can be decided
independently from observation, taking into account only
currently recorded data. As to observation, it must fore-
cast the amount of energy that will be consumed and also
the amount of memory that will be released by data down-
loading during the next visibility windows, and guarantee
that data down-loading will have always enough energy to
do its job. This can be done at any time via the greedy algo-
rithm presented above.

Experiments
Concerning observation decisions, first experimental results
have been presented in (Damiani, Verfaillie, & Charmeau
2004). But, we carried out since then more ambitious ex-
periments, involving the whole constellation (12 satellites),
a control center, and two mission centers (one dedicated to
forest fires and the other one to volcanic eruptions), over a
temporal horizon of 16 hours.

We assume (1) about one hundred ground areas to track
that are known at the beginning of the simulation horizon
and (2) about ten that appear during the simulation horizon
(in both cases, fifty-fifty shared between forest fires and vol-
canic eruptions). We assume that the tracking of the first
ones is shared by the control center between the satellites of
the constellation and that the resulting observation requests
of priority 0, 1, or 2 are sent to each satellite at the beginning
of the simulation horizon. We assume also that the second
ones are detected by any satellite when flying over them, re-
sulting in observation requests of priority 3.

We compared three ways of managing observation re-
quests, in fact three ways of deciding to trigger or not an
observation just before its starting time:
• to apply a very simple decision rule: trigger it when it is

physically possible (DR1);

• to apply a bit less blind decision rule: trigger it when it
is physically possible and not in conflict with a future ob-
servation of higher priority (DR2);

• to use the result of the anytime observation planning mod-
ule: trigger it when it is the first observation of the current
plan (AP ).

Moreover, in order to measure the distance to optimal-
ity, we compare these three realistic management options,
with two unrealistic ones. The first one, we refer to as SP
for super-powerful, assumes that the observation planning
module has each time enough time to reason from the cur-
rent time to the end of the simulation horizon. The second
one, we refer to as SPO for super-powerful and omniscient,
assumes in addition that it knows from the beginning of the
simulation horizon what will happen over the whole simula-
tion horizon i.e., the ground phenomena that will appear and
the resulting observation requests.

For each of these management options (either realistic or
not), for each satellite, and for each priority level, we mea-
sured the ratio between the number of performed observa-
tions and the number of observation requests.

Table 10 shows typical results obtained on one satellite
for which energy and memory constraints strongly limit the
number of requests that can be satisfied. Note immediately
that the total number of satisfied requests (last column) does
not change dramatically from DR1 to AP (from 82 to 88).
What significantly changes is the distribution of these sat-
isfied requests between priority levels. Decision rules DR1

and DR2, which do not take into account energy and mem-
ory, satisfy too many low priority observation requests that
consume energy and memory and then prevent the satellite
from satisfying later high priority observation requests 9. As
expected, DR2, which is a bit less blind than DR1, per-
forms better than this latter does. As expected too, the any-
time planning module AP , which takes into account energy
and memory, performs better than DR2 does. Surprisingly,
despite of a reasoning horizon that is limited by real-time
constraints, it performs almost as well as unrealistic super-
powerful and omniscient planning modules (SP and SPO):
it only fails to satisfy one request of priority 3 and one of
priority 2.

Figure 11 shows the evolution of the energy and of the
memory available on-board resulting from the AP man-
agement option. Sharp increases in energy, followed by a
plateau, occur when the satellite goes from a night to a day
period and sharp increases in memory occur when the satel-
lite is in visibility of a reception station and can down-load
data.

Discussion
The presentation we made may give the impression of local
decision problems, separately studied and solved via spe-
cialized algorithms, without any global view of the whole

9These poor results could be improved, at least with regard to
memory constraints, by allowing the on-board memory manage-
ment system to overwrite low priority data with high priority one,
as suggested in (Khatib et al. 2003).
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Priority
levels 3 2 1 0 all
DR1 4/10 13/24 14/23 51/96 82/153
DR2 6/10 15/24 15/23 47/96 83/153
AP 9/10 17/24 20/23 40/96 86/153
SP 10/10 18/24 20/23 39/96 87/153

SPO 10/10 18/24 20/23 40/96 88/153

Figure 10: Results obtained on one satellite: for each pri-
ority level and for all of them, ratio between the number of
performed observations and the number of observation re-
quests.
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Figure 11: Evolution of the energy (top) and of the memory
(bottom) available on-board.

decision system. As a matter of fact, such an impression is
false, because each local decision problem has been studied
according to the same following basic principles:

1. rather than a proactive approach such as for example the
one of the Markov Decision Processes (Puterman 1994),
a reactive approach is chosen to deal with uncertainty
because of a dynamic unforeseeable environment: new
ground phenomena, such as starting forest fires or vol-
canic eruptions, may occur at any time, but no usable
model of these phenomena (where and when they may
start) is available; if, for example, a probabilistic model
would be available, the probabilities of a starting phe-
nomenon would be always too small to have an influence
on the decision; in such conditions, a sensible attitude
consists in acting as if no new phenomenon should start
and in being ready to react as best as possible each time a
starting is detected;

2. each decision d is made as late as possible, in order to be
able to take into account the most up-to-date information;

3. for each decision d, the decision horizon, that is the tem-
poral horizon on which actions will be decided (see Fig-
ure 12), is as short as possible in order not to commit to
too large horizons and to be able to take into account new
information and to make new decisions quickly after de-
cision d has been made and applied;

4. for each decision d, the reasoning horizon, that is the tem-
poral horizon on which reasoning is performed to make
decision d (see Figure 12), is as large as possible in order
to anticipate as well as possible system evolutions and to
make as justified as possible decisions; note that uncer-
tainty about the possible system evolutions may limit the
interest in too large reasoning horizons;

horizon
Commitment

horizon
Decision

Reasoning
horizontime

Current Decision
time

Time

Figure 12: Commitment, decision, and reasoning horizons.

Note immediately a contradiction between the second
and the fourth principle: if decisions are made as late as
possible, the reasoning horizon may be limited because of
a limited reasoning time. The solution we adopted is to
use all the available time before decision time to reason
and to prepare the decision: if nothing changes before de-
cision time, decision is ready at decision time; if some-
thing changes, reasoning starts again with the new informa-
tion. Such an approach, which can be seen as a form of
continuous and anytime reasoning (Pollack & Horty 1999;
Zilberstein 1996), is not limited to the application we dealt
with. It can be a priori used for the control of any engine or
system in a dynamic unforeseeable environment.

Let us end with the remark that such environments induce
us to focus studies more on the smooth integration of plan-
ning and decision-making modules into the whole control
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system (including situation recognition, supervision, and ex-
ecution control modules) than on the planning task itself.
That leads us to consider planning and scheduling more from
the point of view of the correct behavior of the whole system
than from the classical point of view of an isolated planning
problem and of its optimal efficient solving.
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Abstract

An algorithm with the anytime property has an approximate
solution always available; and the longer the algorithm runs,
the better the solution becomes. Anytime planning is impor-
tant in domains such as aerospace, where time for reason-
ing is limited and a viable (if suboptimal) course of action
must be always available. In this paper we study anytime
solving of a planning problem under uncertainty that arises
from aerospace sub-system control. We examine an existing
constraint model-based approach of the problem as a mixed
constraint satisfaction problem (mixed CSP), an extension
of classical CSP that accounts for uncontrollable parameters.
We propose two enhancements to the existing decomposition
algorithm: heuristics for selecting the next uncertain envi-
ronment to decompose, and solving for incrementally longer
planning horizons. We evaluate these enhancements empir-
ically, showing that a heuristic on uncertainty analogous to
‘first fail’ gives the best performance, improving the anytime
behaviour with respect to robustness to uncertainty. Further,
we show that incremental horizon planning provides effective
anytime behaviour with respect to plan executability, and that
it can be combined with the decomposition heuristics.

Introduction
The increasing desire for autonomy in aerospace systems,
such as Uninhabited Aircraft Vehicles (UAVs), leads to in-
creasing complexity in planning, scheduling, and control
problems (Verfaillie 2001). Constraint-based techniques
have proved effective for addressing such problems in the
aerospace domain (e.g. (Muscettolaet al. 1998; Allo et al.
2002; Frank & J́onsson 2004)). The real-world requirements
of such problems mean that preferences, uncertainty, and dy-
namic change must be handled. For this, the classical con-
straint satisfaction problem (CSP) is inadequate. One ex-
tension to handle uncertainty is the mixed CSP framework,
introduced by Fargieret al. (1995; 1996).

Our motivation comes from a problem in online planning
of the control of an aerospace component such as a thruster.
In order to enhance autonomous behaviour, the plan pro-
duced must take account of environmental uncertainty the
aerospace system may encounter. During execution, the plan
needs only specify the immediate next control action: thus
continuous, incremental planning is possible for the prob-
lem. A constraint-based formulation as a mixed CSP was
given in (Yorke-Smith & Guettier 2003); in it uncontrollable

parametersmodel the uncertain evolution of physical quan-
tities such as temperature.

An algorithm with theanytimeproperty has an approxi-
mate solution always available; and the longer it runs, the
better the solution becomes (Boddy & Dean 1994). If the
algorithm is allowed to run to completion, a final solution is
obtained. In the aerospace domain, planning is performed in
an operational context where multiple levels of reactivity are
required. This paper introduces an anytime solving approach
to cope with uncertainty, in order to give more flexibility to
the component management system during mission opera-
tions. Planning is invoked in the background, during cruise
flight or in between critical phases of operation, and can be
preempted at any time by higher priority tasks or by changes
occurring at execution control levels. Thus the technique we
described sits between and complements off-line planning
and reactive component management.

This paper presents an experimental study of anytime
planning with mixed CSPs. Specifically, we investigate
the performance of the existing decomposition algorithm
of (Fargier, Lang, & Schiex 1996) on our aerospace con-
trol planning problem as a case study. We describe two en-
hancements to the use of the algorithm designed to improve
its anytime performance, and empirically assess their value.
The two enhancements are decomposition heuristics for ex-
ploring the parameter space of uncertain environments, and
incremental solving of the planning problem for successive
horizons. The results show that a heuristic on uncertainty
analogous to ‘first fail’ from the CSP literature gives the best
performance, improving the anytime planning with respect
to robustness to uncertainty. They also show that incremen-
tal horizon planning provides effective anytime behaviour
with respect to plan executability, and that it can be com-
bined with the decomposition heuristics.

Background and Problem Domain
Our motivation for studying planning with mixed CSPs
comes from a planning problem arising in the aerospace do-
main, formalized as theSub-system Control Planning Prob-
lem(SCPP); a detailed description is found in (Yorke-Smith
& Guettier 2003; Yorke-Smith 2004). The planning is situ-
ated in an online context where both mission status and sit-
uation awareness may evolve in multiple, non-controllable
ways. Since contingent events may unexpectedly occur, a
safe course of action for the system is required to be immedi-
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Figure 1: Outline architecture of a constraint-based agent.

ately available. The SCPP addresses deliberative plan gener-
ation in a dynamic context: deliberation is situated on board
an autonomous system amid concurrent execution. Purely
proactive, off-line planning is too slow, while purely reac-
tive control provides a solution of too low quality.

Figure 1 illustrates how a constraint-based planning func-
tion can be integrated in an autonomous system, as the DS1
Experiment demonstrated (Muscettolaet al. 1998).

Briefly, the input in an instance of the SCPP is a high-level
description of an aerospace component, together with a de-
scription of the environmental uncertainty. A stated objec-
tive function on the performance of the component may also
be given. The output sought is a plan for the commanding of
the component. The plan must respect the behaviour guar-
antees that form part of the specification of the component.
Further, as far as possible the plan must also optimize the
performance of the component. The commanding is speci-
fied as a low-level automaton which models the component
behaviour; for background, see (Arkin 1998).

For each aerospace component, an instance of the SCPP
is parameterized by the planning horizon,H ∈ N. Al-
though the system plans supposing execution will begin at
a future point in time, a decision can be demanded at any
instant. Accordingly, during execution the plan needs only
to specify the immediate next control action at the current
horizon. During execution, the uncertain environment is ob-
served just prior to each execution step.

Considered as a planning problem, the SCPP has: (1) non-
deterministic actions due to contingent events, (2) fully ob-
servable states, and (3) semi-controllable effects, due to the
environmental uncertainty. Planning consists of defining a
consistent sequences of states in order to reach a given target
state. This corresponds to the equipment changing modes of
operation, in a feasible way, to reach a target mode. The
timed sequence, the plan, must satisfy the model-based con-
straints and, possibly, optimize the performance function.
As Figure 1 shows, the target mode is specified by mission
and operational goals. For example, for a thruster compo-
nent, the goal may be to achieve a certain thrust performance
in a given time window, while maintaining the internal tem-
perature within given limits.

The SCPP is stated as a unique rather than a sequential

decision problem. Our solution is a conditional plan that
covers the anticipated environmental uncertainty. As will
be explained, this contingent plan corresponds to the condi-
tional decision of a full observability mixed CSP. An execu-
tion step consists of selecting a plan branch according to the
observed environment at that step. The proactive approach
ensures a valid plan is available, however the environment
evolves within anticipated limits, once deliberation is com-
plete. Since planning and execution are concurrent, deliber-
ation may not have time to complete before the next decision
is demanded; hence the requirement for anytime planning.

Mixed CSP and the Decomposition Algorithm
We now recall the mixed CSP framework and describe
a constraint model-based representation of the SCPP as
a mixed CSP. We then recall the algorithm presented in
(Fargier, Lang, & Schiex 1996) for finding an optimal con-
ditional decision in the case of full observability.

Mixed CSP
Fargieret al.(1995; 1996) introduced themixed CSPframe-
work, an extension to the classical CSP for decision mak-
ing with incomplete knowledge.1 In a mixed CSP, variables
are of two types: decision and non-decision variables. The
first type are controllable by the agent: their values may be
chosen. The second type, known asparameters, are uncon-
trollable: their values are assigned by extrogeneous factors.
These factors are often referred to as ‘Nature’, meaning the
environment, another agent, and so on.

Formally, a mixed CSP extends a classical finite domain
CSP〈V,D, C〉, whereV is a finite set of variables,D is the
corresponding set of domains, andC is a set of constraints:

Definition 1 A mixed CSP is a 6-tuple P =
〈Λ, L, V,D,K, C〉 where:

• Λ = {λ1, . . . , λp} is a set of parameters
• L = L1 × · · · × Lp, whereLi is the domain ofλi
• V = {x1, . . . , xn} is a set of decision variables
• D = D1 × · · · ×Dn, whereDi is the domain ofxi
• K is a set ofdata constraintsinvolving only parameters
• C is a set of constraints, each involving at least one deci-

sion variable and zero or more parameters

A complete assignment of the parameters is arealisation
(or world), and a complete assignment of the decision vari-
ables is adecision(or potential solution). A realisation is
possibleif the classical CSP〈Λ, L,K〉 is consistent, i.e. has
at least one solution (otherwise the realisation isimpossible).
For every realisationr, the classical CSP〈V,D, C〉 formed
as the projection ofP under realisationΛ← r is therealised
(or candidate) problem induced byr from P. A realisation
is goodif the corresponding realised CSP is consistent (oth-
erwisebad). We say a decisiond coversa realisationr if d
is a solution to the realised CSP induced byr.

The nature of the outcome sought from a mixed CSP
model depends on when knowledge about the state of the

1The earlier work (Fargieret al. 1995) associates a probability
distribution with each parameter; we follow the later work in which
a (discrete) uniform distribution is assumed.
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Figure 2: Discrete automata representing the behaviour of three spacecraft sub-systems

world will be acquired. If the realisation is observed before
the decision must be made, we are in the case offull ob-
servability. In this case, the outcome sought is aconditional
decision(or policy). This is a map between realisations and
decisions that specifies, for a set of realisationsR, a decision
d for eachr ∈ R such thatd coversr. We then say that the
conditional decisioncoversR. Such a conditional decision
is optimal if it covers every good realisation ofP. Decid-
ing consistency of a binary mixed CSP is co-Σ2 complete
(Fargier, Lang, & Schiex 1996).

Mixed CSP Model of a SCPP Instance
A constraint-based formulation of the SCPP is given in
(Yorke-Smith & Guettier 2003). Following earlier work
(Allo et al. 2002), this model-based formulation represents
the component activity over a fixed discrete horizon, using
a constraint-based non-deterministic finite state automaton.
This automaton, synthesized automatically from the prob-
lem specification, is represented concretely as a mixed CSP.
A conditional decision policy for the mixed CSP model cor-
responds to a viable plan for the SCPP instance.

Importantly, although the constraints may be complicated,
we formulate the model such that each constraint involves at
most one parameter. This reduces the complexity of build-
ing the plan, because computing which realisations are cov-
ered by a decision in the resulting mixed CSP is simplified
(Fargieret al. 1995). Parameters arise from uncertain envi-
ronment conditions, such as temperature variation, in each
state of the automaton. The model includes constraints de-
scribing evolution of fluent physical quantities according to
the environmental uncertainty, such as:

Θi+1 = Ej × (Θi + Ti∆j) (1)

whereΘi andTi are discrete variables,Ei are Boolean, and
∆j are parameters. The details of the model are not central
to this paper; they may be found in (Yorke-Smith 2004).

There may be an additional minimum performance re-
quirement on feasible plans. This requirement corresponds
to a percentage of the maximum possible performance
perfmax (which can be computed a priori); it is imposed as
an additional hard constraint in the model:

perf(S) ≥ k × perfmax (2)

where perf(S) is the performance of a planS, andk ∈ [0, 1]
is a given constant.

Figures 2(a)–2(c) show three discrete state automata. The
automata represent the behaviour of three different, repre-
sentative but simplified spacecraft sub-systems. They rep-
resent, respectively, an Attitude and Orbit Control Sys-
tem (AOCS), a thruster (Thruster), and a directional sensor
(Tracker). While they bear some similarity in structure, the
automata differ markedly in available actions and permit-
ted timings, constraints, and evolution of fluent quantities
such as energy (Yorke-Smith 2004). These differences im-
pact strongly the problem difficulty, as exhibited by the ex-
perimental results that follow.

We build a mixed CSP model from the SCPP instance
given by each automaton. Thus, the performance of solving
these mixed CSPs will be the benchmark for our empirical
study. These benchmarks are representative of some systems
that are the source real-world of SCPP problems. Larger sys-
tems with more states and transitions can be envisaged, but
they will not be necessarily formalized with automaton.

Decomposition Algorithm
We say an algorithm has ananytime property(Boddy &
Dean 1994) if: (1) an answer is available at any point in
the execution of the algorithm (after some initial time, per-
haps zero, required to provide a first valid solution); and (2)
the quality of the answer improves with an increase in ex-
ecution time. Theperformance profileof an algorithm is
a curve that denotes the expected answer qualityQ(t) with
execution timet (Boddy & Dean 1989).

An algorithm to find an optimal conditional decision for a
mixed CSP under full observability is presented in (Fargier
et al. 1995; Fargier, Lang, & Schiex 1996). We call this the
decomposition algorithmand denote itdecomp. Because
of the complexity of finding such a decision — both com-
putational effort, and size of the outcome (in the worst case,
one decision for every possible realisation) —decomp is
designed as an anytime algorithm. Intuitively, it incremen-
tally builds a list of decisions that eventually cover all good
realisations. We omit discussion of some for us unnecessary
subtleties about the algorithm.

Central to the method are sets of disjoint realisations
called environments2 and their judicious decomposition.
Formally, anenvironmentis a Cartesian productl1×· · ·×lp,

2Environmental uncertainty should be distinguished from this
technical definition of anenvironmentas a set of realisations.
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Algorithm 1 Decomposition for an optimal cond. decision
1: B ← ∅ {bad realisations}
2: D ← ∅ {decision–environment pairs}
3: E ← L1 × · · · × Lp {environments still to be covered}
4: repeat
5: Choose an environmente fromE {pick uncovered env.}
6: let Ce beconstraints that enforcee
7: let P be the CSP〈Λ ∪ V, L ∪D,K ∪ C ∪ Ce〉
8: if P is consistentthen
9: let s bea solution ofP {find dec. covering≥ 1 real.}

10: let v bes projected onto the domain variablesV
11: R← covers(v) {find all realisations covered byv}
12: Add the pair(v,R) toD
13: E ←

⋃
e′∈E decompose(e′, R) {removed covered}

14: else {all realisations ine impossible}
15: Add e toB
16: until E = ∅ {all possible realisations covered}
17: return (B,D)
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Figure 3: Idealized anytime performance profiles

whereli ⊆ Li: for example, ifL1 = L2 = {a, b, c, d}, then
an environment is{b, d} × {c, d}. decomp is an anytime
algorithm that incrementally computes successively closer
approximations to an optimal decision. The number of real-
isations covered by the decision grows monotonically, and if
allowed to finish without interruption, the algorithm returns
an optimal conditional decision.

Pseudocode fordecomp is given as Algorithm 1.
(Fargier, Lang, & Schiex 1996) prove Algorithm 1 to be
sound and complete: it eventually terminates, and if allowed
to terminate, it returns a conditional decision that covers all
good realisations. Moreover, if stopped at any point,D con-
tains decisions for (zero or more) good realisations andB
contains only bad realisations.

Enhancing the Anytime Behaviour ofdecomp
Summarizing, we have described a model of our motivating
problem as a mixed CSP, and recalled the algorithm we call
decomp for a full observability mixed CSP. We now intro-
duce two orthogonal extensions ofdecomp designed to im-
prove its anytime performance for the requirements arising
for planning and scheduling in the aerospace domain.

To see what we mean by improved anytime behaviour,
consider the performance profiles shown in Figure 3. The

horizontal axis depicts timet and the vertical axis solution
quality Q(t). The straight line4 represents the behaviour
of an algorithm that monotonically increases solution qual-
ity at a constant rate. The curves1–3 depict better anytime
behaviour than4, with 1 the best, because solution quality
rises more sharply earlier in the solving. In contrast, curve5
depicts a poor anytime behaviour. Thus moving from4 to 2,
for instance, is an improvement in anytime behaviour. Note
this is true even though both algorithms return the same so-
lution quality at the end of the solving period shown. As a
secondary aim, we would like, if possible, to have an earlier
termination time in addition to improved anytime behaviour.

Observe thatdecomp is an anytime algorithm in terms
of robustness to uncertainty, i.e. the number of realisations
covered by the conditional decision it computes. Answer
quality increases with time because, given execution may
commence at any point, it is better to have a conditional
plan more likely to cover the realisation actually observed.
Indeed, if allowed to run to termination, the algorithm pro-
duces an optimal conditional decision; if stopped earlier, the
conditional decision covers a subset of the good realisations.
In terms of plan execution, however,decomp fails to ensure
that a valid plan isalwaysavailable (the first part of an any-
time property): if the observed realisation is not covered by
the conditional decision at the time of interruption, the algo-
rithm does not provide a valid initial control action.

Note that, fitting the assumptions of the control problem,
the model of uncertainty in the SCPP is deterministic (i.e. an
implicit uniform distribution over the parameter domains).
This does not rule out algorithms based on sampling the pa-
rameter space. However, sampling may not lead to an im-
mediately executable control decision on interruption; like
decomp, such an approach may be anytime with respect to
plan robustness but not plan executability.

Environment Selection Heuristic
(Fargier, Lang, & Schiex 1996) note that heuristics may be
used in line 5 of Algorithm 1, although none are proposed.
The algorithm terminates when the setE is empty. Every
iteration through the main loop removes one environmente
fromE. Judicious choice ofe may speed the termination or
improve the anytime behaviour w.r.t. robustness, or both.

We propose five heuristics for environment selection:

• random: pick the next environment at random. This is our
default heuristic, used as a baseline to evaluate the others.

• most uncertainty: pick the environment with the most un-
certainty. That is, choosee to maximize

∏
λi∈e|Li|.

• least uncertainty: pick the environment with the least un-
certainty. That is, choosee to minimize

∏
λi∈e|Li|.

• most restricting: pick the environment that most con-
strains the variables’ domains. That is, for eache, impose
the constraintsCe in line 6 of Algorithm 1, and compute∏
i|Di|. Choosee to minimize this quantity.

• least restricting: pick the environment that least con-
strains the variables’ domains. I.e. impose the constraints
Ce, compute

∏
i|Di|, and choose the maximizinge.

These heuristics are analogous to variable selection
heuristics in finite domain CSP solving (Cheadleet al.

ICAPS 2005

32 Workshop on Planning under Uncertainty for Autonomous Systems



Algorithm 2 Computation by incremental plan horizon
1: S ← ∅
2: for h = 1 toH do
3: let Sh beoutput ofdecomp on horizonh automaton
4: if decomp ran to completionthen
5: S ← Sh
6: else
7: {keep existing decisions for uncovered realisations}
8: for each realisation covered bySh do
9: updateS by Sh

10: return S

2003). Pursuing this link, we also considered a heuristic to
pick the most or least constraining environment: that whose
realised CSPs are the most or least constrained (precisely,
maximize or minimize the sum of a constrainedness metric,
summed over all the realised CSPs corresponding to reali-
sations in the environment). However, preliminary experi-
ments indicated such a heuristic has poor performance. This
seems to be caused by a weak correlation between the con-
strainedness of the realised CSPs arising from an environ-
ment, and the difficulty of solving the whole mixed CSP.
Thus we did not consider such a heuristic further.

Incremental Horizon
The SCPP is naturally parameterized by the planning hori-
zon, H. Running decomp to completion provides the
sought optimal conditional plan. Interrupting the algorithm
at any point provides a partial plan. As we have observed,
since this plan is partial, in terms of execution it may not
cover the realisation that actually occurs.

To better provide for plan execution, a second means of
ensuring anytime behaviour is to iteratively plan for longer
horizons,h = 1, . . . ,H. A new plan is generated from
scratch at each iteration, avoiding any myopia, but at the
cost of not reusing the previous solution. We permit the
algorithm to be interrupted at the completion of any hori-
zon. The resulting optimal conditional decision for horizon
h provides the initial steps of a complete plan for horizonH.
We also permitdecomp to be interrupted before complet-
ing a horizon. The plan for horizonh then consists of the
decisions for the covered realisations, together with, for the
uncovered realisations, the decisions from horizonh− 1.

More specifically, the time interval[0 . . . h], h ≤ H, de-
fines a subproblem which is a subpart of the original SCPP
instance. The subproblem is obtained by ignoring decision
variables and parameters in the interval[h+1,H], and relax-
ing associated constraints. Identifying these items to omit is
straightforward due to the formulation of the model; omit-
ting them yields a well-formed mixed CSP that describes the
planning problem for the limited horizonh. Theincremental
horizonmethod starts fromh = 1, and incrementsh each
time the subproblem is successfully solved. If interrupted,
the method thus provides a plan up to time eventh− 1.

Algorithm 2 summarizes the method. As stated, concep-
tually it operates by solving incrementally larger subprob-
lems. The advantage is that, in a given computation time,
the plan produced may cover more of the good, possible re-
alisations, compared to the plan produced bydecomp for

horizonH in the same time. Indeed, suppose a plan for
horizonH is desired and computation time is limited toT
(which we do not assume is known to the algorithm). Run-
ning Algorithm 1 for timeT might give a conditional plan
that covers70% of realisations, say. The conditional plan it
yields is not optimal. Instead, running Algorithm 2 for the
same time might give a plan that covers only40% of real-
isations with a horizon-H decision, but all realisations are
covered with some decision: say that for the horizon-(H−1)
decision. Thus we have an optimal conditional plan and,
as the autonomous system begins plan execution, it can un-
dertake further computation to extend the horizon-(H−1)
decisions to horizon-H.

In terms of execution, Algorithm 2 thus has the advan-
tage over Algorithm 1 that a valid initial action is for certain
available (once the problem is solved for horizon1, which is
expected rapid). Upon interruption, execution can proceed
by checking whether the realisation observed is covered by
the horizonh decision. If not, the horizon-(h−1) decision
for it is used. This checking requires little computation.

The incremental horizon method is orthogonal to the en-
vironment selection heuristics. Any heuristic may be used
in the invocation ofdecomp in line 3 of Algorithm 2. In the
experimental results that follow, we hence evaluate the be-
haviour of incremental horizon both with the defaultrandom
heuristic and with the others proposed above.

Experimental Results
In this section we report an empirical assessment of thede-
comp algorithm on three SCPP instances. The aim of the ex-
periments was to evaluate: (1) the impact of the environment
selection heuristics on anytime behaviour with respect to ro-
bustness to uncertainty (measured by the completeness of
the decision); and (2) the effectiveness of incremental hori-
zon for producing anytime behaviour with respect to plan
executability (measured by whether the decision contains an
initial action for the actual realisation of the world).

The results reported were obtained on a 2GHz linux PC
with 1GB of memory, using the constraint solver ECLiPSe

version 5.7 (Cheadleet al. 2003); timings are in ms. Ta-
ble 1 summarizes the characteristics of the three SCPP in-
stances. For each automaton, we considered three degrees
of uncertainty: moderate, average and large, denotedA–C
respectively. We also considered performance requirements
between 20–80% (recall equation (2)). This gives two pa-
rameters for each problem instance.

We imposed a timeout on any single run ofdecomp, de-
pending on the complexity of the automaton; the values are
given in Table 1. Note the nonlinear nature of the constraints
of Tracker means that solving for this automaton is markedly

states per uncertainty per horizon
automaton horizon A B C timeout

AOCS 5 2 4 5 200s
Thruster 8 7 14 23 2000s
Tracker 7 6 9 16 18000s

Table 1: Characteristics of the benchmark problem instances
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more difficult; hence the greater timeout permitted.

Environment Selection Heuristic
We first consider the five environment selection heuristics.
We measure quality by the number of good and possible re-
alisations covered by the conditional decision, plus the num-
ber of bad realisations marked as bad, after a given compu-
tation time. That is, the quality isQ1(t) = |D|+ |B|, where
D andB are as in the notation of Algorithm 1.

Figures 4(a)–4(f) show the quality (realisations covered)
versus solving time (ms). Throughout, the vertical axis is
shown on a log scale, i.e.logQ1(t). Figure 4(a) shows the
typical result for theAOCS instance: the best heuristic is
least uncertainty, followed by most restricting; these are
both better thanrandom. The worst heuristic isleast re-
stricting; most uncertaintyis slightly better.

Figures 4(b)–4(d) demonstrate the performance of the
heuristics forThruster is more varied. For most instances of
uncertainty, performance, and horizon,least uncertaintyis
the best heuristic andrandomis second or third. However,
for some instances,least uncertaintydoes not have maxi-
mal Q1(t) for all t. First look at Figures 4(c)–4(d). Note
the scales of these two graphs are chosen to best compare
the relative heuristic performances, not to show their overall
anytime shape; hence some curves quickly reach the max-
imum quality shown, which is not the maximum attained.
These graphs are for instances just before and just after in-
feasibility (which here occurs beyond horizon 6). In the for-
mer, least uncertaintyis best at all times. In the latter, how-
ever, it is inferior to some other heuristics (in particular, to
random) until about 2500ms, after which it strongly domi-
nates. Heuristicmost restrictingexhibits poor behaviour.

Next look at the rare result in Figure 4(b). In this critically
constrained problem,randomis best at first, until overtaken
by firstmost uncertaintythenleast restricting. Further,least
uncertaintyexhibits poor anytime performance. While ex-
ceptional, this instance indicates that no one heuristic always
dominates. As in many algorithms that search through a plan
or state space, the choice of heuristic is itself heuristic.

The results forTracker confirm those forAOCS. Fig-
ures 4(e)–4(f) showleast uncertaintyas the best heuristic.
Note it not only has a better performance profile, but also
achieves much earlier termination than the other heuristics.

Incremental Horizon
We now consider the incremental planning method. Here,
we measure quality by the horizon attained after a given
computation time. That is, the problem is solved incre-
mentally for horizons 1, 2, . . . , and the timesti recorded.
The cumulative time for horizonh is computed asth =∑
i=1,...,h ti, and the quality isQ2(t) = max{h|th ≤ t}.
Figures 5(a)–5(f) show log of the quality (horizon at-

tained) versus solving time (ms). The shape of the curves
indicate that Algorithm 2 provides acceptable anytime be-
haviour. However, performance strongly depends on the en-
vironment selection heuristic. Since incremental horizon is
built ondecomp, this might be expected.

Across the three automata, the performance of theran-
domheuristic is broadly second or third of the five heuristics
considered. ForAOCS (Figures 5(a)–5(b)), the best heuristic

is least uncertainty, followed bymost restricting; these are
both better thanrandom. The worst heuristic isleast restrict-
ing; most uncertaintyis slightly better. The performance
of most restrictingdeclines beyond horizon 6; beyond this
point, randomhas better performance.

For Thruster andTracker (Figures 5(c)–5(f)), the results
are similar. The best heuristic isleast uncertainty, and over-
all randomis next best. For theTracker instanceA 20% (Fig-
ure 5(e)), beyond horizon 4, the remaining three heuristics
struggle;most uncertaintyis the best of them. ForB 40%
(Figure 5(f)), randomand least restrictingdominate about
equally. The results forThruster (Figures 5(c)–5(d)), while
similar, show strongly that poor heuristics for environment
selection give very poor performance. This appears to be
due to the large number of environments that must be main-
tained by Algorithm 1; the algorithm suffers from a lack of
memory, and the timeout is reached for Algorithm 2 while it
is still considering a low horizonh.

Discussion
Of the environment selection heuristics,least uncertainty
has the best overall performance, in terms of both metrics
of quality. For the direct use ofdecomp (i.e.Q1(t)), there
are instances where other heuristics are better. In some in-
stances, there is a ‘cross-over’ point (e.g. Figure 4(d)) prior
to which another heuristic dominates, and after whichleast
uncertaintydominates. For the incremental horizon use of
decomp (i.e.Q2(t)), least uncertaintydominates in almost
all instances; we observe no cross-over behaviour.

We can make the analogy betweenleast uncertainty
(smallest environment first) and thefirst fail (smallest do-
main first) variable selection heuristic for classical CSP.
‘First fail’ is known as an often effective choice of variable
selection heuristic (Cheadleet al. 2003). However, just as it
is not the best heuristic for every CSP, soleast uncertainty
is not the best for every mixed CSP: Figure 4(b) shows a
critically-constrained problem where the best heuristic is ini-
tially randomthenmost uncertainty.

Secondly, overallrandomis consistently neither the best
nor worst heuristic, as expected. On balance, its perfor-
mance across the instances and across Algorithms 1 and 2
is second behindleast uncertainty. Heuristics based on the
size of variable domains (most/least restricting) vary in ef-
fectiveness between problem instances: e.g.most restricting
is acceptable in Figure 4(a) but very poor in Figure 4(c).
Note the size of variable domains loosely corresponds to the
number of potentially feasible actions at a given plan state.

Thirdly, the results suggest that incremental horizon is ef-
fective in providing anytime behaviour with respect to plan
executability, particularly for lesser horizons. When the sub-
problems becomes hard (e.g. fromh = 4 for Thruster), the
rate of increase of solution quality declines. This is more
marked when the performance requirement is higher, per-
haps a result of the problem then being over-constrained.

Since the SCPP is easy to solve for modest horizons, a
possible approach might be: begin with Algorithm 2 and
the randomheuristic (which has no overhead to compute),
and later switch to Algorithm 1 with theleast uncertainty
heuristic (the most effective overall). Further experimental
work is needed to investigate this hybrid possibility.

ICAPS 2005

34 Workshop on Planning under Uncertainty for Autonomous Systems



2

4

6

8

10

0 200 400 600 800 1000

qu
al

ity
 (

go
od

 a
nd

 p
os

si
bl

e 
co

ve
re

d 
re

al
is

at
io

ns
)

time (msec)

AOCS - C-80-8

random

2

4

6

8

10

0 200 400 600 800 1000

qu
al

ity
 (

go
od

 a
nd

 p
os

si
bl

e 
co

ve
re

d 
re

al
is

at
io

ns
)

time (msec)

AOCS - C-80-8

random
least uncertainty

2

4

6

8

10

0 200 400 600 800 1000

qu
al

ity
 (

go
od

 a
nd

 p
os

si
bl

e 
co

ve
re

d 
re

al
is

at
io

ns
)

time (msec)

AOCS - C-80-8

random
least uncertainty
most uncertainty

2

4

6

8

10

0 200 400 600 800 1000

qu
al

ity
 (

go
od

 a
nd

 p
os

si
bl

e 
co

ve
re

d 
re

al
is

at
io

ns
)

time (msec)

AOCS - C-80-8

random
least uncertainty
most uncertainty

least restricting

2

4

6

8

10

0 200 400 600 800 1000

qu
al

ity
 (

go
od

 a
nd

 p
os

si
bl

e 
co

ve
re

d 
re

al
is

at
io

ns
)

time (msec)

AOCS - C-80-8

random
least uncertainty
most uncertainty

least restricting
most restricting

(a)AOCS C 80% horizon 8
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(b) Thruster B 60% horizon 6
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(c) Thruster C 40% horizon 5
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(d) Thruster B 40% horizon 7
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Figure 4: Anytime behaviour w.r.t. robustness of environment selection heuristics
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Figure 5: Anytime behaviour w.r.t. executability of incremental horizon
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Related Work
One approach to deal with uncertainty in planning is to con-
tinuously adapt a plan according to the changing operating
context. Plan adaptation is performed upon an unexpected
event, system failure or goal (mission) update. Response
time can be reduced by using, for example, iterative repair
techniques (Chienet al. 2000). Rather than reacting, our
approach here is based on proactive but online anticipation
of the environment or other changes. In exchange for the
space overhead of storing multiple plans, this has the op-
erational advantage of enabling the system to reason more
globally and react more quickly. However, plan monitoring,
and possibly reactive plan repair, are important to handle
unanticipated contingencies such as hardware failure. Fur-
ther, online adaptation of conditional plans can reduce the
size of the plan to be stored (Bresina & Washington 2001).

In practice, plan management and execution often adopts
a hybrid proactive and reactive form (Verfaillie 2001). This
is true for one of the most comprehensive approaches to un-
certainty in the aerospace domain,Reactive Model Program-
ming Language(RMPL) (Williams et al. 2003). RMPL
and the approach used in this paper are both model-based
and share the use of constraint-based automata. However,
whereas the SCPP considers the control of a single compo-
nent in view of anticipated uncertainty, RMPL is a control
approach for a combined system, with the focus on manag-
ing the complexity of component interaction.

Our work is motivated by problems situated at the in-
terface of system engineering, planning and control the-
ory. Application of much classical work on planning to
aerospace component control is difficult, due to challenging
domain-specific requirements (Jónssonet al. 2000). Fur-
ther, actions must be scheduled with respect to rich temporal
constraints, the system must cope with large-scale problems,
and for low-level components, behaviour must be guaran-
teed in the worst case. The latter point, together with the
difficulty of estimating probabilities, also hampers the use
of Markov Decision Processes (MDPs).

Our approach follows (Boddy & Dean 1994) in construct-
ing flexible online solutions in the form of conditional plans.
(Castillo, Fdez-Olivares, & Gonzáez 2002) present a hybrid
hierarchical and conditional planning approach for generat-
ing control of autonomous systems. Similar to our approach,
during execution of the plan, a branch is selected according
to the observed values ofruntime variables. Our planning,
however, is situated in an online context and also addresses
time, resources, and uncertainty.

Similarities with several techniques in control theory exist
mainly because environment assumptions apply to both the
planning and control components of a system architecture,
such as Figure 1, especially if the system must behave au-
tonomously. However, the design of standard control com-
ponents differs from our planning approach. In general, con-
trol techniques do not address the mission/operation level of
granularity. Moreover, control properties like stability are
expressed using an infinite horizon and a cost function de-
fined over continuous domains.

Despite these differences, the vision of coexisting con-
trol and planning components in a unified system architec-
ture motivates us to consider specific control techniques: hy-

brid control, model predictive control, and adaptive control
(Levine 1996). These areas of control theory are applicable
for autonomous systems evolving in uncertain and hostile
environments. However, each only partially address the type
of problems motivating this paper. The hybrid integration of
planning, scheduling and control, supported by constraint
solving techniques, is a potentially compelling avenue for
the development of future autonomous systems.

An SCPP instance formulates a unique, rather than se-
quential, decision problem. Approaches to sequential de-
cision making include MDPs and influence diagrams, and
constraint-based frameworks, such as stochastic CSP (Man-
andhar, Tarim, & Walsh 2003), an extension of mixed CSP.

Lastly, anytime algorithms for classical CSPs have been
built by considering a partial CSP and using branch-and-
bound or local search (e.g. (Wallace & Freuder 1996));
(Cabon, de Givry, & Verfaillie 1998) address anytime com-
putation of constraint violation lower bounds. For finding
robust ‘super’ solutions, anytime algorithms have also been
built with branch-and-bound (Hebrard, Hnich, & Walsh
2004). While anytime solving is related to incremental solv-
ing of CSPs, the focus there is on efficiently propagating the
changes implied when a variable’s domain changes.

Conclusion and Future Work
Anytime behaviour is an important requirement for the
aerospace domain. Motivated by an online planning prob-
lem for aerospace component control, this paper studied
anytime planning under uncertainty with full observability
mixed CSPs. We proposed two enhancements to the ex-
isting decomposition algorithm: heuristics for selecting the
next environment to decompose, and solving of incremen-
tally larger subproblems. Our empirical results indicate that
incremental horizon planning provides effective anytime be-
haviour with respect to plan executability, and that it can be
combined with the decomposition heuristics.

The heuristics we considered are applicable to solving any
mixed CSP by the decomposition algorithm. Overall, the
heuristicleast uncertainty, which is analogous to ‘first fail’
for finite domain CSPs, gives the best performance. We have
yet to consider heuristics based on analysis of priorities (e.g.
criticality) from a model of system operation.

The incremental horizon method is specialized for the
SCPP. By replacing the decomposition algorithm with an in-
cremental version, we ensure anytime behaviour in terms of
plan execution. However, the broader idea of decomposition
into incremental subproblems, as a means of anytime solv-
ing, applies to any mixed CSP for which a suitable sequence
of subproblems can be identified.

Incremental horizon is a baseline approach with similar-
ities to iterative deepening. In future work, we want to
complete our investigation by evaluating how often it pro-
duces plans for horizonH based on partial plans for a
lower horizon, as described earlier. Initial results indicate
a trade-off according to the problem hardness: critically-
constrained instances have fewer feasible actions (so greater
overlap between subproblems) but are harder to solve (so
fewer realisations covered in any given time). Because of
the complicated mapping between high-level planning deci-
sions and variables in the constraint model, we want to eval-
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uate the methods considered here on other and larger SCPP
instances (Yorke-Smith 2004), besides mixed CSP models
arising from other planning problems.

Algorithm 2 produces a succession of limited horizon
plans. In our current implementation, planning at horizon
hmakes no reuse of the horizonh−1 plan. We thus want to
explore solution reuse as a planning heuristic between dif-
ferent horizons, and to compare our proactive approach to
reactive solving of the single horizon control problem at dif-
ferent times. Both reactive and limited horizon proactive
planning may lack completeness. In particular, if in Algo-
rithm 2 we base planning for the next horizon on the solu-
tion for the last, the plan generated to horizonh − 1 may
not be extendible to horizonh: for example, if it uses a re-
source (such as energy) that any plan for the next horizon
may need. Thus this idea is more suited to managing a sys-
tem whose global return must be optimized (for example, an
observation system that must make the most useful observa-
tions over all its life) rather than when managing a system in
order to lead it to a designated goal state.

The ‘cross-over’ between different heuristics over time
suggest that meta-reasoning on the solving algorithm may
yield the best anytime behaviour in practice. More gener-
ally, this reasoning can take into consideration (Hansen &
Zilberstein 1996): the current state of the plan (such as what
percentage of realisations it presently covers); the expected
computation time remaining, if an estimate is available; the
cost of computing the different heuristics; and the opportu-
nity of switching between algorithms during solving. Such
reasoning can be consolidated by analyzing the complexity
of decomposition algorithm, thus providing metrics to un-
derstand how problem difficulty is balanced between the set
of realisations and the core planning problem.

Driven by our motivational problem, in this paper we have
considered only the full observability case, an instance of
contingent planning; an interesting direction would be to
consider anytime solving in the no observability case. Here,
the outcome sought to a mixed CSP is a single robust solu-
tion that covers as many realisations as possible, i.e. a con-
formant plan. As such, there are links to anytime methods
for robust solutions to CSPs and to solving mixed CSPs with
probability distributions over the parameters, and to proba-
bilistic planning (e.g. (Onder & Pollack 1999)). In partic-
ular, now scenario sampling methods for stochastic CSPs
give the opportunity for an anytime algorithm (Manandhar,
Tarim, & Walsh 2003).
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Abstract

In mission planning problems applied to autonomous
vehicles, the plan is relative to a vehicle motion and has
a nota priori fixed number of objectives to fulfil. Here,
the problem is formalized by the association of an util-
ity for each objective and a cost relative to time and re-
sources consumption for the actions. The utility of an
objective is a function not only of the importance of the
objective, but also of time and resources. The resources
consumption depends on the actions of the vehicle and
on the environment. The criterion of choice between all
the possible paths is the difference between costs and
rewards: the criterion is a non-monotonic function.
For the resulting domain, a planning algorithm tem-
plate is described together with a set of solving sub-
components: four cost evaluation methods, two pruning
methods and four arrangement methods. The approach
is applied to an aerial autonomous vehicle performing
a military observation mission. Experiments, based on
this application, show that for a replanning scenario or-
dered best-first search fails in finding a solution and
that cost evaluation methods based on the relaxation
of resources constraints present poor performances. At
the opposite, best-first search methods associated with
heuristics taking into account resources may be applied
on-line.

Introduction
The autonomy of a vehicle is characterized by the interac-
tion between the vehicle and the operator: the more abstract
the operator decisions are, the more autonomous the vehicle
is. Missions with limited communications between the ve-
hicle and the operators require some decisional autonomy.
Indeed, the vehicle has not only to follow the current plan,
but also to react to events occurring during the mission. Two
main approaches exist to obtain this behavior: off-line and
on-line planning.

For off-line planning, the easiest solution would be to use
proactive planning, which avoids all the risks that might oc-
cur during the mission. However, this solution is not appli-
cable for most of the realistic problems. Indeed, in many
situations risks can be inhibited only by actions that are not
compatible with the goals of the mission. For instance in a

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

military mission, motion actions that avoid the enemy area
inhibit risks due to threatening events from the enemy, while
the vehicle has to enter the enemy area in order to achieve
the goal. Another solution is to use conditional or proba-
bilistic planning. In this case, the plan is a tree of actions.
During the execution, a specific path in the tree is followed
depending on actually observed events. Highly conditional
plans are obtained solving Markov Decision Processes or
Partially Observable Markov Decision Processes. The off-
line computation of the solution of the Bellman’s equation
provides, for each actual or belief state, the action to carry
on. This approach is studied for instance for exploration
planning (Teichteil & Fabiani 2004) and in the context of
high level decision making (Schesvoldet al. 2003). How-
ever, solutions are intractable except for small problems.
Only problems with few states and actions can be solved
exactly. Moreover, a probabilistic model of instants of oc-
currence of the events and of their types has to be defined.

For on-line planning, the plan is defined as a sequence
of actions. During the execution of the mission, three ap-
proaches can be used. The real-time planning or continu-
ous planning aims at planning actions taking into account
the environment updates. AlgorithmCD∗ (Stentz 2002)
replans an optimal solution with global constraints in less
than one second. The algorithm works on a graph, where
the arcs are re-evaluated. Replanning function re-computes
only the arcs, whose value changed. However, the algo-
rithm is anA∗ (Nilson 1971) if the number of arcs, whose
value changes, are significant. Anytime planning aims at
always improving the current plan. The plan computation
stops when the instant for executing the first possible ac-
tion is reached. This approach is applied for instance for
autonomous earth watching satellites (Damiani, Verfaillie,
& Charmeau 2004). Finally, the third idea is to link the plan
computation with the occurrence of events. The plan com-
putation starts when an event occurs and stops when the in-
stant for executing the first possible action is reached. This
approach is applied for instance for an Autonomous Under-
water Vehicle (Barbier, Lemaire, & Toumelin 2001). It is the
most adapted to an on-line mission planning for autonomous
vehicles.

The purpose of this work is to address a large class of on-
line mission planning problems. After a brief overview of
the problem and related works, the paper introduces a for-
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malism based on the world abstraction concept. A two-level
hierarchy is used in order to organize the description of the
problem. The low level deals with the different spatial and
temporal ways to achieve each goal. Then, a section is de-
voted to a basic planning algorithm and several alternatives.
The experiments, presented in the last section, assess the
performances of the proposed alternatives.

Mission Planning Problem
Problem definition
A mission is made up of actions: motion actions, actions
on the environment, information-gathering actions. . . Re-
sources spent while carrying out actions are available in lim-
ited quantity. For a large family of problems, resources are
consumable. A mission has a beginning and an end between
which all the actions are carried out. It also has an object,
which is a set of objectives to fulfil.

There are different ways that can be used to fulfil each
objective. Each way corresponds to the choice and the se-
quencing of a set of actions. The goal of the mission plan-
ning is to select the objectives to fulfil and to find the way of
fulfilling them. In this work, the solution optimizes a crite-
rion that takes into account utilities for each objective while
meeting time and resource constraints. The utilities and con-
straints are nonlinear functions of time and resources at the
various instants when the actions that lead to the achieve-
ment of the objectives are carried out. The criterion is so a
non-monotonic function of time and resources.

Related works
In the literature, three main approaches that find a plan that
can be applied for solving the mission planning problem
can be encountered: motion planning, operational research
graph optimization and classical artificial intelligence plan-
ning.

The goal of motion planning or path planning is to find
the best path from the current vehicle position to a given po-
sition while avoiding obstacles, controlling its basic move-
ments and the movements of its actuators. This planning
approach addresses the optimization of a criterion based on
resource consumption and can take into account time and
resource constraints. However, motion planning does not
address the choice of objectives to fulfil.

The operational research graph optimization approach ad-
dresses optimization of a criterion associated to objectives,
as for instance the Travelling Salesman Problem. It some-
times deals with a constraint on the use of a single resource
or on time. Utilities are constant and associated to a single
node. The constraint on time or resource is linear.

Artificial intelligence approach tends to describe the plan-
ning problem in terms of actions and predicates, as STRIPS-
like plannings (Fikes & Nilsson 1971). This type of planning
presents a good flexibility for describing the different ways
an objective can be achieved, but usually does not address
the optimization of a non-monotonic criterion nor continu-
ous resources consumption. Some of the AI planners are
FF (Hoffmann & Nebel 2001), LPG (Gerevini, Saetti, & Se-
rina 2004) or SGPlan (Wah & Chen 2004). Classical plan-

O2

EndStart O3

O1

Figure 1: Operational research graph optimization ap-
proach: start, end of treatment and reward obtaining are si-
multaneous

ning is usually done off-line. The generated plan is then fed
to the on-line execution module.

In contrast to common AI planning descriptions, the mis-
sion planning problem has a set of goals with variable util-
ities and has a nota priori fixed number of objectives to
fulfil.

Examples of planning for this sort of problem include
many of NASA planning problems such as planning for tele-
scopes like Hubble or SOFIA (Frank & Kurklu 2003). Ex-
isting planning systems, where goals are assumed to have
uniform utility and define a conjunctive set, can not solve
this type of problems. Three approaches are can be applied.
Greedy approaches pre-select a subset of goals according
to their estimated utilities and solve the problem for those
goals. These methods, though efficient, can produce plans
of low quality. Recently, Smith (2004) proposed a more so-
phisticated approach consisting in heuristically selecting a
subset of goals that appear to be the most beneficial and then
by using the classical planning search to find the solution of
lower cost that achieves all selected goals. The second so-
lution consists in transforming the problem into an integer
programming problem (van den Brielet al. 2004). The third
solution considers the rewards associated to the objectives
and selects them during a search in a tree of actions having
a cost.

Problem difficulty
The objective achievement is seldom instantaneous: there
are a start and an end of treatment and a moment when the
reward associated with the objective is obtained. For exam-
ple in an observation mission, an objective may be to scan
an area to collect information. The scanning has a start and
an end. Information collected is then sent to the ground-
station when it is possible. For many problems of the graph
optimization literature, these three events are simultaneous
(Figure 1). For real problems of mission planning, this dis-
tinction is necessary (Figure 2). The distinction implies that
the achievements of different objectives can be interlaced
(Figure 3).

Moreover, each action introduced into the plan can be car-
ried on in various ways, leading to different values for utili-
ties, time and resource consumption. In this work, the solu-
tion optimizes a criterion that takes into account utilities for
each objective and costs for achieving objectives.
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Figure 2: Mission graph: start (si), end (ei) of treatment and
reward obtaining (ri) are distinct
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Figure 3: Interlacing of objectives achievement

Proposed Formalism
The solution proposed here tends to unify and generalize
some existing models related to mission planning problems
in order to solve a large class of problems.

The idea is to use the notion of world abstrac-
tion (Galindo, Ferńandez-Madrigal, & Gonźalez 2004) with
a two-level hierarchy. A group of nodes of the lowest hi-
erarchical level is abstracted to a single node at the highest
hierarchical level, which becomes their supernode. Analo-
gously, a group of arcs can be represented by a single arc
at the highest level. In the literature, planners use abstrac-
tion to reduce computational cost. They first solve a prob-
lem in a simpler abstract domain and then refine the abstract
solution, inserting details that were ignored in the most ab-
stract domain. Here, the hierarchy is used in order to or-
ganize the description of the problem and may be used to
guide the search. The highest level is a finite state machine
where some vertices are the steps of the goal achievements
and the transition arcs are abstract actions carried out. The
state changes of the machine are due to the planned actions.

The abstract level plan thus contains a succession of
states. It minimizes a criterion that takes into account the
costs for carrying out the actions and the rewards obtained
by the goal achievements. The criterion is a function of time
and resources.

The finite state machine is thus supplemented by the low-
est hierarchical level, which describes the state of the vehicle
in time and geometrical space.

For example, for the mission graph on Figure 2, the ver-
tices of the finite state machine are the steps{Start,si, ei,
ri, End}. The transition arcs are the actions carried out: for
example betweenStart andsi, it could be a motion action,
betweensi andei, it could be an information-gathering ac-
tion. . . The result of the planning contains a succession of
states that may beStart-s2-e2-s1-e1-r2-r1-End. This level
is the most abstract one. The finite state machine is supple-
mented by a less abstract level that depends on the applica-

tion. For example in robotic problems, the finite state ma-
chine is supplemented with a level that indicates the speed
and the exact location of the robot.

High level description: objective achievement
Let considerN , a set of nodes. LetW = {W1, . . . , We} be
a partition ofN . A relationS is defined as follows: for a
subsetWi, S(Wi) is defined as the set{. . . , Wj , . . .} of the
subsets of the successors ofWi. Wj is a successor ofWi if
there exists at least one possible high level action between
Wi andWj .

A finite state machine is defined byW and the relationS.
Without a loss of generality:

• W1 corresponds to the initial state.

• We corresponds to the end of the mission.

• The transition function is defined by the transition possi-
bilities (described byS) and the result of the planning (the
best action defined by the plan).

For all Wi in W , Wi is reachable fromW1 and We is
reachable fromWi.

Let P be the set of objectives to fulfil. Each objective
o in P is defined by(Ws(o); We(o); Wr(o)) with s(o), e(o)
andr(o) in {1, . . . , e}. The objective is said to betreatedif
there is a transition fromWs(o) to We(o) and the associated
reward is obtained when the finite state machine is in a state
Wr(o): the objective is said to beachieved. The reward is
a real valued quantity (income). For each objectiveo the
finite state machine can be in the stateWs(o) only once. An
example of high level description is presented on Figure 5.

Time and resources: justification for a low level
description
Let tk andrk respectively be the instant and the vector of
resources at stateWk; then the rewardRo for achieving an
objectiveo is:

Ro(ts(o), rs(o), te(o), re(o), tr(o), rr(o))

It is assumed that the functionRo is bounded over the set of
realistic input values.

At the end of the plan, the vehicle reachesWe with re-
sourcesre. The cost function of the resourcesRe(re) is
supposed to be decreasing with resources.

The planning goal is to find a sequenceQ of states
Wπ(1), . . . , Wπ(q) such thatπ is a function from{1, . . . , q}
to {1, . . . , e} with:

π(1) = 1; π(q) = e; Wπ(i+1) ∈ S(Wπ(i))

Q has to minimize the differenceJ between costs and
rewards and to satisfy the constraints on resources. LetEo

be the set of achieved objectives. Then:

J = Re(re) −
∑

o∈Eo

Ro

Resources constraintsCe are given by the inequality
Ce(re) ≥ 0. Resources have the following property: for
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a resource that decreases from one task to the next one, even
if the variation of the resource between two tasks is not com-
pletely known, the relative cost of the current resource can
be considered as already consumed. Knowing this, consid-
ering the stateWπ(i) of Q, the partial costRe(rπ(i)) on a
current itinerary can be defined by:

Re(re) = Re(rπ(i)) + σπ(i),e with σπ(i),e ∈ R
+

The goal achievement problem is not fully specified be-
cause the evaluation of instants and resources depends on
the choice of the node ofN in eachWπ(i) of the sequence
and for each node of an instant to go. It has to be supple-
mented with a low level description.

Low level description
The relationS is expanded to the nodes level: givenn and
m in N , there exists one or several arcs fromn to m if and
only if there existi andj with n ∈ Wi, m ∈ Wj andWj ∈
S(Wi).

Let A be the set of possible low level actions. For each
couple (Wi, Wj) such thatWj ∈ S(Wi), there exists a
subsetAi,j of A indicating authorized actions betweenWi

and Wj . Given a ∈ Ai,j , m may be specialized inma,
indicating thatm is reached with the actiona.

For two chosen nodesnk andnk+1 respectively inWπ(k)

andWπ(k+1) of the sequenceQ, if nk+1 is reached by the
actionak+1, instants atnk andnk+1 are linked by the rela-
tion:

tπ(k+1) = tπ(k) + ∆ak+1
nk,nk+1

where ∆
ak+1
nk,nk+1 is bounded according tonk, nk+1 and

ak+1. The date of the beginning of the mission is known.
Each node may have a time window.

The state variables are then the position of the vehicle, the
state of the objectives (not treated, treated, achieved) and the
levels of the resources.

Resources consumption
Resources are supposed to be consumable:

rπ(i+1) ≤ rπ(i)

Given a sequence of nodesn1, . . . ni such thatnk ∈
Wπ(k), given a sequence of actionsa2, . . . , ai such thatak

is the action betweennk−1 and nk, the levelrs
π(i) of the

resources at a nodeni is of the form:

rs
π(i) = fs

π(i)(n1, . . . , ni, a2, . . . , ai, ∆
a2
n1,n2

, . . . ,∆ai

ni−1,ni
)

Two kinds of resources are considered: arc decomposable
resources and global resources. For example, the mass of the
vehicle at the current time is an arc decomposable resource,
while the probability to be alive at current time is a global
resource. For arc decomposable resources only, the level of
the resource at a nodeni may be expressed as:

rs
π(i) = rs

π(i−1) + f̃s
π(i)(ni−1, ni, ai, ∆

ai
ni−1,ni

)
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Figure 4: Mission map example

Applicative Example

The formalism is illustrated on a military observation mis-
sion carried on by an autonomous unmanned aerial vehi-
cle (Chanthery, Barbier, & Farges 2004). The environment
is three dimensional, dynamic, uncertain and dangerous. It
includes an unsafe area where the vehicle carries out oper-
ations, which are the objectives of the mission. The mis-
sion constraints are due to the objectives, the environment
and the vehicle. The planning function has to select and or-
der the best subset of objectives and to determine the arrival
date at each waypoint, maximizing observation rewards and
minimizing criteria on danger, fuel consumption and dura-
tions, while meeting the mission constraints. An example
of a mission map including two objective areas is shown on
Figure 4.

High level description

The setN of the nodes corresponds to the points of the geo-
metrical space. It includes the take-off waypointTOW , the
set of landing waypointsLW , the set of entrance points of
the unsafe areaENU , the set of exit points of the unsafe
areaEXU , for each objective, the sets of entranceENOo

and exitEXOo points and specific waypoints{TW1, . . .}
for data transmission.

The partitionW is defined according to the type of each
waypoint. Figure 5 illustrates the finite state machine corre-
sponding to a planning beginning at the take-off point.Ws

is defined by the set containingTOW for the mission prepa-
ration, or by the current physical position of the vehicle for
reactive planning.We, the end of the plan, corresponds to
LW . The transition functionS is defined by one or more
possible trajectories between two sets of waypoints.

P is composed of objectiveO1 and objectiveO2. O1 is
defined by (W3; W4; W4). Indeed, the data transmission
for this objective is done at the exit point of the area.O2 is
defined by (W5; W6; W7). The data transmission for this ob-
jective is done at a transmission point because the objective
area is out of range of the ground station.
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Figure 5: Finite state machine of the mission -
Objective 1:s(1) = 3, e(1) = 4, r(1) = 4;
Objective 2:s(2) = 5, e(2) = 6, r(2) = 7

Time and resources
The resources vectorr ∈ R

2 contains the probability of
being alive at current time (first component notedr1) and
the mass of the vehicle at current time (second component
notedr2). For a more complex description of the expres-
sion of these terms, see (Chanthery, Barbier, & Farges 2004).
For each objective, the rewardRo is defined by the function
Go.po(ts(o)).r

1
r(o) whereGo is the maximum reward associ-

ated too, po(ts(o)) represents the quality of the observation
at time ts(o) and r1

r(o) represents the probability of being
alive at data transmission time. The cost functionRe corre-
sponds to the costs of danger and consumption:

Re(re) = (r1 − re)
⊤.C

whereC is a vector ofR2, whose first component is the
price of the aerial autonomous system (vehicle and payload
included), and whose second component is the price of the
fuel per mass unit. So, costs are decreasing with resources.

The planning goal is to find a sequence of states beginning
by the take-off waypoint, ending by the set of landing way-
points of the mission and using the possible trajectories be-
tween two sets of waypoints. The sequence has to minimize
the differenceJ between costs of danger and consumption
and rewards obtained for the data transmission while satis-
fying the constraints on danger and fuel.

J = Re(re) −
∑

o∈Eo

Go.po(ts(o)).r
1
r(o)

The constraintCe(re) ≥ 0 expresses the fact that the vehicle
has enough chances to finish its mission. It has the following
form:

re − rmin ≥ 0

Indeed, the probability of being alive at the end of the mis-
sion must be greater than a given limit (r1

min) under which
the vehicle is considered as destroyed. The fuel being lim-
ited, the mass of the vehicle cannot be lower than the mass
without fuelr2

min.

Low level description
Different motion actions are possible to reach a node ofN .
If there is no danger, the motion action is the straight line.
If there is a danger, it is possible to bypass the danger or
to cross it. During the treatment of an objective, the vehi-
cle can follow an outline or a trajectory for the area survey.
Bounds on∆ak+1

nk,nk+1 are computed by considering on the
one hand aerodynamic and propulsion characteristics of the
vehicle and on the other hand the traveled distance, the av-
erage slope and the average height from the nodenk to the
nodenk+1 using actionak+1.

Some nodes ofN have a time window. For the entrance
and exit points of the unsafe area, time windows correspond
to operational procedures to safely cross the frontier. For
each objective, time window indicates the times when the
observation is valid.

Resources consumption
Resources are consumable, so they decrease with time. Fuel
resource is decomposable. Let us simplify the notation
∆ai

ni−1,ni
in ∆. The decrease of the fuel on the arc from

nodeni−1 to nodeni corresponding to the actionai is given
by:

f̃2
π(i)(ni−1, ni, ai, ∆) =

-
(

α(ni−1, ni, ai)
1

∆2
+ β(ni−1, ni, ai).∆

4
)

whereα(ni−1, ni, ai) andβ(ni−1, ni, ai) are computed by
considering the same parameters as for bounds on∆ai

ni−1,ni
.

On the contrary, the probability of being alive is not de-
composable. It depends on the entire past path of the vehicle.
Indeed, the probability of being alive is the product, on all
the exposures to danger along the path, of the probability of
surviving the considered exposure. It is given by:

f1
π(i)(n1, . . . , ni, a1, . . . , ai, ∆

a2
n1,n2

, . . . ,∆ai

ni−1,ni
) =

∏

m∈SM

∏

em∈Em

(

1 − γm.pt(
∑

(nj−1,nj ,aj)∈Eem

∆.δ(nj−1, nj , aj))
)

whereSM is the set of threats,Em the set of exposures
for threatm, γm the probability that the threatm actually
exists and is able to destroy the vehicle when it is detected,
Eem

the set of arcs exposed to the threat during exposure
em, δ(nj−1, nj , aj) the ratio of the arc(nj−1, nj , aj) that is
exposed to the threat andpt the probability of being detected
in function of the time of exposure. The probabilitypt is
given on Figure 6.

The probability of being alive is not a linear function of
exposure duration.

Planning Algorithms
Algorithmic framework
The plan search is performed on the tree of possible actions.
Proposed algorithms are different from the ones of the lit-
erature: for each developed node, the precise evaluation of
the criterion requires an optimization of the instants at each
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Figure 6: probability of vehicle detection

node for the whole plan. The output is a sequence defined
by an ordered list of nodes, each node being specialized by
an action, and a vector of optimized durations between each
pair of nodes. The planning algorithm is adapted for on-line
replanning and so is able to begin at any node taking into
account the updated situation. For each developed node, an
optimization sub-problem is solved. LetI be the partial cri-
terion fromn1 to ni:

I = Re(rπ(i))−
∑

o∈Ei
o

Ro(ts(o), rs(o), te(o), re(o), tr(o), rr(o))

whereEi
o is the set of objectives achieved beforeni.

The goal is to optimize the partial criterionI with respect
to ∆a2

1,2, . . . ,∆
ai
ni−1,ni

andtπ2, . . . , tπi, under:

• the linear time constraints : equality constraints between
tπ(k+1), tπ(k) and ∆

ak+1
nk,nk+1 , inequality constraints on

tπ(k);

• the non linear constraints:Ce(rπ(i)) ≥ 0.

The sub-problem is transformed into the optimization of
a nonlinear criterion under linear constraints. It is solved
by the Frank-Wolfe algorithm (Frank & Wolfe 1956). The
computation of a first admissible sequence is useful for
the reactive behavior of the system and for an efficient
pruning of the tree. A first sequence is so searched without
optimizing the durations and by developing a limited num-
ber of nodes. This search uses the same cost-evaluation,
arrangement and pruning methods as the algorithm. Instants
are then optimized for this sequence, given a bounded value
for the criterion used by the algorithm. If the optimizationis
impossible, no first sequence is found and the bound value
remains infinite.

Let us define some notations:n1 is the node of the plan-
ning beginning;BOUND is the current optimal value of
the criterion for a sequence fromn1 to an end node, with an
infinite initial value;P is the list of nodes not yet expanded
(frontier of search);̂u is the first element ofP ; h is an evalu-
ation of the criterion for a sequence from the current node to
an end node;g is the optimal value of the criterion from the

origin node to the current node.P is empty at the algorithm
initialization.

The basic algorithm, inspired from theA∗ algorithm, is
presented on Figure 7.

begin
Search a first admissible sequence
if a first admissible sequence has been found

Initialize BOUND to the foundJ
end
Putn1 in P
while P is not empty

for each v in S(̂u)
T = ∅

for each possible actiona
Build sequence fromn1 to va

OptimizeI choosingt for each node of the sequence
while meeting the constraints
if there is a solution
then

Add va in T

g = Î
Calculateh from va to an end node with a method
HX

if va ∈ We andg < BOUND
BOUND = g

end
end

end
Prune the exploration tree

end
Put the elements ofT in P with a methodRY

Removêu from P
end

end

Figure 7: Basic algorithm

Proposed methods
Different methods are considered for the exploration strat-
egy and for the pruning. Indeed, good exploration guidance
and pruning provide good on-line replanning algorithm
performances.

Cost evaluation methods, denotedHX , calculate a cost
evaluationh of the plan from an unspecified nodeni to an
end node. For these methods, it is necessary to consider
the criterion at a nodeni of the sequence. The cost func-
tion Re(re) may be decomposed into a cost between the ini-
tial node and the current nodeRe(rπ(i)) and a residual cost
σπ(i),e. The optimal value ofI, denotedg, is an undervalu-
ation of the value of:

Re(rπ(i)) −
∑

o∈Ei
o

Ro(ts(o), rs(o), te(o), re(o), tr(o), rr(o))

for the plan that may be found on that branch of the tree.
MethodsH1 andHi aim at finding a lower bound ofJ−g.

H1 does not take into account the use of resources, whileHi
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takes it into account until the current nodeni. It is possible
to prove that:

J − g ≥ σπ(i),e−
∑

o∈Eo\Ei
o

Ro(ts(o), rs(o), te(o), re(o), tr(o), rr(o))

As Eo is unknown,H1 andHi take into account the ob-
jectives ofP \ Ei

o, knowing that this overvalues the number
of treated objectives. ForH1, functionh is equal to:

-
∑

o∈P\Ei
o

max
ts(o),te,o,tr(o)

Ro(ts(o), r1, te(o), r1, tr(o), r1)

As σπ(i),e is positive, methodH1 uses an upper bound of
the sum of the rewardsRo without taking into account the
use of resources. The opposite of this bound is thus a lower
bound of the value of the contribution toJ of the path from
the current nodeni to an end node. ForHi, functionh is
equal to:

-
∑

o∈P\Ei
o

max
ts(o),te(o),tr(o)

Ro(ts(o), rπ(i), te(o), rπ(i), tr(o), rπ(i))

Method Hi uses an upper bound of the sum of the re-
wards taking into account the use of resources until the cur-
rent node. The opposite of this bound is thus a more precise
lower bound of the value of the contribution toJ of the path
from ni to an end node.

MethodHr is based on the solving of a relaxed problem:
the problem is solved without optimizing the criterionI at
each node expansion and instants are chosen as if there were
no constraint. When an end node is developed, instants are
optimized for the found sequence. The difference between
the calculated value of the criterion and the valueRe(rπ(i))
gives a value forh. Moreover, the number of developed
nodes is fixed. Consequently, the value ofh is improved if
other end nodes are developed with a better global criterion.
Search will be better guided than forH1 or Hi; however,
the tree could be not pruned enough and search on all the
possible sequences would be time-consuming.Hr is neither
a lower bound nor an upper bound of the criterion.

Method HW exploits the two-level hierarchy that de-
scribes the mission problem. The highest level describes
the goal achievements level. The supernodes are the start
planning node, one node for each objective and one node
for the end of the mission. A superarc specifies a possible
action between two supernodes. The superarcs have a
weight that is a vectorAr corresponding to the minimum
use of resources on the arc and to the maximum reward
obtained for the arc. A backward search is done on this
supergraph. A heuristic value of the criterion is assigned
to each supernode embodying a minimum use of resources
and a maximum obtaining of rewards. This value is used
during the search on the low level graph ash. It can be also
used in order to prune the search tree.HW is a lower bound
of the criterion.

Two pruning methods are used. The planner cannot ap-
ply traditional pruning methods as they suppose monotonic

criterion function. The first pruning method is used ifh is a
lower bound of the criterion from the current node to an end
node. The rule applied by the algorithm is:

if g + h > BOUND then prune nodev.
The second one is used in other cases. The rule is:
if (g + h) − γ|g + h| > BOUND then prune nodev.

The choice of how to order the elements ofT in P is es-
sential. If the arrangement is not efficient, the duration of
the search may be high. Four arrangements are considered.
R1 andR2 are ordered best-first searches guided byg and
g+h respectively. They may be summed up in “ sortT in an
increasingg (or g + h) order and putT on the top of P”.R3

andR4 areg (respectivelyg +h) best-first search strategies.
They may be summed up in “ putT in P and sort P in an
increasingg (or g + h) order”.

Experiments
Some elementary tests have been performed and presented
in (Chanthery, Barbier, & Farges 2004). They showed the
capability of algorithms to make global planning in reason-
able time for a small size problem. Here, the goal is to assess
the efficiency of the algorithms in case of replanning for real
missions. The performances of the algorithms are evaluated
in limited time (15 minutes of maximum computation time),
and measures of effectiveness are the values of the criterion
for the first admissible solution and the best one found in the
limited time and the times to obtain the first admissible path
and the best path.

The mission is described by a take-off pointTOW , which
is the start point of the mission, a set of landing waypoints
LW , which are the end points of the mission and a set of
9 objectives to try to fulfil. The replanning event happens
afterO7. There remainO3, O4, O5, O6, O8 andO9. Three
tests of replanning are performed on the map of Figure 8. In
the first test,O3 andO6 are cancelled. In the second test,
O3 andO6 are cancelled and danger zones change: their
radii increase from 20km to 40km and some danger zones
moved. Finally, in the third test, an event of failure in the
system induces a replanning. The vehicle has not enough
fuel to finish its current plan that containsO3, O4, O5, O6,
O8 andO9.

All the 16 possible algorithms are tested on these three
scenarios on a SunBlade100 Processor. The value used for
γ is 0.001. The number of nodes developed during the first
search and forHr method is 100. Tables 1, 2 and 3 present
the results of the tests.

General results analysis

With optimal speed, 20s of computation time correspond to
about 1km on the map: this small position change is con-
sidered as acceptable. Indeed, it is unlikely that it changes
drastically the planning problem and its solution. For all
the tests, all algorithms that find a solution, exceptHW R4,
find a first admissible solution in less than 20s. This first
computation seems to be very efficient, as only methodHr

improves significantly that solution for scenarios 1 and 2.
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Figure 8: Tests map

Algo 1st adm sol best solution
J time J time

H1R1 -36160 12.9 -36160 12.9
H1R2 -36161 12.9 -36161 12.9
H1R3 -9449 1.9 -9949 8.2
H1R4 -9449 2.8 -9449 2.8
HiR1 -36161 13.0 -36161 13.0
HiR2 -36161 13.2 -36161 13.2
HiR3 -9449 1.9 -9949 8.3
HiR4 -9449 2.8 -9449 2.8
HrR1 -36161 12.9 -36336 429.0
HrR2 -36161 12.7 -36375 857.0
HrR3 -9449 1.9 -9449 144.1
HrR4 -9449 2.8 -36339 146.1
HW R1 -36161 12.9 -36161 12.9
HW R2 -36176 8.8 -36176 8.8
HW R3 -36161 13.0 -36161 13.0
HW R4 -36175 8.8 -36175 8.8

Table 1: Replanning 1:O3 andO6 are cancelled - CPU time
in seconds, J criterion value

Algo 1st adm sol best solution
J time J time

H1R1 -35898 9.5 -35898 9.5
H1R2 -35898 10.3 -35898 10.3
H1R3 -9449 1.8 -9449 9.3
H1R4 -9449 2.8 -9449 2.8
HiR1 -35898 9.9 -35898 9.9
HiR2 -35898 9.5 -35898 9.5
HiR3 -9449 1.8 -9449 9.2
HiR4 -9449 2.7 -9449 2.7
HrR1 -35898 9.5 -36235 872.0
HrR2 -35898 9.6 -36353 233.0
HrR3 -9449 1.9 -9449 215.0
HrR4 -9449 2.7 -36353 226.0
HW R1 -35898 9.7 -35898 9.7
HW R2 304453 7.6 304453 7.6
HW R3 -35898 9.9 -35898 9.9
HW R4 304453 7.6 304453 7.6

Table 2: Replanning 2:O3 andO6 are cancelled, dangerր
- CPU time in seconds, J criterion value

Algo 1st adm sol best solution
J time J time

H1R3 -9449 2.2 -9449 10.1
H1R4 -9449 2.9 -9449 296.1
HiR3 -9449 2.2 -9449 10.2
HiR4 -9449 3.5 -9449 297.4
HrR3 -9449 2.2 -9449 425.0
HrR4 -9449 3.5 -9449 3.5
HW R3 -9430 20.1 -9430 20.1
HW R4 -9166 515.5 -9166 515.5
HxR1 no solution
HxR2 no solution

Table 3: Replanning 3: limited fuel - CPU time in seconds,
J criterion value
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MethodsR1 andR2 do not find any solution for the third
test in the given computation time: ordered best-first search
is not suited for too constrained problems.

As far as the quality of the best found solution is con-
cerned, a variation of less than 1% compared with the best
algorithm is considered as acceptable.H1 andHi associated
with R3 andR4 have the same behavior during the search
and do not give results of good quality.HrR4 gives bad
results for the first scenario andHwR4 for the second one.

Choice of algorithms for future tests
The goal here is to find a set of algorithms that have good
performances for all the tested situations.

First of all, methodsR1 andR2 do not find any solution
for the third test in the given computation time: they are
thus rejected. Concerning the quality of the best found solu-
tion, methodsH1 andHi associated withR3 andR4 can be
rejected. For the same reasons,HrR4 andHwR4 are also
rejected.

The only two algorithms that seem to fit areHrR4 and
HW R3. HrR4 has the advantage of improving the first so-
lution, butHW R3 seems to be the best one, as far as these
tests are concerned.

Conclusions and Future Work
This paper presents a formalism for a class of real-world
problems related to mission planning for autonomous vehi-
cles. This formalism uses the notion of world abstraction
with a two-level hierarchy. The highest level describes the
goal achievement. This level is supplemented by a less ab-
stract level that depends on the application and describes the
exact motions of the vehicle in time and the use of resources.
This work proposes a solution to a non-classical planning
problem, where the number of objectives to fulfil is nota
priori fixed. Moreover, the criterion is a non-monotonic
function and planning has to deal with time and resources
constraints. The classical pruning methods are therefore in-
efficient. The formalism is devoted to mission planning of
autonomous vehicles. Its application in other application
fields, for example project management, could be investi-
gated.

Proposed algorithms use a variation of the standard
heuristic search algorithmA∗. Those algorithms may be
used for global planning at the beginning of the mission,
but the main objective of the work is to use them on-line
for replanning on order to react to events occurring during
the mission. Different methods are considered for the explo-
ration strategy and for the pruning and several methods of
cost evaluation are proposed.

The formalism and the algorithms are applied to a mil-
itary observation mission for an autonomous aerial system
in a three dimensional, dynamic, uncertain and dangerous
environment. Experiments are performed on this problem
for several scenarios. The tests show that ordered best-first
search is not adapted to too constrained replanning prob-
lems. Moreover, it seems that heuristics taking into account
resources consumption combined with best-first search are
acceptable. In general, these tests show how much on-line

replanning is advantageous compared to classical treatments
of unpredictable events, which recommend an emergency
procedure for coming back in the safe area.

Future work will concern the tests of all the algorithms
on a large set of missions and events in a real-time context.
A fuzzy approach could be used for choosing the best algo-
rithm for replanning, function of the environment, or func-
tion of the instant of occurrence and of the type of the event
that is the cause of replanning. A balance should be found
between the efficiency for pruning and the efficiency of the
sorting methods. The solutions already tested could be com-
pared to weightedA∗ with different weights for sorting and
pruning. Algorithms not based on tree search may be pro-
posed, for example using insertion or genetic approaches.
The approach consisting into exploring the graph in breadth-
first search and then applying the best partial solution when
the instant for executing the first possible action is reached
may be investigated.
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Abstract

Uncertainty is inherent in multi-agent systems because
agents do not know what actions other agents are go-
ing to perform. The Unmanned Aerial Vehicle (UAV)
Surveillance domain is used to analyze two sources
of uncertainty, (1) uncertainty of the costs of action
due to target movement and (2) uncertainty of the re-
wards from goal achievement due to the actions of other
agents. Decision-theoretic planning methods are pre-
sented to handle the first type of uncertainty. Modelling
and analysis of the agent’s desire structure is used to
capture the effect of coordination on the second type of
uncertainty.

Introduction
The impact of uncertainty on the behavior of agents operat-
ing in multi-agent systems cannot be underestimated. Un-
certainty is inherent in multi-agent systems because agents
do not know what actions other agents are going to perform.
Over time, the interests of an agent may change, changing
the actions a rational agent should take in a given situation.
As a simple example, consider two agents trying to com-
plete the same task. If one agent knows the other agent will
complete that task, it can apply its resources to other pur-
suits. In addition to interactions with other agents, mission
updates from a commander will cause goals to be added, re-
moved, or modified. Being autonomous entities, agents are
given freedom to decide their own course of action for satis-
fying their goals and thusly must be equipped with facilities
to respond to these changes.

Determining a course of action is a sequential decision
problem, where the initial decision influences future deci-
sions (i.e., the agent must consider not only the effects of its
actions in the current state, but also the future consequences
of any actions it takes). Further complicating the matter, the
agent must consider the consequences of each action in rela-
tion to each of the goals the agent holds. Decision theory is
the mathematical evaluation of risks, uncertainty, and ben-
efits to calculate the value of alternative choices. Applied
to agents, decision theory can form the basis for rational ac-
tion selection in the face of uncertainty. An agent acts ra-
tionally if it performs actions that are in its “best interests”

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

(Wooldridge 2000). Often defined in terms of their beliefs,
desires, and intentions (Georgeffet al. 1999), the best in-
terests of an agent correspond to the desires of the agent,
modelled as goals the agent holds. Armed with decision the-
ory, an agent can weigh the expected rewards to be gained
from achieving each of its goals against the costs of actions
to determine which goals are worth achieving, as well as the
order in which to achieve those goals.

Markov decision processes (MDPs) (Feinberg &
Schwartz 2002) are often used to represent and reason about
sequential decision problems. MDPs inherently handle
uncertainty by incorporating probabilities into the calcula-
tions of expected values for actions. Uncertainty is further
captured by replacing reward values with “expected values”
computed from probabilistic models of goal achievement.

However, there is a downside to using MDPs. Already
suffering from the “curse of dimensionality,” application of
MDPs to domain problems containing multiple goals exac-
erbates the computational issues (by adding dimensions to
the state representation). These additional dimensions, rep-
resenting the achievement status of goals, do not reflect the
behavior of the environment, but rather the internal state of
the agent. The behavior of the environment (e.g., the do-
main physics) is conceptually different from the goals of an
agent situated in that environment. It is due to limitations
of the MDP reward structure that goal information must be
represented as part of the state description.

Factoring can be used to reduce computation through ab-
straction of the state space. This research uses macro ac-
tions to factor the state space based on the desires (i.e., goals
or tasks) of the agent into thedesire space(Han & Barber
2004). The term desire space is used to maintain consistency
with concepts from autonomous agents. The desire space is
a representation of the possible achievement states and their
interrelations due to the effect goal achievement order has
on reward values accrued by the agent. Algorithms for mod-
ification of the desire space in response to goal addition, re-
moval, and modification enable efficient recalculation of the
desire space for action selection. For example, when infor-
mation about the goals becomes known, the agent can ef-
ficiently update the desire-space model to reflect the most
recent information and to maintain rationality of action.

The remainder of this paper is organized as follows. The
next section describes the UAV surveillance domain which

ICAPS 2005

Workshop on Planning under Uncertainty for Autonomous Systems 49



motivates this research and to which this research is applied.
This is followed by the a treatment of the foundations for
decision-theoretic action selection and desire-space analy-
sis for this research. Usage of the desire-space analysis is
described for the purpose of modelling the effect of coordi-
nation on uncertainty related to the expected rewards. The
last section summarizes and concludes the paper.

UAV Surveillance Domain
The work presented in this paper is motivated by the domain
of UAV (unmanned aerial vehicle) Surveillance and related
navigation domains. The research in this paper has been im-
plemented in a simulation of this domain for the purposes
of experimentation and demonstration. Figure 1 shows the
graphical user interface for the simulation. In the simula-
tion, the environment has been abstracted into a Cartesian
plane. Targets are placed at various points in this plane
and the agents, controlling the UAVs, are tasked with vis-
iting the various targets. An autonomous agent is assigned
to each UAV to control its movement. At the most basic
level, an agent has control over the heading and speed of a
single UAV. A state in the state space is defined by the lo-
cation, heading, and speed of the UAV in conjunction with
the locations of the targets. Each target has an associated re-
ward value, illustrated by the circles surrounding the targets
(larger circles denotes larger rewards). Movement incurs a
cost proportional to the distance traveled as an abstraction of
resources, such as fuel, forcing the agents to consider trade
off expected rewards against costs.

Uncertainty is introduced into the domain by the move-
ment of the targets, forcing the UAVs to operate with pos-
sibly stale information regarding the location of the targets.
If, upon arriving at the expected location of the target, the
target is not present, the UAV must expend extra time and
effort searching for the target. Three UAVs are shown in
Figure 1. Lines extending out of the UAVs show the past
and future planned movement.

Movement of the UAVs adds uncertainty to modelling the
expected reward value received from visiting a target. Re-
wards are given only to the first UAV to visit each target so,
unless an agent can predict the future actions of other agents,
an agent is not guaranteed to receive any reward for its work.
Calculating the exact expected cost incurred by an agent to
reach a given target is rather complex due to the movement
of the targets. Probabilistic encounter models could be used
(E.g., cost for visiting a target can be estimated as a function
of the distance between the UAV and the target).

As time progresses in the simulation, targets are added to
reflect new objectives imposed on the UAVs by the mission
commander. Upon being visited by a UAV, a target is re-
moved from the system, representing the completion of that
particular objective. As the UAVs are operating indepen-
dently, they do not necessarily know when the targets will
be removed from the system.

Decision-Theoretic Planning
The UAV Surveillance domain, as described above is an
over-subscription problem (Smith 2004), where there are a

number of possible goals from which the agent must choose
a subset to accomplish using its limited time and resources.
Contrasting with other planning systems that attempt to find
optimal solutions to this problem, this research is mainly
concerned with the runtime effects that changing objectives
have on the behavior of agents. Towards this end, abstrac-
tion is used to factor the decision space, decision-theoretic
planning methods are used to reason at the goal level, and
model modification (i.e., replanning) is examined.

Decision-theoretic planning, as described by Boutilier,
Dean, and Hanks (Boutilier 1996) (Boutilier, Dean, & Hanks
1999), uses MDPs to perform this reasoning by allowing a
range of reward values. As another benefit, MDPs naturally
capture and handle the uncertainty inherent in the domain.
Since the solution to an MDP consists of a policy describing
the action to take in any given state, MDPs are suited for
adaptation to continuous planning as well.

A Markov decision processM is a representation of this
action selection problem, consisting of four components:
the state space,S = {s1, s2, ..., sN}; actions the agent can
execute,A = {a1, a2, ..., aL}; a transition function describ-
ing the probability that executing each actiona in some state
s will result in some states′, T : S ×A× S 7→ [0, 1]; and a
reward function describing the value earned by the agent for
reaching each state,R : S 7→ R. The product of an MDP
planning algorithm is a policyπ : S 7→ A describing what
action the agent should execute for any state it may find itself
in.

The cost function for the UAV Surveillance domain falls
into the category of “cost-to-move” frameworks due to the
structure the cost function imposes on the value calcula-
tions for the MDP. In cost-to-move problems, each action
the agent executes incurs some costc < 0 as part of the
reward structure. This provides incentive for the agent to
reach its goal states with the minimal amount of movement
actions.

Even in the simplified UAV Surveillance domain, analy-
sis of the state space directly is computationally intractable.
Approximation and estimation methods are used to reduce
computation required for decision-making in any reason-
able time frame. Towards this end, this work addresses a
restricted class of MDPs, using simple domains to explore
complex goal related behaviors. Making the assumption that
the set of goals assigned to an agent is much smaller than the
total set of domain states, this research usesmacro actions
to abstract away the domain physics, reasoning about the
desire space of the agent.

Macro actions are used to combine the primitive actions
available to the agent, allowing the agent to reason at a
higher level of abstraction (Sutton, Precup, & Singh 1999).
Clever use of macro actions can improve computational ef-
ficiency for action selection. Macro actions are constructed
for UAV Surveillance to move to each target location, en-
abling reasoning in the desire space. Through domain anal-
ysis, macro actions can be created manually to control the
operation of the UAVs. The macros consist of the actions
required to turn the UAV towards the specified target loca-
tion and move until the destination is reached. If the target
is not found at that location, then a simple search pattern
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Figure 1: UAV demonstration of decision-theoretic action selection

is executed. Though not necessarily optimal, good domain
analysis may yield macros that reasonably approximate the
optimal behavior for each goal.

Macro Actions and the Desire Space
The use of the basic reward structure for MDP models is
limiting in that if the agent has multiple goals to achieve,
those goals must be represented as part of the state defini-
tion. For example, consider if the domain states are defined
as a product of state variables,Sdomain = V1×V2×...×VL.
If an agent desires to sequentially visit multiple states in the
domain, the actions that the agent selects will be different
depending on which of the goal states the agent has already
visited. Desire states of the agent can be defined as a prod-
uct of the goal variables (boolean values indicating whether
each goal has been achieved),Sdesire = G1×G2×...×GK .
The states represented in MDPM must be able to differen-
tiate between the same domain states when the agent has
different desire states, henceS = V1 × V2 × ... × VL ×
G1×G2× ...×GK . In essence, the additional propositions
from Sdesire are used to prevent attempted repeat collection
of the same reward and are necessary to accurately model
the domain.

Computation for solving an MDP is dependent upon its
size. Factoring can been used to reduce computation through
abstracting the MDP into higher level states and actions.
This research makes use of the concept of macro actions,
specifically, theoptionmodel developed by Sutton, Precup,
and Singh (Sutton, Precup, & Singh 1999). Macro actions
generalize actions into courses of action, combining prim-
itive actions to reach some objective, such as moving from
landmark to landmark. To construct the desire space, the tar-
get (goal) locations are used as the landmarks for generation
of macro actions (Han & Barber 2004).

For example, take the domain illustrated in Figure 2 as
a further simplification of the UAV Surveillance domain.
Locations labelled1 through3 represent the goals a robot
desires to visit. Unlike primitive actions, execution of a
macro action will have variable cost depending on the dis-
tance from the state in which the macro action was initiated
to the goal location. Assuming uniform cost per move, the
cost for execution of a macro is equal to the cost per move
times the expected number of moves from the current state
to the termination state (Equation 1). One other benefit of
using a macro action is that the uncertainty of action in the
domain is encapsulated in the expected cost function.

R

2

3

1

Figure 2: Multiple goals in a navigation task
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C(macro1, s) = cE(# of moves froms to termination)
(1)

{}

G1

G2

G3

C(macro1,s)

C(macro3,s)

C(macro2,s)

C(macro3,g1)

C(macro2,g1)

C(macro1,g3)

C(macro2,g3)

C(macro3,g2)

C(macro1,g2)

Initial
State

Figure 3: Weighted graph relating costs to travel among the
goal locations

The expected costs of macro actions are used to form a
weighted graph among all the subgoals as shown in Figure
3. This represents the reduced state space after the factoring
using the macro actions. Many algorithms exist for find-
ing the shortest path visiting all nodes in a graph (Gutin &
Punnen 2002). The application of travelling salesman al-
gorithms determines the order for a compound macro ac-
tion which describes a sequential ordering of macro actions.
While this is useful for goals that exist in an ’AND’ (i.e., re-
ward is not given unless all subgoals have been achieved) re-
lationship, this does not reward partial achievement. If goals
are independent, or related in a more complex manner, the
agent should be able to reason about the expected rewards
for handling a subset of the targets.

Desire States and Goal Analysis
An important characteristic of an autonomous agent is the
ability to decide which goals to pursue. Towards this end,
the agent’s desires may be combined in an ‘OR’ fashion,
where the agent may receive rewards for goals independent
of other goals . In this case, the agent must consider not only
the order in which to achieve goals, but whether to try to
achieve each particular goal at all - the cost to achieve a goal
may outweigh the reward. Additionally, since execution of
actions will change the agent’s distance and thus the cost to
reach the respective goals, pursuing one goal may make it
more or less profitable (even unprofitable) to pursue other
goals.

By creating macro actions to achieve each individual goal,
the entire set of state variables (and their uncertainty) can be
abstracted away. Instead, reasoning can be performed purely
in terms of desire states, referred to in this paper as thede-
sire space. Figure 4 shows the desire space for the example
navigation domain shown in Figure 2. Each state is labelled
with the set of goal variables denoting which goals have yet
to be achieved in that state. Initially, the agent is in the state
marked by the full set of goals and the current location. Ap-
plication of each macro leads the agent to the desire state
where the appropriate goal is marked as achieved, leading
up to the state with all goals being achieved. Unfortunately,

the domain space cannot be completely factored out because
the expected cost function for the macro actions is dependent
upon domain state. Luckily, if an agent executes actions ac-
cording to this decision-making mechanism, the only rele-
vant states are the current state and the termination states
of the macro actions, resulting in a much reduced space to
search.

{G1,G2,
G3}

s

{G2,G3}
g1

{G1,G3}
g2

{G1,G2}
g3

Macro 1

Macro 2

Macro 3

{G3}
g2

{G3}
g1

{G2}
g3

{G1}
g3

{G2}
g1

{G1}
g2

{}
g1

{}
g2

{}
g3

Figure 4: Desire space for the three goal navigation domain

The motivations for reasoning in the desire space include:
(1) the desire space is smaller than the complete state space
(the desire space grows in the number of tasks, not the
number of state variables), and (2) the structure of the de-
sire space can be exploited algorithmically during compu-
tation. The model for reasoning about the desire space is
defined as follows. Given the domain space of the problem
Sdomain, some subset of those states are marked as goals,
G ⊆ Sdomain = {g1, g2, ...gK}. Each goal represents one
target in the UAV domain. Although the locations are un-
certain due to the movement of the targets, macro actions
allow the goals to be modelled in a semi-deterministic man-
ner. The terminal states are represented as a probability dis-
tribution over the domain states. However, due to the nature
of macro actions, the probability is concentrated on the goal
state. It is possible for a macro to have termination states
that represent failure of that macro to achieve its goal but,
for simplicity of explanation, this paper expects the macro
actions to always terminate in its goal state without fail. In
this case, the last known location of the target is used as the
goal state and the uncertainty is captured in the cost estima-
tion function for the macros, where the number of moves
necessary to visit a target is probabilistically modelled.

ICAPS 2005

52 Workshop on Planning under Uncertainty for Autonomous Systems



The states of the desire space are built from the goal
variables (achievement state) and the agent’s location in
the domain space. Each macro action is constructed to
move the agent to a given goal state. The desire states
are denoted by a tuple〈Gunach, s〉. The first element of
the tuple,Gunach is the set of goals that have not been
achieved. The second element of the tuple is the loca-
tion of the agent inSdomain. The agent can only be lo-
cated at the initial locationsinitial, or as a result of exe-
cuting a macro action, in an accomplished goal locationgi,
hence,Sdesire = {〈G, sinitial〉, 〈Gunach, gi〉 s.t.Gunach ⊆
G andgi ∈ Goals/Gunach}. The action setAdesire =
{macro1,macro2, . . . , macroK} is the set of macro ac-
tions, one for achieving each goal the agent holds. Finally,
the reward function,R : Goals 7→ R, assigns a separate
reward value to each goal. An action level cost function
caction is required to estimate the costs incurred by execut-
ing the macro action. This cost is related to the distance the
agent must travel from a given domain state to the termina-
tion state of the macro.

Since the reward function is assigned slightly differently
from that used in a standard MDP, the evaluation of states
and actions is changed to match. Global termination states
are those desire states in which there are no profitable macro
actions. States in which all goals have been achieved are
global termination states since all rewards have already been
collected. The global termination states (where all goals
have been achieved) are assigned a value of 0, indicating
that no further action will yield any future rewards. Under
the Markovian assumption, state transitions are not depen-
dent upon history. After an agent has executed some ac-
tion, the action that was executed becomes irrelevant and
future decisions are dependent only upon the resulting state.
As a side effect, an agent may perform an immediately un-
profitable action in expectation of higher future rewards, but
will never take an immediately unprofitable action based on
highly profitable past action. Consequently, rational action
requires that the tail (of any length) of an agent’s plan will
always be profitable. The expected value of desire states is
defined in equations 2 and 3.

The value of a state is simply the sum of the cost of ex-
ecuting the macro from that state (a negative number), the
reward for achieving the immediate goal through macro ex-
ecution, and any expected value for being in the resulting
state, due to expected future goal achievement. Note that if
no action is profitable (i.e., the cost of each action outweighs
or equals its benefits), then the state is also a global termina-
tion state and is given a value of 0.

The specific structure of the graph offers many exploitable
characteristics. Since the domain does not allow goals to
become unachieved, loops cannot exist in the graph, forming
a tree structure. This enables calculation of the expected
values to proceed through simple accumulation of the values
from a single graph traversal.

Model Modification for Dynamic Objectives
In UAV Surveillance, targets are added to the system as
the mission is updated. This reflects shifts in priorities by
the mission commander which are then passed down to the

UAVs. Additionally, with more than one UAV operating in
the system, targets may be removed through the action of
the other agents (i.e., when another agent visits a target and
receives the reward). These changes must be reflected in the
decision model used by the agents to maintain rational op-
eration. The probability of receiving the reward value for
goals as specified change over time as information from the
mission commander and from other agents is used to reduce
the uncertainty surrounding each of the goals. The following
sections describe algorithms for adding and removing goals
to the desire-space model during runtime.

Goal Removal

Goal removal allows the agent to reduce the size of the desire
space that it models. There are two cases for goal removal:
(1) the goal has already been achieved or (2) the goal has
not already been achieved. The second case may occur if
the goal is being abandoned, mooted by the commander, or
contracted to another agent. Both cases are simple due to the
structure of the desire space.

The first case is trivial due to the structure of the desire
space. The agent needs only treat the current state as the new
root of the model with no recalculation necessary. All desire
states that are not reachable from the current desire state can
be pruned from the model (e.g., all those desire states the
goal being removed contributes value to). In fact, the goal
variable itself can be removed from the representation. Since
the value assigned to that goal variable will be equivalent for
all remaining states, it can be safely factored out of the desire
state representation without affecting any of the remaining
desire state values.

Algorithm 1 REMOVEGOAL(d,g)
location = d.location
d =CHILD(d, g)
d.location = location
UPDATE(V (d))

When the goal being removed has not already been
achieved (i.e., it is being adopted by another agent or aban-
doned), recalculation is necessary to remove the value of the
goal from the action-selection reasoning. Due to the struc-
ture of the desire space (Figure 4), the value of any given
node is dependent only on the unachieved goals and state
of the agent at that node. Computation is saved by caching
the values of each node. Algorithm 1 describes the removal
of goalg. The function CHILD(d, g) selects and returns the
desire state that results from executing the macro to achieve
g in the desire stated. The agent transitions in the desire
space as if it had achieved goalg. The resulting state in the
desire space is then updated with the agent’s current location
in the state space. Finally, the value of the current new state
is recalculated based on the new location. The values of the
children states had previously been calculated, but due to the
new location, the costs to reach the children have changed.
This may cause a new macro to be selected as the most prof-
itable when calculating the newV (d).
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V (〈{}, s〉) = 0 (2)

V (〈Gunach, s〉) = max

(
0, max

macroi∈Adesire

(
caction(macroi, s)

+R(gi)
+V (〈Gunach − gi, gi〉)

))
(3)
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{}
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{}
g2

Remove G1

Figure 5: Modification of desire space for addition or removal of a goal

Goal Addition
Algorithm 2 describes a process for adding goalg to desire
stated. For desire stated in the model, a new macro action is
added for achieving goalg and the resulting desire stated′ is
created. The children ofd are added tod′. After the addition
of the children, the value ofd′ can be calculated, selecting
the best macro to execute in that desire state. The new goal
g are then added to each of the children ofd, constructing
the model while executing depth-first traversal of the tree.
Finally, the value ofs is updated, possibly changing the best
macro to execute.

Algorithm 2 AddGoal(d,g)
d′ = new STATE(〈d.Gunach, g〉)
d.Gunach = d.Gunach + g
for all i ∈ d.children do

ADDCHILD(d′, i)
end for
UPDATE(V (d′))
for all i ∈ d.children do

ADDGOAL(i,g)
end for
d.children = d.children + d′
UPDATE(V (d))

Model modification saves computational cost compared
to building a new model by reusing calculations for subpaths
that do not contain the new task. Figure 5 shows the result
of addingg1 to a model that already includesg2 andg3. De-
sire states marked in gray are replicated from the original

model into the resulting model through ADDCHILD in the
algorithm described above.

Additionally, since values are accumulated from the end
of the path back towards the head of the path, some desire
state nodes are shown with multiple incoming edges. The
value for these nodes needs only be calculated a single time,
cached, then reused for each of the incoming edges. Replica-
tion saves the computational cost of recalculating the values
for states which will have equivalent values to preexisting
states.

Algorithm 2 is essentially a depth-first search, but was
included to illustrate how new nodes are added into the
model during the search process. Heuristic usage can mod-
ify the presented algorithm to a best-first search to further
reduce computational costs, though the complexity level is
not changed.

Goal Modification
The rewards associated with goals may change. This may be
due to the passage of time or acquisition of new information.
States in which the goal has been achieved are not affected
by any change in the value of that goal. Only those states
leading up to achievement of that goal are affected. Similar
to the addition of goals, desire state values can be updated by
a single traversal of the graph. By intelligently caching the
value calculation results large sections of the desire space
are not touched.

The overall objective when handling dynamic goals is to
reuse the calculations that stay static across changes. In each
of the removal, addition, or modification cases, the desire
space is divided into sections by the appropriate macro ac-
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tion. On the originating side of the macro action, desire
states require recalculation. On the resulting side of the
macro action, previously calculated values can be reused.

Controlling Uncertainty through Coordination
While the uncertainty of the UAV Surveillance domain
is captured by decision-theoretic planning, the uncertainty
from the action of other agents is not. Using the methods
of goal addition, removal, and modification, coordination
among the agents can be used to reduce uncertainty. Based
on the locations of the UAVs and any messages passed be-
tween the agents, an agent can adjust the expected reward
values in its desire space to reflect the probable actions of
other agents.

Different levels of coordination may be employed, de-
pending on the requirements on resource consumption and
solution quality. The purpose of coordination is to reduce
uncertainty about the expected rewards for visiting each tar-
get. Four types of coordination are examined and their abil-
ity to reduce uncertainty evaluated: (1) no coordination,
(2) location-based inference, (3) communicated inference,
and (4) explicit partitioning.

With no coordination, the agents operate without any
knowledge of the other agents in the system. This option
requires no additional computational resources or commu-
nication on behalf of the agents. Since the agents have no
awareness of the other agents, they tend to operate redun-
dantly, often attempting to visit the same target. This situa-
tion reflects the most uncertainty.

Location-based inference and communicated inference
both produce an implicit partitioning of the goals, reducing
the overlap in work performed by the agents when compared
to no coordination. Location-based inference uses only in-
formation about the physical location of the UAVs and the
targets. Targets that are closer to other agents have their
expected rewards reduced due to the increased probability
that the other agents will visit those targets first. Communi-
cated inference is similar to location-based inference, but the
agents calculate which are their preferred targets and com-
municate those preferences to the other agents. The ben-
efit of this over location-based inference is that the agents
can take their paths (i.e., their future locations) into ac-
count when calculating their preferences instead of just their
present location. In these two situations, the agents suffer
somewhat less uncertainty than in the case of no coordina-
tion.

With explicit partitioning, the agents negotiate an alloca-
tion of the goals to respective agents effectively reducing the
overlap to zero. One drawback of using explicit partitioning
is an increase in both communications the additional com-
putational resources needed to calculate and negotiate the
partition. Also, this method can result in commitments far
into the future, reducing performance of the agents restrict-
ing the ability to adapt to changing conditions quickly. This
situation represents the least uncertainty.

Figures 6 and 7 compare the four coordination mecha-
nisms described above. In each case, three agents are used
to cover a battlefield. Targets are added to random locations
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Figure 6: Comparison of the quality of solution as a percent-
age of the rewards received by the multi-agent system
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Figure 7: Comparison of the efficiency of solution as an av-
erage of the costs incurred per goal

on the battlefield at regular intervals. Difficulty of cover-
age was set for the agents by the speed at which targets are
added. Targets have a given lifetime after which, if they
have not been visited by an UAV, they are removed by the
mission commander. If this occurs, it is counted as a missed
target. Figure 6 shows the effect of the coordination mech-
anisms on the ability for the agents to spread out across the
battlefield. The results show that explicit partitioning is the
best, while the implicitly partitioning of location inference
and communicated inference are slightly better than no co-
ordination. Figure 7 shows the efficiency of the agents at
retrieving their rewards, measuring the distance travelled on
average to visit each target since cost is dependent upon dis-
tance. Increasing the amount of coordination reduces the
distance travelled, meaning there was less overlap in the ac-
tions of the agents due to less uncertainty about the actions
of other agents.
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Conclusions
Multi-agent systems operate in dynamic environments. Dy-
namism may come from many sources, resulting in uncer-
tainty in the system. Using UAV Surveillance as an exam-
ple domain, the uncertainty dealt with in this paper originate
from two sources, (1) the movement of the targets results
in uncertainty on the cost required to service that target and
(2) the actions of the other agents results in uncertainty about
the rewards expected for each goal.

Agents must respond to the uncertainties they perceive
and try to act as best they can. This paper described ap-
proaches to handle both the uncertainty in costs and the un-
certainty in rewards. Decision-theoretic planning is used
to handle the uncertainty from the domain, while desire-
space modelling techniques provide a means for the agents
to model reductions in uncertainty of rewards through coor-
dination and improve their action selection quality to match.
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Abstract

We consider the problem of optimal planning in stochastic
domains with resource constraints, where resources are con-
tinuous and the choice of action at each step may depend on
the current resource level. Our principal contribution is the
HAO* algorithm, a generalization of the AO* algorithm that
performs search in a hybrid state space that is modeled using
both discrete and continuous state variables. The search algo-
rithm leverages knowledge of the starting state to focus com-
putational effort on the relevant parts of the state space. We
claim that this approach is especially effective when resource
limitations contribute to reachability constraints. Experimen-
tal results show its effectiveness in the domain that motivates
our research – automated planning for planetary exploration
rovers.

Introduction
Control of planetary exploration rovers presents several im-
portant challenges for research in automated planning. Be-
cause of difficulties inherent in communicating with devices
on other planets, remote rovers must operate autonomously
over substantial periods of time (Bresinaet al. 2002). The
planetary surfaces on which they operate are very uncertain
environments: there is a great deal of uncertainty about the
duration, energy consumption, and outcome of a rover’s ac-
tions. Currently, instructions sent to planetary rovers are in
the form of a simple plan for attaining a single goal (e.g.,
photographing some interesting rock). The rover attempts
to carry this out, and, when done, remains idle. If it fails
early on, it makes no attempt to recover and possibly achieve
an alternative goal. This may have a serious impact on mis-
sions. For example, it has been estimated that the 1997 Mars
Pathfinder rover spent between 40% and 75% of its time do-
ing nothing because plans did not execute as expected. The
current MER rovers (akaSpirit and Opportunity) require an
average of 3 days to visit a single rock, but in future mis-
sions, multiple rock visits in a single communication cycle
will be possible (Pedersenet al. 2005). As a result, it is
expected that space scientists will request a large number of
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potential tasks for future rovers to perform, more than may
be feasible, presenting an oversubscribed planning problem.

Working in this application domain, our goal is to provide
a planning algorithm that can generate reliable contingent
plans that respond to different events and action outcomes.
Such plans must optimize the expected value of the experi-
ments conducted by the rover, while being aware of its time,
energy, and memory constraints. In particular, we must pay
attention to the fact that given any initial state, there are mul-
tiple locations the rover could reach, and many experiments
the rover could conduct,most combinations of whichare in-
feasible due to resource constraints. To address this problem
we need a faithful model of the rover’s domain, and an al-
gorithm that can generate optimal or near-optimal plans for
such domains. General features of our problem include: (1)
a concrete starting state; (2) continuous resources (including
time) with stochastic consumption; (3) uncertain action ef-
fects; (4) several possible one-time-rewards, only a subset of
which are achievable in a single run. This type of problem is
of general interest, and includes a large class of (stochastic)
logistics problems, among others.

Past work has dealt with some features of this problem.
Related work on MDPs with resource constraints includes
the model of constrained MDPs developed in the OR com-
munity (Altman 1999). A constrained MDP is solved by
a linear program that includes constraints on resource con-
sumption, and finds the best feasible policy, given an initial
state and resource allocation. A drawback of the constrained
MDP model is that it does not include resources in the state
space, and thus, a policy cannot be conditioned on resource
availability. Moreover, it does not model stochastic resource
consumption. In the area of decision-theoretic planning,
several techniques have been proposed to handle uncertain
continuous variables (e.g. (Fenget al. 2004; Younes and
Simmons 2004; Guestrinet al. 2004)). Smith 2004 and
van den Briel etal. 2004 consider the problem of over-
subscription planning, i.e., planning with a large set of goals
which is not entirely achievable. They provide techniques
for selecting a subset of goals for which to plan, but they
deal only with deterministic domains. Finally, Meuleauet
al. 2004 present preliminary experiments towards scaling up
decision-theoretic approaches to planetary rover problems.

Our contribution in this paper is an implemented algo-
rithm, Hybrid AO* (HAO*), that handles all of these prob-
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lems together: oversubscription planning, uncertainty, and
limited continuous resources. Of these, the most essential
features of our algorithm are its ability to handle hybrid
state-spaces and to utilize the fact that many states are un-
reachable due to resource constraints.

In our approach, resources are included in the state de-
scription. This allows decisions to be made based on re-
source availability, and it allows a stochastic resource con-
sumption model (as opposed to constrained MDPs). Al-
though this increases the size of the state space, we assume
that the value functions may be represented compactly. We
use the work of Feng etal. (2004) on piecewise constant and
linear approximations of dynamic programming (DP) in our
implementation. However, standard DP does not exploit the
fact that the reachable state space is much smaller than the
complete state space, especially in the presence of resource
constraints. Our contribution is to show how to use the
forward heuristic search algorithm called AO* (Pearl 1984;
Hansen and Zilberstein 2001) to solve MDPs with resource
constraints and continuous resource variables. Unlike DP,
forward search keeps track of the trajectory from the start
state to each reachable state, and thus it can check whether
the trajectory is feasible or violates a resource constraint.
This allows heuristic search to prune infeasible trajectories
and can dramatically reduce the number of states that must
be considered to find an optimal policy. This is particularly
important in our domain where the discrete state space is
huge (exponential in the number of goals), yet the portion
reachable from any initial state is relatively small because
of the resource constraints. It is well-known that heuristic
search can be more efficient than DP because it leverages a
search heuristic and reachability constraints to focus com-
putation on the relevant parts of the state space. We show
that for problems with resource constraints, this advantage
can be even greater than usual because resource constraints
further limit reachability.

The paper is structured as follows: In Section 2 we de-
scribe the basic action and goal model. In Section 3 we
explain our planning algorithm, HAO*. Initial experimen-
tal results are described in Section 4, and we conclude in
Section 5.

Problem Definition and Solution Approach
Problem Formulation
We consider a Markov decision process (MDP) with both
continuous and discrete state variables (also called ahy-
brid MDP (Guestrin et al. 2004) or Generalized State
MDP (Younes and Simmons 2004)). Each state corresponds
to an assignment to a set of state variables. These variables
may be discrete or continuous. Continuous variables typ-
ically represent resources, where one possible type of re-
source is time. Discrete variables model other aspects of the
state, including (in our application) the set of goals achieved
so far by the rover. (Keeping track of already-achieved
goals ensures a Markovian reward structure, since we re-
ward achievement of a goal only if it was not achieved in
the past.) Although our models typically contain multiple
discrete variables, this plays no role in the description of our

algorithm, and so, for notational convenience, we model the
discrete component as a single variablen.

A Markov states ∈ S is a pair(n,x) wheren ∈ N is
the discrete variable, andx = (xi) is a vector of continuous
variables. The domain of eachxi is an intervalXi of the real
line, andX =

⊗
i Xi is the hypercube over which the con-

tinuous variables are defined. We assume an explicitinitial
state, denoted(n0,x0), and one or more absorbingtermi-
nal states. One terminal state corresponds to the situation in
which all goals have been achieved. Others model situations
in which resources have been exhausted or an action has re-
sulted in some error condition that requires executing a safe
sequence by the rover and terminating plan execution.

Actionscan have executability constraints. For example,
an action cannot be executed in a state that does not have its
minimum resource requirements.An(x) denotes the set of
actions executable in state(n,x).

State transition probabilitiesare given by the function
Pr(s′ | s, a), wheres = (n,x) denotes the state before
actiona ands′ = (n′,x′) denotes the state after actiona,
also called the arrival state. Following (Fenget al. 2004),
the probabilities are decomposed into:

• the discrete marginalsPr(n′|n,x, a). For all (n,x, a),∑
n′∈N Pr(n′|n,x, a) = 1;

• the continuous conditionalsPr(x′|n,x, a, n′). For all
(n,x, a, n′),

∫
x′∈X

Pr(x′|n,x, a, n′)dx′ = 1.

Any transition that results in negative value for some contin-
uous variable is viewed as a transition into a terminal state.

The reward of a transition is a function of the arrival
state only. More complex dependencies are possible, but
this is sufficient for our goal-based domain models. We let
Rn(x) ≥ 0 denote therewardassociated with a transition to
state(n,x).

In our application domain, continuous variables model
non-replenishable resources. This translates into the general
assumption that the value of the continuous variables is non-
increasing. Moreover, we assume that each action has some
minimum positive consumption of at least one resource. We
do not utilize this assumption directly. However, it has two
implications upon which the correctness of our approach de-
pends: (1) the values of the continuous variables are a-priori
bounded, and (2) the number of possible steps in any execu-
tion of a plan is bounded, which we refer to by saying the
problem has abounded horizon. Note that the actual num-
ber of steps until termination can vary depending on actual
resource consumption.

Given an initial state(n0,x0), the objective is to find a
policy that maximizes expected cumulative reward.1 In our
application, this is equal to the sum of the rewards for the
goals achieved before running out of a resource. Note that
there is no direct incentive to save resources: an optimal
solution would save resources only if this allows achiev-
ing more goals. Therefore, we stay in a standard decision-
theoretic framework. This problem is solved by solving
Bellman’s optimality equation, which takes the following

1Our algorithm can easily be extended to deal with an uncertain
starting state, as long as its probability distribution is known.
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form:

V 0
n (x) = 0 ,

V t+1
n (x) = max

a∈An(x)

[ ∑

n′∈N

Pr(n′ |, n,x, a)

∫

x′
Pr(x′ | n,x, a, n′)

(
Rn′(x′) + V t

n′(x
′)

)
dx′

]
.

(1)

Note that the indext represents the iteration ortime-stepof
DP, and does not necessarily correspond to time in the plan-
ning problem. The duration of actions is one of the biggest
sources of uncertainty in our rover problems, and we typi-
cally model time as one of the continuous resourcesxi.

Solution Approach
Fenget al. describe a dynamic programming (DP) algorithm
that solves this Bellman optimality equation. In particular,
they show that the continuous integral overx′ can be com-
puted exactly, as long as the transition function satisfies cer-
tain conditions. This algorithm is rather involved, so we will
treat it as a black-box in our algorithm. In fact, it can be
replaced by any other method for carrying out this compu-
tation. This also simplifies the description of our algorithm
in the next section and allows us to focus on our contribu-
tion. We do explain the ideas and the assumptions behind
the algorithm of Fenget al. in Section 3.

The difficulty we address in this paper is the poten-
tially huge size of the state space, which makes DP in-
feasible. One reason for this size is the existence of con-
tinuous variables. But even if we only consider the dis-
crete component of the state space, the size of the state
space is exponential in the number of propositional vari-
ables comprising the discrete component. To address this
issue, we use forward heuristic search in the form of a
novel variant of the AO* algorithm. Recall that AO* is
an algorithm for searching AND/OR graphs (Pearl 1984;
Hansen and Zilberstein 2001). Such graphs arise in prob-
lems where there are choices (the OR components), and each
choice can have multiple consequences (the AND compo-
nent), as is the case in planning under uncertainty. AO* can
be very effective in solving such planning problems when
there is a large state space. One reason for this is that AO*
only considers states that are reachable from an initial state.
Another reason is that given an informative heuristic func-
tion, AO* focuses on states that are reachable in the course
of executing a good plan. As a result, AO* often finds an
optimal plan by exploring a small fraction of the entire state
space.

The challenge we face in applying AO* to this problem is
the challenge of performing state-space search in a contin-
uous state space. Our solution is to search in anaggregate
state spacethat is represented by a search graph in which
there is a node for each distinct value of the discrete com-
ponent of the state. In other words, each node of our search
graph represents a region of the continuous state space in
which the discrete value is the same. In this approach, dif-
ferent actions may be optimal for different Markov states in
the aggregate state associated with a search node, especially

since the best action is likely to depend on how much en-
ergy or time is remaining. To address this problem and still
find an optimal solution, we associate a value estimate with
each of the Markov states in an aggregate. That is, we at-
tach to each search node a value function (function of the
continuous variables) instead of the simple scalar value used
by standard AO*. Following the approach of (Fenget al.
2004), this value function can be represented and computed
efficiently due to the continuous nature of these states and
the simplifying assumptions made about the transition func-
tions. Using these value estimates, we can associate differ-
ent actions with different Markov states within the aggregate
state corresponding to a search node.

In order to select which node on the fringe of the search
graph to expand, we also need to associate a scalar value
with each search node. Thus, we maintain for a search node
both a heuristic estimate of the value function (which is used
to make action selections), and a heuristic estimate of the
priority which is used to decide which search node to expand
next. Details are given in the following section.

We note that LAO*, a generalization of AO*, allows for
policies that contain “loops” in order to specify behavior
over an infinite horizon (Hansen and Zilberstein 2001). We
could use similar ideas to extend LAO* to our setting. How-
ever, we need not consider loops for two reasons: (1) our
problems have a bounded horizon; (2) an optimal policy
will not contain any intentional loop because returning to
the same discrete state with fewer resources cannot buy us
anything. Our current implementation assumes any loop is
intentional and discards actions that create such a loop.

Hybrid AO*
A simple way of understanding HAO* is as an AO* variant
where states with identical discrete component are expanded
in unison. HAO* works with two graphs:

• Theexplicit graphdescribes all the states that have been
generated so far and the AND/OR edges that connect
them. The nodes of the explicit graph are stored in two
lists: OPEN and CLOSED.

• The greedy policy(or partial solution) graph, denoted
GREEDY in the algorithms, is a sub-graph of the explicit
graph describing the current optimal policy.

In standard AO*, a single action will be associated with each
node in the greedy graph. However, as described before,
multiple actions can be associated with each node, because
different actions may be optimal for different Markov states
represented by an aggregate state.

Data Structures

The main data structure represents a search noden. It con-
tains:

• The value of the discrete state. In our application these
are the discrete state variables and set of goals achieved.

• Pointers to its parents and children in the explicit and
greedy policy graphs.
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• Pn(·) – a probability distribution on the continuous vari-
ables in noden. For eachx ∈ X, Pn(x) is an estimate of
the probability density of passing through state(n,x) un-
der the current greedy policy. It is obtained byprogress-
ing the initial state forward through the optimal actions of
the greedy policy. With eachPn, we maintain the proba-
bility of passing throughn under the greedy policy:

M(Pn) =
∫

x∈X

Pn(x)dx .

• Hn(·) – the heuristic function. For eachx ∈ X, Hn(x) is
a heuristic estimate of the optimal expected reward from
state(n,x).

• Vn(·) – the value function. At the leaf nodes of the ex-
plicit graph,Vn = Hn. At the non-leaf nodes of the ex-
plicit graph,Vn is obtained by backing up theH functions
from the descendant leaves. If the heuristic functionHn′

is admissible in all leaf nodesn′, thenVn(x) is an upper
bound on the optimal reward to come from(n,x) for all
x reachable under the greedy policy.

• gn – a heuristic estimate of the increase in value of the
greedy policy that we would get by expanding noden.
If Hn is admissible thengn represents an upper bound
on the gain in expected reward. The gaingn is used to
determine the priority of nodes in the OPEN list (gn = 0
if n is in CLOSED), and to bound the error of the greedy
solution at each iteration of the algorithm.
Note that some of this information is redundant. Nev-

ertheless, it is convenient to maintain all of it so that the
algorithm can easily access it. HAO* uses the customary
OPEN and CLOSED lists maintained by AO*. They encode
the explicit graph and the current greedy policy. CLOSED
contains expanded nodes, and OPEN contains unexpanded
nodes and nodes that need to be re-expanded.

The HAO* Algorithm
Algorithm 1 presents the main procedure. The crucial steps
are described in detail below.

Expanding a node (lines 10 to 20):At each iteration,
HAO* expands the open noden with the highest prioritygn

in the greedy graph. An important distinction between AO*
and HAO* is that in the latter, nodes are often only partially
expanded (i.e., not all Markov states associated with a dis-
crete node are considered). Thus, nodes in the CLOSED
list are sometimes put back in OPEN (line23). The reason
for this is that a Markov state associated with this node, that
was previously considered unreachable, may now be reach-
able. Technically, what happens is that as a result of find-
ing a new path to a node, the probability distribution over
it is updated (line23), possibly increasing the probability of
some Markov state from 0 to some positive value. This pro-
cess is illustrated in Figure 1. Thus, while standard AO* ex-
pands only tip nodes, HAO* sometimes expands nodes that
were moved from CLOSED to OPEN and are “in the middle
of” the greedy policy subgraph.

Next, HAO* considers all possible successors(a, n′) of
n given the state distributionPn. Typically, whenn is ex-
panded for the first time, we enumerate all actionsa possible

1: Create the root noden0 which represents the initial
state.

2: Pn0 = initial distribution on resources.
3: Vn0 = 0 everywhere inX.
4: gn0 = 0.
5: OPEN= GREEDY= {n0}.
6: CLOSED= ∅.
7: while OPEN∩ GREEDY 6= ∅ do
8: n = arg maxn′∈OPEN∩GREEDY(gn′).
9: Moven from OPEN to CLOSED.

10: for all (a, n′) ∈ A × N not expanded yet inn and
reachable underPn do

11: if n′ /∈ OPEN ∪ CLOSED then
12: Create the data structure to representn′ and add

the transition(n, a, n′) to the explicit graph.
13: GetHn′ .
14: Vn′ = Hn′ everywhere inX.
15: if n′ is terminal:then
16: Add n′ to CLOSED.
17: else
18: Add n′ to OPEN.
19: else if n′ is not an ancestor ofn in the explicit

graphthen
20: Add the transition (n, a, n′) to the explicit

graph.
21: if some pair(a, n′) was expanded at previous step

(10) then
22: UpdateVn for the expanded noden and some of its

ancestors in the explicit graph, with Algorithm 2.
23: UpdatePn′ andgn′ using Algorithm 3 for the nodes

n′ that are children of the expanded node or of a node
where the optimal decision changed at the previous
step (22). Move every noden′ ∈ CLOSED whereP
changed back into OPEN.

Algorithm 1: Hybrid AO*

in (n,x) (a ∈ An(x) ) for some reachablex (Pn(x) > 0),
and all arrival statesn′ that can result from such a transi-
tion (Pr(n′ | n,x, a) > 0).2 If n was previously expanded
(i.e. it has been put back in OPEN), only actions and arrival
nodes not yet expanded are considered. In line11, we check
whether a node has already been generated. This is not nec-
essary if the graph is a tree (i.e., there is only one way to get
to each discrete state).3 In line 15, a noden′ is terminal if no
action is executable in it (because of lack of resources). In
our application domain each goal pays only once, thus the
nodes in which all goals of the problem have been achieved
are also terminal. Finally, the test in line19 prevents loops
in the explicit graph. As discussed earlier, such loops are
always suboptimal.

2We assume that performing an action in a state where it is not
allowed is an error that ends execution with zero or constant re-
ward.

3Sometimes it is beneficial to use the tree implementation of
AO* when the problem graph isalmosta tree, by duplicating nodes
that represents the same (discrete) state reached through different
paths.
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(a) Initial GREEDY graph. Actions have multiple possible
discrete effects (e.g.,a0 has two possible effects inn0).
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(b) GREEDY graph withn2 expanded. Since the path
(n0, n2, n3) is optimal for some resource levels inn0,
Pn3 has changed. As a consequence,n3 has been re-
expanded , showing that noden5 is now reachable from
n3 undera2, and actiona4 has become do-able inn3.

Figure 1: Node re-expansion.

Updating the value functions (lines 22 to 23):As in stan-
dard AO*, the value of a newly expanded node must be up-
dated. This consists of recomputing its value function with
Bellman’s equations (Eqn. 1), based on the value functions
of all children ofn in the explicit graph. Note that these
backups involve all continuous statesx ∈ X for each node,
not just the reachable values ofx. However, they consider
only actions and arrival nodes that are reachable according to
Pn. Once the value of a state is updated, its new value must
be propagated backward in the explicit graph. The back-
ward propagation stops at nodes where the value function is
not modified, and/or at the root node. The whole process is
performed by applying Algorithm 2 to the newly expanded
node.

1: Z = {n} // n is the newly expanded node.
2: while Z 6= ∅ do
3: Choose a noden′ ∈ Z that has no descendant inZ.
4: Removen′ from Z.
5: UpdateVn′ following Eqn. 1.
6: if Vn′ was modified at the previous stepthen
7: Add all parents ofn′ in the explicit graph toZ.
8: if optimal decision changes for some(n′,x),

Pn′(x) > 0 then
9: Update the greedy subgraph (GREEDY) atn′ if

necessary.
10: Mark n′ for use at line23 of Algorithm1.

Algorithm 2: Updating the value functionsVn.

Updating the state distributions (line 23): Pn’s represent
the state distributionunder the greedy policy, and they need
to be updated after recomputing the greedy policy. More
precisely,P needs to be updated in each descendant of a
node where the optimal decision changed. To update a node

n, we consider all its parentsn′ in the greedy policy graph,
and all the actionsa that can lead from one of the parents to
n. The probability of getting ton with a continuous compo-
nentx is the sum over all(n′, a) and all possible values of
x′ of the continuous component over the the probability of
arriving fromn′ andx′ undera. This can be expressed as:

Pn(x) =
∑

(n′,a)∈Ωn

∫

X′
Pn′(x′) Pr(n | n′,x′, a)

Pr(x | n′,x′, a, n)dx′ . (2)

Here,X′ is the domain of possible values forx′, andΩn is
the set of pairs(n′, a) wherea is the greedy action inn′ for
some reachable resource level:

Ωn = {(n′, a) ∈ N ×A : ∃x ∈ X,

Pn′(x) > 0, µ∗n′(x) = a, Pr(n | n′,x, a) > 0} ,

whereµ∗n(x) ∈ A is the greedy action in(n,x). Clearly, we
can restrict our attention to state-action pairs inΩn, only.
Note that this operation may induce a loss of total proba-
bility mass (Pn <

∑
n′ Pn′) because we can run out of a

resource during the transition and end up in a sink state.
When the distributionPn of a noden in the OPEN list

is updated, its prioritygn is recomputed using the following
equation (the priority of nodes in CLOSED is maintained as
0):

gn =
∫

x∈S(Pn)−Xold
n

Pn(x)Hn(x)dx ; (3)

where S(P ) is the support of P : S(P ) =
{x ∈ X : P (x) > 0}, and Xold

n contains all x ∈ X
such that the state(n,x) has already been expanded before
(Xold

n = ∅ if n has never been expanded). The techniques
used to represent the continuous probability distributions
Pn and compute the continuous integrals are discussed
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in the next sub-section. Algorithm 3 presents the state
distribution updates. It applies to the set of nodes where the
greedy decision changed during value updates (including
the newly expanded node, i.e.n in HAO* – Algorithm 1).

1: Z = children of nodes where the optimal decision
changed when updating value functions in Algorithm 1.

2: while Z 6= ∅ do
3: Choose a noden ∈ Z that has no ancestor inZ.
4: Removen from Z.
5: UpdatePn following Eqn. 2.
6: if Pn was modified at step5 then
7: Moven from CLOSED to OPEN.
8: Update the greedy subgraph (GREEDY) atn if

necessary.
9: Updategn following Eqn. 3.

Algorithm 3: Updating the state distributionsPn.

Handling Continuous Variables
Computationally, the most challenging aspect of HAO* is
the handling of continuous state variables, and particularly
the computation of the continuous integral in Bellman back-
ups and Eqns. 2 and 3. We approach this problem using the
ideas developed in (Fenget al. 2004) for the same appli-
cation domain. However, we note that HAO* could also be
used with other models of uncertainty and continuous vari-
ables, as long as the value functions can be computed exactly
in finite time. The approach of (Fenget al. 2004) exploits
the structure in the continuous value functions of the type of
problems we are addressing. These value functions typically
appear as collections of humps and plateaus, each of which
corresponds to a region in the state space where similar goals
are pursued by the optimal policy (see Fig. 3). The sharp-
ness of the hump or the edge of a plateau reflects uncertainty
of achieving these goals. Constraints imposing minimal re-
source levels before attempting risky actions introduce sharp
cuts in the regions. Such structure is exploited by grouping
states that belong to the same plateau, while reserving a fine
discretization for the regions of the state space where it is
the most useful (such as the edges of plateaus).

To adapt the approach of (Fenget al. 2004), we make
some assumptions that imply that our value functions can
be represented as piece-wise constant or linear. Specifically,
we assume that the continuous state space induced by every
discrete state can be divided into hyper-rectangles in each
of which the following holds: (i) The same actions are ap-
plicable. (ii) The reward function is piece-wise constant or
linear. (iii) The distribution of discrete effects of each action
are identical. (iv) The set of arrival values or value varia-
tions for the continuous variables is discrete and constant.
Assumptions (i-iii) follow from the hypotheses made in our
domain models. Assumption (iv) comes down to discretiz-
ing the actions’ resource consumptions, which is an approx-
imation. It contrasts with the naive approach that consists of
discretizing the state space regardless of the relevance of the
partition introduced. Instead, we discretize the action out-
comes first, and then deduce a partition of the state space

from it. The state-space partition is kept as coarse as possi-
ble, so that only the relevant distinctions between (continu-
ous) states are taken into account. Given the above condi-
tions, it can be shown (see (Fenget al. 2004)) that for any
finite horizon, for any discrete state, there exists a partition
of the continuous space into hyper-rectangles over which the
optimal value function is piece-wise constant or linear. The
implementation represents the value functions as kd-trees,
using a fast algorithm to intersect kd-trees (Friedmanet al.
1977), and merging adjacent pieces of the value function
based on their value. We augmented this approach by rep-
resenting the continuous state distributionsPn as piecewise
constant functions of the continuous variables. Under the
set of hypotheses above, if the initial probability distribution
on the continuous variables is piecewise constant, then the
probability distribution after any finite number of actions is
too, and Eqn. 2 may always be computed in finite time.4

Properties

As for standard AO*, it can be shown that if the heuristic
functionsHn are admissible (optimistic), the actions have
positive resource consumptions, andthe continuous backups
are computed exactly, then: (i) at each step of HAO*,Vn(x)
is an upper-bound on the optimal expected return in(n,x),
for all (n,x) expanded by HAO*; (ii) HAO* terminates after
a finite number of iterations; (iii) after termination,Vn(x) is
equal to the optimal expected return in(n,x), for all (n,x)
reachable under the greedy policy (Pn(x) > 0). Moreover,
if we assume that, in each state, there is adoneaction that
terminates execution with zero reward (in a rover problem,
we would then start a safe sequence), then we can evaluate
the greedy policy at each step of the algorithm by assum-
ing that execution ends each time we reach a leaf of the
greedy subgraph. Under the same hypotheses, the error of
the greedy policy at each step of the algorithm is bounded by∑

n∈GREEDY∩OPEN gn. This property allows trading com-
putation time for accuracy by stopping the algorithm early.

Heuristic Functions

The heuristic functionHn helps focus the search on truly
useful reachable states. It is essential for tackling real-size
problems. Our heuristic function is obtained by solving a
relaxed problem. The relaxation is very simple: we assume
deterministic transitions for the continuous variables, i.e.,
Pr(x′|n,x, a, n′) ∈ {0, 1}. If we assume the action con-
sumes the minimum amount of each resource, we obtain an
admissible heuristic function. A non-admissible, but proba-
bly more informative heuristic function is obtained by using
the mean resource consumption.

The central idea is to usethe same algorithmto solve both
the relaxed and the original problem. Unlike classical ap-
proaches where a relaxed plan is generated for every search
state, we generate a “relaxed” search-graph using our HAO*
algorithmoncewith a deterministic-consumption model and
a trivial heuristic. The value functionVn of a node in the

4A deterministic starting statex0 is represented by a uniform
distribution with very small rectangular support centered inx0.
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relaxed graph represents the heuristic functionHn of the as-
sociated node in the original problem graph. Solving the
relaxed problem with HAO* is considerably easier, because
the structure and the updates of the value functionsVn and
of the probabilitiesPn are much simpler than in the original
domain. However, we run into the following problem: deter-
ministic consumption implies that the number of reachable
states for any given initial state is very small (because only
one continuous assignment is possible). This means that in a
single expansion, we obtain information about a small num-
ber of states. To address this problem, instead of starting
with the initial resource values, we assume a uniform distri-
bution over the possible range of resource values. Because
it is relatively easy to work with a uniform distribution, the
computation is simple relative to the real problem, but we
obtain an estimate for many more states. It is still likely that
we reach states for which no heuristic estimate was obtained
using these initial values. In that case, we simply recompute
starting with this initial state.

Experimental Evaluation
We tested our algorithm on a slightly simplified variant of
the rover model used for NASA Ames October 2004 Intelli-
gent Systems demo (Pedersenet al. 2005). In this domain,
a planetary rover moves in a planar graph made of locations
and paths, sets up instruments at different rocks, and per-
forms experiments on the rocks. Actions may fail, and their
energy and time consumption are uncertain. Resource con-
sumptions are drawn from two type of distributions: uniform
and normal, and then discretized. The problem instance used
in our preliminary experiments is illustrated in figure 2. It
contains 5 target rocks (T1 to T5) to be tested. To take a
picture of a target rock, this target must be tracked. To track
a target, we must register it before doing the first move.5

Later, different targets can be lost and re-acquired when nav-
igating along different paths. These changes are modeled as
action effects in the discrete state. Overall, the problem con-
tains 43 propositional state variables and 37 actions. There-
fore, there are248 different discrete states, which is far be-
yond the reach of a flat DP algorithm.

The results presented here were obtained using a prelim-
inary implementation of the piecewise constant DP approx-
imations described in (Fenget al. 2004) based on a flat
representation of state partitions instead of kd-trees. This
is considerably slower than an optimal implementation. To
compensate, our domain features a single abstract contin-
uous resource, while the original domain contains two re-
sources (time and energy). Another difference in our imple-
mentation is in the number of nodes expanded at each itera-
tion. We adapt the findings of (Hansen and Zilberstein 2001)
that overall convergence speeds up if all the nodes in OPEN
are expanded at once, instead of prioritizing them based on
gn values and changing the value functions after each ex-

5Therefore, starting to track some targets is a typical example of
set-up actions, that is, actions that are not necessary in the nominal
plan but that we must have performed before if we want to devi-
ate from this plan, for instance, by changing goals if the current
resource levels are below the expectations.

Re−acquire T4

L1

L2

L3

L4

T1(5)

T2(10)

T5(15)

T3 (10)

T4 (15)

[20,30]

[20,30]

[15,18]

[15,20]

Lose T4

Lose T2, T5

Lose T1

Figure 2: Case study: the rover navigates around five target
rocks (T1 to T5). The number with each rock is the reward
received on testing that rock.

pansion.6 Finally, these preliminary experiments do not use
the sophisticated heuristics presented earlier, but the follow-
ing simple admissible heuristic:Hn is the constant function
equal to the sum of the utilities of all the goals not achieved
in n.

We varied the initial amount of resource available to the
rover. As available resource increases, more nodes are
reachable and more reward can be gained. The performance
of the algorithm is presented in Table 1. We see that the
number of reachable discrete states is much smaller than the
total number of states (248) and the number of nodes in an
optimal policy is surprisingly small. This indicates that AO*
is particularly well suited to our rover problems. However,
the number of nodes expanded is quite close to the number
of reachable discrete states. Thus, our current simple heuris-
tic is only slightly effective in reducing the search space,
and reachability makes the largest difference. This suggests
that much progress can be obtained by using better heuris-
tics. The last column measures the total number of reachable
Markov states, after discretizing the action consumptions as
in (Fenget al. 2004). This is the space that a forward search
algorithm manipulating Markov states, instead of discrete
states, would have to tackle. In most cases, it would be im-
possible to explore such space with poor quality heuristics
such as ours. This indicates that our algorithm is quite ef-
fective in scaling up to very large problems by exploiting
the structure presented by continuous resources.

Figure 3 shows the converged value function of the ini-
tial state of the problem. The value function is comprised of
several plateaus, where different sets of goals are achieved.
For example, the first plateau (until resource level 23) corre-
sponds to the case where the resource level is insufficient for

6In this implementation, we do not have to maintain exact prob-
ability distributionsPn. We just need to keep track of the supports
of these distributions, which can be approximated by lower and
upper bounds on each continuous variable.
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A B C D E F G H

30 0.1 39 39 38 9 1 239

40 0.4 176 163 159 9 1 1378

50 1.8 475 456 442 12 1 4855

60 7.6 930 909 860 32 2 12888

70 13.4 1548 1399 1263 22 2 25205

80 32.4 2293 2148 2004 33 2 42853

90 87.3 3127 3020 2840 32 2 65252

100 119.4 4673 4139 3737 17 2 102689

110 151.0 6594 5983 5446 69 3 155733

120 213.3 12564 11284 9237 39 3 268962

130 423.2 19470 17684 14341 41 3 445107

140 843.1 28828 27946 24227 22 3 17113

150 1318.9 36504 36001 32997 22 3 1055056

Table 1: Performance of the algorithm for different initial
resource levels. A: initial resource (abstract unit). B: exe-
cution time (s). C: # reachable discrete states. D: # nodes
created by AO*. E: # nodes expanded by AO*. F: # nodes in
the optimal policy graph. G: # goals achieved in the longest
branch of the optimal solution. H: # reachable Markov
states.
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Figure 3: Value function of the initial state.

any goal to be achieved. The next plateau (until 44) depicts
the region in which the target T1 is tested. The remaining
resources are still not enough to move to a new location and
generate additional rewards. In the region between 44 and
61 the rover decides to move to L4 and test T4. Note that
the location L2 is farther from L4 and so the rover does not
attempt to move to L2, yet. The next plateau corresponds to
the region in which the optimal strategy is to move to L2 and
test both T2 and T5, as enough resources for that are now
available. The last region (beyond 101) is in which three
goals T1, T2 and T5 are tested and reward of 30 is obtained.

WhenHn is admissible, we can bound the error of the
current greedy graph by summinggn over fringe nodes. In
Table 2 we describe the time/value tradeoff we found for this
domain. On the one hand, we see that even a large compro-
mise in quality leads to no more than 25% reduction in time.
On the other hand, we see that much of this reduction is ob-
tained with a very small price (ε = 0.5). Additional experi-
ments are required to learn if this is a general phenomenon.

Initial Execution # nodes # nodes

resource ε time created by AO* expanded by AO*

130 0.00 426.8 17684 14341

130 0.50 371.9 17570 14018

130 1.00 331.9 17486 13786

130 1.50 328.4 17462 13740

130 2.00 330.0 17462 13740

130 2.50 320.0 17417 13684

130 3.00 322.1 17417 13684

130 3.50 318.3 17404 13668

130 4.00 319.3 17404 13668

130 4.50 319.3 17404 13668

130 5.00 318.5 17404 13668

130 5.50 320.4 17404 13668

130 6.00 315.5 17356 13628

Table 2: Complexity of computing anε-optimal policy. The
optimal return for an initial resource of 130 is 30.

Conclusions
We presented a variant of the AO* algorithm that, to the best
of our knowledge, is the first algorithm to deal with: lim-
ited continuous resources, uncertainty, and oversubscription
planning. We developed a sophisticated reachability analy-
sis involving continuous variables that could be useful for
heuristic search algorithms at large. Our preliminary imple-
mentation of this algorithm shows very promising results on
a domain of practical importance. We are able to handle
problems with248 discrete states, as well as a continuous
component.

In the near future, we hope to report on a more mature ver-
sion of the algorithm, which we are currently implementing.
It includes: (1) a full implementation of the techniques de-
scribed in (Fenget al. 2004); (2) a rover model with two
continuous variables; (3) a more informed heuristic func-
tion, as discussed in Section 3.
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Abstract
The ReSSAC project, an autonomous exploration ro-
torcraft project at ONERA, motivates our research on
decision-theoretic planning in large state spaces. Recent
work on Markov Decision Processes make it possible
to address more realistic stochastic planning problems,
thanks to factored models and implicit state representa-
tions. Decomposition and factorization techniques en-
able to plan using state and action variables. Decision-
theoretic exploration problems comprises several inter-
mediate goals and are structured in two components.
A graph of enumerated states represents the navigation
component of the problem, as in gridworld MDPs. A
set of state variables describes, in a compact and im-
plicit way, the other features of the problem, includ-
ing the intermediate goals to be achieved in sequence.
The solution of an academic instance of an exploration
problem is presented. A family of gridworld explo-
ration problems is used to compare Heuristic Search
Dynamic Programming algorithms on such large scale
MDPs. A common algorithmic scheme is used to com-
pare LAO* with a sub-optimal Symbolic Focused Dy-
namic Programming (SFDP) policy iteration algorithm.
SFDP quickly finds sub-optimal solutions when LAO*
cannot tackle the problem. The originality of SFDP is
that both the optimization time and the solution qual-
ity are controlled by planning for a partial subset of se-
lected planning goals. An even faster version sfDP is
presented that quickly finds solution in larger problems.
The incremental version IsfDP incrementally improves
the current solution thanks to iterative calls of sfDP with
an increasing list of planning subgoals to be taken into
account. We compare all these algorithms on a set of
problems of different sizes.

Introduction
The approach and the algorithms presented in this paper
are developed for decision-theoretic planning in large state
spaces. This work is motivated by an application to planning
under uncertainty for autonomous exploration or “search
and rescue” aircraft within the ReSSAC 1 project at ONERA.

Markov Decision Processes (MDPs) (Puterman 1994) are
a reference framework for sequential decision making un-

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1http://www.cert.fr/dcsd/RESSAC

der uncertainty: in order to deal with the uncertain effects
of the agent’s actions, a policy is computed on the state
space. It is a function giving, for every enumerated possible
state, the action to be performed next. The optimal policy
maximizes the probability of success, or the mathematical
expectation of reward: the value function defined on every
state. Classical stochastic dynamic programming algorithms
are based on an explicitly enumerated and unstructured state
space. The size of the state space is an exponential func-
tion of the number of features that describe the problem.
The state enumeration itself may rapidly become intractable
for realistic problems. More generally (Boutilier, Dean, &
Hanks 1999) provide an extensive discussion on complex-
ity and modeling issues. (Boutilier, Dearden, & Goldszmidt
2000) show the benefits of factored representations in or-
der to avoid state enumeration, to reason at a higher level
of abstraction as in (Dearden & Boutilier 1997) and to take
into account non-Markovian aspects of the problem, such as
historic dependent rewards or goals as shown in (Bacchus,
Boutilier, & Grove 1997). Other approaches, as in (Dean &
Lin 1995), introduce a state space hierarchical decomposi-
tion into sub-regions. Local policies are then computed in
each sub-region and become the macro-actions applicable
in the macro-states of a global abstract and factored MDP.
(Teichteil & Fabiani 2005) propose to combine both decom-
position and factorization techniques. Other important con-
tributions, such as the SPUDD library (Hoey et al. 2000),
have improved the efficiency of factored MDP solution algo-
rithms, using decision diagrams, borrowed from the Model
Checking community. Recently, heuristic search schemes
have been proposed such as LAO* (Hansen & Shlomo 2001),
or LRTDP (Bonet & Geffner 2003b).

Symbolic Focused Dynamic Programming (SFDP) heuris-
tic search algorithm is an original contribution of ours.
SFDP conforms, like LAO*, with a two-phased scheme of
planning space expansion-and-optimization. The planning
space expansion is based on a reachability analysis using the
current policy and planning goals. The optimization stage
is a dynamic programming phase applied within the previ-
ously expanded planning space: this actually enables to fo-
cus more or less the search and thus to control the optimiza-
tion process. This enables to quickly find a first solution
that is later improved if time is available. In the follow-
ing, we first present our motivations for symbolic heuris-
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tic decision-theoretic planning : we present the family of
gridworld exploration problems. Our approach exploits the
problem structure in terms of both decomposition and factor-
ization (see also (Teichteil & Fabiani 2005)) : issues about
exploration planning problems naturally motivate the de-
composition of the navigation space on the one hand and the
use of a factored model of the mission variables on the other
hand. We propose a common heuristic scheme for the so-
lution of decision-theoretic exploration problems. Our work
is inspired by LAO* (Hansen & Shlomo 2001) and LRTDP
(Bonet & Geffner 2003b) value iteration algorithms. We
describe our implementations and comparisons of the pol-
icy and the value iteration SFDP algorithms. The scala-
bility of SFDP is presented through performance compar-
isons with LAO* and SPUDD. We implemented a policy it-
eration SPUDD together with symbolic value and policy it-
eration LAO*. A suboptimal faster sfDP version of SFDP
is presented. An incremental version IsfDP iteratively calls
sfDP in order to incrementally improve the solution. No
optimal version of the SFDP scheme is presented here. Ex-
periments were conducted on the same family of gridworld
exploration-like problems. We conclude about further work
on Heuristic Search Dynamic Programming algorithms.

Motivations
Our research is motivated by an application to exploration
or “search and rescue” autonomous aircraft. We aim at con-
trolling the optimization process, the solution quality and the
optimization time, through the enforcement of specific goals
to be achieved with maximum priority. A solution should
be rapidly available in case of replanning, to be further im-
proved if time is available, up to the optimal solution. On
the other hand, some specific subgoals of the problem may
require to be imposed in the solution whatever happens with
the other subgoals.

An exploration mission comprises a problem of naviga-
tion (see Figure 1) in a partially known environment on
the one hand, and a problem of online information acqui-
sition and replanning on the other hand. Several final, alter-
native or intermediate goals may be imposed to the agent,
either as alternative choices (the agent may reach its final
goal Of either via the prior achievement of O1 or through
O2). Some final goals, such as landing in a safe area, must
be achieved in all possible plans. Some goals, such as ex-
ploring or searching a region, are the pre-conditions to be
achieved before seeking to realize further goals. Some of the
agent’s rewards and goals are historic dependent, and there
may exist ordering constraints between the goals, e.g. the
agent must take information in region Rk and transmit it to
its ground control center before proceeding with its naviga-
tion to the neighboring regions. Other state variables, such
as the agent’s energy autonomy level A, are clearly orthog-
onal to the navigation components, yet not at all decoupled
from it: each aircraft move consumes some energy, which is
modelled as a probability of transition to a lower value of the
energy autonomy variable. An insufficient energy autonomy
level can force the agent to Abort its mission and return to its
base, or to land on an emergency or security crash base. An-
other stochastic variable of the problem concerns the aircraft

vertical distance above the ground (and obstacles) : consid-
ering that the terrain is partially known, the aircraft’s action
of going to a waypoint may result in different resulting verti-
cal distance to the ground and obstacles at that point. There
are constraints on the possible vertical motions of the air-
craft, such that transitions from “cruise altitude” to “land-
ing” can only be achieved through intermediate “approach
altitude” at which terrain observation and exploration can
be performed prior to a safe “landing”. Emergency land-
ing may result in a direct transition to the ground level, but
with associated possible damages. Similarly, the airspeed
of the rotorcraft must be adapted to the vertical distance to
the ground and obstacles in order to avoid damages. Differ-
ent possible actions of transition between the possible way-
points can be generated either by optimizing the transition
time, the energy consumption or the achievement of some
perception tasks.

Last but not least, it may be specified, as in our simple
example, that rewards can only be obtained once: so that
having achieved goal O1 in region R1 nullifies the corre-
sponding reward and thus completely changes the optimal
strategy in that region. Computing a strategy for each pos-
sible combinations of goals Oj being achieved or not, leads
to perform a number of solution that is exponential in the
number of such possible intermediate goals. Ordering con-
straints could also be imposed on the sequence of achieve-
ment of some sub-goals.

Such a problem is not Markovian. This context is pre-
cisely addressed in (Bacchus, Boutilier, & Grove 1997),
where a temporal logic is used to describe and reason
on such constraints and generate the required “additional
variables” to take this into account. Today, we introduce
these additional state variables “by hand” in the problem
imperfectly sketched on Figure 1. We encode the above
constraints using Dynamic Bayes Nets (DBNs) (Dean &
Kanazawa 1989) as shown in Figure 3.

Figure 1: Navigation component of the problem : 3 regions
and 3 rewards that can be obtained once and in turn

Throughout this paper, we use a family of similar grid-
world problems of different sizes and complexity, with
weakly coupled regions and additional state variables, es-
pecially variables that describes which goals have been
achieved or not.

Gridworlds are used because they make it easier to gen-
erate large scale problems as in (Bonet & Geffner 2003b).
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Simple problems are used to explain the approach and more
complex ones to demonstrate the scalability.

Markov Decision Processes (MDPs)
A MDP (Puterman 1994) is a Markov chain controlled by
an agent. A control strategy π that associates to each state
the choice of an action is called a policy. Each action trig-
gers a stochastic transition to neighbor states. The Markov
property means that the probability of arriving in a particu-
lar state after an action only depends on the previous state of
the chain and not on the entire states history. Formally it is
a tuple 〈S,A, T ,R〉 where S is the set of possible states, A
is the set of actions, T and R are respectively the transition
probabilities and rewards functions of the MDP.

∀ s, a, s′ ∈ S ×A× S ,

{

T (s, a, s′) = T (s′|a, s)
R(s, a, s′) = R(s′|a, s)

T and R values depend on the starting state, the ending state
and the chosen action (probabilities and rewards are stored
in matrices or tables).

The most frequently used optimization criterion consists
in maximizing the value function V π = E (

∑∞
t=0 βt rπ

t ),
i.e. the infinite sum of expected rewards rπ

t obtained while
applying policy π, discounted by a factor 0 < β < 1. β in-
sures the sum’s convergence, but can also be interpreted as
an uncontrolled stopping probability (system failure or mis-
sion end) between two time points. Two main classes of it-
erative dynamic programming algorithms are classically ap-
plied to MDPs, based on Bellman equations (Bellman 1957)
for the value V π of a policy π :

V π(s) =
X

s′∈S

T (s, π(s), s′) ·
`

R(s, π(s), s′) + β V π(s′)
´

(1)

The Value Iteration scheme consist in computing the opti-
mal value of V by successive approximations. The proof of
convergence is a fixed point theorem: a unique optimal V ∗ is
reached when V stabilizes. Vk+1 is computed on each state
s at iteration k+1 as the maximum achievable value assum-
ing that Vk is then obtained in any state s′ that is reached by
applying an action a from state s:

Vk+1(s) = max
a∈A

X

s′∈S

T (s, a, s′).
`

R(s, a, s′) + β.Vk(s′)
´

(2)

The Policy iteration scheme requires to assess Vπk
for the

current policy πk: approximate solutions of equation 1 are
obtained by linear programming, or successive approxima-
tions techniques. πk+1 is then the greedy policy based on
Vπk

:

πk+1(s) = arg max
a∈A

X

s′∈S

T (s, a, s′).
`

R(s, a, s′) + β.Vπk
(s′)

´

(3)
Compared to value iteration, the policy iteration algorithm

converges in fewer iterations, but each policy assessment
stage may be computationally costly. A large discussion
about criteria and resolution algorithms is proposed in (Put-
erman 1994).

Decomposition of our exploration MDP
The decomposition of an MDP is based on a state space par-
tition Π into non empty distinct regions. Enumerated states

are thus grouped into weakly coupled regions, i.e. with
fewer transitions between the exit and entrance states of the
regions. An abstract MDP (Dean & Lin 1995) is then con-
structed, on the basis of macro-states resulting from the de-
composition into regions. For each region r, Sper(r) is the
set of the exit states of the region r :

Sper(r) =
˘

s ∈ S − r / ∃ s′ ∈ r , ∃ a ∈ A , T (s′, a, s) 6= 0
¯

We found two main possible options for the definition of
macro-states. In (Hauskrecht et al. 1998), macro-states are
the exit states of the regions, i.e. the state space of the ab-
stract MDP is

⋃

r∈Π Sper(r). In (Dean & Lin 1995), macro-
states are the aggregate states of the regions. The first model
leads to possibly sub-optimal policies, because it only con-
siders strategies leading from a macro-state to a different
macro-state. This model does not allow a local strategy to
try and reach a local sub-goal by staying within the same
macro-states (absorbing macro-states are not possible). This
aspect of the problem leads us to choose the second model
for our exploration problem (like in Figure 1): each region
possibly contains a local sub-goal to be achieved by a spe-
cific locally optimal strategy before leaving the region with
another strategy. For our navigation MDP in Figure 1, we
obtain the kind of decomposition shown in Figure 2.
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Figure 2: Example of abstract MDP (from figure 1)

More generally, an abstract MDP (Dean & Lin 1995) is a
tuple 〈S′,A′, T ′,R′〉. The actions of the abstract MDP are
then the local policies generated in each region and the tran-
sitions in the abstract MDP are computed from these local
policies:
• S′ =

⋃

r∈Π

r,

• A′ =
⋃

r∈Π

{

πr
1 , . . . π

r
mr

}

,

• T ′(r, πr
j , r′) and R′(r, πr

j , r′) depend on a discounted
macro-transition model.

Though our decomposition model is borrowed from (Dean
& Lin 1995), our decomposition algorithm is based on the
techniques proposed by (Hauskrecht et al. 1998) because
they are more adapted to factored resolution algorithms.
In order to adapt a coherent discounted macro-transition
model, we simply applied the computation methods bor-
rowed from (Hauskrecht et al. 1998) and matched it on
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the macro-state decomposition borrowed from (Dean & Lin
1995). As a result, in our implementation, the macro-
probability of transition from r to r′ applying macro-action
πr

j is computed as the average probability of moving from
somewhere in a region r (assuming a uniform probability
distribution on starting states in r) to an entrance state of a
region r′. The macro-reward for the same macro-action and
the same transition is computed as the exactly corresponding
average reward.

• T (r, πr
j , r′) =

1

|r|

P

s′∈Sper(r)∩r′

P

s∈r

T (s, πr
j , s′)

• R(r, πr
j , r′) =

1

|r|

P

s′∈Sper(r)∩r′

P

s∈r

T (s, πr
j , s′) ·R(s, πr

j , s′)

T (s, πr
j , s

′) and R(s, πr
j , s′) are iteratively computed like

the value function in a Gauss-Seidel value iteration algo-
rithm (Puterman 1994) (see also (Teichteil & Fabiani 2005)).

As a result, the proofs in (Hauskrecht et al. 1998) still
apply in our case with respect to local policies. In each
macro-state, local policies are optimized for local MDPs,
that include the local states of the macro-state itself, in our
case r ∪ Sper(r), and an absorbing state α, connected to
each exit state s ∈ Sper(r) and standing for “the rest of the
world” from the viewpoint of the local MDP. Special reward
functions are defined on the transitions from the exit states
in Sper(r) to these absorbing states (called peripheral val-
ues) that correspond to the total sum of expected rewards for
the agent if it escapes the local MDP, averaged on all what
can happen “outside the local MDP”. This is why α is an
absorbing state. This is also why the value of reaching α is
not straightforward to compute, and why Sper(r) has to be
included in the macro-state. Let the reward obtained in the
transition from exit state s ∈ Sper(r) to the absorbing state
α be λ(s): note that V (s) = λ(s). However, it is also clear
that each possible combination of the peripheral values λ(s)
for all s ∈ Sper(r) will change the obtained optimal local
policy. As a result, peripheral values must be taken as pa-
rameters.

Our local MDPs 〈S′, A′, T ′, R′〉
(λ(s))s∈Sper(r) are then

defined, for each region r and for each as follows:
• S′ = r ∪ Sper(r) ∪ {α} , where α is an absorbing state,
• A′ = A ,

• T (s, a, s′) =

(

T (s, a, s′) if (s, s′) ∈ r × (r ∪ Sper(r))

1 if (s, s′) ∈ (Sper(r) ∪ {α}) × {α}

• R(s, a, s′) =

8

>

<

>

:

R(s, a, s′) if (s, s′) ∈ r × (r ∪ Sper(r))

λ(s) if (s, s′) ∈ Sper(r) × {α}

0 if (s, s′) ∈ {α}2

For each combination of peripheral values, there is an opti-
mal local policy. However, a same local policy can be opti-
mal with different combinations of peripheral values. As a
result, for each local MDP, we need to generate a set of local
policies that should be as small as possible, but still exhaus-
tive since at least one local policy per region should match
the global optimal policy restricted to this region.

The following theorem is proved in (Hauskrecht et al.
1998): for any local policy π∗

r on a local MDP, if it
is locally optimal for a combination of peripheral values
(λ(s))s∈Sper(r) that corresponds to the actual optimal value

function of the global MDP restricted to the corresponding
exit states in Sper(r), then it matches the optimal policy π∗

of the global MDP in this region.
A first resolution method (Hauskrecht et al. 1998), named

coverage technique (CT), consists in constructing a mesh
of peripheral values covering an interval [V ∗

min, V ∗
max] and

whose spacing δ is chosen such that the value of a lo-
cal policy is within δ

2 of the optimal policy value. This
method requires to set bounds on the optimal value func-
tion V ∗, which is generally not a problem. It is however
rather ineffective in the sense that it requires to generate at
least

∏

s∈Sper(r)
V ∗

max(s)−V ∗

min(s)
δ

grid points in total, with
as many resolutions of the local MDP. Besides, the corre-
sponding resolutions are mostly redundant: a same optimal
local policy can be obtained through different resolutions
and the method even generates redundant dominated poli-
cies of equivalent local value that need to be eliminated.

A second resolution method is proposed in (Parr 1998)
which is based on Linear Programming (LP). For each local
policy πr on the macro state r∪Sper(r), the value function
on the internal states s ∈ r is a linear combination of the val-
ues on the exit states s ∈ Sper(r), i.e. λ(s). Thus, the dom-
inating policies at any state s form a piecewise-linear convex
function of the peripheral values, so that the necessary and
sufficient set of local policies that are optimal for each com-
bination of peripheral values can be generated (Parr 1998)
with methods inspired from the resolution of Partially Ob-
servable MDPs (Cassandra 1998). Yet no numerical results
are provided in (Parr 1998).

We thus had to compare experimentally these two meth-
ods on our exploration problems: numerical results obtained
on problems similar to Figure 1 are presented in (Teichteil
& Fabiani 2005). The LP method appears to be the most
effective. First, the complexity of LP is polynomial in the
number of exit states whereas the one of CT is exponential.
Second, CT produces useless policies that are dominated
by the others contrary to LP policies that are all non domi-
nated policies. Third, CT generates more than 99% policies
that have the same values and that must be also eliminated.
Fourth, CT sometimes constructs less policies than LP be-
cause some optimal policies for given peripheral values on
exit states lie between two points of the grid. Therefore, we
have implemented the LP technique in our approach in order
to decompose the navigation state sub-space into regions and
compute navigation macro-actions for our factored abstract
global exploration MDP.

On our simple instance, LP produced respectively 7, 6 and
2 local policies respectively in regions R1, R2 and R3. The
computed macro-transitions for each generated local policy
for region R1 are shown in Table 1. Three local policies
(one in each region) are actually depicted in Figure 1. The
probabilities of the macro-transitions in Table 1 give a good
idea of the local behaviors.

Decomposition of our simple instance
The decomposition of the problem is motivated by optimiza-
tion time concerns. Work by (Teichteil & Fabiani 2005)
propose to factorize such problems through a hierarchical
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Origin region Local policies End region Probability Value

R1 π1
1 R1 1 17.6327

π1
2 R1 0.111317 2.21295

R2 0.888683 0

π1
3 R1 0.211306 4.00467

R2 0.788694 0

π1
4 R1 0.433556 8.18566

R2 0.566444 0

π1
5 R1 0.666778 11.5589

R2 0.333222 0

π1
6 R1 0.988889 17.1386

R2 0.0111111 0

π1
7 R1 0.446756 8.21195

R2 0.553244 0

Table 1: Local policies and macro-transitions for region R1

decomposition into an abstract factored MDP, and show the
benefits of it in terms of efficiency. (Hauskrecht et al. 1998)
or (Parr 1998) have proposed two candidate algorithms for
the computation of local policies during the MDP decom-
position step. According to (Teichteil & Fabiani 2005) the
latter approach (LP by (Parr 1998)) based on linear program-
ming, is the one that offers the better performances and flex-
ibility. In order to take into account the fact that rewards can
only be obtained once, we have to adapt R. Parr (1998) algo-
rithm to our problem. We need to optimize the regions local
policies conditionally to the status of the goals of the region:
in practice this limits greatly the number of cases since the
combinatorics is splitted into the regions. In our simple ex-
ample, we only have one goal per region, which leads to
optimize 2 sets of conditional local policies per region : one
if the local goal has not been achieved yet by the agent, and
one if it has already been. The direct benefit driven from
decomposition comes from the fact that if there are k re-
gions and one goal per region, only 2k local policies are
computed. Without decomposition 2k global policies should
be optimized. After the decomposition phase, the naviga-
tion graph component of the gridworld exploration problem
is splitted into macro-states, each one corresponding to a
sub-region (see Figure 2, and combined with the other or-
thogonal state variables. The resulting abstract MDP is in
a factored form and may be represented by Dynamic Bayes
Nets as in Figure 3. The state variable R stands for the re-
gion, O1, O2 and O3 stand for the goals, and A for the agent
energy autonomy level. For simplicity, we assumed a binary
energy autonomy level with constant consumption over the
regions, the function f giving the probability of “loosing the
minimal energy autonomy level” between two time steps:
f(Ri, Rj , π) = [ 0.65 0.35 ] for all i,j and π.

Algebraic Decision Diagrams
Our concern about encoding efficiency is related to the op-
timization time issue in our research context. In DBNs, the
transition probabilities and rewards are represented by Con-
ditional Probability Tables, i.e. large matrices, one for ev-
ery post-action variables. However, these probability and
reward tables are sparse in most problems and can be en-
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Figure 3: Action networks and transitions of the abstract
MDP with the local policies of the region R1
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1 , At+1 and Rt+1 probability trees, and re-

ward tree (from R1)

coded in “decision trees” as in (Boutilier, Dearden, & Gold-
szmidt 2000), or as “algebraic decision diagrams” (ADDs)
as in (Hoey et al. 2000). Figure 4 shows instances of tran-
sition probability trees (vectors at the leafs) and transition
rewards trees for the macro-actions of our instance of ab-
stract MDP. For each post-action variable state, every leaf of
the probability tree stores a list containing the probabilities
to obtain every possible value xt+1

i of this variable, know-
ing the values of the other variables xt

i , xt
j , xt+1

j along the
path xt

i ∧
(

∧j 6=i

(

xt
j ∧ xt+1

j

))

from the root of the tree to
the considered leaf. The reward tree on Figure 4 expresses
the fact that, in order to obtain the reward associated with a
given goal, this goal must not be already achieved and the
agent must first reach the corresponding region with a suf-
ficient energy autonomy level. Goals in the other regions
cannot be achieved from “outside” and the corresponding
decision tree is equivalent to a NO-OP. ADDs offer the ad-
ditional advantage that nodes of a same value are merged,
thus leading to a graph (see Figure 5) instead of a tree. Af-
ter testing and comparing Decision Trees and ADDs imple-
mentations of our policy and value iteration algorithms, the
conclusion was that ADDs offer a much more efficient en-
coding, even if they are limited to use binary conditions:
some state or action variables may have to be splitted into
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several binary variables to fit in the model. As a matter of
fact, state variables with large range of values considerably
increase the computation time necessary in order to solve
factored MDPs. This is either due to the width of the cor-
responding trees when using Decision Trees, or otherwise
due to the number of binary variables required when using
ADDs. It is moreover noticeable that position or navigation
variables typically take a large number of possible values.
This is another way of getting convinced that it is a good
idea to decompose the navigation component in our explo-
ration problem into fewer more abstract aggregate regions.
Algorithms for the solution of factored MDPs using ADDs
are based on simple algebraic and logical operations such
as AND, OR, PRODUCT, SUM, etc. Some technicalities
specific to ADDs are explained in (Hoey et al. 2000), espe-
cially with respect to the implementation of value iteration
in SPUDD, on which our own value iteration algorithms are
based. The development of the policy iteration versions of
the compared algorithms demanded to apply some similar
technicalities: in order to improve the efficiency of our algo-
rithms, we apply for each action a mask BDD on the com-
plete action diagram ADD and the reward ADD of the ac-
tion, representing the states where the action can be applied.
Furthermore, BDDs and ADDs are restricted to the current
reachable state space in order to save memory and to speed
up the ADD operations.

A

R1

R2

O1 O1 O1

O2 O2 O2 O2

O3 03 O3 O3 O3

Abort π1
2 π1

1 π2
3 π2

1 π2
2 π3

1 π3
2

Figure 5: Optimal policy ADD of the MDP of Figure 3

Symbolic Heuristic Search
Symbolic heuristic search dynamic programming algo-

rithms seem to conform to a common two-phased scheme,
shown in Figure 6:

• a first reachability analysis and heuristic computation
phase,

• a subsequent dynamic programming phase.

It constitutes our common algorithmic basis for developing
and comparing different heuristic search dynamic program-
ming algorithms that conform to it such as sLAO* (Feng &
Hansen 2002) and sRTDP as in (Feng, Hansen, & Zilber-
stein 2003).

Init
R0 ← Reachable(I,A, G)
Π0 ← ShortestStochasticPath(R0 → G)
S0 ← FilterStates(R0, P (s) < ε · P (I))

=⇒ (Π0, V0, S0)

k← 0
repeat

Sk+1 ← Reachable(I,Sk, Πk, G)
DynamicProgramming(Πk, Vk, Sk+1)
k ← k + 1

until convergence over Sk

Figure 6: Heuristic Search Dynamic Programming Scheme

Reachability analysis
One strong idea is simply that the algorithm cannot apply
dynamic programming on the full state space because this
is intractable. The working space is thus carefully extended
at each iteration, keeping it small but still sweeping the full
state space. Heuristic computations, such as the proposed
shortest stochastic path analysis intervene in this first phase,
essentially to provide an admissible estimation of the value
function or equivalently, a default policy on the border of
the planning space. The “planning space expansion” phase
enables to control the optimization process. sLAO* incre-
mentally augments its working space until all the pertinent
rewards have been collected and the processes converges.

Deterministic reachability analysis We call
Reachable(I, ΠA, Stop) a function that takes as in-
puts the sets of initial and goal states I and G, uses the
set of applicable actions ΠA ⊂ A (ΠA can be a policy
or A itself) and computes the set R0 of all the states
that are reachable from I with successive applications of
deterministic actions in A in an iterative loop that stops
as soon as the Stop condition is reached : e.g. Stop can
be G ⊂ R0 or 1 step lookahead. The actions are made
deterministic by setting the maximum transition probability
to 1 and the other one to 0, which enables us to convert
the ADDs into BDDs (Binary Decision Diagrams) that are
more efficient. The idea here is that the planning space
expansion is controlled via the Stop condition, linked to the
achievement of specific planning goals.

Shortest stochastic path analysis At this stage, we can at
the same time compute an initial heuristic policy (or value
function) and reduce – if possible – the initial reachable state
space. We call ShortestStochasticPath(R0 → G) a func-
tion that takes R0 and G as inputs and computes a short-
est stochastic path from every state in R0, using stochas-
tic actions from A without their rewards. Better simplifica-
tion schemes should certainly be studied, but this heuristic
seems efficient in many problems, such as navigation grid
MDPs in (Hansen & Shlomo 2001) and in (Bonet & Geffner
2003b). We call FilterStates(R0, P (s) < ε ·P (I)) a filter-
ing function that filters the states that have a very low proba-
bility of reachability when the non-deterministic actions are
applied along the shortest path trajectories. Low probabil-
ity of reachability is assessed compared to the probability
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of the initial states. This stage is represented in Figure 7.
Stochastic reachability filtering seems very comparable in
its results, with the effect of random sampling in LRTDP
(Bonet & Geffner 2003b).
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Figure 7: SFDP focuses when no goal constraints are set

SFDP and sLAO*
During that stage the solution of the MDP is optimized
on the current reachable state space . The expansion of
the current reachable state space results from the func-
tion Reachable, applied either from I (SFDP) or from the
previous reachable state space (sLAO*). The Reachable
function expands the set of reachable states until all the
states that satisfy the goal conditions are reached. The
DynamicProgramming function of the main algorithm
(see Figure 6) can be V alueIteration or PolicyIteration.
We used the latter during the competition since it seems to
be more original and sometimes more efficient than the for-
mer. SFDP Policy Iteration is implemented by the algo-

Init
R0 ← Reachable(I,A, G)
Π0 ← ShortestStochasticPath(R0 → G)
S0 ← FilterStates(R0, P (s) < ε · P (I))

=⇒ (Π0, S0)

k ← 0
repeat

Sk+1 ← Reachable(I,Πk, G)
PolicyIteration(Πk, Sk+1)
k← k + 1

until convergence over Sk

Figure 8: SFDP Policy Iteration

rithm shown in Figure 8: the generic function Reachable
is applied from the initial state set I at each iteration, us-
ing actions from the current policy Πk , until G is reached.
As a matter of fact, the working space Sk of SFDP is abso-
lutely not guaranteed to grow : on the contrary, SFDP has
been designed to focus on coherent parts of the state space
as shown in Figure 7. As a consequence, SFDP will not give
the optimal solution to the problem, rather the “shortest so-
lution”, unless SFDP is compelled to visit all the rewards of
the state space because all the rewards of the problem have
been given as planning goals constraints prior to the opti-
mization. For sLAO*, we implemented the algorithm shown

Init
R0 ← Reachable(I,A, G)
Π0 ← ShortestStochasticPath(R0 → G)
S0 ← FilterStates(R0, P (s) < ε · P (I))

=⇒ (Π0, S0)

k← 0
repeat

Sk+1 ← Reachable(Sk, Πk, 1 step lookahead)
PolicyIteration(Πk, Sk+1)
k ← k + 1

until convergence over Sk

Figure 9: sLAO* Policy Iteration

in Figure 9, where the generic function Reachable is applied
from Sk at each iteration, using actions from the current pol-
icy Πk, with 1 step lookahead. Contrary to SFDP, Sk in
sLAO* is always supposed to grow, which in that context
gives sLAO* a guarantee of optimality.
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Figure 10: Reachable state spaces of sLAO*, sRTDP, sfDP
and IsfDP

Experimentations
We conducted our experiments on gridworld exploration
problems inspired from the example shown in figure 1. The
number of nodes of the navigation graph is 45× 45 = 2025
and the total number of states grows exponentially in the
number of additional state variables: goals, regions in the
problem (+1 for the energy level).

We first performed the comparison between the factored
MDP and enumerated MDP approaches. In linear problems,
each region is only linked with a previous and a next re-
gion. In concentric problems, each region is linked to a cen-
tral region. Results are presented in Figure 11 that shows
that state space modeling is really a crucial issue. Columns
are for problems type (either “linear” or “concentric”), state
space size, number rg. of regions, model of the MDP (F
for factored MDP and E for enumerated MDP), time B. for
building the MDP, time D. for decomposition, number πr of
macro-actions (local policies computed), total solution time
T.. The time required for the building of the state transition
data structures for the enumerated MDP illustrates handicap
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of the enumerated approach. Problems of larger size could
not be solved in comparable time: this is why they do not
appear in the table. The complexity burden is apparently
higher for “concentric problems” than for “linear problems”
(compare the complexity step between the “linear problems”
and the “concentric problems”).

type size rg. model B. D. πr T.

linear 384 3 F < 0.01 0.08 10 0.02
E 0.03 – – 0.01

6 · 103 6 F 0.01 0.38 33 1.51
E 4.21 – – 0.38

7 · 104 9 F 0.03 0.56 47 26.8
E 587.62 – – 5.03

concentric 8 · 105 9 (9 s./r.) F 0.02 0.13 21 0.12
E 746.98 – – 2.25

7 · 106 9 (81 s./r.) F 0.02 40.61 61 16.77
E > 1hr – – –

Figure 11: Comparison between the factored MDP and enu-
merated MDP approaches (elapsed time in seconds)

We then present a comparison of six algorithms that have
been implemented on the basis of the SPUDD/VI value iter-
ation algorithm: 1.SPUDD/VI – 2.SPUDD/PI – 3.sLAO/VI
– 4.sLAO/PI – 5.SFDP/VI – 6.SFDP/PI. Note that the al-
gorithm number 4 participated in the ICAPS’04 competi-
tion but it was not as mature as today. We present results
obtained with stochastic exploration-like problems because
they are closer to our research projects than the competition
problems. Yet, the complexity of such exploration problems
is comparable with the ICAPS’04 probabilistic track com-
petition problems. We have compared the solution quality

Figure 12: SFDP Solution quality (Value at starting point)
compared with sLAO* while increasing the number of plan-
ning goals to achieve

of SFDP policies when a growing number of constraints are
imposed on both algorithms concerning the planning goals.
It appears that SFDP appears as much more sensitive to goal
constraints than sLAO*. Imposing on SFDP to achieve ALL
the goals leads the algorithm to behave like sLAO*, con-
tinuously extending its planning space without focusing, as
long as the corresponding problems remains tractable. On
the contrary, sLAO* tends to try and reach all the rewards
and goals of the problem even when it is not asked so. The
corresponding computation time grows in proportions with
the number of combinations of alternatives.

Figure 13: SFDP Solution time compared with sLAO* and
SPUDD for different starting points

We have similarly compared the computation time for
sLAO* and SFDP on problems of growing complexity (vary-
ing the starting and goal points). The conclusion is that
SFDP, still finds quite quickly (sub-optimal) solutions for
the most complex problems that we could decompose in
reasonable time (248s) and without swapping, which corre-
sponds to the diagonal trip. By contrast, sLAO* cannot give
any answer after more than one hour on the fourth problem.
Such comparison should be analyzed carefully: SFDP can-
not be considered as “better” nor “preferable” on the basis
of this comparison. On the other hand, Figure 12 shows that
it is possible to establish a quality response profile for SFDP
on some classes of problems. The quick answer given by this
algorithm could be reused in order to initiate an admissible
heuristic policy, or value function for another algorithm.

Faster solution, weaker value
Following the previous ideas, another version of the focused
dynamic programming scheme was developed by weaken-
ing the stopping condition of the Reachable function. The
new stopping condition holds as soon as at least one state is
reached where the required goal conditions are achieved.
This new stopping condition is obviously weaker and the
new algorithms, called sfDP and sfLAO still follow the
schemes respectively presented in Figure 8 and 9, but with
the new Reachable function. The sfDP and sfLAO algo-
rithms are obviously not optimal, but show interesting prop-
erties in terms of incremental behavior, as shown in Fig-
ures 14 and 15. Experimental results presented in Figure 16
show that sfLAO finds better solution than sfDP, with similar
computation times. Interestingly enough, sfLAO still shows
the same behavior exhibited with SFDP: the solution qual-
ity grows with the number of goal conditions imposed up
to the optimal solution. As a consequence, the computation
time required in order to obtain the optimal solution is also a
growing function and reaches the elapsed time obtained with
sLAO*, as shown in Figure 14.

As a matter of fact, we used this idea to develop an in-
cremental version of both sfDP and sfLAO algorithms, with
respectively the IsfDP and IsfLAO algorithms that are de-
scribed in Figures 17 and 10. Experimentations shown in
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Figure 14: sfDP and sfLAO optimization time while increas-
ing the problem size

Figure 15: Percentage (%s) of explored reachable states and
variation (%r) for sfDP and sfLAO

Figures 18 and 19 show that IsfDP clearly outperforms Is-
fLAO. In conclusion, sfLAO algorithms is interesting for im-
proving the quality of the solution and could be used in a last
iteration on the basis of previous optimization performed by
IsfDP. An optimal scheme could be designed on this basis.

Related Work
The heuristic search dynamic programming schemes dis-
cussed in this paper have common features with for exam-
ple recent work on sRTDP (Feng, Hansen, & Zilberstein
2003), a symbolic on-line version of RTDP. However, the
SFDP algorithm and the way its behavior can be controlled
through planning goals constraints is a fully original contri-
bution to our knowledge. Previous comparisons (Teichteil
& Fabiani 2005) between LAO*-like algorithms and RTDP-
like algorithms have shown that LAO* would be better when
the problem topology is “open” and RTDP-like algorithms
would be more efficient in “corridors”., as it seems to be the
case in (Bonet & Geffner 2003b). Both heuristic schemes
lead to limit the size of the explored state space before con-
vergence. Their respective application in (Feng & Hansen
2002) and (Aberdeen, Thibaux, & Zhang 2004) show that
they improve the efficiency of value iteration dynamic pro-
gramming for structured MDPs. Different implementations
of these heuristic search value iteration algorithms were in-

Figure 16: sfDP and sfLAO Solution Quality (Value at start-
ing point) while increasing the problem size

Lsg ←− List of subgoals to achieve
S0 ←− I
n ←− 1
while Lsg non empty do

In ←− Sn−1

Gn ←− head of Lsg

Sn ←− SFDP (In, Gn)
remove head of Lsg

n←− n + 1
end while

Figure 17: IsfDP algorithm for on-line planning

dependently compared on navigation grid MDPs in (Hansen
& Shlomo 2001) and in (Bonet & Geffner 2003b), where
LRTDP outperforms LAO*. On symbolic stochastic prob-
lems, results in (Feng & Hansen 2002) and (Feng, Hansen,
& Zilberstein 2003) show that sRTDP presents a faster on-
line performance while sLAO* shows a better off-line con-
vergence efficiency. Furthermore, (Bonet & Geffner 2003a)
propose a general heuristic dynamic programming scheme
FIND-and-REVISE that is different but might be confused
with our two-phased scheme: planning space expansion-
and-dynamic programming.

Conclusion
We have proposed an original algorithm SFDP for which the
optimization time and the solution quality can be controlled
through the definition of planning goals constraints. The de-
sign of SFDP, and the principles of the proposed underlying
focused dynamic programming scheme, meet the challenges
of planning under uncertainty in large state spaces for au-
tonomous systems that rather need a current solution quite
rapidly, and an optimal one if possible. Goal conditions can
be adapted off-line or on-line, thus opening interesting direc-
tions for future work on decision under time and ressources
constraints. This is particularly interesting in our applica-
tion perspectives on autonomous aircraft. Among possible
perspectives, we will consider carefully deriving an on-line
version OSFDP that would adjust on-line the number of goal
constraints to satisfy in response to the available time for
finding a solution to the problem. We will also consider
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Figure 18: sfDP, IsfDP, sfLAO and IsfLAO optimization
time compared with SPUDD while increasing the number
of planning goals to achieve

Figure 19: sfDP, IsfDP, sfLAO and IsfLAO Solution Qual-
ity (Value at starting point) compared with SPUDD while
increasing the number of planning goals to achieve

the coupling of SFDP with a higher level optimization con-
troller in order to reuse the sub-optimal solution obtained
with SFDP in a higher level optimization process. This was
shown in the development of the incremental IsfDP algo-
rithm, based on sfDP, an even faster, but weaker, version
sfDP of the focused dynamic programming scheme. sfDP
presented that quickly finds solution in larger problems. The
incremental version IsfDP incrementally improves the cur-
rent solution thanks to iterative calls of sfDP with an in-
creasing list of planning subgoals to be taken into account.
We have compared all these algorithms on a set of problems
of different sizes. We will now develop an optimal version
of the focused dynamic programming scheme, that would
provide rapidly a current solution even on large state space
problems, but would improve it up to the optimal solution as
time is available.
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Abstract 
A future trend in the operation of spacecraft and other space 
vehicles is the increasing system autonomy, also in the area 
of mission planning. Increased autonomy leads to reduced 
reaction times and more optimized usage of spacecraft 
resources. It can also reduce the amount of human 
interaction in ground based space operation centers. 
The German Space Operations Center (GSOC) developed 
and used its own ground based mission planning system 
since several years. In a next step a system will be 
developed to allow mission planning on-board of a 
spacecraft. The Autonomous On-board Mission Planning 
System (AOMPS) should demonstrate the possibility to 
autonomously plan activities and react in changing 
environments during the mission (real-time replanning). 
First usage is planned for BayernSat, a technology 
demonstration satellite developed by Technische Universität 
München. 

Development Background 
 
Spacecraft operations are increasingly autonomous 
operations. On-board autonomy in terms of mission 
planning is mainly driven by the available on-board data 
processing capabilities. Current spacecraft systems are 
equipped with processor power in the range of up to 
approx. 100 MHz and several tens of MB of RAM. 
Mission planning needs exponentially growing computing 
power with each added degree of freedom. The availability 
and usage of better hardware components for spacecraft 
on-board data processing is therefore mandatory to allow 
for higher processing capabilities in orbit, a basic 
prerequisite for the usage of a mission planning software 
like AOMPS.  
BayernSat (developed and built by the Technische 
Universität München) as a technology demonstration 
satellite offers the possibility to develop and test an 
autonomous on-board mission planning system. A 
PowerPC will be used on-board with planned 800 MHz 

(1800 MIPS) processing power and approx. 256 MB of 
RAM. The satellites orbit is a low earth orbit without any 
on-board propulsion. During its lifetime the telepresence 
technique is demonstrated by sending live video streams 
down to earth. A portion of the available PowerPC 
computing power is not used by the satellite and a 
therefore available to the AOMPS. 
Development of AOMPS will be based on the existing 
GSOC mission planning tools. The software has been 
developed since the 90’s. Tool development was driven 
and accompanied by the feedback from operational usage 
during different missions. MIR97, GRACE and SRTM are 
examples for successful prepared and planned missions.  
The mission planning system consists mainly of different 
tools for activity modeling (PINTA), activity scheduling 
(PLATO) and visual publication of the planned activities 
(TimOnWeb). Mission planning with these different parts 
of software has been done on ground during mission 
preparation and during the mission itself. Common to all 
these missions is the relatively high involvement of ground 
operations staff for planning. Autonomous working on-
board software can reduce the needed staff, decrease 
reaction time and increase spacecraft resource utilization. 

Autonomous On-Board Mission Planning 
System Development 

 
With the background of higher processing capabilities on 
BayernSat and the experience with the actual GSOC 
mission planning system the aim is to develop as far as 
possible an autonomous on-board mission planning 
system. Because the satellite uses RTEMS as the operating 
system (OS) for the PowerPC boards the software will also 
be developed for this OS. C or C++ will be the used 
programming language which should allow for easily 
porting the software to other OS. Development for a real 
time operating system as RTEMS is should also reduce the 
programming overhead to a minimum. Based on past 
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experience not more than 5 MB of on-board satellite 
memory should be needed for AOMPS. 
The planning process of the software could be split into 
system planning and payload planning. An example for a 
system planning activity is charging of batteries or the 
desaturation of reaction wheels. Payload related activities 
focus on the operation of the spacecrafts payloads. This 
may include heating or cooling of an instrument and 
positioning of the satellite in advance to the imaging 
opportunity. Distinction between system and payload 
related activities are not each time possible as shown in the 
last example. It includes also system activities as changing 
attitude by usage of thrusters or reaction wheels.  
The focus of the BayernSat on-board planning software is 
primary on payload activity planning. This focus has been 
selected to allow for a staggered approach due to security 
issues of the satellite. 
In difference to conventional planning systems the on-
board planning system should be capable to react on 
planning relevant events in real time within some seconds 
after occurrence of the triggering event.  
As an example, a data take should be replanned 
automatically if the instrument sends an error status or the 
satellite batteries are discharged and not able to support a 
payload operation. Another problem often experienced in 
earth observation missions with optical sensors is the 
problem of cloud coverage. This event can also trigger the 
real time replanning process of the system.  
 
To realize mission planning in advance and intelligent real-
time reaction on changing environmental (mission 
planning) conditions its necessary to have the planning 
software integrated in the other on-board software 
packages. In principle this means to get all the required 
system and payload status data. On the other site it’s 
necessary to have an interface to command the satellite in 
order to execute the planned activities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Principle integration of an on-board mission 
planning system 
 
Figure 1 depicts the principle integration approach used for 
integration of AOMPS into the on-board software of 

BayernSat. The software is integrated into the other 
software additionally to make conventional operation 
modes possible. AOMPS receives monitoring data for 
payload and system. Attitude data is received from the 
attitude control software. All the information is used by the 
software to determine the health status of the satellite and 
derive adequate changes in activity planning. 
 
Besides receiving status information from satellite it also 
necessary to send commands to the satellite. As for normal 
ground based commanding a layer of abstraction is used 
for security reasons. Commands from ground are received 
by the command interface and processed. This interfaces 
checks validity of commands and executes them only if 
possible. The autonomous mission planning agent also 
uses this interface. This reduces the risk of causing satellite 
bus and payload failures by directly sending commands to 
the hardware. Also command execution information is 
received via this interface. 
 
All data exchange with the ground is done with help of the 
communication interface. The mission planning software 
uses this interface for downlink of satellite status 
information and results of the activity execution (e.g. 
images or other payload data). Also information about the 
mission planning software itself is send down to ground. 
This allows for analysis of the software function. 
Operation of AOMPS is optional and can be switched on 
and off during mission. 

Conclusion 

System development has been started beginning 2005 
together with the satellite project BayernSat. The 
satellite offers a unique capability due to its 
technology demonstration approach and computer 
performance. Nevertheless reliability and on-board 
interface definition needs special attention during 
software development. Therefore a staggered 
approach has been chosen for AOMPS, allowing the 
software to be operated optionally and with different 
stages of autonomy. Software will be developed in the 
C or C++ language for RTEMS as the satellites 
operating system. It is assumed that the software code 
for AOMPS needs less than 5 MB of the satellites on-
board memory. 

Autonomous On-Board Mission 
Planning Software 
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Interface 
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System & Payload 
Monitoring 

Attiude Control 

Read Status & 
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