
Monterey, California
I C A P S 2 0 0 5

Workshop on Plan

Execution:

A Reality Check

Sailesh Ramakrishnan
QSS Group Inc

NASA Ames Research Center

IC
A

P
S

0
5

WS7

Workshop on Plan

Execution:

A Reality Check

ICAPS 2005
Monterey, California, USA
June 6-10, 2005

CONFERENCE CO-CHAIRS:
Susanne Biundo

Karen Myers

Kanna Rajan

University of Ulm, GERMANY

SRI International, USA

NASA Ames Research Center, USA

Cover design: L.Castillo@decsai.ugr.es

Sailesh Ramakrishnan
QSS Group Inc

NASA Ames Research Center

Workshop on Plan Execution: A Reality
Check

Table of contents
Preface 3

Blocks in Space: Intelligent Self-Assembly Using Optimal Control Tra-
jectory Planning

5

Ella M. Atkins, Gina D. Moylan
Alternatives to Re-Planning: Methods for Plan Re-Evaluation at Run-
time

12

Emmanuel Benazera
State-Based Models for Planning and Execution 20
Matthew B. Bennett, Russell L. Knight, Robert D. Rasmussen, Michel D.
Ingham
Safe Execution of Temporally Flexible Plans for Bipedal Walking De-
vices

26

Andreas Hofmann and Brian Williams
Robot Actions Planning and Execution Control for Autonomous Ex-
ploration Rovers

33

Matthieu Gallien Felix Ingrand Solange Lemai
Making Robot Learning Controllable: A Case Study in Robot Naviga-
tion

42

Alexandra Kirsch, Michael Schweitzer, Michael Beetz
Evaporating tasks during execution of dynamically controllable net-
works

48

Russell Knight
Unified Planning and Execution for Autonomous Software Repair 55
Richard Levinson
Efficiently Solving Hybrid Logic/Optimization Problems Through Ge-
neralized Conflict Learning

63

Hui Li and Brian Williams
A Fast Incremental Dynamic Controllability Algorithm 69
John Stedl and Brian Williams
A Proposed Plan Execution Architecture for Advanced Life Support
System Control

76

G. Biswas, P. Bonasso, S. Abdelwahed, E.J. Manders, D. Kortenkamp, J.
Wu, and S. Bell
Robust Goal-oriented Behavior in Surprising Environments 80
Marshall Brinn, Mark Burstein, Robert Bobrow
An Extension to PDDL: Actions with Embedded Code 84
Okhtay Ilghami J.William Murdock
Optimized Execution of Action Chains through Subgoal Refinement 87
Freek Stulp and Michael Beetz
Plan Execution and Coordination 89
Pedro Szekely, Robert Neches, Marcel Becker, Stephen Fitzpatrick, Chris
van Buskirk, Doug Fisher, Gabor Karsai
Survey of Command Execution Systems for NASA Spacecraft and
Robots

92

Vandi Verma, Ari Jnsson, Reid Simmons, Tara Estlin, Rich Levinson

http://icaps05.icaps-conference.org/

Workshop on Plan Execution: A Reality
Check

Preface

Planning for realistic domains presents a varied set of challenges. Key among those
challenges is understanding and representing the execution time behavior of the gene-
rated plans. Recent experiences in designing and deploying planning systems provide
significant insight into the execution of plans generated by automated planners. This
experience strongly suggests the presence of a gap between how plan execution is
treated in the plan generation process, and what happens when the resulting plan is
actually executed.

For automated planning systems to be successful in the real world, it is essential that
the nature of this gap be understood and some techniques for bridging it be developed.
Some of the relevant issues include the following questions:

1. Is there a fundamental problem in our understanding of what planning is versus
what execution is?

2. What is the range of possible semantics for execution? Are current domain mo-
deling languages adequate to the task of representing execution?

3. How do planning systems fit architecturally with executives and hardware contro-
llers? What are the strengths and weaknesses of current implementations, and
where is more work needed?

4. How do planners cope with the mismatch between their representation of the
domain and reality? (in terms of time latency, inaccuracies in modeling etc..) Is
there a fundamental difference between how this prediction uncertainty is handled
in control, and how it should be handled for planning?

5. What tools and practices may be adopted to bridge the gap? What can we learn
from case studies, deployment experiences and other associated areas (such as
hybrid controller design, real-time controls etc).

The papers accepted to this workshop show a significant interest in the planning
community in understanding these issues. The papers describe a range of approaches
from novel algorithms to architectures that are robust under execution. The authors
represent a coming together of different sub-communities in AI. During this workshop we
expect a very educational discussion from different perspectives and hope to engender
a cross pollination of ideas, approaches, tools and software.

I would like to thank the members of the Organizing Committee for their efforts in
bringing this workshop together. I would also like to thank the conference and workshop
chairs for their timely assistance in supporting and publicizing the workshop.

Organizer

Sailesh Ramakrishnan (chair), QSS Group Inc, NASA Ames Research Cen-
ter.

Programme Committee

Michael Beetz, Technical University Munich.

Gautam Biswas, Vanderbilt University.

Mark Boddy, Adventium Labs.

Felix Ingrand, LAAS.

Nicola Muscettola, NASA Ames Research Center.

Issa A. D. Nesnas, JPL.

Blocks in Space: Intelligent Self-Assembly Using
Optimal Control Trajectory Planning

Ella M. Atkins, Gina D. Moylan

University of Maryland, Space Systems Laboratory
382 Technology Drive, College Park, MD, 20740

{ella | gmoylan} @ssl.umd.edu

Abstract
Many different layers of automation must be integrated to
support future space missions. At the base layer, spacecraft
must autonomously navigate; i.e., follow a specified
trajectory using the spacecraft’s actuators, sensors and
knowledge of its dynamics. This trajectory must minimize
precious fuel use and satisfy mission goals and
environmental constraints. To facilitate an appropriate
connection between task and optimal trajectory planning,
we map the well-known Blocks World domain to the space
environment by defining a simple task-level implementation
that uses cost information from an optimal trajectory
planner to make action choices. Our method is applicable at
both the micro-level where obstacles must be efficiently
circumvented and the macro-level where orbital dynamics
dictate assembly task sequencing and trajectory design.

Introduction
Imagining a child stacking blocks on the floor is a pleasant
exercise many people can relate to. Placing these same
blocks in the space environment and having them self-
assemble into particular “stacked” configurations is
anything but child’s play. When considering the necessary
role automation must play in future space missions and
endeavors, it is important to study basic scenarios that
further our understanding of the challenges we must
overcome to meet such objectives. We believe some of
these challenges lie in the inherent disconnect between the
planning of tasks and the development of the continuous
trajectories that must be followed to accomplish these
tasks. Before any other mission tasks/goals can be
prioritized and fulfilled, spacecraft must be able to
autonomously navigate; i.e., follow a specified trajectory
using the spacecraft’s actuators, sensors and knowledge of
its dynamics. To be clear, we make an important
distinction between path and trajectory:

• A path is the locus of waypoints followed during

motion; i.e., a purely geometric motion description.
• A trajectory is a path that includes velocities and/or

accelerations at each point according to the governing
equations of motion; i.e., a geometric and temporal
description of the object’s motion.

Mission goals are fulfilled by selecting action choices that
optimize fuel use and time given system and
environmental constraints. While these action choices can
be easily implemented with traditional AI planning tools,
the optimization of the fuel/time resources required to
move through space requires consideration of system
dynamics and actuation capabilities involving complex
physical motions governed by nonlinear differential
equations. Optimal trajectory planners are specifically
designed for this task, connecting spatial waypoints with a
physically-achievable trajectory. However, they are not
designed to optimize over a global assembly problem
involving a large number of choices in terms of what gets
assembled, when and where (Henshaw, 2003). Full
automation—especially in a space environment—must
involve the coordination of intelligent task and motion
planning.

The problem we address in this paper is set within the
context of the famous microworld domain known as
“Blocks World” (BW), where an infinite table holds a
finite set of unique blocks to be stacked in particular
configurations (Slaney and Thiébaux, 2001):

Problem Definition: A group of 4 self-actuating
blocks are deployed so that they are in approximately
the same orbit but have slightly different positions.
From an initial ‘snapshot,’ the goal is to build a linear
4-block structure in a fuel-optimal ‘stacking
arrangement’ using block-a as the anchor block
(see Figure 1).

y

x

z

1

1

0.5 0 -0.5 -1

0.5

0

-0.5

1.5
22.533.5

3.5

3

2.5

2

1.5

-0.5

0

0.5

1

1.5

a

b

c

d

Figure 1: Initial local distribution of blocks.

ICAPS 2005

Workshop on Plan Execution: A Reality Check 5

Typical BW predicates such as Stack(a,b) are changed
to operators like Dock(a,b) and so forth, with the
“table” being the orbit in which the configuration resides.
In our problem there is no robotic arm moving the blocks
about as they are presumed self-actuated by thrusters
located on each face.

The merit of considering ‘simple’ problems like these in
terms of integrating sound trajectory planning and task
planning components becomes apparent as the action
choices of the problem scale (Cambon et al., 2003). It is
also fundamental when one considers the many layers of
reasoning required to perform even relatively mundane
tasks in the complex harsh environment of space. By
presenting the AI task planner with appropriate costs in
terms of minimizing fuel use, the time-to-completion, and
proximity to obstacles (for safety considerations), the
trajectory planner relieves the task planner of the full
representational details of block locations/motion that
would typically overwhelm it, making optimal solutions
prohibitive (Smith et al., 2000). Instead, the task planner
uses cost values computed by the trajectory planner to
influence decisions related to the optimal completion of the
block docking sequence.

We lay the groundwork for facilitating a connection
between AI task planning and optimal trajectory planning,
after a brief discussion of related work, by defining a
space-based symbolic domain representation of BW. We
then present the system architecture and its component
algorithms followed by results for the four-block assembly
problem. The results are contrasted with assembly
constructions in flat-space and in a central gravitational
field (Keplerian model). We conclude with future work to
extend our models/algorithms and to practically implement
this system for space-based construction activities.

Some Related Work
This work embodies two main themes: self-assembly and
the integration of task and optimal trajectory planning.
There is a broad range of work encompassing many
aspects of the self-assembly mechanics and automation
required by this problem (Jones and Matarić, 2003; Suh et
al., 2001; Shen, 2001; Butler and Rus, 2001; Shen et al.,
2000; Rus and Vona, 1999). Some approaches focus on
distributing path-planning and actuation within the
system—developing a parallel local awareness (Butler and
Rus, 2001), while others focus on global strategies. Both
are needed in the space environment where the
optimization of limited resources directly impacts mission
success. To this end, either strategy requires the careful
planning of the trajectories executed in the self-assembly
process. One can think of this in other important contexts,
such as assembling waypoints to meet military objectives
or reconnaissance goals (Petterson and Doherty, 2004).

While there is much work on either problem there remains
the persistent gap between the language we use for
symbolic reasoning and that used for controlling
autonomous motion. This ‘gap’ is beginning to be
recognized and pursued.

Domain Description
BW is a generic domain where the blocks are
representations of objects—be they freight, transportation
devices, building materials, atoms, etc. The combination
of abstraction and the basic premise of moving and
assembling these “blocks” in particular configurations
lends itself well to the problem of self-assembly.

Mapping BW to a 3D space environment necessitates a
paradigm shift in the traditional representation of the
‘infinite table.’ Instead of a table on which all of the
blocks—be they ‘free’ or part of a tower—reside, we
introduce the notion of a ‘target table’ that will be the orbit
in which the blocks are assembled. Blocks in other orbits
may be considered free or on ‘virtual tables.’ Full 3D
construction with local and global assembly entails such
details as:
• Moving and docking/undocking block superstructures,

changing the system dynamics
• Docking in any orbit
• Building structures with ‘non-reachable’ or variable

configurations (e.g., cubic docking with an open center
for unique configurations)

Before embracing these details, we have chosen to begin
with a constrained construction that disambiguates block
states and more closely mirrors the traditional BW
paradigm—i.e., the construction of towers or linear
assemblies relative to a specific anchor block freely
drifting in space. This provides a simplified baseline from
which to add the necessary details for unconstrained 3D
construction in future work.

PDDL Domain Model
To provide a framework for discussion and to lend some
familiarity for those experienced with BW planning, we
define a 3D BW domain with a PDDL v.2.1 (Fox and
Long, 2003) representation (see Figure 2), making the
following assumptions for linear self-assemblies:

1. Blocks have two specific faces (+y,-y) to which any

other block may dock.
2. Actions occur sequentially—only one block may be

docked/undocked to/from another block at any time.
3. Only one connected structure may be assembled.

ICAPS 2005

6 Workshop on Plan Execution: A Reality Check

Figure 2: 3D BW problem PDDL representation

4. Blocks either drift as part of the assembly or are free to

maneuver, in which case they cannot be connected
(docked) to any other block.

5. Spacecraft (blocks) have sufficient fuel for maneuvers
and will always execute actions accurately.

6. All blocks are uniquely labeled. They may be
interchangeable to allow random placement (as in our
example), or they may have specific configuration
requirements.

To achieve a goal sequence a set of constructive actions is
performed given certain preconditions. When a
constructive move is not possible the problem is in a
‘deadlocked’ state, necessitating the movement of some
block before a constructive move is possible. Efficient
search strategies employ methods to minimize the number
of deadlocks encountered—i.e., backtracking (Slaney and
Thiébaux, 2001). In this work, all moves are constructive.
However, because optimal solutions are computationally
expensive, there is an algorithmic tradeoff of efficiency for

optimality due to the nature of the problem as discussed in
the following section.

Architecture
In order to facilitate an appropriate link between task and
trajectory planning, it was important to design an
architecture (see Figure 3) that retained the dynamical state
information for each planning state (search node) while
keeping this information hidden—i.e., in a “black box”—
from the task planner. For this initial implementation, a
primitive C++ “task planner” interprets the PDDL domain
(see Figure 2) and conducts an optimal search in which the
“translator function” is invoked to acquire the cost J of the
instantiated action by interfacing with a Matlab-based
optimal trajectory planner (Henshaw, 2003). The task
planner uses a uniform cost (Dijkstra's) search strategy
with actual node n cost, g(n), set to the cost of the parent
node plus additional cost J of transitioning from the parent
to node n. Transition costs J (see Equation 2) are
computed during the trajectory planning process for each
action. The focus of the current task planner’s

(define (domain blocks-in-space)
 (:requirements :equality)
(:predicates
 (block ?b) ; ?b is a block
 (orbit ?o) ; ?o is an orbit
 (face ?f) ; ?f is a block face
 (in-orbit ?b ?o) ; block ?b is in orbit ?o
 (clear ?b ?f) ; face ?f of block ?y is clear (undocked)
 (docked ?b1 ?f1 ?b2 ?f2) ; face ?f1 of block ?b1 is docked to face ?f2 of block ?b2
 (assembled ?b) ; block ?b is part of the single assembled structure
 (free ?b)) ; block ?b is free to move and not assembled; both faces of ?b are clear

(:action insert ; insert ?block1 residing in ?orbit1 into ?orbit2
 :parameters (?block1 ?orbit1 ?orbit2)
 :precondition (and (block ?block1) (free ?block1) (orbit ?orbit1) (orbit ?orbit2)
 (in-orbit ?block1 ?orbit1))
 :effect (and (in-orbit ?block1 ?orbit2) (not (in-orbit ?block1 ?orbit1))))

(:action dock ; move free ?block1 so that its ?face1 docks to ?face2 of anchor ?block2
 :parameters (?block1 ?face1 ?block2 ?face2)
 :precondition (and (block ?block1) (block ?block2) (face ?face1) (face ?face2) (free ?block1)
 (clear ?block2 ?face2) (assembled ?block2) (not (= ?face1 ?face2)))
 :effect (and (docked ?block1 ?face1 ?block2 ?face2) (assembled ?block1)
 (not (clear ?block1 ?face1)) (not (clear ?block2 ?face2)) (not (free ?block1))))

 (:action undock ; move ?block1 to undock from anchor ?block2
 :parameters (?block1 ?face1 ? ?block2 ?neg-face2)
 :precondition (and (docked ?block1 ?face1 ?block2 ?face2) (clear ?block1 ?neg-face)))
 :effect (and (free ?block1) (clear ?block1 ?face1) (clear ?block2 ?face2)
 (not (docked ?block1 ?face1 ?block2 ?face2)) (not (assembled ?block1)))))
(define (problem assemble-four-blocks)
 (:domain blocks-in-space)
 (:objects block-a, block-b, block-c, block-d, pos-y, neg-y, target-orbit)
 (:init (block block-a) (block block-b) (block block-c) (block block-d) (face neg-y)
 (face pos-y) (in-orbit block-a target-orbit) (in-orbit block-b target-orbit)
 (in-orbit block-c target-orbit) (in-orbit block-d target-orbit) (clear block-a pos-y)
 (clear block-a neg-y) (clear block-b pos-y) (clear block-b neg-y) (clear block-c pos-y)
 (clear block-c neg-y) (clear block-d pos-y) (clear block-d neg-y)
 (assembled block-a) (free block-b) (free block-c) (free block-d))

ICAPS 2005

Workshop on Plan Execution: A Reality Check 7

implementation is the information communicated between
task and trajectory planners. We therefore discuss this
communication and the design of the trajectory planner in
more depth below.

Figure 3: System Architecture

Task Planner and Translator Function
The task planner begins its search for an optimal block
assembly sequence by using the knowledge base’s initial
full-state ‘snapshot’ zk,o for all blocks k of the recently
deployed system. A node queue is then constructed, with
children of the initial root node formed from actions acn
and parameter bindings parn that are able to preferentially
achieve a subgoal or the set of actions (acn,parn) that meet
all preconditions of acn if no subgoals can be directly
achieved. For each uniform cost node expansion the queue
must be ordered by total path cost, g(n).

The translator function is then called to compute the cost J
of transitioning from each parent to child node. The
translator passes the continuous state zk,o for all blocks
directly to the trajectory planner. Based on the zk,o and the
action (acn,parn) to be executed, the translator also
computes the final (goal) state (b2zb1)f to be achieved as the
product of executing action acn. For all BW actions, b1 is
the block to be moved and b2 is the anchor block or target
orbit to which b1 must maneuver. By expressing position
vector (b2zb1)f in b2 coordinates (indicated by the leading
b2 superscript), the translator computes b1 goal positions
relative to its drifting target (b2), allowing maneuver time
to be optimized by the trajectory planner rather than
specified in advance. In the general case where all blocks
drift over time (freely or in a gravitational field), all blocks
will move as the trajectory for each acn is executed,
requiring that the final state zk,f of all blocks after executing
acn be stored as the initial state “snapshot” for the offspring
of node n. Should node n be part of the optimal solution,
the optimal trajectory zb1(t) for maneuvering block b1 is
archived along with the cost J returned by the translator as
the cost of executing action (acn,parn).

This might appear a lengthy computational process for
such a simple assembly activity (Cambon et al, 2003).

However, as we discuss below, incorporating complex
dynamics is the only way to ensure optimal solutions
worthy of space applications.

Trajectory Planner
Traditional trajectory planning strategies used in terrestrial
applications for rover locomotion, etc., need to be
supplemented to accommodate the unique challenges of
navigating spacecraft. To navigate a free path from point
A to point B without intersecting any obstacles, cell
decomposition and roadmap methods such as Voronoi
diagrams, etc. are usually employed with varying degrees
of success (Latombe, 1991). However, when dealing with
spacecraft one must take into account:
• Limited fuel resources/maneuverability,
• Possible encounter(s) with a wide range of obstacle

operating velocities,
• Dynamic thruster constraints,
• Varied endpoint constraints/operating times.

Traditional methods fall short of meeting these dynamic
constraints (Henshaw, 2003). This is especially realized
when contrasting a relative ‘straight-line’ trajectory in flat
space with the same trajectory in a central gravitational
field as presented below. Additionally, the self-assembly
of blocks in both environments requires the transfer of
blocks from one orbit to another. For circular orbits, the
optimal global planning strategy for maneuvering blocks to
a target orbit is a straightforward Hohmann transfer (Miele
et al., 2004).

To fully address these challenges we chose a trajectory
planning algorithm specifically designed to solve end-to-
end orbital docking problems involving both orbital
maneuvering and proximity operations using realistic
saturating thrusters (Henshaw, 2003). Robust numerical
methods and the use of Calculus of Variations allows the
planner to develop a cost functional that penalizes fuel use,
obstacle clearance distance, and arrival time while
enforcing dynamic orbital constraints. Six degree of
freedom paths are found by deriving Euler-Lagrange
equations corresponding to the cost functional, then
solving the associated boundary value problem using
collocation (implemented with the Levenberg-Marquardt
algorithm) and continuation techniques, allowing for the
optimization of arrival time and fuel use. To avoid error
effects, a feedback control algorithm was implemented
(using Pontryagin’s minimum principle).

The 6-DOF dynamic equations for the moving vehicle are:

 (1)

[]

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
−−

0
)(

0
/)()(

)(
)(

/

)(11

3

t

mt

S
t

τ

σ

ωσ
ωω

µ

σ
ω

σ

H

uR

G
HH

v
pp

p
v

z

&

&

&

&

&

Knowledge
Base (PDDL)

Task
Planner

Trajectory
Planner

Dynamics,
Obstacles,

Cost Function

Translator
Function

()
nknn kparac 0,,, z∀ ()fkkJ ,],[z∀⋅

() ()0,1
2 , kfb

b k zz ∀ ()fkb kJt ,1],[),(zz ∀⋅

ICAPS 2005

8 Workshop on Plan Execution: A Reality Check

where:
p is vehicle position relative to the anchor/target1
v is vehicle translational velocity relative to the target
σ is a modified Rodrigues vector (a 3-element vector
representing vehicle attitude without singularities)
ω is the rotational rate vector in the body frame
m is vehicle mass,
H is the rotational inertial matrix,
R(σ) is a rotation matrix that converts body to inertial
coordinates,
S the matrix representation of cross product ω×H
Gσ(σ) is the dynamic equation for the Rodrigues vector
u(t) is the force vector produced by saturating thrusters
τ(t) is the limited torque vector.

To generate the desired trajectory, a cost functional is
minimized subject to the dynamic constraint,)(tz& :

 (2)

where:
 f(z,ν,τ) represents vehicle dynamics from Eq. (1)
Lcontrol[z,ν,τ] penalizes control effort—fuel use
Lobstacle[z] penalizes obstacle clearance distance
Ltime penalizes completion time

Finally, the boundary conditions, specified by the
Translator (see Figure 3), are defined by the initial state in
each search node and the final waypoint computed from
the initial state and choice of task to execute. Although the
translator need not specify time of arrival at the final state,
motion of the target must be known as a function of arrival
time which is reasonable given the target vehicle’s natural
orbital motion. The BW domain as defined for this work
specifies trajectory planning problems with fixed arrival
locations and either fixed or free arrival times, allowing a
relatively simple form of the transversality boundary
condition () 0=⋅αL to hold.

4-block Assembly Results
The 4-block linear assembly problem defined in Figure 2
was cast in a circular equatorial orbit (target-orbit)
with an orbital radius of 6767.06km (388.92km above the
Earth). All blocks/modules had edge length 0.2 km, and
the faces were presumed tangent (no separation) when
docked.2 Table 1 lists each block’s initial position pi(0)

1 The docking target block (or target orbit) may be in motion, but this
motion must be modeled a priori—a reasonable assumption for insertion
into a known orbit or docking to a controlled spacecraft.
2 Each “block” has rather enormous dimensions for our example. Such
size and separation distance values were chosen to simultaneously
illustrate the effects of obstacle avoidance and orbital dynamics on cost
without modeling significantly more than four blocks.

relative to anchor block-a and inertial orientation R(σ).
Initial block relative velocities and angular
velocities/accelerations were assumed zero since all blocks
approximately occupy the same orbit.

Table 1: Initial block locations
Block-i pi(0) (km) R(σ)

block-a (0.0, 0.0, 0.0) (0.0, 0.0, 1.0)
block-b (1.0, 2.5, 1.0) (0.0, 0.0, 1.0)
block-c (2.0, 1.5, 0.0) (0.0, 0.0, 1.0)
block-d (3.0, 3.0, 1.5) (0.0, 0.0, 1.0)

Before examining the full 4-block planning process, we
motivate the use of the full-state trajectory planner by
examining a single action: (dock block-d neg-y
block-a pos-y) with only the block-d and
block-a positions shown in Table 1—i.e., no other
blocks acting as obstacles. The optimal trajectory and cost
were compared for the dock conducted in flat-space (no
gravity) where a simpler path planner might suffice, with
the same problem in the circular orbit specified above.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-1
-0.5

0
0.51

1.5
2

2.5
33.5

-0.5

0

0.5

1

1.5

y

x

z

z0

zf

0

0

-0.5 -1 -1.5 -2

-0.5

-1

-1.5

0.5
11.522.5

2.5

2

1.5

1

0.5

block-a

Figure 4: Paths with gravity (black) versus flat-space
(grey) models.

A comparison of paths and force profiles for the two cases
is shown in Figure 5. Although the physical paths through
space do not differ greatly, there is substantial difference in
cost. As shown in Figure 4, the force at any given time is
nearly two orders of magnitude higher for the solution with
gravity, however, this difference is mitigated to some
extent by the reduced time to dock, thereby also lowering
the time over which gravitational forces act on the block.
Without gravity, the range of single docking operations for
the four blocks with initial states given by Table 1
exhibited minimal difference in assembly cost.
Conversely, tasks executed with the gravitational model
had cost that varied by up to 80% for different docking
tasks.

[] [] [] ()()∫ +++=⋅ f

o

t

t

T
timeobstaclecontrol dtvfLLvLJ τλτ ,,,, zzz

ICAPS 2005

Workshop on Plan Execution: A Reality Check 9

Figure 5: Comparative force plots for (dock d -y a -y)

Next we ran the planner (search engine) with the blocks in
their circular orbit. A representation of the full search-
space is shown in Figure 5 along with the total cost for a
number of complete paths through the search space. This
4-block example had branching factors 6, 4, and 2 at search
levels 1, 2, and 3, respectively, representing the possible
combinations of dock operations each unassembled block
could achieve. The optimal plan was computed to be: 1)
(dock block-b neg-y block-a pos-y) (cost
J=4.67E3), 2) (dock block-c neg-y block-b pos-
y) (J=5.91E3), then 3) (dock block-d neg-y block-
c pos-y) (J=2.29E4), with total assembly cost

g=3.35E4. Note that not all Level 2 or 3 nodes were
actually expanded with the uniform cost engine; select cost
data is provided to illustrate the search-space and facilitate
assembly structure and cost comparison.

For non-optimal assemblies, there was a significant range
of individual docking task costs: a minimum = 4.67E3
(part of the optimal plan), a maximum = 7.78E4, and an
average = 2.25E4. Further, the same final assembly
structure does not ensure consistent cost (e.g., assembly c-
a-b-d in Figure 4). As discussed in Section 3.2, the
trajectory planner may return a different cost for the same
final assembly based on obstacle avoidance requirements,
illustrating the importance of task ordering choices for an
optimal assembly.

The layout of this 4-block problem was chosen to
demonstrate the functionality of our system and to clearly
illustrate the need for the integration of task and trajectory
planning. However, this integration comes at the cost of
computational time; not uncommon to systems needing
any degree of trajectory or even path planning fidelity
(Pettersson and Doherty, 2004). The worst runs need over
an hour to compute, becoming cumbersome, or even
prohibitive, as the number of assembly sequences scales
with the number of blocks. Even with this computational
burden, there are ways to mitigate the necessity of running
all assembly possibilities in the trajectory planner. Making
use of selective cost information, combining global and
local assembly strategies, and incorporating pre-processing
that uses system dynamics to deliver intelligent, best guess
cost estimates are some of the ways the system can work in
both offline and online capacities.

Level 1 (complete):
1 = (dock b -x a +x)

2 = (dock c -x a +x)

3 = (dock d -x a +x)

4 = (dock b +x a -x)

5 = (dock c +x a -x)

6 = (dock d +x a -x)

OPTIMAL SOLUTION:
4 = (dock b +x a –x)

Level 2 (partial):
1-1 = (dock c +x a -x)
1-2 = (dock d +x a -x)
1-3 = (dock c -x b +x)
1-4 = (dock d -x b +x)

6-1 = (dock b -x a +x)
6-2 = (dock c -x a +x)
6-3 = (dock b +x d -x)
6-4 = (dock c +x d -x)

4-3 = (dock c +x b -x)

Level 3 (partial):
1-1a = (dock d -x b +x)
1-1b = (dock d +x c -x)

1-4a = (dock c +x a -x)
1-4b = (dock c -x d +x)

6-1a = (dock c -x b +x)
6-1b = (dock c +x d -x)

6-4a = (dock b -x a +x)
6-4b = (dock b +x c -x)

4-3b = (dock d +x c -x)

…

…

…

Final structure
c-a-b-d

d-c-a-b

c-a-b-d
a-b-d-c

d-a-b-c
c-d-a-b

c-d-a-b
b-c-d-a

d-c-b-a

Total assembly cost
4.25E4
1.025E5

5.03E4
4.27E4

5.96E4
7.37E4

7.37E4
9.47E4

3.35E4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1000

2000

3000

4000

time (sec)

fo
rc

e
(N

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

20

30

40

50

60

time (sec)

fo
rc

e
(N

)

a) Force (magnitude) vs. time with gravitational effects

b) Force (magnitude) vs. time with no gravity (flat space)

Figure 5: Four-block linear assembly search-space and assembly costs

ICAPS 2005

10 Workshop on Plan Execution: A Reality Check

Conclusions and Future Work
Intelligent in-space self-assembly requires careful
integration of task-level and physics-based reasoning
systems. We have argued that assembly task planning
necessarily requires the incorporation and knowledge of
complex system dynamics in the overall task
planning/sequencing strategy. A framework for
establishing a connection between an optimal control
trajectory planner and task planner in this domain was
established, from which we presented a simple assembly
problem that clearly illustrated the need for a trajectory
planner designed to work with continuous dynamical
system models of in-space assembly problems as well as a
task planner to propose action sequences that will
successfully achieve assembly goals.

This work began with planning algorithms and a PDDL
model designed for a small set of blocks and sequential
assembly choices due to the computationally-intensive
planning processes involved. Its primary contribution lies
in the integration of optimal task and trajectory planners,
specifically the knowledge representation and interface
language that enable the task planner to manage complex
trajectories while processing only a small set of symbolic
features and a single measure of cost for each planning
state. A secondary contribution is the PDDL 3D BW
domain definition (Figure 2). Although a sophisticated
trajectory planner is already in place, a more capable task
planner will be required to increase search efficiency and
enable parallel, multi-tasked activity schedules—an
important capability when many “blocks” are assembled.

Our aim for future work is to improve algorithmic
efficiency by utilizing (admissible) heuristics to reduce
search-space size while maintaining optimality and
expanding the task planner to handle parallel assembly task
execution. The architecture and BW representation
presented builds a foundation on which both AI and
control systems researchers can build such extensions.

References
A. Miele, M. Ciarcià, J. Mathwig. 2004. “Reflections on
the Hohmann Transfer,” Journal of Optimization Theory
and Applications Vol. 123, Issue 2, pp. 233 – 253.
Stéphane Cambon, Fabien Gravot and Rachid Alami.
2004. “A Robot Task Planner that Merges Symbolic and
Geometric Reasoning,” Proceedings of the 16th Annual
Conference on Artificial Intelligence, Spain.
Pettersson, P-O., Doherty, P. 2004. “Probabilistic
Roadmap Based Path Planning for Autonomous
Unmanned Aerial Vehicles,” Proceedings of the 14th
International Conference on Automated Planning and
Scheduling.

Chris Jones and Maja J. Matarić. 2003. “From Local to
Global Behavior in Intelligent Self-Assembly,”
Proceedings of the IEEE International Conference on
Robotics and Automation.
R. Lampariello, S. Agrawal, G. Hirzinger. 2003. “Optimal
Motion Planning for Free-Flying Robots,” International
Conference on Robotics and Automation, Taiwan.
Fox, M. and Long, D. 2003. “PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains,”
Journal of Artificial Intelligence Research 20, pp. 61-124.
Henshaw, C.G. 2003. “A Variational Technique for
Spacecraft Trajectory Planning,” PhD Dissertation:
Department of Aerospace Engineering, University of
Maryland College Park.
John W. Suh, Samuel B. Homans and Mark Yim. 2002.
“Telecubes: Mechanical Design of a Module for Self-
Reconfigurable Robotics,” Proceedings of the 2002 IEEE
International Conference on Robotics and Automation,
Washington DC.
Jacobsen, S., Lee, C., Zhu, C., and Dubowsky, S. 2002.
"Planning of Safe Kinematic Trajectories for Free Flying
Robots Approaching an Uncontrolled Spinning Satellite"
Proceedings of the ASME 27th Annual Biennial
Mechanisms and Robotics Conference, Montreal.
John Slaney and Sylvie Thiébaux, “Blocks World
Revisited,” Artificial Intelligence, 125, pp. 119-153, 2001.
Wei-Min Shen. 2001. “Metamorphic Robotic Systems for
Space Exploration,” ICASE/USRA/LaRC Workshop On
Revolutionary Aerospace Systems Concepts for
Human/Robotic Exploration of the Solar System.
Zack Butler and Daniela Rus. 2001. “Distributed motion
planning for 3D modular robots with unit-compressible
modules,” Proceedings of the Internnational Conference on
Intelligent Robots and Systems.
Wei-Min Shen , Yimin Lu , Peter Will. 2000. “Hormone-
based control for self-reconfigurable robots,” Proceedings
of the Fourth International Conference on Autonomous
Agents, Barcelona.
David E. Smith, Jeremy Frank, and Ari Jónsson. 2000.
“Bridging the Gap Between Planning and Scheduling,”
Knowledge Engineering Review 15(1).
Daniela Rus & Marsette Vona. 1999. Self-reconfiguration
Planning with Compressible Unit Modules,” Proceedings
of the 1999 IEEE International Conference on Robotics
and Automation.
J. Scott Penberthy and Daniel S.Weld. 1994. “Temporal
Planning with Continuous Change,” AAAI.
Jean-Claude Latombe. 1991. Robot Motion Planning,
Kluwer.

ICAPS 2005

Workshop on Plan Execution: A Reality Check 11

Alternatives to Re-Planning: Methods for Plan Re-Evaluation at Runtime

Emmanuel Benazera
RIACS, NASA ARC, Moffet Field, CA 94035

ebenazer@email.arc.nasa.gov

Abstract

Current planning algorithms have difficulty handling the com-
plexity that is due to an increase in domain uncertainty, and
especially in the case of multi-dimensional continuous spaces.
Therefore, they produce plans that do not take into account nu-
merous situations that can occur at runtime, such as faults or
other changes in the planning domain itself. Thus there is a
gap between the plan generation and the reality experienced
at runtime. Here we present two methods that allow the plan
conditionals to be revised w.r.t. uncertainty on the system as
estimated at runtime.

Introduction
The need for autonomy and robustness in the face of uncer-
tainty is growing as planetary rovers become more capable
and as missions explore more distant planets. Recent progress
in areas such as instrument placement (Pedersenet al. 2003;
2005) makes it possible to visit multiple rocks in a single com-
munication cycle. This requires reasoning over much longer
time frames, in more uncertain environments. Simple uncon-
ditional plans as used by the Mars Exploration Rovers (MER)
will probably have a low probability of success in such con-
text, so that the robot would spend almost all its time waiting
for new orders from home.

In the last decade, architectures for future planetary rover
missions include a planner/scheduler, a health monitoringsys-
tem, and an executive. The planner/scheduler generates a con-
trol program/plan that describes the sequence of run-time ac-
tions necessary to achieve mission goals. Since the rover’sen-
vironment is highly uncertain (Bresinaet al. 2002), the control
programs (also calledplans) are contingency plans (Dearden
et al. 2003) in that they involve conditional branches that are
based on decision functions of the system state that the execu-
tive can evaluate in real time. The executive is responsiblefor
the execution of the control programs, taking into account the
current state of the system as estimated by the health monitor-
ing system. This capability includes deciding the best branch
in a plan when reaching a branch point, given an estimate of
the current system state, inserting and replacing plan portions
to react to faults and other unpredictable events.

However, planners have difficulties handling certain situa-
tions, such as actions that carry no utility (typically usedfor
responding to unlikely situations) and fault occurences, or to

prepare for a belief state update1. First, actions with no re-
ward can possibly be inserted anywhere in the plan at low cost,
so the greedy approach that seeks to maximize the expected
utility fails to position them efficiently. Second, plannerdo-
mains describe a very limited set of faults, thus relying on a
mostly nominal model of the world and system actions (e.g.
no stuck wheels, broken navigation system, rocky environ-
ment,...). Moreover, fault models exponentially increasethe
complexity of the planning even if the faults have low prob-
ability of occurence as they can occur at any time during the
plan execution. Finally, the health monitoring system returns
an ever changing belief state over time that has to be taken into
account. For these reasons, the response to unlikely situations
and faults is better decided at execution: the health monitoring
system passes a belief over the system state to the executive
that decides which portion of the plan to execute, sometimes
inserting/replacing wanted/unwanted plan blocks.

More recent architectures try to mitigate these problems by
moving towards unified planning and execution frameworks
(Alami et al. 1998; Muscettolaet al. 2002; Estlinet al. 2005).
Several of these architectures are discussed at the end of this
paper, however it is well understood that uncertainty in future
values forces an agent to plan locally. For example, to mitigate
this problem, (Muscettolaet al. 2002) allows plans to include
explicit calls to a deliberative planner. This comes back to
finding place where to insert a branch, and as demonstrated
in (Deardenet al. 2003), the branch point is usually not sit-
uated at the point that has the highest probability of failure.
Now note that if the process of estimating a good branching
point does not forcely require to do the planning, it doesn’t
cost much to pre-plan the branch once the point has been iden-
tified. Therefore, the branch can be pre-planned and its values
later updated during execution. As it will be explained later
in this paper, re-evaluation of a plan is in no way equivalent
to re-planning, but a re-evaluated plan can be found that is op-
timal w.r.t. the information on the uncertain system state and
the original plan.

We said that most planners do not handle well the complex-
ity due to the presence of faults in a model and therefore rarely
include faults within their planning domain. Moreover, major
faults are well known and recoveries can be efficiently con-

1Partially Observable Markov Decision Processes (POMDPs) al-
low the latter but are often untractable.

ICAPS 2005

12 Workshop on Plan Execution: A Reality Check

structed before execution. At runtime, a fault detection sys-
tem, or more generally, a state estimator will return a state
estimate that triggers one or more plan fragments for system
recovery or opportunistic science. These plan fragments are
often referred to as floating contingencies whose execution
can be conditionned upon resources (including time) and/or
system behavioral modes. Therefore in this paper we will re-
fer to two types of contingencies: pre-planned branches on
resources that are part of the main plan, and floating contin-
gencies, that trigger in response to certain events and resource
values. The paper focuses on techniques to re-evaluate the for-
mer, and studies the complexity added to them by the latter.

The problem can be seen as one of re-evaluating the plan
values, such as its utility, and updating the plan conditionals,
i.e. the branch conditions. Typically, at runtime, the proba-
bility mass of the state estimate shifts among regions of the
hybrid space (continuous resources plus discrete state). We
adapt the pre-computed branch conditions to these changes
by projecting the changes forward and backing up the result-
ing states. Our first approach is an adaptation of the clas-
sical Monte Carlo (MC) technique (Sutton & Barto 1998;
Thrun 2000). Our second approach is based on decision
theoretic techniques and converts the problem into a small
Partially Observed Markov Decision Problem (POMDP)(see
(Kaelbling, Littman, & Cassandra 1998) for an introduction
and more references) whose solving at runtime returns proba-
bilistic decision lines that are optimal given the initial plan.

Preliminaries

Here a plan can be seen as a tree whose nodes are known as
the branch points. The value function for a node is a continu-
ous function over the multi-dimensional resource state, i.e. a
mapping from the resource space to the utility space, and that
depends on downstream node value functions. Planning de-
termines a set ofpolicies that maximize the expected utility of
the plan. At branch points, this leads to conditions over the
resource space that discriminate among branches.

Typically, planning proceeds to a mapping from the system
state space to the utility space, i.e. the utility obtained by ex-
ecuting the plan, that it seeks to maximize. Noting the system
states = (x, r) with x ∈ X the discrete state (or system
modes), andr ∈ R the multi-dimensional continuous state
(including time), the utility earned by executing a branchbi

starting ats can be noted:

Vbi
(s) =

∑
x′∈X

∫
R

p((x′, r′) | s, ai1)[U(ai1, (x
′, r′))

+ VBi
(x′, r′)]dr′ (1)

with ai1 the first action of branchbi, Bi the remaining portion
of the branch,U(ai1, (x

′, r′)) the utility earned, ands′ the
system state after executingai1 following the probability dis-
tribution p(s′ | s, ai1). Over a belief stateπ(s), as estimated
by the health monitoring system, we have:

Vbi
(π(s)) =

∑
x∈X

∫
R

Vbi
(x, r)π(x, r)dr (2)

And at a branch point wheren branches are available, the best
branch is decided according to:

b∗ = arg max
i∈[1,n]

Vbi
(π(s)) (3)

This is similar to the Bellman equations for POMDPs (Boyan
& Littman 2000). Each value functionV (b) maps the resource
space to the utility of the branchb. Themax operator of re-
lation (3) defines an upper bound on the branch point overall
utility value, and branch conditions are found at the functions
intersections. At execution, deviations from the planningdo-
main and information of the state estimate move these decision
lines.

There are several conditions and situations under which the
plan value must be re-evaluated. First, when the execution
encounters a branch point, any change in the Bellman equa-
tion functions, such as the beliefb over the states, the reward
modelU , the action cost model, requires that all branch func-
tions at this branch point are re-evaluated. Second, if not at a
branch point, but if a floating branch has to be inserted, then
the plan equation is changed and the remaining portion of the
currently executed branch as well all future branch conditions
must be re-evaluated. For example, when inserting a branch
bf , equation (1) becomes:

Vbf
(s) = Vbf

(s) +
∑

x′∈X

∫
R

p((x′, r′) | s, bf)VB(x′, r′)dr′

(4)
whereB is the remaining portion of the current plan to be ex-
ecuted afterbf . The local value ofbf is the expected reward
from the actions within the floating branch itself. The remain-
ing term is a representation of the end state of the local plan,
including the probability of the resources remaining afterexe-
cuting the local plan.

The remaining of the paper studies approaches to the fast
re-evaluation of these decision lines.

The Monte-Carlo Approach to the
Re-Evaluation of Contingency Plans

Approximating branch average utility
Applying Monte Carlo techniques to the approximation of
equation (2) is straightforward: the integral over the multi-
dimensional continuous space is turned into a sum by sam-
pling N times fromb(s) andp(s′ | s, a), and the utility is
averaged over the successive runs. We note:

V̂bi
(π(s)) =

∑
x∈X

∑
x′∈X

[U(ai1, s
′
j) + V̂Bi

(s′j)] (5)

wheres′j ∼ p(s′ | sj , ai1) and sj ∼ b(s). The larger the
N , the better the fit to the underlying probability distributions,
and the better the approximation.

Plan simulation
For simulating branches with MC, we use a prioretized pile of
events including plan actions, and a set of constraints among
them. The pile is filled up with actions whose execution is
simulated by testing their temporal constraints and sampling
their consumption before being rewarded and popped out.

ICAPS 2005

Workshop on Plan Execution: A Reality Check 13

Sampling decisions
We sample the decision by deciding the path with highest util-
ity for each sample. We write:

V̂ dec(π(s)) =
1

N

N∑
j=1

max
i∈[1,n]

V̂bi
(π(s)) (6)

In algorithm 1, each path is explored by each sample for the

1: for all j < N do
2: Proceed with MC on the first branch.
3: for all branchesbi at branch pointdo
4: Apply this algorithm recursively tobi, with j = 1.
5: Return the highest utility at this branch point (max).
6: Return the averaged utility of the plan.

Algorithm 1: Recursive procedure for sampling decisions

evaluation of themax operator. The averaged returned utility
is near optimal, but the sampled decision for the best branch
(thearg operator) depends on the sampled resource space that
must be partitioned into subregions of identical decision.

Floating contingencies
Floating contingencies are a challenge to the simulator be-
cause they can trigger at anytime. The simulator uses ran-
dom events to trigger these branches and specific dynamic
constraints to handle their insertion. The complexity increase
due to floating branches is a product of the number of plan ac-
tions, actions in the branch, and the number of these branches.
The next section covers the retrieval of the decision lines in
the multi-dimensional resource space.

Bounding the resource space for deciding future
branches
Decision at branch points can be made based on the simula-
tion results by executing the branch with the highest earned
utility average. Simulation provides sufficient information for
computing branch conditions at future branch points. This op-
eration is performed at virtually no cost and can spare future
simulations by constraining future decisions.

Approximating branch decision lines thru piecewise con-
stant value function approximation Our solution is to slice
the resource domain into rectangular bins and to fit the branch
value functions in each bin with a piecewise constant function,
based on the MC samples. Function intersections are found at
bin edges. Noting∆r a bin in the resource space, we can write
bi’s value:

V̂bi
(π(s)) =

∑
∆r

∑
x∈X

p(bi | ∆r)p(∆r)V̂bi
(∆r, x) (7)

i.e. as the sum of the average utilities ofbi in each bin when it
is the branch with the highest expected utility. More precisely:

V̂bi
(∆r, x) =

1

nr∆r

∑
rj∈∆r

∑
x′∈X

V̂bi
(sj) (8)

with s = (x, r) andsj = (x′, rj), is the average utility ofbi

on bin∆r from thenr∆r
samplesrj it contains,

p(bi | ∆r) =
1

nr∆r

∑
rj∈∆r

δ(bi = arg max
i∈[1,n]

V̂bi
(π(sj)) (9)

whereδ is the Dirac function, is the probability forbi to be the
branch with the highest utility over the samples of the bin,

p(∆r) =
nr∆r

N
(10)

is the probability of the bin itself. An optimal bin sizeW is

1: Proceed with algorithm 1 and collect samples at branch
point.

2: for all branch points in the contingency plando
3: Compute the optimal bin size and slice the space into

bins.
4: Compute statistics with equations (8), (9) and (10).
5: Evaluate equation (7) for each branch.
6: In each bin, identify the branch with the highest value.
7: Identify new branch conditions where successive bins

have different highest utility branches.

Algorithm 2: Branch conditions approximation thru piece-
wise constant value function approximation

obtained, in the sense that it provides the most efficient unbi-
ased estimation of the probability distribution function formed
by the samples. We usedW = 3.49σN−1/3 whereσ is the
standard deviation of the distribution, here estimated from the
samples (D. 1976; A.J. 1991). The overall strategy is pre-
sented on algorithm 2.

Branch conditions are obtained by comparing the branch
with the highest utility for each bin: if two successive binsre-
turn different results, a branch condition exists at their edge.
Thus, the precision of the approximation is directly depen-
dent on the optimal bin size, that depends on the number of
samples. Stutter at decision point can be overcome by fitting
the successive piecewise constant approximations with more
smoothly curve.

Belief update on re-evaluated branch conditions The re-
evaluated decision functions are inequalities of the formr′ ≤
(≥)g(r). Given a state estimateπ(s) at branch point, decision
overn branches follows:

b∗ = arg max
i∈[1,n]

∑
x∈X

∫
r≤g(r)

Vbi
(x, r)π(x, r)dr

≈ arg max
i∈[1,n]

∑
x∈X

∑
∆r′

p(bi | ∆r′)p(∆r′)V̂b(∆
′
r, x)π(r′, x)(11)

with r′ such that∀r′ ∈ ∆r′ , r′ ≤ g(r).

Discussion
The major drawback of the Monte-Carlo approach is that it
provides a probabilistic guarantee of its results, that is never
absolute. This is a problem that we partially address in the next

ICAPS 2005

14 Workshop on Plan Execution: A Reality Check

section with the use of a decision theoretic formulation. An-
other work, (Jain & Varaiya 2004) finds bounds on the number
of samples for the convergence of the expected reward for a
class of policies.

Decision theoretic approach to plan
re-evaluation

Another problem with the MC approach is that the decision is
made based on a mapping from the continuous resource space
to the utility space that forces the approximation of the deci-
sion lines. An alternative is to use a mapping from the be-
lief space over the decisions to the utility space. The decision
space is finite, made of the branch conditions of the original
plan. The belief space over the decision is continuous and of
dimension the number of decisions minus one. This formula-
tion leads to an enlarged space but allows the use of decision
theoretic techniques to directly incorporate the belief space in
the computation of optimal decision lines. More precisely our
problem can now be casted into a small POMDP whose ac-
tions are the plan branches, the states the branch conditions,
the observations the system states.

Plan reduction to a POMDP
A standard POMDP is made of a set of actions, a set of states,
a set of transitions among states per action, and a set of obser-
vations. In our model, we abstract away the actions and use a
branch an action for the POMDP. Our POMDP is then defined
as a tuple(F, S,B.L, T,R) where:

• F is a finite set of branch decision outcomes (as states),

• S is a finite set of system states (as observations),

• B is finite set of branches (as actions),

• P (s | b, f ′) is the probability of states given that branchb
has been executed and has landed inf ′,

• P (f ′ | b, f) is the probability of entering outcomef ′ after
taking branchb in outcomef ,

• R(f, b) is the reward for taking branchb while in outcome
f .

The POMDP belief update can be expressed as:

πb(f
′, s) =

P (s | b, f ′)
∑

f∈F P (f ′ | b, f)π(f)

p(s | b, π)
(12)

whereπ is a probability distribution (belief) overF , givens
andb, and:

P (s | b, f ′) =
P (f ′ | b, s)p(b, s)

p(f ′)
(13)

The value of executing branchb under decisionf and states
is:

V (f, s) = R(f, b, s)

+ γ
∑
f ′∈F

P (f ′ | b, f)
∑
si∈S

P (si | f ′, b)V (si, f ′) (14)

where in the absence of floating contingencies (becausef can
only lead tob):

P (f ′ | b, f) = P (f ′ | b) =
∑
s′∈S

P (f ′ | b, s′)p(s′) (15)

and R(f, b, s) = Vb(b(s)), from equation (2). Finally the
value of executing branchb from some belief stateπ and ob-
servings is:

Vs(πb) =
∑
f∈F

π(f, s)V (f, s) (16)

and the optimal value function is given by:

V (π) = max
b∈B

∑
s∈S

p(s)Vs(πb) (17)

Simulation
The successor statess′ and and thep(s′) of equation (15) are
unknown and must be obtained through simulation. As a simu-
lator we use the MC algorithm of the previous section and gen-
erate both thêVb(s) and thes′ in a depth first forward search
in the plan tree.

Solving
The solving of this POMDP returns a piecewise linear convex
value function that is a mapping from the belief space over the
decision outcomes to the highest expected plan uility. Optimal
branch conditions are found at the intersections of maximized
value functions and are now conjunctions of inequalities of
the formP (r ≤ h(r)) ≤ c wherer ≤ h(r) is the branch
condition from the original plan andc a constan in[0, 1]. For
any belief over an outcome, the solution returns the optimal
policy, w.r.t. the original plan.

Floating contingencies
Floating contingencies pose a serious problem to the decision
theoretic approach because the possible interruption of any
action within a branch leads to a potentially infinite number
of actions (breaking up a branch an infinite number of times
over resource and time values with non null probability). Ap-
proaches like (Younes & Simmons 2004) can be used here
to handle the asynchronous events, but do not allow to in-
clude the events (here floating contingencies) within the policy
(therefore the computation of their conditions is not possible).
While we are not yet sure about the range of solutions to this
problem, it seems realistic to research approximations of float-
ing conditions over a single branch.

Results
A contingency plan for the Mars exploration domain
Our application is on a planetary rover plan. Consider the plan
for a Mars rover on figure 1. It tells the rover to first navigate
to a waypointw0, and there to decide whether to take a high
resolution image of the point (HI res) or to move forward to a
second waypointw1 depending on the level of resources (here
energy and time). After reachingw1 and digging in the soil, it

ICAPS 2005

Workshop on Plan Execution: A Reality Check 15

u=8

Navigate w1 Navigate w2

Navigate w3

[5;1] [1;0.2] u=5

u=1

[10;3] [1;0.2]

u=2

[3;1] [1;0.5]

Dig w1

Dig w3

NIR w2

u=8

[20;7] [2.5;0.2]

u=5

[5;2] [1;0.5]

u=3

[4;1] [1;0.5][10;2] [2;0.3]

HI res

[4;1] [1;0.5]

u=3

[4;1] [1;0.5]

HI res

bpt1

bpt2

b0 b2

b5

b4

b3b1

Navigate w0

u=2

(a) Contingency plan for the Mars rover domain

1
0

6

20

b1 b2

Vb1

Vb2

V

α1

(b) Value functions of branches at branch
point1 (bpt1)

0
2 6

13 b3

b4

b5

Vb3

Vb4

Vb5

r

V

α2 β2

(c) Value functions of branches at branch
point2 (bpt2)

Figure 1: Branch value functions at branch point for a detailed rover problem

must decide whether to move forward to waypointsw3 or w2

or to simply get an image atw1 and wait for further instruc-
tions. NIR is a spectral image of a site or rock. Action time
and energy consumptions are represented as Gaussian bumps
of empirical mean and variance. In this example branch con-
ditions at branch pointsbpt1 andbpt2 have the following pa-
rameters:α1 = 0.1, α2 = 2.1 andβ2 = 2.2.

Decision sampling

Branch conditions re-evaluation at branch points: bounds/bins
are generated with the sampling decision algorithm, and veri-
fied by running a classical Monte-Carlo simulation, that does
not maximize the utility, but follows the new branch condi-
tions and averages the earned utility. Simulation also returns
the failure probability of the plan. The error is the difference to
the optimal plan value in percentage. The piecewise constant
approximation of the branch value functions returns godd util-
ity (Table 1). Figure 2 pictures results for the second branch
point of our rover problem (the energy is pictured and the time
line is omitted) and shows the shifting branch conditions on
the horizontal axis that is the energy line.

N Value Time V dec err
100 14.21 0.03 10.9 23.3
500 13.618 0.16 9.732 28.53
2500 13.8244 0.78 11.2992 18.26
12500 13.8008 4.08 11.9542 13.27
62500 13.7835 20.79 12.156 11.8
312500 13.7717 120.3 12.1214 12
500000 13.777 223.89 12.1814 11.58

Table 1: Monte-Carlo decision sampling and branch condition
re-evaluation based on MC samples. Results are as follows:
N is the number of samples,V is the mean expected highest
value obtained for the plan,V dec is the value obtained when
using the re-evaluated branch conditions,err the error per-
centage to the simulated best value.

ICAPS 2005

16 Workshop on Plan Execution: A Reality Check

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5

b3
b4
b2

(a)p(bi | ∆r)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.5 1 1.5 2 2.5 3 3.5

b3
b4
b2

(b) V̂bi
(∆r)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.5 1 1.5 2 2.5 3 3.5

b3
b4
b2

(c)
p(bi|∆r)V̂bi

(∆r)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.5 1 1.5 2 2.5 3 3.5

(d) p(∆r)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.5 1 1.5 2 2.5 3 3.5

b3
b4
b5

(e) V̂bi
(π(s))

Figure 2: Piecewise constant approximation of branch valuefunctions from simulation samples.

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7

b3

b4

b5

P (α2
<

r <
β2

)

P (r ≤ α2)

Figure 3: Optimal value function over the original plan branch
conditions:x andy axis represent the probability of decision
outcomesP (r ≤ α2) andP (α2 ≥ r ≤ β2). P (r ≥ β2) is
deduced from them.

Decision theoretic approach
We converted our example to a POMDP and simulated the
observations and rewards, respectively the system states and
branch value functions. Starting from a fixed level of re-
sources, figure 3 shows the convex value function solution for
the second branch point (bpt2).

Comparison and Discussion
To compare the two approaches, we moved a gaussian belief
of fixed variance0.1 along the resource (energy) line and stud-
ied the decision for each resource value. Results are presented
on figure 4. V mcanddec mcrespectively denote the value
obtained and the decision based on the Monte-Carlo method
with b5 = 1, b4 = 2 andb3 = 3; V dtpanddec dtpare based
on the decision theoretic planning (dtp) approach. First, the
difference in value between the two methods is due to the high
level of branch failure (i.e. resource gets to zero) in the sim-
ulation for the decision theoretic approach (since it is based
on the original branch conditions). This is of medium impor-
tance only when we study the decision making: we observe

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 0.5 1 1.5 2 2.5 3 3.5 4

V mc
V dtp

dec mc
dec dtp

Figure 4: Comparition between the Monte-Carlo and the deci-
sion theoretic re-evaluation methods.

that decision to go to branchb4 then tob3 based on MC are
respectively slightly early and slightly late, and this is visu-
alized as two sudden drops in expected value; the decision
based on dtp switches later tob4, and earlier tob5 right at
the highest value point. Overall the dtp-based decision leaves
less room for branchb4, which can be surprising when look-
ing at the large surface corresponding tob4 on figure 3 but is
explained by the fact that a high probability for on decision
2.1 < r < 2.2 denotes a more accurate belief (given the fixed
variance) than for other branches. Finally it is difficult tofully
assess the dominance of one method over the other. At this
point of our research we lean in favor of the MC approach
for plans with a small number of actions and a high number
of decision outcomes, and for the dtp approach when a high
number of actions in a plan makes the price of successive MC
simulations costly.

Related Work and Conclusion
We have presented a simple strategy for the robust execution
of contingency plans under uncertainty. It re-evaluates branch
value functions at branch point and re-estimates branch con-
ditions whenever necessary. The framework allows runtime
insertion/replacement of plan portion thru the use of floating

ICAPS 2005

Workshop on Plan Execution: A Reality Check 17

branches but much work on their full integration into the re-
evaluation process should follow. This is the first step towards
the development of more powerful techniques for planning
and execution under uncertainty. The MC approach is flex-
ible and provides good results in any situation given that a
sufficiently high number of samples is used. The algorithms
presented are a baseline capability, and will be used later to
assess the quality of more complex and focused approaches.

Related Work
Other works on plan re-evaluation include (Gough, Fox, &
Long 2004) that studies plan execution with uncertainty on
the resource consumption. However, the executed plans are
no contingency plans as branch execution is not conditionned
on decision functions over the resource state. (Washington
& Lees 2004) develops a fast method for plan portions in-
sertion/replacement, but partly fails here as it relies on pre-
computed value functions (this is not always possible as faults
change the model of actions).

Mixed planning/execution include (Alamiet al. 1998) that
uses a deliberative planner and an executive on top of a set of
reactive controllers. (Estlinet al. 2005) presents the Closed-
Loop Execution and Recovery (CLEaR) system that is in-
tended to run on rovers with little communication with ground.
CLEaR closely integrates the CASPER continuous planner
(Chienet al. 2000) and the TDL executive system (Simmons
& Apfelbaum 1998). Plan re-evaluation and the methods de-
scribed in this paper can be seen as an alternative to the iter-
ative plan repair of CASPER. We view plan re-evaluation as
an intermediate step between execution of pre-planned con-
tingencies and re-planning. Re-planning will always be neces-
sary as if a situation occurs on-board for which there is no pre-
planned contingency, the rover must wait for instructions.In
that sense, plan re-evaluation complements architecturessuch
as (Muscettolaet al. 2002) and (Estlinet al. 2005).

For solving the decision theoretic problem, fast techniques
such as (Feng & Zilberstein 2004) allow the solving of rather
large problems. Given we abstract away actions within the
branches when formulating the POMDP, we see our problems
(not including the floating contingencies) as being of a small
size.

Future Work
Future work includes dealing with floating contingencies
within the decision theoretic framework, pre-computing more
advanced branch value functions at planning time (Feng,
Meuleau, & Washington 2004) and using them at runtime. An-
other hot topic remains the re-evaluation of plans that contain
concurrent actions. Also note tha new class of problems re-
cently arised in the rover domain, where the robot is able to
satisfy only a subset of the goals (Smith 2004). In that case,
re-evaluating the plan is not as efficient anymore because the
change in resource consumption would in general lead to the
selection of a different subset of goals.

Acknowledgements
Ideas in this paper are based on the experience and work of a
group of current and past researchers at NASA Ames Research

Center. The author thought it was time to bring some of these
ideas to life and share the accumulated experience, and thanks
R. Washington, R. Dearden, S. Narasimhan, H. Cannon, T.
Willeke and D. Roland.

References
A.J., I. 1991. Recent developments in non parametric density
estimation. Journal of the American Statistical Association
413(86):205–224.
Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and Ingrand,
F. 1998. An architecture for autonomy.International Journal
of Robotics Research17(4).
Boyan, J., and Littman, M. 2000. Exact solutions to time-
dependent mdps. InAdvances in Neural Information Pro-
cessing Systems 13, 1–7.
Bresina, J.; Dearden, R.; Ramkrishnan, S.; Smith, D.; and
Washington, R. 2002. Planning under continuous time and
resource uncertainty: A challenge for ai. InProceeddings of
the Eighteenth Conference on Uncertainty in Artificial Intel-
ligence.
Chien, S.; Knight, R.; Stechert, A.; Sherwood, R.; and Ra-
bideau, G. 2000. Using iterative repair to improve the re-
sponsiveness of planning and scheduling. InProceedings of
the Fifth International Conference on Artificial Intelligence
Planning and Scheduling, Breckenridge, CO.
D., S. 1976. On optimal and data-based histograms.
Biometrika66:605–610.
Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D.; and
Washington, R. 2003. Incremental contingency planning. In
ICAPS-03: Proceedings of the Workshop on Planning under
Uncertainty and Incomplete Information, 415–428.
Estlin, T.; Gaines, D.; Chounard, C.; Fisher, F.; Castano,
R.; Judd, M.; Anderson, R.; and Nesnas, I. 2005. En-
abling autonomous rover science through dynamic planning
and scheduling. Into appear in IEEE Aerospace 2005.
Feng, Z., and Zilberstein, S. 2004. Region-based incremental
pruning for pomdps. In20th Conference on Uncertainty in
Artificial Intelligence (UAI-04), 146–153.
Feng, Z.; Meuleau, N.; and Washington, R. 2004. Dy-
namic programming for structured continuous markov deci-
sion problems. InProceedings of the 20th Conference on
Uncertainty in Artificial Intelligence.
Gough, J.; Fox, M.; and Long, D. 2004. Plan execution
under resource consumption uncertainty. InProceedings of
the Workshop on Connecting Planning Theory with Practice
at ICAPS-04, 24–29.
Jain, R., and Varaiya, P. 2004. Simulation-based value
function estimates of discounted and average-reward mdps.
In Proceedings of the Conference on Decision and Control,
2004.
Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and acting in partially observable stochastic domains.
Artificial Intelligence101:99–134.
Muscettola, N.; Dorais, G.; Fry, C.; Levinson, R.; and Plaunt,
C. 2002. Idea: Planning at the core of autonomous reac-

ICAPS 2005

18 Workshop on Plan Execution: A Reality Check

tive agents. Inin Proceedings of the 3rd International NASA
Workshop on Planning and Scheduling for Space.
Pedersen, L.; Bualat, M.; Lees, D.; Smith, D.; and Washing-
ton, R. 2003. Integrated demonstration of instrument place-
ment, robust execution and contingent planning. InProceed-
ings of the 7th Int. Symp. on Artificial Intelligence, Robotics
and Automation in Space.
Pedersen, L.; Smith, D.; Deans, M.; Sargent, R.; Kunz, C.;
Lees, D.; and S.Rajagopalan. 2005. Mission planning and
target tracking for autonomous instrument placement. In
Submitted to 2005 IEEE Aerospace Conference.
Simmons, R., and Apfelbaum, D. 1998. A task description
language for robot control. InProceedings of the Intelligent
Robots and Systems Conference, Vancouver, CA.
Smith, D. 2004. Choosing objectives in over-subscription
planning. InProceedings of ICAPS-04.
Sutton, R. S., and Barto, A. G. 1998.Reinforcement learn-
ing: An introduction. MIT Press, Cambridge, MA, 1998.
Thrun, S. 2000. Monte carlo POMDPs. In Solla, S.; Leen,
T.; and Müller, K.-R., eds.,Advances in Neural Information
Processing Systems 12, 1064–1070. MIT Press.
Washington, R., and Lees, D. 2004. Utility-based plan in-
sertion for continuous resources. InProceedins of the IEEE
2004 International Conference on Robotics and Automation.
Younes, H., and Simmons, R. 2004. Solving generalized
semi-markov decision processes using continuous phase-
type distribution. InIn Proceedings of the NineTeenth Na-
tional Conference on Artificial Intelligence - AAAI-04.

ICAPS 2005

Workshop on Plan Execution: A Reality Check 19

State-Based Models for Planning and Execution

Matthew B. Bennett, Russell L. Knight, Robert D. Rasmussen, Michel D. Ingham

Jet Propulsion Laboratory, NASA
4800 Oak Grove Drive
Pasadena, CA 91109

{Matthew.B.Bennett, Russell.L.Knight, Robert.D.Rasmussen, Michel.D.Ingham}@ jpl.nasa.gov

Abstract
Many traditional planners are built on top of existing
execution engines that were not necessarily intended to be
operated by a planner. The Mission Data System has been
designed from the onset to have both an execution and
planning engine and provides a framework for defining
state-based models that can be used to coordinate planning
and execution. The models provide a basis for ensuring the
consistency of assumptions made by the execution engine
and planner, and a basis for run-time communications
between the planner and execution engines.

Introduction

Many traditional planners are built on top of existing
execution engines that were not necessarily intended to be
operated by a planner. The planner must model the
execution engine s behavior, must make the same
assumptions about the real world (which may be hidden in
the code), and must be aware of its quirks. For example, a
command may be issued by an execution engine and have
side effects on the execution of subsequent commands.
The effects may be both on the behavior of the execution
engine and on what is being controlled in the real world. A
planner must be aware of these effects to generate plans
that will succeed when executed. Because there is
generally no well-defined structure in the execution engine
to model real-world effects, and because planners
generally have no rigorous model of the executive s
behavior, it makes it difficult to build planning and
execution engines that work together under the same
assumptions. Furthermore, it is difficult to keep them
consistent in a parallel development effort.

The Mission Data System (MDS) project at the Jet
Propulsion Laboratory has developed a control
architecture, modeling framework, and systems
engineering methodology for developing state-based
models of real-world behavior, effects, and execution
engine behavior, which are used to inform both planning
and execution. More specifically, these models provide the
basis for ensuring the design-time consistency of
assumptions in the execution engine and planner, and are
the basis for run-time communications and coordination
between planners, schedulers, and execution engines. MDS

calls these models State Effects Models and the
methodology by which they are developed State
Analysis. The modeling framework has been designed to
be an open architecture for applying various formalisms
and algorithms for spacecraft operations planning and
execution.

In MDS, state-based models provide a basis for
communication between planners, schedulers, and the
engines that execute scheduled plans as follows:

(1) MDS has clearly defined roles in the architecture for
planning and execution.

(2) MDS has defined semantics of execution in terms of
state-histories that are represented using state
constraints (goals). The MDS architecture has well-
defined interfaces for exchanging information
between the execution and planning engines.

(3) MDS handles inaccuracies in modeling by explicitly
representing uncertainty in state estimates produced
during execution, using this uncertainty in controllers,
planning for uncertainty, and monitoring and
enforcing the planned level of uncertainty during
execution using estimators.

(4) MDS deals with uncertainty in activity duration and
event timing using flexible time, uncertain time
intervals, and worst-case state predictions limited by
temporal constraints that impose deadlines.

(5) MDS State Analysis is a systems engineering
methodology that with the MDS software frameworks
bridges the gap between how execution is treated in
the planning process, and what happens when the
resulting plan is actually executed [2].

Execution and Planning Semantics

MDS uses constraint-based semantics to model execution
behavior. A constraint (goal) on a state variable represents
a set of possible state trajectories over an interval of time.
A state trajectory is estimated during execution and must
agree with the planned constraints for the plan to execute
successfully. A state trajectory for state variable is
represented in MDS using a state value history (see figure
1)[4], and is updated by a state variable s estimator during
execution to reflect the system s best estimate of what the

ICAPS 2005

20 Workshop on Plan Execution: A Reality Check

state actually was. A state variable s controller and
estimator enforce the planned constraints during execution.

Plans consist of constraint networks containing both
temporal and state constraints. State constraint semantics
are based on set theoretic operations (such as union and
intersection) over sets of possible state histories. These
semantics are used by the planner to generate plans.

The MDS architecture has designed goal networks to fully
describe plans as well as being directly executable.
Planned goal nets are monitored by the execution engine,
which issues goals to state variables when preconditions
are met. Temporal preconditions are represented directly in
the goal network. State preconditions are monitored by the
goal checker by consulting state information stored in state
value histories, and by consulting the readiness of a state s
achievers to begin enforcing a constraint.

Roles and Interfaces between the Planning
and Execution Engines

MDS has clearly defined roles in the architecture for
planning and execution. State variables and achievers
provide well-defined interfaces between the planner and
the execution engine. State variables store state history
during plan execution. State variables also reference plans
as they are developed by the planner and make them
available for inspection by the execution engine. Achievers
execute planned state constraints as part of the execution
engine and model their own execution behavior. State
variables are consulted by the planner for modeling
information about the physics of the state to be controlled
(state effects model) and the execution behavior of the
state s achievers. For states that are actively estimated or
controlled, the state variable consults its achievers
(estimators and controllers) for determining the execution
behavior, otherwise the physics in the state effects model
(discussed in the next section) is sufficient to describe a
state s behavior.

The goal checker is part of the execution engine. It issues
goals to state variables to be executed when certain
preconditions are satisfied. Some of these preconditions

are timing constraints as developed in the plan, the others
are dependent on current state information and the
capabilities of achievers. These other preconditions are
provided through state variables. The state variables
consult the achievers for a subset of preconditions related
to modeling the execution capabilities of achievers (such
as whether or not an achiever can execute a goal). During
the execution of a goal, an achiever can use the same
model for determining which commands must be issued,
and what algorithms must do to control and estimate a
state. The state variables and achievers provide centralized
places for storing modeling information that is consistent
for use in both planning and execution. Rule and
procedural based approaches could be embedded within
achievers to model and inact achiever execution behavior.

State Effects Models

The MDS architecture defines the states of the system to
be controlled using state effects models. The state effects
model provides the basis for communication between
planners and execution engines. By defining state effects
to be modeled in a single unified fashion ensures that both
the planner and execution engines can make the same
assumptions about the system they are controlling.

Don t
Know

Don t
CareOFF

ON

OFF

ON

OFF

ON

OFF

ON

Past Future

time

continuous-valued variable

discrete-valued variable

Now

History compared to plans Predictions informed by plans

Don t
Know

Don t
CareOFF

ON

OFF

ON

OFF

ON

OFF

ON

Past Future

time

continuous-valued variable

discrete-valued variable

Now

History compared to plans Predictions informed by plans

Figure 1: State value histories and plans shown as timelines

Figure 2: State effects model the physics of the system under control
and the interface to the system under control in terms of commands
and measurements.

ICAPS 2005

Workshop on Plan Execution: A Reality Check 21

State effects models define

(1) Physical models of the dynamic behavior of
states, including the physical effects between
states,

(2) Measurements that the control system uses to
estimate the states being controlled, and how
states affect measurements, and

(3) Commands that the control system uses to control
the states of the system under control, and how
the commands affect states.

The state effects model is used during planning and
execution to

(1) Decompose the user s intent into a plan of
coordinated constraints on affecting states needed
to achieve the intent,

(2) Validate the plan against predictions of states
based on initial conditions and predictions of
affecting states, and

(3) Generate state predictions to be checked and
optionally enforced during execution.

Plan Decomposition
Decomposition of user intent is called by MDS the process
of elaboration. Each high-level goal on a state elaborates to
a constraint network on states that affect the state, as
defined by the state effects model. For example, if the user
intent is to have a new picture, then this high-level goal
may elaborate to goals on the power state of the camera,
the operational mode state of the camera, the data storage
resource state, etc.

Plan Validation
A plan is validated against its predictions by using the state
effects model to compute projections for each state in the
plan. Projections are represented as state constraints. For

Figure 3: The MDS control system architecture.

ICAPS 2005

22 Workshop on Plan Execution: A Reality Check

example, a state effects model for a battery state of charge
is defined as being affected by the all the power sink and
source states. Thus, the projection for the battery state of
charge is computed according to a state effects model
where the battery state is equal to the integral of the sum of
all power sources minus the integral of the sum of all
power sinks. The plan for power sources and sinks is
integrated and checked against an overall constraint on the
battery state of charge to be above 10%.

Prediction Enforcement
During execution, this projection can be checked as a
constraint on the battery state of charge. If it appears that
the charge is falling below its projection, the execution
engine can decide whether or not to recompute the
projection to see if there is a real problem, or to exercise a
another plan.

State Estimation
State estimators in the execution engine use state effects
models for measurements, commands, and state-to-state
effects to estimate the states to be controlled. The
execution engine checks the state estimates against the
plan to ensure that the plan for having proper state
knowledge is executing properly, and to determine when
the plan can progress. An example state effects
measurement model is a camera s power switch
measurement that is affected by its corresponding switch
open/closed physical state. The estimator for the power
switch state uses this measurement to estimate the state of
the power switch. In the absence of a measurement, the
estimator could use the power switch s state effects
command model. In this case, the state effects model
would describe how the state of the power switch is
affected by the power switch command. The estimator
would use this model to estimate the state of the power
switch based on the last power switch command issued
(and potentially the health state of the power switch). In
the absence of either a command or a measurement, the
state estimator could infer the state of the switch by
consulting the camera operating mode state variable. It
would be correct do this by reasoning from the following
chain of state-to-state effects in the state effects model: the
power switch state affects the power use, which in turn
affects the camera operating state.

State Control
State controllers in the execution engine use the state
effects models for commands to determine when to issue
commands. When the execution engine issues constraints
to a controller to change a state in the system under
control, the controller responds by issuing the proper
commands. Per the example above, the state effects model
for the power switch command would show that the power
switch command effects the power switch. The power
switch state controller would use this model to determine

that it needs to issue the power switch command to change
the state of the power switch.

Refinement of Projections to Incorporate
Execution Engine Behavior

In addition to the state effects model, projections can
reflect the behavior of the execution engine. The planning
engine consults state variables to compute projections,
which in turn can consult their achievers in the execution
engine. The achievers contain a model of their behavior
when they execute goals, and can use this along with the
state effects model to refine a state projection that would
otherwise be based purely on the state effects model. This
refined state projection reflects not only the state
constraint, and the state effects model, but also what the
achiever does to the physical state when the acheiver
executes the state constraint. This refined state projection
should be a subset of the original state constraint for the
plan to be valid, otherwise the constraint is noted as
unachievable, and an alternative plan is considered. In this
way the execution engine models its capability to execute
constraints and provides this information to the planner.
By using the modeling information, the planner can insure
that the plans are consistent with the capabilities of the
execution engine.

State Uncertainty

MDS handles inaccuracies in modeling by explicitly
representing uncertainty in state estimates produced during
execution. A state variable s history contains uncertainty
associated with a estimate for each point in time. An
estimator always updates the history with a measure of
uncertainty.

A state s controller has access to this uncertainty, and must
control to bounds specified in the planned state constraints.
The bounds specified in planned state constraints are
checked by the controller against the current estimated
state and its uncertainty. The controller takes actions to
ensure that the bounds are met given the uncertainty in the
state estimate. For example, if a control constraint is to
keep an actuator s position within a deadband, and the
current uncertainty is expressed as a range, then the
controller must actually control to a narrower range to
account for the uncertainty in the knowledge of the
position.

If a given control constraint requires a certain state
uncertainty, then the planner s elaboration of the control
constraint includes a constraint on the uncertainty of the
knowledge of the state. This sort of uncertainty constraint
is called a knowledge goal, and is executed by the
estimator that is responsible for estimating the state. It is
the responsibility of the estimator to achieve the planned
level of uncertainty during execution. This is monitored by

ICAPS 2005

Workshop on Plan Execution: A Reality Check 23

the execution engine, which will flag deviations to the
planner if the knowledge constraint is not being met.

Timing Uncertainty

MDS deals with uncertainty in the timing of plans using
flexible time. Each time point in the planned goal network
has a range of possible times, to either allow for the
uncertainty in execution times of constraints or to
accommodate flexibility in the execution system.
Uncertain temporal intervals are appropriately labeled. The
state projections produced by the planner take into account
the range of times. The planner assumes times that would
produce the worst-case state projections. The worst-case
projections are bounded by the operators by imposing
deadlines on activities in the form of temporal constraints.
An example is a rover traverse followed by a fixed time
Earth communication window. The energy use during the
traverse is limited by the deadline imposed by the
communication window, when the rover must be
immobile. If the traverse is not completed by the
communication window, the traverse constraint ends early,
and is replanned to start after the communication window.

Determining that a plan with flexible time will execute
successfully boils down to determining dynamic
controllability of the temporal constraint network [6]. How
this execution actually ensues is called timepoint firing,
and is described in detail in [12].

State Analysis

State Analysis [2] improves on the current state-of-the-
practice by producing requirements on system and
software design in the form of explicit models of system
behavior, and by defining a state-based architecture for the
control system. It provides a common language for
systems and software engineers to communicate, and thus
bridges the traditional gap between software requirements
and software implementation.

State Analysis provides a uniform, methodical, and
rigorous approach for:

(1) discovering, characterizing, representing, and
documenting the states of a system under control,

(2) modeling the behavior of states and relationships
among them, including information about
hardware interfaces, operations, and achiever
behavior,

(3) capturing the mission objectives in detailed
scenarios motivated by operator intent,

(4) keeping track of system constraints and operating
rules, and

(5) describing the methods by which objectives will
be achieved.

The state analysis methodology recognizes the need for
specifying execution behavior and planning specifications
in terms of common models. State effects models are
developed in a spiral process of state discovery until all of
the states of the system to be controlled are known and
their physical models are well understood. The execution
and planning engine software is then specified in terms of
these physical models. This includes specifications for
estimation and control algorithms, elaborations, constraint
semantics, projection algorithms, and the other information
exchanged between the execution and planning engine as
discussed in the previous sections.

Conclusion

We have discussed the MDS control architecture,
modeling framework, and systems engineering
methodology for developing state-based models of real-
world behavior, effects, and execution engine behavior,
which are used to inform both planning and execution.
These models provide a basis for ensuring the design-time
consistency of assumptions in the execution engine and
planner, and are the basis for run-time communications
and coordination between planners, schedulers, and
execution engines. The modeling framework has been
designed to be an open architecture for applying various
formalisms and algorithms for spacecraft operations
planning and execution.

In MDS, state-based models provide a basis for
communication between planners, schedulers, and the
engines that execute scheduled plans as follows:

(1) MDS has clearly defined roles in the architecture for
planning and execution

(2) MDS has defined semantics of execution in terms of
state-histories that are represented using state
constraints (goals). The MDS architecture has well-
defined interfaces for exchanging information
between the execution and planning engines,
including methods on achievers called by the planner.

(3) MDS handles inaccuracies in modeling by explicitly
representing uncertainty in state estimates produced
during execution, using this uncertainty in controllers,
planning for uncertainty in knowledge goals, and
monitoring and enforcing the planned level of
uncertainty during execution using estimators.

(4) MDS deals with uncertainty in activity duration and
event timing using flexible time, uncertain time
intervals, and worst-case state predictions limited by
temporal constraints that impose deadlines.

(5) MDS State Analysis is a systems engineering
methodology that with the MDS software frameworks
bridges the gap between how execution is treated in
the planning process, and what happens when the
resulting plan is actually executed.

ICAPS 2005

24 Workshop on Plan Execution: A Reality Check

Acknowledgments

The work described in this paper was performed at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration. We wish to thank the rest of the Mission
Data System development team, and the Mars Science
Laboratory mission personnel who have participated in the
maturation of MDS.

References

[1] D. Dvorak, R. Rasmussen, G. Reeves, and A.
Sacks, Software architecture themes in JPL's
Mission Data System, Proceedings of the AIAA
Guidance, Navigation, and Control Conference,
number AIAA-99-4553, 1999.

[2] M. Ingham, R. Rasmussen, M. Bennett, and A.
Moncada, Engineering Complex Embedded
Systems with State Analysis and the Mission Data
System, Proceedings of the 1st AIAA Intelligent
Systems Technical Conference, number AIAA-
2004-6518, 2004.

[3] A. Barrett, R. Knight, R. Morris, and R.
Rasmussen, Mission Planning and Execution
Within the Mission Data System, Proceedings of
the International Workshop on Planning and
Scheduling for Space, 2004.

[4] D. Dvorak, R. Rasmussen, and T. Starbird, State
Knowledge Representation in the Mission Data
System, Proceedings of the IEEE Aerospace
Conference, 2002.

[5] B.C. Williams, M. Ingham, S. Chung, and P.
Elliott, Model-based Programming of Intelligent
Embedded Systems and Robotic Space
Explorers, Proceedings of the IEEE, 91(1):212-
237, 2003.

[6] P. Morris, N. Muscettola, and T. Vidal, "Dynamic
Control of Plans with Temporal Uncertainty,"
Proceedings of the 17th International Joint
Conference on A. I. (IJCAI-01), Seattle, WA,
2001.

[7] A. Meiri, R. Dechter, and J. Pearl, Temporal
Constraint Networks, Artificial Intelligence,
49:61--95, 1991.

[8] G. Rabideau, R. Knight, S. Chien, A. Fukunaga,
A. Govindjee, "Iterative Repair Planning for
Spacecraft Operations in the ASPEN System,"
International Symposium on Artificial Intelligence

Robotics and Automation in Space (ISAIRAS
1999), Noordwijk, The Netherlands, June 1999.

[9] S. Chien, R. Knight, A. Stechert, R. Sherwood,
and G. Rabideau, "Using Iterative Repair to
Improve Responsiveness of Planning and
Scheduling," International Conference on
Artificial Intelligence Planning Systems (AIPS
2000), Breckenridge, CO, April 2000.

[10] A. K. Jonsson, P. H. Morris, N. Muscettola, K.
Rajan, and B. Smith, "Planning in Interplanetary
Space: Theory and Practice," Proceedings of the
Fifth International Conference on Artificial
Intelligence Planning and Scheduling (AIPS-
2000), 177-186.

[11] N. Muscettola, P. Morris, B. Pell, and B. Smith,
Issues in temporal reasoning for autonomous
control systems, In F. Anger, editor, Working
Notes from the AAAI workshop on Spatial and
Temporal Reasoning, 1997.

[12] R. Knight, Evaporating tasks during execution of
dynamically controllable networks, AAAI
Workshop on Plan Execution, 2005.

ICAPS 2005

Workshop on Plan Execution: A Reality Check 25

Safe Execution of Temporally Flexible Plans for Bipedal Walking Devices

Andreas Hofmann and Brian Williams

Computer Science and AI Lab, Massachusetts Institute of Technology
Author(s) Address(es) Go(es) Here in 9 Point Times Roman
Author(s) Address(es) Go(es) Here in 9 Point Times Roman

hofma@csail.mit.edu, williams@mit.edu

Abstract
 Plans with temporal flexibility have been used to allow
discrete systems to adapt to disturbances that occur while
the plan is being executed. To control more complex
devices, such as bipedal walking machines, we must extend
this execution paradigm to the control of hybrid
(discrete/continuous) systems. Systems of this type are
difficult to control for two reasons: 1) their high
dimensionality and nonlinearity make control complex,
even under nominal circumstances; and 2), operation of
such systems in unstructured environments requires
robustness to significant disturbances.
 We introduce a novel approach to hybrid temporally
flexible plan execution that achieves robustness by
transforming the high-dimensional system into a set of low-
dimensional weakly-coupled systems. This allows us to
apply dynamic controllability concepts previously applied
to discrete systems. We accomplish this decoupling using
three components: 1) a feedback linearizing controller
which provides basic decoupling, 2) a hybrid plan
dispatcher which utilizes plan flexibility to adjust control
settings for individual decoupled variables, and 3) plan
compilation which computes bounds for the dispatcher’s
adjustments to control settings that satisfy plan
requirements. We show the interaction of these components
in control of a bipedal walking machine.

Introduction
 Effective use of autonomous robots in unstructured,
human environments requires that robots: 1) have
sufficient autonomy to perform useful tasks independently,
2) have sufficient size, strength, and speed to accomplish
such tasks in a timely manner, and 3) operate safely. A
particularly challenging example of such a robot is a
bipedal walking machine (Fig. 1a).
 An example task for such a system is to walk to a soccer
ball and kick it. If the system encounters a significant
force disturbance while performing this task, it will have to
compensate by changing its stepping pattern, or leaning the
body as shown in Fig. 1b. The disturbance may cause a
delay (allowing another player to kick the ball). At a more

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

subtle level, it may interfere with movement
synchronization; a lateral disturbance may cause
synchronization problems with forward motion and
stepping.

 a. b.

Fig. 1 – a. Biped, b. reaction to disturbance
 This type of problem presents a number of technical
challenges. First, movement task goals and safety
requirements, which are most naturally specified in terms
of state-space region, and temporal range constraints, must
be translated into control actions that achieve these goals.
This is difficult because the system is highly nonlinear, has
high dimensionality, and has input constraints that limit
controllability. Second, the dual goals of timely task
execution and safety are often in conflict, and must be
judiciously balanced. Finally, the system must be robust to
significant disturbances.
 Dynamic optimization techniques have been used to
generate humanoid motion plans for animation
applications [Popovic and Witkin, 1999]. However, these
methods produce very detailed and inflexible reference
trajectories, and are therefore not robust to disturbances.
Robustness requires plan flexibility.
 A powerful set of methods has been developed for
discrete systems, for safe execution of temporally flexible
plans [Morris, 2001]. These methods guarantee successful
plan execution, as long as temporal uncertainty of
activities is appropriately bounded. For example, in Fig.
2a, a car and sailboat leave Boston for P-Town at the same
time. Duration of the sail is uncertain, but the uncertainty
is bounded (between 6 and 12 hours). Likewise, the drive
is between 3 and 4 hours. Synchronization in P-Town is
assured because the car can wait there indefinitely for the
sail boat.
 In such systems, state is represented by logical variables.
Constraints include logical constraints on these variables,
and continuous temporal constraints. Executives for such

ICAPS 2005

26 Workshop on Plan Execution: A Reality Check

systems operate by scheduling start times of activities
dynamically. They assume that at the end of an activity
(like drive), state will not change (the car will remain in P-
Town).

Fig. 2 – a. Dynamically controllable plan for discrete
system (left), b. Underactuated dynamic system cannot
always wait (right)

 This approach is appropriate for many kinds of
applications, but it does not work for agile underactuated
dynamic systems like bipeds, where movement is fast and
controllability is limited. In particular, the lack of
equilibrium points in such systems means that state is
constantly changing, and the executive cannot assume the
system will wait in a particular state at the end of an
activity. For example, in dynamic walking, it is not
possible to instantly stop forward movement in the middle
of a step, as shown in Fig. 2b. The stepping foot must
move out in front, or the biped will fall.
 Systems of this type include continuous, as well as
discrete state variables, so we refer to such systems as
hybrid. Continuous constraints on the continuous state
variables express the system’s dynamics, and specify valid
regions of operation. An executive for such a system must
take into account the system’s dynamics and controllability
limits. Rather than directly scheduling activity start times,
the dispatcher controls timing indirectly. By adjusting
control parameters appropriately, the dispatcher guides
trajectories of interest into goal state-space regions at the
right time.

Approach
 We allow specification of task goals in terms of state-
space region and temporal range constraints, as shown in
Fig. 3. Foot placement constraints define qualitative poses
such as double support, or left single support, but the
details of the joint positions and trajectories are omitted. A
state-space goal region for the forward position of the
center of mass at the end of the gait sequence defines the
task goal. A temporal range constraint specifies task
completion time requirements.
 To translate these specifications into control actions, we
use a mixed on-line/off-line approach. The off-line
component is a compiler that synthesizes a set of adaptive
controllers. The on-line component is a hybrid dispatcher

that efficiently adapts control settings in response to
disturbances.

Fig. 3 – Task Specification

 A key insight in our approach is to use a feedback
linearizing multivariable controller [Hofmann, 2004] to
transform the highly nonlinear, tightly coupled biped
system into a loosely coupled set of linear 2nd-order single-
input single-output (SISO) systems. This SISO abstraction
greatly simplifies the task of the hybrid dispatcher,
allowing it to focus on a few quantities of interest (center
of mass position), which appear to behave in an
independent and linear manner, rather than on the details
of joint movement. In particular, the SISO abstraction
allows the dispatcher to control the system by adjusting a
small set of linear control law parameters for each quantity
of interest. The multivariable controller then takes care of
the details of computing torques that achieve the desired
motion.

Qualitative State Plan and Plant
 State-space and temporal constraints that specify goal
regions are assembled into a qualitative state plan, which
represents the desired state evolution of the plant (the
system being controlled). The state plan is qualitative in
that it specifies behavior in terms of state regions with
common characteristics, rather than with specific states.
The problem, given a state plan and a plant, is to generate a
sequence of control actions that move the plant to a state
consistent with that required by the plan, while avoiding
unsafe regions.

Plant
The plant is represented by a set of dynamic equations that
specify state evolution as a function of inputs. We define a
plant by the tuple fh,u,y,x, where uy,x, is the set of
state, output (controlled), and input variables, respectively,

Rf_1

x

y Lf_1

Rf_2

Lf_2X_lb X_ub

Y_lb

Y_ub

Foot placement

Qualitative
Gait Poses

Lf_1
Rf_1

Lf_1 Rf_2 Rf_2

Lf_1

Lf_2
Rf_2

Double support
left foot in front

Left single
support

Double support
right foot in front

Right single
support

Double support
left foot in front

x - forward
y - lateral

[20, 30] t
Spatial goal region

specificationTemporal range
specification

Sail boat
[6, 12]

Boston P-Town

Car in P-Town

[3, 4]
Drive

[0, inf]
Wait

ICAPS 2005

Workshop on Plan Execution: A Reality Check 27

h is a set of algebraic equations that relate outputs to
inputs and state, and f is a set of 1st-order differential
equations that describe state evolution. The input vector,
u , includes control inputs, such as joint torques, and also
environment inputs (ground contact forces). The state
vector, x , includes continuous variables, such as joint
positions and velocities, and discrete variables, to indicate
the presence of environment forces. The output vector, y ,
contains the variables to be controlled, such as forward and
lateral center of mass (CM) position and velocity. Our
simulated walking biped plant has 18 degrees of freedom,
and is highly nonlinear [Hofmann et al., 2002]. We
assume that plant state is available from sensors, or can
easily be estimated.

Qualitative State Plan
 A qualitative state plan specifies state evolution using
sequences of activities as shown in Fig. N. Each sequence
(each row in this diagram) specifies behavior for a
particular quantity. Two types of quantities, controlled
quantities, and input quantities, can be specified.
Controlled quantities are position/velocity pairs
corresponding to elements of y . Input quantities are
scalar functions, ()iii yyg &, , that represent control laws
for controlled quantities, and thus, correspond to elements
of u . In Fig. 4, forward and lateral CM are examples of
controlled quantities, and forward and lateral CP (center of
pressure) are examples of input quantities.
 Each activity in a sequence is part of a control epoch
(column in Fig. 4). The control epochs shown in Fig. 4
correspond to the qualitative poses shown in Fig. 3. Thus,
epoch 1 represents double support with the left foot in
front, epoch 2, left single support, epoch 3, double support
with the right foot in front, and epoch 4, right single
support. Epoch 5 repeats epoch 1, but is one gait cycle
forward. Vertical bars in Fig. 4 between rows represent
synchronization constraints, so that all quantities advance
to the next control epoch at the same time.
 Each activity may have a temporal duration range
constraint, indicated by [lb, ub]. This specifies the lower
bound (lb) and upper bound (ub) on the activity’s duration.
In addition, range constraints on acceptable initial and goal
regions for quantities may be specified. For controlled
quantities, regions are specified using rectangles in
position/velocity phase space. For input quantities, regions
are specified using scalar ranges. Note that the duration
and region constraints are optional. In fact, these
constraints are omitted for many of the activities in the
state plan. In Fig. 4, we care about the initial and final
region of the CM, but not about the details in between.
Thus, for the CM quantities, an initial region for epoch 1
may be specified, and a final region for epoch 5, but the
intervening regions may be left unspecified. Similarly, we
care that the gait cycle be completed within time range
[t_lb, t_ub], but not about the detailed durations of each
activity, so these are unspecified as well.
 Each activity may also have a tube constraint specifying
a required region for the associated quantity over the entire

duration of the activity. Such constraints are useful, for
example, for limiting the range of forward and lateral CP,
over the entire course of a qualitative pose. This is
important because CP is an input quantity that is limited by
foot placement (see also Fig. N-1). For example, in epoch
2 (left single support), the CP is restricted to the support
region under the left foot.

Fig. 4 – Qualitative State Plan

Formally, we define a state plan as a set, A , of activities,
()jia , , where i refers to the quantity, and j to the

control epoch. An activity is defined by the tuple
nexttemporalgoaltubeinit aRRRR ,,,, where initR , tubeR ,

and goalR specify, respectively, initial, operating, and goal
regions in state space for the controlled variable associated
with the activity, and temporalR specifies temporal
constraints. The activity nexta is the activity to transition
to when the current activity is finished.
 The region constraints, initR , tubeR , and goalR are of the
form () ()maxminmaxmin iiiiii yyyyyy &&& ≤≤∧≤≤ for
controlled quantities, and ()maxmin iii yyy ≤≤ for input
quantities. Use of such unary constraints with constant
bounds results in rectangular regions in position/velocity
state-space. This implies more conservative bounds than
would be possible if the constraints were multivariable and
nonlinear, but it also greatly simplifies planning. An
activity may begin if its quantity is in the region defined by

initR . An activity cannot end unless the quantity is in
goalR . The quantity must stay within tubeR for the entire

duration of the activity.
 temporalR is of the form parallelduration AR , , where

durationR is a simple temporal constraint []ublb, specifying
the permissible range of activity duration, and parallelA is a
set of activities that must finish simultaneously with the
current one. parallelA provides the capability to
synchronize multiple concurrent activity sequences
(vertical bars in Fig. N). For example, for a biped,
movement of the stepping foot must be synchronized with
forward movement of the center of mass.

Lateral
CM

[t_lb, t_ub]

Lateral
CP

Forward
CM

Forward
CP

[]11, yy &

[]22 , yy &

()111 , yyg &

()222 , yyg &

1 2 3 4 5

j j+1
ija

[lb, ub]

quantity

control
epoch

goal
region

initial
region

ICAPS 2005

28 Workshop on Plan Execution: A Reality Check

 An activity finishes if its goalR , durationR , and parallelA
constraints are satisfied. After it finishes, it transitions to
the successor, nexta , immediately. An activity, a , is
executed successfully iff there exists a start time, ts , and a
finish time, tf , for the activity, such that ubtstflb ≤−≤ ,
and there exists a trajectory for the associated controlled
variable y such that () ()tsytsy &, satisfy initR , () ()tfytfy &,
satisfy goalR , and () ()tyty &, satisfy tubeR for tftts ≤≤ . A
state plan is executed successfully iff each activity, ()jia , ,
is executed successfully, and the associated finish time,
()jitf , , is such that if the activity has a successor,
()1, +jia , then () ()1,, += jitsjitf , and for any parallel

activity, ()jka , , listed in parallelA , () ()jktfjitf ,, = . Fig.
5 shows lateral CM and CP trajectories for a nominal
execution of the state plan shown in Fig. 4.

Plan Compiler
 A qualitative state plan cannot be executed directly
because it is missing control information, and because
much of the trajectory information is still under-specified.
The plan compiler adds this missing information to the
qualitative state plan, producing a qualitative control plan.
A qualitative control plan consists of the activities from the
state plan, with the two following additions: 1) control
information is included, and 2) the region constraints,

initR , tubeR , and goalR , and the duration constraint,
durationR , specify non-infinite bounds. Control parameter

information is of the form max2min2max1min1 ,,, kkkk ;
bounds on control parameters for the linear control laws
used in the SISO abstraction. Thus, the qualitative control
plan contains all the information needed to control the
SISO system, and to monitor its status with respect to
region and temporal bounds.
 In computing bounds on the control parameters, the
compiler is, in effect, performing an adaptive controller
synthesis. The hybrid dispatcher utilizes the flexibility of
the control parameter ranges to adapt control settings as
needed. In order to maximize robustness to disturbances,
the compiler attempts to maximize the size of initial
regions, and tubes, minimize the size of goal regions, and
maximize controllable temporal activity duration ranges.
Maximizing initial regions and minimizing goal regions
results in a contraction; the family of trajectories in the
tube “contract” to each other as time advances.
Maximizing controllable temporal range makes
synchronization with other controlled quantities easier.
 In generating trajectories, the compiler must take into
account dynamics. We want fast performance, but due to
the underactuated nature of the system, this leads to a
reduction in controllability. Thus, future consequences of
current actions become increasingly important as speed of
movement is increased. The compiler must take into
account future epochs in order to plan feasible trajectories.
In this respect, the plan compiler is similar to receding
horizon model-predictive controllers [ref. From Thomas’
paper].

 The compiler proceeds in two steps. First, it computes a
nominal trajectory that reaches the goal state from the
initial state, and that satisfies all state-space and temporal
constraints. Second, to provide robustness to disturbances,
the compiler expands the nominal trajectory, creating
regions and tubes not specified explicitly in the qualitative
state plan, attempting to maximize initial regions, minimize
goal regions, and maximize controllable temporal range.
For both steps, we utilize an SQP (Sequential Quadratic
Programming) optimizer, and formulate the problem as an
NLP (Nonlinear Program). These two steps are now
described in detail.

Nominal Trajectory Computation
 The NLP formulation for the nominal trajectory
computation is as follows. For each activity, ija ,
associated with a controlled quantity, parameters to
optimize are

21,,,,,, kktyyyy goalgoalgoalinitinit && , where initinit yy &,
are the initial state of the quantity associated with the
activity, goalgoal yy &, are the quantity’s final state, goalt is
the duration of the activity, and 21,kk are parameters for
the linear control law that achieves the trajectory.
Constraints on these parameters are as follows. The
trajectory is defined by the analytic solution to the linear
2nd-order differential equation formed by applying the
linear control law to the SISO abstraction. This yields an
equality constraint that relates goal to initial state, control
parameters, and duration:
 ()goalinitinitgoal tkkyyfy ,,,, 211 &= (1)
 ()goalinitinitgoal tkkyyfy ,,,, 212 && =
Continuity from one epoch to the next is expressed as
 () ()1,, += jiyjiy initgoal (2)
 () ()1,, += jiyjiy initgoal &&
Inequality constraints for initR , tubeR , goalR , and durationR
are as described previously. Synchronization constraints
across quantities are expressed as
),1(),(:, jitjitji goalgoal +=∀ (3)
Finally, the temporal constraint on overall state plan
execution time is given by
 ∑ ≤≤∀

j
ubgoallb tjittji),(:, (4)

The cost function includes terms that maximize the
distance to the tubeR boundaries.
 An example of a nominal trajectory computed in this
way is shown in Fig. 5.

Fig. 5 – Lateral CM in blue, Lateral CP in red

ICAPS 2005

Workshop on Plan Execution: A Reality Check 29

Qualitative Control Plan Computation
 The NLP formulation for the control plan computation is
as follows. For each activity, ija , associated with a
controlled quantity, parameters to optimize are:

maxmaxminmin ,,, initinitinitinit yyyy && (parameters of initR),
maxmaxminmin ,,, goalgoalgoalgoal yyyy && (parameters of

goalR), maxmin , tt (parameters of durationR), and
max2min2max1min1 ,,, kkkk , the bounds on the control

parameters. Note that these are similar to the ones in the
nominal computation, except that they are now ranges
rather than nominal values.
 In order to understand how this computation works, it is
necessary to understand two trajectories that represent
extremes of behavior: the guaranteed fastest trajectory
(GFT), and the guaranteed slowest trajectory (GST). The
GFT represents a lower bound on the time needed to get
from anywhere in the initial region, to somewhere in the
goal region. The GST represents the corresponding upper
bound. For both these trajectories, it is assumed that
velocity does not change sign (position is monotonically
increasing or decreasing).
 Consider the initial and goal regions shown in Fig. 6.
For the GFT, the worst-case starting point in the initial
region is point B, which corresponds to minmin , initinit yy & .
This represents the slowest possible start. By accelerating
as quickly as possible, the GFT reaches point D in the goal
region, which corresponds to maxmin , goalgoal yy & . This
represents the fastest finish point in the goal region. For
the GST, the worst-case starting point in the initial region
is point A, which corresponds to maxmax , initinit yy & . This
represents the fastest possible start. By accelerating as
slowly as possible, the GST reaches p;oint c in the goal
region, which corresponds to minmax , goalgoal yy & . This
represents the slowest finish point.
 The times for each trajectory are designated GFTt and

GSTt . If GSTGFT tt < , then there exists a temporal range,
[]GSTGFT tt , , during which the endpoint of a trajectory

Fig. 6 – GFT (dotted) and GST (solid)

beginning from anywhere in the initial region can be
guaranteed to be in the goal region. The existence of the

temporal range is important for synchronizing with other
controlled quantities. Thus, the GFT and GST are useful
for determining a maximum initial region, given a
particular goal region, such that the controllable temporal
range exists.
 GFT and GST can be understood intuitively by
considering a very simple control law. Suppose that the
only control input allowed is a single acceleration spike (of
an appropriate size). If this spike is applied at the
beginning of the trajectory, then maximum velocity is
reached immediately. This corresponds to the GFT, as
shown in Fig. 7. If this spike is applied at the end, then the
trajectory will progress at minimum velocity until the end.
This corresponds to the GST.

Fig. 7 - GFT (dotted) and GST (solid) for acceleration
spike control laws

 In the NLP formulation, existence of initial and goal
regions is expressed as
 maxmin initinit yy < (5)
 maxmin initinit yy && <
 maxmin goalgoal yy <
 maxmin goalgoal yy && <
To guarantee contraction from one control epoch to the
next, the goal region of an activity must fit inside the initial
region of its successor.
 () ()1,, minmin +≥ jiyjiy initgoal (6)
 () ()1,, minmin +≥ jiyjiy initgoal &&
 () ()1,, maxmax +≤ jiyjiy initgoal
 () ()1,, maxmax +≤ jiyjiy initgoal &&
Constraints representing the GFT are expressed as

()minmax2max1minmin1min ,,,, tkkyyfy initinitgoal &= (7)
()minmax2max1minmin2max ,,,, tkkyyfy initinitgoal && =

Constraints representing the GST are expressed as
()maxmin2min1maxmax1max ,,,, tkkyyfy initinitgoal &= (8)
()maxmin2min1maxmax2max ,,,, tkkyyfy initinitgoal && =

The requirement for temporal controllability is expressed
as maxmin tt < . Synchronization constraints are

() () () ()() ...,1,1 maxmaxminmin ∧≤≤≤ jtjtjtjt transtrans
() () () ()()jitjtjtjit transtrans ,, maxmaxminmin ≤≤≤

Thus, () ()[]jtjt transtrans maxmin , is the temporal range
when transition out of control epoch j may occur.
 The cost function maximizes initial region size,
minimizes goal region size, and maximizes controllable
temporal range.
 Fig. 8 shows regions for lateral CM computed in this
way.

A

B

y
y&

C

D

Initial

Goal

A

B

y
y&

C

D

Initial

Goal

ICAPS 2005

30 Workshop on Plan Execution: A Reality Check

Fig. 8 – Lateral CM regions (yy &, vs. time)

Temporal Uncertainty
 If controllability is very limited, it may be difficult to
achieve a large enough initial region. This situation can be
improved by relaxing the constraint GSTGFT tt < , as
shown in Fig. 9.

Fig. 9 – a. t(GFT) = t(GST), left, b. t(GFT) > t(GST),
right

The intuitive explanation for why this happens is that as
GFT is allowed to take longer, the B point of the initial
region is allowed to stretch to the left (position decreases).
Similarly, if GST is allowed to complete faster, point A
moves to the right (position increases).
 Unfortunately, relaxing this constraint means that we
lose temporal controllability; the time of arrival in the goal
region can no longer be precisely controlled. However, the
uncertainty on arrival time is bounded by []GFTGST tt , .

This may still be ok if controllability of other controlled
quantities is strong enough to compensate for uncertainty.
When this is the case, the system can be considered to be
dynamically controllable [Morris, 2001]. This situation
can be represented using an STNU (simple temporal
network with uncertainty), as shown in Fig. 10.

Fig. 10 – STNU for lateral and forward CM

In this STNU, the temporal durations for lateral CM are
uncertain but bounded. The temporal durations for
forward CM are certain, and they are large enough to
compensate for the uncertainty in the lateral CM. Thus,
transition synchronization can still be guaranteed, though
this will require adjustment by the hybrid dispatcher once
the uncertainty is resolved.

Hybrid Dispatcher
 The hybrid dispatcher executes the qualitative control
plan. It acts as an adaptive controller, adjusting control
parameters within the limits specified in the control plan,
to guide each controlled quantity into its goal region at the
correct time. When all quantities are in their respective
goal regions, the hybrid dispatcher transitions to the next
control epoch. Note that unlike dispatchers for discrete
systems [Morris, 2001], the hybrid dispatcher is not able to
directly schedule start times for activities. Rather, it
indirectly controls timing by adjusting control parameters.
 At the beginning of a new control epoch, j, the
dispatcher computes a target transition time, ()jttrans .
When there is no temporal uncertainty, it chooses a time in
the range () ()[]jtjt transtrans maxmin , . When there is
uncertainty in one of the controlled quantities, the
transition time is determined when the uncertainty for this
controlled quantity is resolved.
 For each controlled quantity, the dispatcher then
monitors progress by computing a prediction of the point
in state space for the controlled quantity at ()jttrans . This
prediction is computed analytically in the same manner as
eq. 1, so it is fast. If the predicted point is within the goal
region, then the dispatcher does nothing. If it is outside the
goal region, then the dispatcher adjusts the control
parameters to attempt to move the predicted point back
into the goal region. If this is unsuccessful, the plan
execution fails, and the dispatcher requests a new plan. If
all trajectories execute successfully, then when all
controlled quantities are in their respective goal regions,
the dispatcher transitions to the next control epoch.

Results and Discussion
 Our tests on the simulated biped show that a small
lateral CM disturbance (100 N for 0.01 sec) can be handled
by the multivariable controller without any immediate
action by the dispatcher. A larger (250 N) disturbance
requires gain adjustment by the dispatcher. A disturbance
of 300 N is too large for the dispatcher to handle by itself;
a new dispatchable plan is required.
 These tests demonstrate compliance to disturbances at
three levels: 1) use of low-gain control, 2) flexibility in
the dispatchable state plan allowing for adjustments by the
hybrid dispatcher, and 3) fast reactive planning. This
allows for integrated handling of disturbances of varying
degrees of severity.

1Lateral
CM

2 3 4

1 2 3 4Forward
CM

[0.32, 0.4] [0.12, 0.18] [0.22, 0.26]

[0.3, 0.45] [0.1, 0.2] [0.2, 0.3]

ICAPS 2005

Workshop on Plan Execution: A Reality Check 31

References
[Bradley and Zhao, 1993] E. Bradley and F. Zhao. Phase-

space control system design. Control Systems,
13(2),39-46 April, 1993

[Goswami, 1999] A. Goswami. Postural stability of biped
robots and the foot rotation indicator (FRI) point.
International Journal of Robotics Research,
July/August 1999

[Hofmann et al., 2002] A. Hofmann, M. Popovic, H. Herr.
Humanoid Standing Control: Learning from Human
Demonstration. Journal of Automatic Control, 12(1),
16–22

[Hofmann et al., 2004] A. Hofmann, S. Massaquoi, M.
Popovic, and H. Herr. A sliding controller for bipedal
balancing using integrated movement of contact and
non-contact limbs. Proc. International Conference on
Intelligent Robots and Systems (IROS). Sendai, Japan

[Morris et al., 2001] P. Morris, N. Muscettola, and T.

Vidal. Dynamic control of plans with temporal
uncertainty. Proceedings of the 17th International Joint
Conference on A.I. (IJCAI-01). Seattle (WA, USA).

[Muscettola et al., 1998] N. Muscettola, P. Morris, and I.
Tsamardinos. Reformulating temporal plans for
efficient execution. Proc. Of Sixth Int. Conf. On
Principles of Knowledge Representation and
Reasoning, 1998

[Popovic et al., 1999] Z. Popovic and A. Witkin.
Physically based motion transformation. Siggraph
1999

[Popovic et al., 2004] M. Popovic, A. Hofmann, H. Herr.
Zero spin angular momentum control: definition and
applicability. (Humanoids). Los Angeles (CA, USA).

[Slotine and Li, 1991] J. Slotine and W. Li. Applied
Nonlinear Control. Ch. 6, Prentice Hall, NJ, USA

[Williams and Nayak, 1997] B. Williams and P. Nayak.
A Reactive Planner for a Model-based Executive.
Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI, 1997)

ICAPS 2005

32 Workshop on Plan Execution: A Reality Check

Robot Actions Planning and Execution Control
for Autonomous Exploration Rovers

Matthieu Gallien Félix Ingrand Solange Lemai
LAAS-CNRS∗

7, Avenue du Colonel Roche
31077 Toulouse Cedex 4, France

Abstract

To achieve the ever increasing demand for science re-
turns, extraterrestrial exploration rovers require more
autonomy to successfully perform their missions. In-
deed, the communication delays are such that tele-
operation is unrealistic. Although the current rovers
(such as MER) demonstrate a limited navigation au-
tonomy, and mostly rely on ground mission planning,
the next generation (e.g. NASA Mars Science Labora-
tory and ESA Exomars) aims at “beyond the field of
view” autonomous navigation. Other exploration mis-
sions which cannot rely on human teleprogramming,
will even require activity planning, repair and replan-
ning to be made onboard.

In this paper, we propose and give experimental results
of an original approach for temporal planning and ex-
ecution control, including plan repair and replanning,
fully integrated onboard a robot performing rover ex-
ploration like missions. Our claim is twofold. First
these planning/plan repair methods and techniques are
now mature enough to be considered to solve real world
problems. Second they can be integrated in existing ar-
chitectures and used onboard a fully operational robot,
with currently available hardware.

Introduction
Extraterrestrial exploration rovers have an increasing
need for high level autonomy. If one compares the nav-
igation capabilities of Sejourner and MER, one can al-
ready see that some modest, yet real, navigation au-
tonomy has been introduced. Moreover, higher science
return, and the communication latency of deep space
mission1 are pushing to get some of the traditionally
high level activities planning performed on board. For
example in the MER mission, an automated planning
system (MapGen (Ai-Chang et al. 2003)) was used on
the ground to produce the daily activities for Spirit and
Opportunity. The operational results of MapGen are

∗List of authors in alphabetical order. Part of this work
has been funded by a grant from the ESF (European Social
Fund), and is partially supported by CNES and Astrium
Copyright c© 2005, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

1Unlike most navigations on the ground, a comet landing
phase can hardly be suspended.

quite encouraging, as it allowed a 25% increase in sci-
ence returns compared to a human generated plan (Ra-
jan 2004). As of today, the ESA Exomars project (part
of Aurora) aims at having the rover navigating over its
“field of view”, in one day, with navigation decisions
taken on board. NASA MSL will also push the auton-
omy cursor further than for MER. Last, the “Human
on Mars” goal will require the deployment of a large
number of autonomous systems to “prepare” and study
the planet before a human can set foot on it. The “fu-
ture” of exploration rovers and probes clearly lies in an
increased autonomy addressing the problems of action
planning, and plan execution control.

Meanwhile, automated actions planning has made
some progress since the early days of Shakey and
STRIPS. There are now planners able to take into
account time, resources, constraints and to solve real
world problems. Still, planning is only one aspect of
the problem. Plans, even flexible or contingent one,
are bound to fail. Plan repair and replanning are thus
needed to ensure that the system is able to recover from
unexpected plan execution failure.

In this paper we present IxTeT, a temporal plan-
ner which includes an execution controller, as well as
some plan repair and replanning capabilities. The re-
sulting system has been integrated in the LAAS archi-
tecture(Alami et al. 1998) and implemented onboard
Dala, our iRobot ATRV Robot. Such a planner is in
charge of producing plans composed of actions such as
move, science activities (moving and operating instru-
ments), communication with earth and an orbiter or
a lander, while managing resources (power, memory,
etc) and temporal constraints (communication visibil-
ity windows, rendezvous, etc).

Still, the execution of action as simple navigation
task such as a move in an unknown environment implies
complex processes (Lacroix et al. 2003; Goldberg, Mai-
mone, & Matthies 2002): localization, map building,
motion generation, etc. The LAAS architecture (Alami
et al. 1998) and its associated tools provide a support
in order to design and integrate such a complete au-
tonomous system.

Fig. 1 presents the architecture implemented for the
experiment on Dala. The functional level includes all

ICAPS 2005

Workshop on Plan Execution: A Reality Check 33

Decisional Level

Functional Level

Temporal Executive

Requests Control Level

Environment

mission report

ExoGen

GenoM

Requests and Resources Checker

OpenPRS

Procedural

Executive

Planner

IxTeT

POM

Position

Manager

Pos

Camera
Images

pos-tag

LANE

Local

Env.

Env

P3D

3D reactive

Motion

Planner

Speed

SCorrel
Cor. Im

pos-tag

STEO

Stereo

Odometry

Pos

Platine
Pla

Pos
 RFLEXPos

Figure 1: The LAAS architecture on Dala, an iRobot
ATRV.

the basic built-in robot action and perception capa-
bilities, encapsulated into controllable communicating
modules. These modules are activated by requests, send
reports upon completion and export data. Tor example,
the POM module computes the best position estimate
from standard (RFLEX) and visual (STEO) odometry,
while the wheels are controlled by RFLEX according to
the reference velocity produced by the reactive motion
planner (P3D). The requests control level filters the re-
quests according to the current state of the system and
a formal model of allowed and forbidden states (see (Py
& Ingrand 2004)).

IxTeT has been integrated in the decisional level and
interacts with the user and the functional level through
a procedural executive (OpenPRS). First, IxTeT pro-
duces a plan to achieve a set of goals provided by the
user. The plan execution is controlled by both procedu-
ral and temporal executives as follows. The temporal
executive decides when to start or stop an action in the
plan and handles plan adaptations. OpenPRS expands
and refines the action into commands to the functional
level, monitors its execution and can recover from spe-
cific failures. It finally reports to IxTeT upon the action
completion.

The paper is organized as follows. The first section

presents the core planner used as well as the 3DC+ al-
gorithm. The following section focuses on the execution
control part of the system as well as the repair and re-
planning mechanism. Then we present the experimen-
tation (rover exploration planning), and the result of
the integration of IxTeT on board the Dala robot. Last,
we compare this work with similar works and present
conclusions and possible prospectives.

The planner

The planner in IxTeT is a lifted POCL temporal plan-
ner based on CSPs (Laborie & Ghallab 1995). Its tem-
poral representation describes the world as a set of
attributes: logical attributes (e.g. robot position(?r)),
which are multi-valued functions of time, and resource
attributes (e.g. battery level()) for which one can spec-
ify borrowings, consumptions or productions. We note
LgcA and RscA, respectively the sets of logical and re-
source attributes. LgcAg and RscAg designate the sets
of all possible instantiations of these attributes.

The evolution of a logical attribute value is repre-
sented through the proposition hold, which asserts the
persistence of a value over a time interval, and the
proposition event, which states an instantaneous change
of value. The propositions use, consume and produce
respectively specify over an interval the borrowing, the
consumption or the production at a given instant of a
resource quantity.

event(ROBOT_POS():(?initL,IDLE_POS),st);
hold(ROBOT_POS():IDLE_POS,(st,et));
event(ROBOT_POS():(IDLE_POS,?endL),et);

event(ROBOT_STATUS():(STILL,MOVING),st);
hold(ROBOT_STATUS():MOVING,(st,et));
event(ROBOT_STATUS():(MOVING,STILL),et); contingent ?duration = et − st;

distance(?initL,?endL,?di);
distance_uncertainty(?du);
?dist = ?di * ?du;
speed(?s);

?dist = ?s * ?duration;

?initL,?endL in LOCATIONS;
task MOVE(?initL,?endL)(st,et){

hold(PTU_POS():FORWARD,(st,et)); }latePreemptive

variable ?di,?du,?dist;
variable ?duration;

Figure 2: Example of move action model.

hold(ROBOT_STATUS():STILL,(end_heat, st));

timepoint end_heat;

event(PTU_STATUS():(COLD, HEAT),st);

hold(PTU_STATUS():HEAT,(st,end_heat));

event(PTU_STATUS():(HEAT,MOVING),end_heat);

hold(PTU_STATUS():MOVING,(end_heat,et));

event(PTU_STATUS():(MOVING,COLD),et);

contingent (et − st) in [16,20];

(end_heat − st) in [10,12];

hold(PTU_POS():?initL,(st,end_heat));

event(PTU_POS():(?initL,PTU_POS_IDLE),end_heat);

hold(PTU_POS():PTU_POS_IDLE,(end_heat,et));

event(PTU_POS():(PTU_POS_IDLE,?endL),et);

hold(PTU_INIT():TRUE,(st,et));

}latePreemptive

task MOVE_PTU(?initL,?endL)(st,et){

?initL,?endL in PTU_POSITIONS;

Figure 3: Example of move ptu action model.

As shown on Fig. 2, an action (also called task) con-
sists of a set of events describing the change of the world
induced by the action, a set of hold propositions ex-
pressing required conditions or the protection of some
fact between two events, a set of resource usages, and
a set of constraints on the timepoints and variables of
the action. Note the conteingent keyword used to ex-
press that this duration should not be modified by the
planner.

A plan relies on two CSP managers. A Simple Tem-

ICAPS 2005

34 Workshop on Plan Execution: A Reality Check

poral Network (STN) handles the timepoints and their
binary constraints (ordering, duration, etc.). The other
CSP manages atemporal symbolic and numeric vari-
ables and their constraints (binding, domain restriction,
sum, etc.). Mixed constraints between temporal and
atemporal variables can also be expressed (Trinquart &
Ghallab 2001) (e.g. the relation between the distance,
speed and duration of a move ?dist =?speed∗ (et−st)).
These CSP managers compute for each variable a min-
imal domain which reflects only the necessary con-
straints in the plan. Thus the plan is least committed
and as much as possible flexibility is left for execution.

The plan search explores a tree T in the partial plan
space. In a POCL framework, a partial plan is generally
defined as a 4-tuple (A,C, L, F), where A is a set of
partially instantiated actions, C is a set of constraints
on the temporal and atemporal variables of actions in
A, L is a set of causal links2 and F is a set of flaws. A
partial plan stands for a family of plans. It is considered
to be a valid solution if all its possible instances are
coherent, that is F is empty.

The root node of T consists of: the initial state (ini-
tial values of all instantiated attributes), expected avail-
ability profiles of resources, goals to be achieved (de-
sired values for specific instantiated attributes) and a
set of constraints between these elements. The branches
of T correspond to resolvers (new actions or con-
straints) inserted into the partial plan in order to solve
one of its flaws. Three kinds of flaws are considered:
– Open conditions are events or assertions that have
not yet been established. Resolvers consist in finding
an establishing event (in the plan or a new action) and
adding a causal link that protects the attribute value
between the establishing event and the open condition.
– Threats correspond to pairs of event and hold which
values are potentially in conflict. Such conflicts are
solved by adding temporal or binding constraints.
– Resource conflicts are detected as over-consuming sets
of potentially overlapping propositions. Resolvers in-
clude insertion of resource production action, etc
Thus, a planning step consists in detecting flaws in the
current partial plan, selecting one, choosing a resolver
in its associated list of potential resolvers and insert-
ing it into the partial plan. This planning step is re-
peated until a solution plan is found. When a dead
end is reached (flaws remain but no resolver are avail-
able), the search backtracks on a previous choice. The
algorithm is complete and the flaw and resolver choices
are guided by diverse heuristics discussed in (Laborie &
Ghallab 1995). Note that the search is stopped as soon
as a valid plan is found.

The advantages of the CSP-based functional ap-
proach are numerous in the context of plan execution.

2A causal link ai
p→ aj denotes a commitment by the

planner that a proposition p of action aj is established by
an effect of action ai. The precedence constraint ai ≺ aj

and binding constraints for variables of ai and aj appearing
in p are in C.

[x, y]

[u, v][p, q]

A B

C

<C, t>

[u, v][p, q]

A B

D

Figure 4: Two Network Examples

Besides the expressiveness of the representation (han-
dling of time and resources), the flexibility of plans (par-
tially ordered and partially instantiated, with minimal
constraints) is well-adapted to their execution in an un-
certain and dynamic environment. Plans are actually
constrained at execution time. Finally, the planner,
performing a search in the plan space, can be adapted
to incremental planning and plan repair.

3DC+ algorithm
Nevertheles, there are still open problems such as how
to handle the controllability issue. Regular propagation
in STN, and by extension in the atemporal CSP, may
shrink a temporal interval which may not be “control-
lable” by the planner. As a result, the execution may
fail, not because the action model is wrong, but because
the planner took some “freedom” with respect to what
it is allow to control.

The 3DC+ algorithm was first introduced by (Vidal,
Morris, & Muscettola 2001). Fig. 5 presents the general
algorithm illustrated on the two examples on fig. 4.

Five various cases must be distinguished. If one con-
siders the network on the left (fig. 4), with a contingent
link AB:
Precede case This is the case where u ≥ 0. In this
case we must tighten AB to [y − v, x− u].

Unordered case This is the case where u < 0 and
v ≥ 0. In this case and if x < y − v, we must add
a ternary constraint, called a wait, on AB and of
value < C, y − v >. It means that we must wait
y − v after the instantiation of A to instantiate B.
We must also instantiate B at a time consistent with
the constraints and after the observation of C.

If one now considers the network on the right (fig. 4):
Regression of wait Suppose a link AC has a wait
< C, t >

• If a link DB (including AB itself) with an upper
bound of q exists, then we must add a wait < C, t−
q > on AD.

• If a contingent link DB with B 6= C and with p
as lower bound exists, then we must add a wait
< C, t− p > on AD.

General reduction If a link AB has a wait < C, t >
and the lower bound of the contingent link that ends
on C is l with l < t, then we must add a lower bound
of l on AB.

ICAPS 2005

Workshop on Plan Execution: A Reality Check 35

Unconditional wait If a link AB has a wait < C, t >
and the lower bound of the contingent link that ends
on C is l with l > t, then we must add a lower bound
of t on AB and suppress the wait which is useless.

1. Compute the minimal STN. If it is not pseudo-
controllable return false.

2. Select any triangle such that v (fig. 4) is non-negative.
Introduce any tightenings required by the Precede case
and any waits required by the Unordered case.

3. Do all possible regressions of waits, while converting un-
conditional waits to lower bounds. Also introduce lower
bounds as provided by the general reduction.

4. If steps 2 and 3 do not produce any more tightenings,
then return true, otherwise return to 1.

Figure 5: 3DC+ Algorithm

We have implemented the 3DC+ algorithm presented
above in IxTeT, and we are thus able to produce plans
which are dynamically controllable with waits. The re-
sulting plans may not be as “efficient” as one produced
without 3DC+, but, as we will see in the example sec-
tion, it is more robust and still more efficient than a
plan where all non controllable actions have been max-
imized.

Temporal executive, plan execution,
repair and replanning

The temporal executive controls the temporal network
of the plan produced by IxTeT by deciding the exe-
cution order of actions execution and by mapping the
timepoints at their execution time. The execution of an
action a with grounded parameters pa, starting time-
point sta, ending timepoint eta, and identifier ia is
started by sending the command to the procedural ex-
ecutive. If the action is non preemptive, eta is not con-
trollable, and IxTeT just monitors if a is completed in
due time. Otherwise eta is controllable: if the action
does not terminate by itself, it is stopped as soon (resp.
as late) as possible if a is early (resp. late) preemptive.

IxTeT integrates in the plan the reports sent by the
controlled system upon each action completion. A re-
port returns the ending status of the action (nominal,
interrupted or failed) and a partial description of the
system state. If nominal, it just contains the final lev-
els of the resources, if any, used by the action. Other-
wise, it also contains the final values of the other state
variables relevant to the action.

Besides completion reports, IxTeT also reacts to user
requests to insert a new goal and sudden alterations of
a resource capacity.

In any case, while execution is taking place, various
events can forbid further execution of the plan:
– temporal failures The STN constrains each timepoint
t to occur inside a time interval [tlb, tub]. Thus two types
of failure lead to an inconsistent plan: the correspond-
ing event (typically, the end of an action) happens too

early or too late (time-out).
– action failure The system returns a non nominal re-
port.
– resource level adjustment If an action has consumed
more or produced less than expected, the plan may con-
tain future resource contentions.

When these occur, IxTeT starts and controls the pro-
cesses of plan adaptation. To take advantage of the
temporal flexibility of the plan, the dynamic replan-
ning strategy has two steps. A first attempt is to repair
the plan while executing its valid part in parallel. If
this fails or if a timepoint times out, the execution is
aborted and IxTeT completely replans from scratch.

Interleaving partial order planning and execution
may insert flaws in the plan. We formally define un-
der which conditions such a partial plan remains exe-
cutable.

Definitions
We extend the previous definition of a partial plan to
the definition of Pt: a partial plan partially executed
up to time t .

Definition 1 Pt = (RAt, FAt, St, Gt, Ct, Lt, Ft).

RAt is the set of currently running actions (a ∈ RAt if
staub < t and etaub > t), FAt is the set of future actions
(a ∈ FAt if staub ≥ t). St represents the state of the
world at time t. It is composed of 2 sets: LgcSt contains
the last value of each attribute la ∈ LgcAg, 3 RscLt

contains the level at time t of each resource r ∈ RscAg.
Gt is the set of goals not yet completely achieved at
time t (and eventually not established) 4. Ct is the set
of constraints on the variables appearing in FAt, RAt,
St and Gt. Lt is the set of causal links supporting future
actions. Ft is the set of flaws present in the partial plan
at time t.

The level of a resource at a certain time in the future
cannot be computed, since it depends on the partial
order of actions using this resource. But at time t the
past part of the plan is completely instantiated and lin-
earized. Two cases have to be considered: if no running
action modifies r, the exact level can be computed; if at
least one action in RAt requires the resource, only an
estimate is available. We refer the reader to (Lemai &
Ingrand 2004) for the details on how these evaluations
are computed.

A timepoint in the temporal network may correspond
to a goal timepoint or to an action starting or ending
timepoint.

Definition 2 (executable timepoint) A timepoint
T is executable at time t if all timepoints T p that must
directly precede it in the temporal network have already
been executed (T p

lb = T p
ub < t), if all positive waits on

3In IxTeT, LgcSt contains the last executed event for
each la.

4In IxTeT, a goal is represented by a grounded propo-
sition hold(GoalAtt(g):GoalValue, (stg, etg)). Gt contains
goals such that etg

ub ≥ t.

ICAPS 2005

36 Workshop on Plan Execution: A Reality Check

links with positive upper bound and which ends on T
are enabled and if t ∈ [Tlb, Tub].
A goal is instantaneously achieved or persistent (achieve
and maintain a property between stg and etg).
Definition 3 (achievable goal) A goal g is
achievable at time t if stg is executable and if
g /∈ Ft.

Let Af
t be the set of actions that are involved in Ft. 5

Definition 4 (executable action) A future action a
is executable at time t if its start timepoint is executable
and if a /∈ Af

t .

Definition 5 (executable plan) A partial plan Pt is
executable at time t if the constraint networks are con-
sistent and if RAt ∩Af

t = ∅.

Execution cycle
As previously explained, the system, when boot-
strapped, produces a first plan (let us call it Execut-
ingPlan), and will only start execution afterward. The
executive manages the messages received, the actions
timeout, and the timepoints execution. Integrating
messages in ExecutingPlan may partially invalidate it.
If ExecutingPlan contains new flaws, a plan repair con-
sists in keeping the structure of the plan (the ordering
of actions) and taking advantage of the flexibility to
try and find a solution plan. The user defines the max-
imum time allowed for plan repair (µ). If plan repair
takes more than µ, it is suspended to allow reactivity
to events and concurrent execution of the valid part of
the plan.

Yet, to distribute planning on several cycles raises
two problems:
Which plan does the concurrent execution rely on,
especially if no solution has been found? This plan
has to be executable. At each planning step, the node is
labeled if the current partial plan is executable. When
µ has elapsed, the last labeled partial plan becomes
ExecutingPlan.
Which plan and which search tree the planning pro-
cess rely on in the next cycle? If no change has been
made meanwhile (no timepoint execution, no message
reception), the search tree can be kept as is and further
developed during the next plan repair part. However,
if the plan has been modified, a new search tree
whose root node is the new ExecutingPlan is used, and
the planning decisions made in previous cycles are final.

The following subsections further detail the different
phases of the executive loop. Basically, all modifica-
tions made to ExecutingPlan have to guarantee that an
executable plan is available after each phase of the cycle.

5The determination of Af
t is straightforward in the case

of open conditions and resource conflicts. In a threat case,
an action ak has effects in contradiction with the estab-
lishment of proposition p by the causal link ai

p→ aj and

(ai ≺ ak ≺ aj) is consistent. Af
t contains ak and aj .

If this condition does not hold, the cycle is stopped and
a complete replanning is mandatory. During a cycle
without plan repair, ExecutingPlan remains a solution
plan.

Message integration
A message can be a report upon action completion; a
new goal request or a notification of a capacity alter-
ation (we do not detail the two last ones, and refer the
reader to (Lemai 2004) for a complete explanation on
these).

A report is associated with the ending timepoint eta

of the corresponding action a. If the message is re-
ceived inside the bounds [etalb, et

a
ub], eta is set to the

current time t (equivalent to posting the constraint
(eta − origin) = t in the STN). Otherwise, two situ-
ations arise. If there is no flexibility left in the plan, it
is not executable anymore. Else, a new end timepoint,
set to t and constrained to occur before the executable
timepoints, is created and the failed one is relaxed. The
network is then recomputed. In IxTeT, such an oper-
ation keeps the network consistent, since the only con-
straint that can be specified between two actions a and
a′ is a precedence constraint which upper bound is flexi-
ble: (sta

′−eta) in]0,+∞[. If the report contains infor-
mation about the state, St is updated in the following
way:

Resource level - For each resource r, the report
returns the current “real” level lr. lr is compared to
the forecasted evaluation (see (Lemai & Ingrand 2004))
which are properly updated accordingly. Plan repair
is requested in case of over-consumption and in case of
over-production of a reservoir resource (which may then
overfill).

State variables - LgcSt contains the last value for
each instantiated logical attribute. If the report is nom-
inal, LgcSt is updated with the effects of a expected in
the plan. Otherwise, it is updated with the values re-
turned in the report. A value is not inserted if it leads to
a non executable plan (that is it threatens some propo-
sition of a running action ar). In that case and if ar

is preemptive, its interruption is requested. Else, the
value is inserted and causal links which contradict it
are broken. This update leads to an executable plan
with open conditions on which plan repair can be pro-
cessed.

After message integration, the plan may contain flaws
(open conditions and/or resource conflicts) on a set of
grounded attributes Attf , possibly repaired thanks to
the insertion of new actions. Let us consider Atti the set
of the attributes appearing in the potentially inserted
actions. Additional causal links, protecting proposi-
tions in the plan on attributes in Atti, have to be bro-
ken to allow the insertion of these actions in the current
plan structure.

The determination of Atti is based on information
given by an abstraction hierarchy verifying the Ordered
Monotonicity Property (Knoblock 1994; Garcia & La-
borie 1995) and generated offline from the model de-

ICAPS 2005

Workshop on Plan Execution: A Reality Check 37

scription. Notably, this hierarchy points out the pri-
mary effects of an operator, which justify its insertion
to solve a flaw. Let us call main attributes of an action
the attributes appearing in its primary effects. Atti, ini-
tialized with Attf , is computed by searching the action
operators for which at least one attribute attm in Atti

is a main attribute. This operator is partially grounded
(by binding its corresponding parameter with attm) and
the (eventually grounded) attributes appearing in the
operator and not yet taken into account are added to
Atti. The algorithm proceeds recursively until a fixed
point is reached.

Finally, the partial plan is executable and the sets of
actions that are independent from the failures remain
executable.

Plan repair
The plan repair is similar to the IxTeT search process
in the plan space. The root of the search tree T is
ExecutingPlan, partially invalidated. Planning is dis-
tributed, if necessary, on several cycles and each time
a new timepoint is inserted, it is constrained to occur
after the end of the current cycle. Planning during one
cycle is done one step at a time until it results into a
dead-end (there is no solution), or a solution is found
or a deadline is reached. This deadline corresponds to
the user defined time (µ) allocated to the plan repair
part of the cycle time.

Some aggregation mechanisms allow a reduction of
the search space. In IxTeT, the establishing events are
looked for in LgcSt and executed resource propositions
are aggregated in one proposition.

This plan repair process is not guaranteed to find a
valid plan, yet it can avoid aborting execution and com-
pletely replanning at each failure. By invalidating only
a part of the plan, the amount of decisions is rather lim-
ited and a repaired plan may be found in a few cycles.
Plan repair is especially efficient and useful for tem-
porally flexible plans and plans with some parallelism.
This mechanism is also efficient to compensate for inad-
equate models of actions. Consider a move(L1,L2) ac-
tion, which is defined as a late preemptive action in the
IxTeT model. If the robot takes longer than expected in
the model (e.g. due to unexpected obstacle avoidance),
the action is interrupted. The controlled system returns
the intermediate location Li and, if some temporal flex-
ibility remains, a new move(Li,L2) is immediately in-
serted and launched. This example is representative of
the failures that frequently break plan execution.

Action
Each timepoint is associated to an execution time texec.
If T is a start or goal timepoint, or an end timepoint of
an early preemptive action, texec = Tlb. If T is an end
timepoint of a late preemptive action, texec = Tub − ts.
If T is an end timepoint of a non preemptive action,
texec = Tub. The executive determines the set of time-
points to execute during the current cycle (ExecTPs):
these timepoints are executable and their execution

time happens before the end of the cycle. ExecTPs
is updated after each timepoint execution to take into
account newly executable timepoints. The detail of a
timepoint execution depends on its type and timeouts
are raised when reports have not been received in time.

Complete replanning
Let us call Pts

= (∅, FAts
, Sts

, Gts
, Cts

, Lts
, Fts

) the
plan obtained once execution is stopped. An initial plan
is extracted from Pts

as:
Pti

= (∅, ∅, Sti
, Gti

, Cti
, ∅, Fti

), with
Sti

= Sts
, Gti

= {g ∈ Gts
/temporal constraints

on g are coherent with current time}, Cti
= {c ∈

Cts
/c is a constraint just on variables appearing in Sti

and Gti
}(Cti

notably contains constraints on origin and
horizon timepoints), and Fti

= Gti
.

POCL planning cannot be interrupted at any time
and come up with an applicable plan. Still we have
to guarantee that at the end of the replanning process,
there remains enough time to execute the solution plan
and meet the goal deadlines. We propose to add a spe-
cific flexible timepoint T end to Pti

, that corresponds
to the end of the planning process. T end is only con-
strained to occur between ti and the end of the horizon.
Each time a new timepoint is inserted by the planning
process, it is constrained to occur after T end. Thus T end

ub
decreases as new actions or new temporal constraints
are added, and there is not enough time to execute the
current plan if T end

ub < current time. Note however that
T end

ub can increase when backtracking.
The strategy is then to plan one step at a time until

it results into a dead-end, or a solution is found, or a
time limit l is reached. l is defined as l = T end

ub − d, d
being a slack duration to save enough time at the end of
planning for cycle initialization. l is updated after each
planning step. Planning is stopped when l is reached
unless the next step corresponds to a backtrack node.
In that case, and if the next step increases l, planning
is pursued.

If planning is aborted without finding a solu-
tion, some goals are rejected and a new attempt is
done (Lemai 2004).

Integration and example of scenario

We illustrate the capabilities and the performances of
IxTeT with an example of a scenario for a rover with an
exploration mission. In such a domain, the quantitative
effects and durations can be estimated in advance for
planning but are accurately known only at execution
time (e.g. the actual compression rate of an image or
the actual duration of a navigation task), thus requiring
regular updates and look-ahead capabilities to manage
unforeseen situations and resource levels. We also il-
lustrate the advantage of using the 3DC+ algorithm in
order to produce a more robust plan and compare with
a plan without temporal controllability.

IxTeT has been integrated in the decisional level
of the LAAS architecture (Alami et al. 1998) and

ICAPS 2005

38 Workshop on Plan Execution: A Reality Check

Figure 6: DALA GUI showing the goals of the explo-
ration mission.

used to control an iRobot ATRV (see the first section
and Fig. 8). We set up an exploration mission sce-
nario which requires the robot to achieve three types
of goals (see Fig. 6): “take pictures of specific science
targets” (in locations (0.5,-0.5), (4.5,-0.5), (1.5,-2.5)),
“communicate with a ground station during visibility
window” (W1[117−147]), and “return to location (0.5,-
0.5) before time 500”. Dala runs a 3 GHz Pentium
IV (1 GB memory) under Linux and is equipped with
the following sensors: odometry and a stereo camera
pair mounted on a pan&tilt unit (PTU). Five main
actions are considered at the mission planning level:
take picture, move ptu, move (Fig. 2), download images,
communicate. The first three actions are performed by
Dala, while the last two are realistically simulated.

There are specific constraints attached to each tasks.
The pan&tilt unit must be warmed up ten seconds be-
fore it can move. During a move action (of the rover),
the camera must be pointed at a specific angle in or-
der to provide the best perception of the environment.
Thus the move action and the move ptu action are
mutually exclusive, however the pan&tilt unit can be
warmed up during the “end of the move”. It allows us to
start a move ptu action before the end of the move that
precedes it without “stopping” the move itself. Yet, to
do so, we need 3DC+ to correctly produce and execute
this plan. Without this, IxTeT produce a plan which
may shorten the duration of the move to its lower limit
and we will most likely get a temporal failure. You can
see on Fig.7 that in the top plan the end of two move ac-
tion is overlapped by a move ptu action. Unfortunately
at this stage, the IxTeT Plan Viewer used to produce
these screen dumps does not show the wait introduced
by the 3DC+ algorithm. The plan on the bottom part
of the picture has been produced by over constraining
the move ptu action to take place strictly after the move
action. This plan is clearly safe but less efficient and
flexible than the previous one.

The plan execution is controlled by both executives as

Figure 7: Initial plan produced with the use of 3DC+
(top) and without (bottom) (note the flexibility left,
the dependencies and the parallelism).

follows. IxTeT decides when to start or stop an action
in the plan and handles plan adaptations. OpenPRS
expands the action into commands to the functional
level6, monitors its execution and can recover from spe-
cific failures. It finally reports to IxTeT upon the action
completion.

This mission (the corresponding initial plan with
3DC+ is shown in Fig. 7) has been executed by Dala
under IxTeT control (with µ = 1s and total cycle
duration= 2s). The initial plan with 3DC+ was pro-
duced in 7.1s, and the plan without 3DC+ was pro-
duced in 4s. Each resulting run is different.

Figure 9 shows the duration of each phase of the cy-

6For the download images and communicate actions, specific
procedures simulate the visibility windows and the gradual
download of images.

ICAPS 2005

Workshop on Plan Execution: A Reality Check 39

Figure 8: The robot Dala.

0,0

0,5

1,0

1,5

2,0

2,5

3,0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Cycle: number

C
yc

le
 ti

m
e

=
2s

µ
=

1,
2s

sense duration repair duration action duration

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

Cycle: number

C
yc

le
 ti

m
e

=
2s

µ
=

1,
2s

sense duration repair duration action duration

Figure 9: Cycle duration of plans with 3DC+ (top) and
without 3DC+ (bottom).

cle for two different runs (one with 3DC+ and another
without). The two runs are different because the real
execution lead to more frequent failures of the move ac-

tion in the second run. Yet, we see that using 3DC+
during execution does not increase execution time too
much.

Discussion and Prospectives

If one looks at the current state of the art, few high
level planning systems have been integrated onboard
real robots while running complex navigation soft-
ware. Many architectures (such as Claraty (Estlin et
al. 2002)) provide a “decisional” level for such compo-
nents , but little has been done as far as deploying them
entirely on real systems. The main reason is probably
that despite the availability of good planning systems,
few of them integrate the proper plan repair and replan-
ning mechanisms. Still, the ROGUE system (Haigh &
Veloso 1998), for instance, performs planning for asyn-
chronous goals and execution monitoring enhanced with
learning capabilities. In (Beetz 2000), the authors pro-
pose a different approach where the plans themselves
specify the adaptation processes as subplans. In any
case, very few approaches explicitly handle time and
address the issue of temporal execution. The CASPER
system (Chien et al. 2000) (part of Claraty) performs
continuous planning interleaved with execution. State
and temporal data are regularly updated and potential
future conflicts are incrementally resolved using iter-
ative repair techniques. However this approach does
not handle conflicts which appear within the replan-
ning time interval. Other approaches such as IDEA
(Finzi, Ingrand, & Muscettola 2004) are more radical
and provide an architecture which seamlessly integrates
temporal planning and execution control: each compo-
nent can be seen as an agent running a reactive planner,
and sharing with the others parts of a global temporal
model specifying the “behavior” as well as the commu-
nication between agents.

We have presented in this paper the IxTeT system
which combines a temporal lifted POCL planner with a
temporal executive to integrate deliberative planning,
execution monitoring and replanning while respecting
real-time constraints. This approach cannot account
for all the possible execution failures in all their gen-
erality. Nevertheless, in many situations where some
temporal and resource flexibility has been left,one can
expect the presented repair techniques to greatly im-
prove the overall performance of the system by:

• reducing the number of complete replannings,

• improving the system reactivity to unexpected
events,

• taking into account new goals on the fly,

• managing the changes in the resources capacity,

• managing the uncertainty in the model de-
scription (actions duration, resources consump-
tion/production).

Moreover, by implementing 3DC+ in IxTeT, we have
a better handling of temporal controllability, and pro-

ICAPS 2005

40 Workshop on Plan Execution: A Reality Check

duce plans which are more robust at execution time,
without a major degradation in performance.

We have conducted a number of field experiments.
Although preliminary, the current results are quite
promising. First, we show that planning with time and
resource combined with execution control, plan repair
and replanning can be used on real world problem. Sec-
ond it shows that such an approach can be deployed on
current hardware along with the “state of the art” nav-
igation software (stereo vision, terrain mapping, path
planning, visual odometry, etc).

Yet, IxTeT effectiveness can be increased by improv-
ing replanning strategies (rejected goals selection, state
update requests).

Despite the obvious application of systems such as Ix-
TeT to exploration probes and rovers, one can easily see
the possibilities it opens for service robotics (with the
added value of human robot interactions and problem
joint resolutions) and fields robotics, where planning
and execution control problems are also present.

References
Ai-Chang, M.; Bresina, J.; Charest, L.; Jónsson, A.;
Hsu, J.; Kanefsky, B.; Maldague, P.; Morris, P.; Ra-
jan, K.; and Yglesias, J. 2003. Mapgen: Mixed ini-
tiative planning and scheduling for the mars 03 mer
mission. In Proceedings of iSAIRAS.
Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and
Ingrand, F. 1998. An architecture for autonomy. In-
ternational Journal of Robotics Research, Special Is-
sue on Integrated Architectures for Robot Control and
Programming 17(4):315–337.
Beetz, M. 2000. Runtime plan adaptation in struc-
tured reactive controllers. In Proceedings of the Fourth
ICAA.
Chien, S.; Knight, R.; Stechert, A.; Sherwood, R.;
and Rabideau, G. 2000. Using iterative repair to im-
prove the responsiveness of planning and scheduling.
In AAAI.
Estlin, T.; Fisher, F.; Gaines, D.; Chouinard, C.;
Schaffer, S.; and Nesnas, I. 2002. Continuous Planning
and Execution for an Autonomous Rover. In Proc.
Third International NASA Workshop on Planning and
Scheduling for Space.
Finzi, A.; Ingrand, F.; and Muscettola, N. 2004.
Model-based executive control through reactive plan-
ning for autonomous rovers. In IROS 2004
(IEEE/RSJ International Conference on Intelligent
Robots and Systems).
Garcia, F., and Laborie, P. 1995. Hierarchisation of
the search space in temporal planning. In EWP.
Goldberg, S.; Maimone, M.; and Matthies, L. 2002.
Stereo vision and rover navigation software for plan-
etary exploration. In Proc. IEEE Aerospace Confer-
ence.
Haigh, K. Z., and Veloso, M. M. 1998. Planning,
execution and learning in a robotic agent. In AIPS.

Knoblock, C. 1994. Automatically generating abstrac-
tions for planning. Artificial Intelligence 68.
Laborie, P., and Ghallab, M. 1995. Planning with
sharable resource constraints. In IJCAI.
Lacroix, S.; Mallet, A.; Bonnafous, D.; Bauzil, G.;
Fleury, S.; Herrb, M.; and Chatila, R. 2003. Au-
tonomous rover navigation on unknown terrains, func-
tions and integration. IJRR.
Lemai, S., and Ingrand, F. 2004. Interleaving temporal
planning and execution in robotics domains. In AAAI
2004, July 25-29.
Lemai, S. 2004. IxTeT-eXeC: planning, plan repair
and execution control with time and resource manage-
ment. Ph.D. Dissertation, LAAS-CNRS and Institut
National Polytechnique de Toulouse, France.
Py, F., and Ingrand, F. 2004. Dependable execu-
tion control for autonomous robots. In IROS 2004
(IEEE/RSJ International Conference on Intelligent
Robots and Systems).
Rajan, K. 2004. Invited talk: Mapgen. In IWPSS
2004, 4th International Workshop on Planning and
Scheduling for Space, June 23 - 25.
Trinquart, R., and Ghallab, M. 2001. An extended
functional representation in temporal planning : to-
wards continuous change. In ECP.
Vidal, T.; Morris, P.; and Muscettola, N. 2001. Dy-
namic Control of Plans With Temporal Uncertainty.
In IJCAI, 494–502.

ICAPS 2005

Workshop on Plan Execution: A Reality Check 41

Making Robot Learning Controllable: A Case Study in Robot Navigation

Alexandra Kirsch, Michael Schweitzer, Michael Beetz

Abstract

In many applications the performance of learned robot con-
trollers drags behind those of the respective hand-coded ones.
In our view, this situation is caused not mainly by deficien-
cies of the learning algorithms but rather by an insufficient
embedding of learning in robot control programs. This pa-
per presents a case study in which ROLL, a robot control
language that allows for explicit representations of learn-
ing problems, is applied to learning robot navigation tasks.
The case study shows that ROLL’s constructs for specify-
ing learning problems (1) make aspects of autonomous robot
learning explicit and controllable; (2) have an enormous im-
pact on the performance of the learned controllers and there-
fore encourage the engineering of high performance learn-
ers; (3) make the learning processes repeatable and allow for
writing bootstrapping robot controllers. Taken together the
approach constitutes an important step towardsengineering
controllers of autonomous learning robots.

Introduction
Implementing competent autonomous robot control systems
that can accomplish large spectra of dynamically changing
and interacting tasks is very difficult. The realization and
maintenance during their development requires the control
systems to be equipped with, and make ample use of au-
tonomous learning mechanisms. Unfortunately, the perfor-
mance of learned routines typically drags substantially be-
hind the performance of handcoded ones, at least if the con-
trol tasks are complex, interact, and are dynamically chang-
ing.

In our view, this situation is caused not primarily by de-
ficiencies of learning algorithms but rather by an insuffi-
cient embedding of learning into robot control. For a robot
to learn effectively and successfully it does not suffice to
merely apply the right learning algorithm. Rather, the robot
must also be able to recognize the experiences relevant for
learning, to actively acquire specific experiences to acceler-
ate learning and to select informative experiences and throw
away misleading ones. We know from data mining applica-
tions that the realizations of these tasks have an tremendous
impact on the performance of learning and data mining ap-
plications.

Beetz et al. [2004] have proposed ROLL (Robot Learning
Language, formerly called RPLLEARN), an extension to the

robot control and plan language RPL, that allows program-
mers to specify such mechanisms declaratively and modular-
ily as part of the control program. ROLL introduces experi-
ences, distributions and abstractions thereof, learning tasks,
and learned routines as first class objects into the language.
It also provides transparent and modular specification mech-
anisms for them. Using ROLL, a programmer can spec-
ify an experience class relevant for a given learning task by
adding a perception mechanism for it, a routine for perform-
ing physical actions to gather such experiences, a critic that
decides whether or not an experience is informative. Using
the last specification, a robot can recognize an experience in
which it collided with an object, which is not informative for
learning the dynamics of the robot.

In this paper we evaluate some of the claims made by
Beetz et al. [2004] by applying the extended language
to learning an example class of navigation tasks for au-
tonomous robot soccer. In the context of this case study,
we will discuss whether changing the parameters and the
mechanisms that are made explicit in ROLL have substan-
tial impact on the performance of learned routines. We will
also investigate whether the changes can be made modular-
ily and transparently and whether the language extensions
encourage theengineeringof autonomously learning con-
trollers through a seamless integration of programming and
learning.

The case study demonstrates the huge potential of control
languages that support learning for the realization of more
competent controllers that are easier to develop and main-
tain.

In the remainder of this paper we proceed as follows. Sec-
tion briefly introduces some of the language constructs pro-
vided by ROLL that are used for our case study. In section
we present a case study demonstrating the language ROLL.
Thereafter we compare several navigation routines that were
implemented with ROLL. Finally we discuss related work
and conclude with section .

The Robot Learning Language ROLL

Before we start with our case study, let us first describe the
computational model for the interpretation of ROLL con-
trollers and then the key language constructs provided by
ROLL for the embedding of learning mechanisms.

ICAPS 2005

42 Workshop on Plan Execution: A Reality Check

The Interpretation Model of R OLL
The extended robot control language ROLL assumes that
ROLL controllers are executed by an interpretation model
that has the structure and components depicted in figure 1.
The main parts of the system are theperformance element
that controls the robot, thecritic that executes the learning
task specific perception mechanisms, thelearning element
that reasons about and modifies the performance element in
order to improve its behavior. To do so, the learning element
uses a database of experiences and a library of learning al-
gorithms as its resources. Finally, the computational model
includes aproblem generatorthat allows the robot to acquire
relevant experiences actively. In the remainder of this sec-
tion we will briefly sketch the functionality of the individual
components of the interpretation model.

Agent Program

E
nv

iro
nm

en
t

Percept

Performance
Element

Control
Signals

Critic

Learning
Element

Problem
Generator

da
ta

ba
se

of
ex

pe
rie

nc
es

le
ar

ni
ng

sy
st

em
s

Figure 1: Overview of a learning agent after (Russell &
Norvig 1995)

Theperformance elementrealizes the mapping from per-
cepts into the actions that should be performed next. It con-
tains code pieces, calledcontrol tasksthat might not yet be
executable or optimized. These are the code pieces to be
learned. Thus the ROLL interpreter might have to inter-
pret a control task that has not yet been learned, using the
ROLL specification of the learning problem. In this case,
it automatically activates the learning process including the
collection of the necessary experiences, and continues with
the interpretation after the learning process has generated an
executable code piece for the control task.

The critic is best thought of as a learning task specific
abstract sensor that transforms raw sensor data into infor-
mation relevant for the learning element. To do so the critic
monitors the collection of experiences and abstracts them
into a feature representation that facilitates learning. The
critic also generates feedback signals or rewards that as-
sess the robot’s performance during an episode. Finally, the
episodes are stored and maintained in a relational database
system coupled with a datamining toolset as resources for
learning. The current ROLL version uses MySQL1 as its
database system and Weka2 for data mining.

The learning elementuses experiences made by the robot
in order to learn the routine for the given control task. To
do so, the learning element selects a subset of experiences

1http://www.mysql.com/
2http://sourceforge.net/projects/weka/

from the episode database and transforms these experiences
into input data for the learning algorithm to be applied. The
learning element also specifies the appropriate parameteri-
zation of the learning mechanism, the bias, to perform the
learning task effectively. Finally, the learning element spec-
ifies how the result of the learning process is to be trans-
formed into a piece of code that can be executed by the per-
formance element.

Theproblem generatoris called with an experience class
and returns a control routine that, when executed, will gen-
erate an experience of the respective class. The new param-
eterizations are generated as specified in the distribution of
parameterizations of the experience class.

Learning-specific Constructs of ROLL

In order to write a ROLL controller, a programmer has to
specify control tasks that are to be learned, experiences that
are needed to learn a routine for the tasks, abstractions of
experiences that are better correlated with the concepts to
be learned, and learning algorithms, their parameterization,
conversions of experiences into input data of the algorithm
and the transformations of the algorithm output into pieces
of the control program. For each of these aspects ROLL pro-
vides modular and transparent means for their specification.

To specify the experiences for a learning task we must
code how the experiences are to be recognized, how they
can be actively acquired by performing control routines, and
what the distribution of experiences should be. The perfor-
mance of learned routines often improves as the distribution
of experiences matches the expected distribution of control
tasks which they are learned for. To facilitate learning the
programmer can also define suitable abstractions or “fea-
ture languages”. The experiences are stored in an episode
database automatically.

experience class 〈name〉
with feature language 〈feature language〉

abstraction 〈abstraction〉
distribution 〈distribution〉
methods 〈detect-method〉, 〈collect-method〉

A learning problem consists of two parts: the experi-
ences and a learning element. The experiences are extracted
from a database. This gives the programmer the freedom
to choose from the gathered experiences only those that are
most suited for the particular problem. For this purpose we
use an abstract language that was designed for data cleaning
(Galhardaset al. 2001). This language is an extension of
SQL and provides, among others, constructs for matching,
clustering, and merging of data. Thus a set of experiences of
an experience class can be used for different learning prob-
lems. The learning element contains the choice of a learning
algorithms and its parameterization for the learning prob-
lem.

learning problem 〈name〉
experiences 〈experience set〉
learning element 〈learning element〉

Given a set of experiences a robot learning problem is es-
sentially the application of an appropriately parameterized
learning algorithm, the transformation of the abstracted ex-
periences into the input format of the learning algorithm,

ICAPS 2005

Workshop on Plan Execution: A Reality Check 43

and the generation of code that is executable within the con-
troller and solves the control task from the output of the al-
gorithm.

Navigation with Bézier Curves: A Case Study
In the domain of robot soccer, the navigation is a funda-
mental issue. We consider mobile robots with a simple dif-
ferential drive which we can control with an an abstract in-
terface that allows for the drive control in terms of a de-
sired rotational velocityv and translational velocityω of the
robot. Steering differential drives for complex navigation
tasks with high performance is very difficult. As described
and justified by experimental results in (Beetzet al. 2004)
we perform learning tasks in a simulator with the robot dy-
namics learned from the real physical robots.

Figure 2: The navigation problem using Bézier curves

In robot soccer it often does not suffice to reach a position,
but positions must be reached in orientations that facilitate
subsequent actions. Thus we consider navigation tasks that
are specified by the current robot position and orientation
〈x, y, ϕ〉 and the intended one〈xg, yg, ϕg〉 and use cubic
Bézier curves for specifying the trajectories to be followed
(figure 2). Witht ∈ [0, 1] a cubic B́ezier curve is defined as

B(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t(t − 1)P2 + t3P3.
ThePi are called control points. For the navigation prob-

lem P0 is the starting position andP3 is the goal position.
With the orientation given atP0, P1 is determined by the
distance toP0, for P3 andP2 respectively. So for us a B́ezier
curve is determined by the two distancesd0 andd1.

control routine navigation (〈xg, yg, ϕg〉)
trajectory := calculate-bezier-curve (〈x, y, ϕ〉, 〈xg, yg, ϕg〉)
do

trajectory-point := pop(trajectory)
do

get-next-command (〈x, y, ϕ〉, trajectory-point)

until at-point(trajectory-point)
until at-point(〈xg, yg, ϕg〉)

Figure 3: Overview of our navigation routine.

We decompose the navigation problem into two subprob-
lems as shown in figure 3: (1) Finding a suitable Bézier
curve. We call this the high-level navigation problem.

(2) Navigating from a point on the curve to the next tra-
jectory point. This we refer to as the low-level navigation
problem.

To keep the case study simple, we abstract away from
other parameters that influence the performance of the navi-
gation routine such as the density of trajectory points on the
Bézier curve. They have small impact on performance and
we keep them constant in our experiments.

Finding a Trajectory

In our case study we have investigated three different ap-
proaches for the implementation of the functioncalculate-
bezier-curve: a fully programmed one that performs an ex-
haustive search through all possible solutions; a heuristic
one, and a learned one.

The fully programmed function produces very good re-
sults, but is too slow to be used at execution time. The
heuristic solution calculatesd0 andd1 independently, based
on the angle deviation of each point with respect to the line
of sight between the two points. A third solution is to learn
the functioncalculate-bezier-curve by experience. Unfortu-
nately, there is a strong dependency between the parameters
d0 andd1. Therefore we split the problem into two learning
tasks: one to determine onlyd0, the other one to determine
d1 as a function ofd0.

Low-Level Navigation

In this section, we explain the solution of the low-level nav-
igation problem in more detail. We demonstrate the explicit
specification of a learning problem and show different alter-
natives for solving the navigation task.

The low-level navigation is simpler than the original nav-
igation problem in that the target points are rather close, so
that the goal angle can be omitted. The orientation of the
overall navigation task is achieved by following the Bézier
curve.
(1) Parameterization of the Experience Abstrac-
tion. The choice of abstractions determines how concisely
situations and tasks can be represented and how strongly the
characterizations of situations and tasks correlate with the
concepts to be learned. The abstraction has a strong effect
on the performance of the learning process.

Two possible feature languages with their respective ab-
stractions are shown in table 1. The first one describes the
distance between the start and goal point and the angle of
the start point relative to the line of sight. In the second pos-
sibility an arc is drawn between the start and goal point with
the orientation vector at the start point as a tangent. Here the
abstraction is described in terms of the radiusrc of this arc.
(2) Parameterization of the Experience Distribution. It
is often useful to specify more than one distribution for ob-
taining a broader variety of experiences. Therefore we de-
fine the relevant parameters for the distribution first.

distribution parameters nav distribution
〈x, y, ϕ〉start: constant 〈-5.0, -2.5, 0.0〉
ϕend: constant 90.0
rotation: range 〈1.0, 180.0〉
translation: range 〈0.0, 1.0〉

ICAPS 2005

44 Workshop on Plan Execution: A Reality Check

features 1 features 2

ϕ d
goal

0

rc
ϕ

0

ϕ
0

ϕ
0

goald
2

d←
√

(xg − x)2 + (yg − y)2

ϕ0←
∣∣∣∣ϕ− arctan

(
xg − x

yg − y

)∣∣∣∣ rc ←
√

(xg−x)2+(yg−y)2

2 sin ϕ0

d× ϕ0 → v × ω (AB 1) rc → v × ω (AB 2)

abstraction 1 abstraction 2

Table 1: Different parameterizations for feature language
and abstraction.

Now different distributions can be defined by setting the
values of the non-constant parameters. The values of a pa-
rameter can be obtained systematically, randomly or by a
list of fixed values. If not stated otherwise, the parameters
are assumed to be independent, although distributions over
combinations of parameters can be defined as well.

distribution medium curves of type nav distribution
rotation: systematic range 〈20.0, 60.0〉 step 1.0
translation: systematic range 〈0.2, 1.0〉 step 0.05

Instead of defining experience distributions, it is possible
that the robot use experiences aquired during its operation.
In robot soccer, we can use the experiences made during
games.
(3) Methods for Recognizing Experiences.To collect ex-
periences the robot has to recognize them and detect fail-
ures during their acquisition. In our example an experience
starts at a certain point and terminates when the robot has
reached a certain turning angle. Furthermore we check if
the robot has gone out of the field or exhausted the given
time resources.

The methods for gathering experiences are usually
straightforward, so one doesn’t have to experiment with
them the way one does with the other parameters like ex-
perience abstraction or distribution.
(4) Parameterization of the Experience Extraction. As
described in section , a learning problem is defined by a set
of experiences and a learning element. The experiences are
extracted from an episode database.

Table 2 shows the specifications of two possible sets of
experiences. The first one is trivial and uses all the available
experiences. The second one is more sophisticated in that it
selects only fast examples. The tablematch-nav is obtained
by applying a matching operator as described in (Galhardas
et al. 2001) on the stored examples, so that similar routes
are grouped together.

CREATE MATCHING match-nav
FROM nav-exp ne1, nav-exp ne2
LET distance = pathSimilarity(ne1.id, ne2.id)
WHERE distance < maxDist(ne1.id, ne2.id, δ)
INTO match-exp

ES 1
def-experience-set all-experiences

SELECT id
FROM nav-exp

ES 2

def-experience-set fast-experiences
SELECT DISTINCT time,id
FROM (SELECT time,id,id1 FROM ‘nav-exp‘ ne

JOIN ‘match-exp‘ me ON ne.id=me.id2) t1
JOIN (SELECT MIN(time) mt,id1 FROM ‘nav-exp‘ ne

JOIN ‘match-exp‘ me ON ne.id=me.id2
GROUP BY id1) t2

ON t1.time=t2.mt AND t1.id1=t2.id1;

Table 2: Different parameterizations for experience set.

(5) Parameterization of the learning element. Now hav-
ing chosen the experiences that are to be used for learning,
we only have to describe the parameters of the learning ele-
ment. One parameterization could be

learning element nav learning element
use system SNNS
with parameters

hidden units: 5
cycles: 50
learning function: Rprop

(6) Parameterization of the amount of program-
ming. Often learning alone is not enough to solve com-
plex problems. For instance, our learning approach to the
low-level navigation has one fundamental drawback. It is
hard to decide whether a navigation routine is better than
another. There can be cases when a routine is fast, but in-
accurate. Depending on the situation the robot must have
access to navigation routines with different qualities. Any
learned low level navigation routine can only be optimized
under one criterion.

Instead of learning completely different routines, we can
reformulate the learning problem by inverting the abstrac-
tion:

abstraction nav abstraction
v × ω → rc

(AB 3)

Here we know our translational and rotational velocities
and are interested in the arc the robot will go with these pa-
rameters. The learned function can now be used for a search
algorithm. We optimized the function so that the robot goes
as fast as possible while rotating as little as possible. But it
would be easy to write functions with different criteria.

Experimental Results
In this section we present experimental results that were ob-
tained by combining the different parameters explained in
the previous section. The following table gives an overview
of our solutions.

solution 1 2 3 4
abstraction AB 1 AB 1 AB 1 AB 3

experience set ES 1 ES 1 ES 2 ES 2
programming none none little yes

high-level heuristic learned learned learned
Experiments. In our experiments we gave the robot sev-
eral navigation tasks where it had to reach a point with a
certain orientation. Only runs that reached the point within
a given radius were considered successful. The successful

ICAPS 2005

Workshop on Plan Execution: A Reality Check 45

(a) Solution 1 (b) Solution 2

(c) Solution 3 (d) Solution 4

Figure 4: Comparison of different parameterizations. In each case the left diagram shows the accuracy of the goal angle, the
right one the time difference compared to a completely programmed routine, which is drawn in light grey.

runs were then categorized along two lines: the accuracy the
desired orientation was achieved with and the time needed.

In section we described a fully programmed routine that
provides good solutions, but is intractable for real-time ap-
plications. Since in our simulation the computation time for
finding a solution can be disregarded, we consider this rou-
tine as the best possible solution and therefore compare our
(partly) learned solutions to this reference routine.

The diagrams for the accuracy in figure 4 give the angle
deviation at the goal point. At the rightmost side the cases
are denoted when the routine didn’t reach the point at all.

In the time diagrams the time difference of two routines is
shown. When comparing two identical routines, the diagram
shows two bars of equal height at the origin. The faster a
routine, the more bars of its color are on the right hand side.
In the time comparison, runs are considered successful only
when the accuracy is better than45◦.
Results. In the first trial we used the simple heuristic ap-
proach for calculating the B́ezier curve. For the low-level
navigation we used abstraction AB1 and all experiences
without filtering. Figure 4(a) shows the performance of this
configuration. This routines does very poorly. It is practi-
cally always slower than our reference routine and it often
differs from the desired goal angle by more than90◦.

The second solution only differs from the first in the cal-
culation of the B́ezier curve. This time the parameters are
learned from experiences. The result of this configuration is
shown in figure 4(b). We see a slight improvement in accu-
racy, although it is still far from satisfactory. Similarly the
programmed method still runs faster in almost every case,
although the difference is smaller now.

In the third experiment we only used the fastest examples
and a little programming was added, so that the robot turns
at the beginning of the trajectory when the turning angle to-
wards the goal point was near180◦. This time the effect is
more notable. Now most of the points are reached with an
acceptable angle deviation. Furthermore the time statistics
have shifted significantly. It is sometimes faster or not much
slower than the reference routine.

Figure 5: Trajectories of solution 2 (light gray) and 3.

The performance gain can also be seen when comparing
the navigated trajectories. Figure 5 shows a navigation task
performed by solution 2 and 3. Whereas the former can’t
follow the desired B́ezier curve at all and takes a long way
round, the latter approach follows the trajectory perfectly.

Finally we implemented a combined approach of pro-
gramming and learning as described in section . As shown
in figure 4(d), the performance almost reaches the level of
the programmed one.

Discussion
Let us now discuss some of the issues of tightly embedding
learning into autonomous robot control. (1) Section shows
that aspects of autonomous robot learning can be specified
in ROLL explicitly and transparently. Section shows that
the specification of these aspects has a large impact on the
performance of learned routines. In most learning robot
controllers these aspects are adressed mainly implicitly or
not at all. Turning them into pieces of code of the control
program substantially improves the engineering methodolgy
for learning robot conbtrollers. (2) The specifications listed
in section are complete. Taken together they specify the
complete learning process including experience acquisition,
feature abstraction, monitoring of experience collection, pa-
rameterization of the learning algorithm. The learning prob-
lem specifications are therefore completely executable by
the ROLL interpreter. (3) ROLL allows for the specification

ICAPS 2005

46 Workshop on Plan Execution: A Reality Check

and simultaneous experimentation with different variants of
the learning problem. It thereby encourages and simplifies
the experimentation and the empirical comparison of differ-
ent variants. (4) We have also seen the seamless transition
between, and a mixing of, learning and programming. Pro-
grammed code pieces can be simply substituted by specifi-
cations of learning problems that are also executable in the
respective context.

In our view, these are critical functionalities that robot
control languages must provide in order to allow us pro-
grammers to implement learning robot controllers for com-
plex and dynamically changing tasks that can compete in
terms of performance with their hand-coded counterparts.
We believe that such programming language functionality is
necessary to further promote the application of autonomous
learning mechanisms in robot control.

Related Work
We are not aware of any work where aspects of learning
problems are systematically changed and compared on the
scale of our work. Empirical evaluation is an important is-
sue in robotics. CLIP/CLASP (Andersonet al. 1995) is a
macro extension of LISP, which supports the collection of
experimental data and its empirical analysis. Other interest-
ing approaches for the comparison of components in robot
control systems are found in the work of Guttman and Fox
[1998; 2002]. However, they only treat very selected and
restricted aspects of robot control.

We use the language ROLL, because it provides most of
the concepts we are interested in. There are several other
programming language we have considered for this pur-
pose, but that didn’t quite satisfy our requirements. Thrun
(Thrun 2000) has proposed CES, a C++ software library
that provides probabilistic inference mechanisms and func-
tion approximators. Unlike our approach a main objective
of CES is the compact implementation of robot controllers.
Programmable Reinforcement Learning Agents (Andre &
Russell 2001) is a language that combines reinforcement
learning with constructs from programming languages such
as loops, parameterization, aborts, interrupts, and memory
variables. This leads to a full expressive programming lan-
guage, which allows designers to elegantly integrate actions
that are constrained using prior knowledge with actions that
have to be learned. None of these projects addresses the
problem of better learning by acquiring and selecting the
data used for learning.

Conclusion
Proper embedding and parameterization of learning mecha-
nisms is a necessary precondition for successful robot learn-
ing. In this paper we have performed a case study that has
supported this point. We have used ROLL, an extension of
the robot control language RPL that allows for the explicit
and transparent specification of learning problems, their em-
bedding into robot control, and the parameterization of the
learning mechanisms. Using ROLL we could make aspects
of learning explicit that are typically neglected or only im-
plicitly modeled in robot control. The parameters that we

have controlled using ROLL include state space transfor-
mations, reformulations of the learning problems, filtering
experiences, and reasoning about the performance of learn-
ing mechanisms. In our experiments we could enhance the
learning performance significantly through adequate choice
of the parameter settings.

We have also seen that the explicit specification of learn-
ing problems has additional benefits. The declarativity of
ROLL’s control structures has substantially improved the
readability of the program and made the solutions to learn-
ing problems understandable. Thus learning problems can
be carried over to similar problems or other robot platforms
with minimal modifications. Parameterizations of learning
problems can be compared easily, which leads to a faster
development of high quality solutions.

We have further seen that a smooth interlinkage of clas-
sical programming and learning algorithms yields solutions
that can neither be achieved by learning nor programming
alone. With an integration of learning into programming,
robot controllers can be developped more quickly and more
robustly.

References
Anderson, S.; Hart, D.; Westbrook, J.; and Cohen, P. 1995.
A toolbox for analyzing programs.International Journal
of Artificial Intelligence Tools4(1):257–279.
Andre, D., and Russell, S. 2001. Programmable reinforce-
ment learning agents. InProceedings of the 13th Con-
ference on Neural Information Processing Systems, 1019–
1025. Cambridge, MA: MIT Press.
Beetz, M.; Schmitt, T.; Hanek, R.; Buck, S.; Stulp, F.;
Schr̈oter, D.; and Radig, B. 2004. The agilo robot soccer
team experience-based learning and probabilistic reasoning
in autonomous robot control.Autonomous Robots.
Beetz, M.; Kirsch, A.; and M̈uller, A. 2004. RPL-LEARN:
Extending an autonomous robot control language to per-
form experience-based learning. In3rd International Joint
Conference on Autonomous Agents & Multi Agent Systems
(AAMAS).
Galhardas, H.; Florescu, D.; Shasha, D.; Simon, E.; and
Saita, C.-A. 2001. Declarative data cleaning: Language,
model, and algorithms. InProceedings of the 27th VLDB
Conference.
Gutmann, J.-S.; Burgard, W.; Fox, D.; and Konolige, K.
1998. An experimental comparison of localization meth-
ods. InProc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems.
Gutmann, J.-S. Fox, D. 2002. An experimental compar-
ison of localization methods continued. InProc. of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems.
Russell, S., and Norvig, P. 1995.Artificial Intelligence: A
Modern Approach. Englewood Cliffs, NJ: Prentice-Hall.
Thrun, S. 2000. Towards programming tools for robots that
integrate probabilistic computation and learning. InPro-
ceedings of the IEEE International Conference on Robotics
and Automation (ICRA). San Francisco, CA: IEEE.

ICAPS 2005

Workshop on Plan Execution: A Reality Check 47

Evaporating tasks during execution of dynamically controllable networks

Russell Knight
Jet Propulsion Laboratory,

California Institute of Technology
Pasadena, CA

russell.knight@jpl.nasa.gov

Abstract

We present an extended execution algorithm for executing
plans represented using simple temporal networks with
uncertainty. We presume that the network to be executed is
dynamically controllable. Our extension allows for skipping
tasks that can be shrunk to zero duration if subsequent tasks
are ready to start execution. The asymptotic time
complexity of the technique scales as a polynomial of the
number of timepoints that could execute simultaneously.

Introduction
One advantage of formulating plans conservatively is that
we can know a-priori that the execution will (or probably
will) succeed. One disadvantage of this approach is that we
waste time and resources. In practice, we often skip the
execution of tasks that lead to a goal if the tasks are
deemed to be superfluous. We present a technique for
modeling “skippable” tasks and skipping these tasks
during execution.

Simple temporal networks (STNs) [2] provide a rich
framework to connect inter-related tasks, execute the tasks,
and monitor the execution. Unfortunately, STNs presume
that the constructors and executors of these task networks
have control over the duration of the tasks being executed,
which is not always the case. Simple temporal networks
with uncertainty (STNUs) [12] increase the
representational capability of STNs by including a labeling
of those intervals that are uncertain (contingent). Previous
work by [7] has shown that we can know that an STNU is
executable if our executor only changes those durations
that are not uncertain (free) for future tasks, i.e., the STNU
is dynamically controllable. The execution strategy of [7]
presumed that we wouldn’t skip tasks—the technique we
present here allows us to skip tasks by shrinking their
associated durations to 0. This is implemented in the
Mission Data System [3] software framework as part of the
timepoint firing algorithm.

Importance

If an execution agent can incorporate runtime feedback,
this can be used to optimize plan execution in two ways: 1)
reduction of resource utilization and 2) reduction of make-
span. We can avoid using resources during execution, thus

redundancy can be built into a plan but also can be ignored
if it is not required. Additionally, we can reduce the make-
span of an executed plan with respect to the original plan.
Both resource usage and make-span are useful metrics for
plan quality, thus our technique provides for on-line plan
optimization.

Preliminaries

Simple Temporal Networks with Uncertainty

A simple temporal network (STN) can be represented as a
directed, edge-labeled graph G = (N, E) with real-valued,
edge-label functions l and u. The nodes of the graph
represent timepoints. A timepoint refers to a specific, yet
possibly unspecified, moment in time. The edges of the
graph, along with the l and u labels, represent temporal
constraints between timepoints. More specifically, the l
and u values bound the duration allowed between two
timepoints. (Figure 1 shows two timepoints and a temporal
constraint pictorially.)

n1 e1 n2

l(e1) = 10
u(e1) = 20

≡ n1
e1

[10, 20] n2

Figure 1 – Timepoint and temporal constraint

representation

An execution of an STN is a real-valued, node labeling T
of G that adheres to the temporal constraints. Thus, for all
edges e = (n1, n2) ∈ E, l(e) ≤ T(n2) – T(n1) ≤ u(e) implies
that T is a valid execution. Checking for STN executability
is computable in polynomial time [2]. (This is equivalent
to checking consistency of the STN.) But, this assumes
that we can know (and control) with certainty the duration
of each interval represented by the temporal constraints
before execution, which is not the case in many real
domains. Thus we need to consider uncertainty for specific
intervals.

A simple temporal network with uncertainty (STNU) is an
STN with the addition of set C ⊆ E. Edges contained in C
are temporal intervals that are determined by “nature” (but
still adhere to the l and u constraints). We refer to such
intervals as contingent (as Figure 2), otherwise the

ICAPS 2005

48 Workshop on Plan Execution: A Reality Check

intervals are referred to as being free (as Figure 3). Any
execution strategy must accommodate the contingent
edges. Thus, T for an STNU is partially defined by nature,
and partially defined by us. There are a number of ways to
characterize an STNU with respect to execution. An STNU
is strongly controllable if we can devise a fixed valued T
that accommodates all possible assignments by nature to T.
(We learn nature’s assignment after making our
assignment.) An STNU is weakly controllable if for all
possible assignments of T by nature an assignment of T by
us is possible. (We learn nature’s assignment before
making our assignment.) An STNU is dynamically
controllable if for all possible assignments of T by nature
at execution time we can assign (or reassign) T for
intervals not yet executed. (We learn nature’s assignment
during execution, and likewise make our assignment
during execution.) Strong controllability [12] and dynamic
controllability [7] are decidable in polynomial time, while
the task of deciding weak controllability is co-NP complete
[5].∉∈

n1 e1 n2

l(e1) = 10
u(e1) = 20
e1 ∈ C

≡ n1
e1

[10, 20] n2

Figure 2 Contingent edge representation

n1 e1 n2

l(e1) = 10
u(e1) = 20
e1 ∉ C

≡ n1
e1

[10, 20] n2

Figure 3 Free edge representation

This paper focuses on the execution of STNUs that are
dynamically controllable. With this comes the requirement
for waits—periods that are determined by nature and the
result of computing dynamic controllability. Waits cause
delays in normally free intervals to ensure the
accommodation of the contingent intervals, thus a wait
might make a free interval partially contingent. We return
to the issue of waits later.

Concerning notation, we use E as the edge set of G = (N,
E) of the STNU representing the plan being discussed.
Also, we presume that for all edges e ∈ E, l(e) ≥ 0. Any
unlabeled edge e in our figures is assumed to have l(e) = 0
and u(e) = ∞.

Plan Representation

A plan is a network of tasks and temporal constraints. A
task consists of a temporal constraint e = (n1, n2) in the
STNU, the timepoints n1 and n2 associated with e, and the
associated values represented by the functions l(e), u(e),
and set C. We refer to n1 as the start-time of the task, and
n2 as the end-time of the task. For simplicity, when

referring to a task we will only refer to its associated edge
in the STNU. This characterizes the temporal extent of the
task but not its preconditions, in-conditions, or effects. To
provide these, we include the additional condition-valued,
edge-label functions precond, incond, and effect. While
conditions have a rich history of semantics and
representation, for our purposes a condition is a predicate
holds(x) where x is a condition. holds considers in the
current execution context whether or not a condition holds.
If there exists a temporal constraint e ∈ E that is not
related to any task, holds(precond(e)), holds(incond(e)),
and holds(effect(e)) are trivially true.

n1 e1 n2

l(e1) = 10
u(e1) = 20
holds(precond(e1)) = false

≡ n1
e1

[10, 20] n2

Figure 4 Task with unmet preconditions

n1 e1 n2

l(e1) = 10
u(e1) = 20
holds(precond(e1)) = true

≡ n1
e1

[10, 20] n2

Figure 5 Task with met preconditions

Task Truncatability

To represent that a task is potentially truncatable, we
employ the use of the edge-predicate function truncatable.
Note that truncatable(e) implies that if e is being executed,
then we can truncate its execution as long as doing so does
not force the execution of a task for which its
preconditions do not hold. We assume that all free
intervals can be truncated. truncatable(e) being true for
some contingent e ∈ E (where e ∈ C) implies that although
the completion time of e is under control of nature, its only
purpose in the plan is to achieve the preconditions of the
next step, and it may be truncated if these preconditions
are already met. Thus truncatable provides us the semantic
information we need to perform opportunistic execution.

Henceforth we will concern ourselves only with
truncatable edges. Any edge e ∈ E that is not truncatable
is contingent, and only nature can determine the interval
associated with it. We have no opportunities for skipping it
and all possible intervals must be accommodated.

Approach

Execution Strategy

Our overall strategy for execution is to execute timepoints
as early as possible while accommodating the contingent
intervals. We intend to show how to skip tasks during
execution, but first we describe the naïve execution

ICAPS 2005

Workshop on Plan Execution: A Reality Check 49

strategy. The naïve execution for task e = (n1, n2) proceeds
thusly:

(1) Wait until the start-time (n1) of the task may be
legally assigned to the current time (henceforth
referred to as now).

(2) Wait until holds(precond(e)) is true.

(3) Assign T(n1) to now, i.e., execute all tasks that n1
is the starting timepoint.

(4) Assume that holds(incond(e)) continues to be true
until exec(n2) is assigned (otherwise an error in
execution has occurred and should be handled as
an exception).

(5) Wait until the end-time (n2) of the task may be
legally assigned to now.

(6) Wait until all edges x = (n2, n) ∈ E,
holds(precond(x)) is true (all tasks for which the
end-time of e is the start-time have satisfied
preconditions).

(7) Assign T(n2) to now.

(8) Assert effect(e). (Note: effects are not handled
during execution as execution is concerned only
with preconditions; thus the function effect is not
pertinent to our discussion and will be dropped.)

(9) Returning to the topic of waits, it is clear to see
that waits can be implemented as part of the
precond function. Since the system waits for
preconditions to hold, each interval associated
with the wait must be labeled as being contingent.
It should be noted that, when combined, the
precond and holds functions work as a monitor of
the state of the world.

Because this framework is built around the dynamic
controllability of the STNU, it will execute properly if no
free interval is actually contingent and all interval bounds
are obeyed by nature. We will assume that this is the case;
otherwise some form of plan recovery would be required.
Plan recovery is outside the scope of this work.

Simple disjunctive execution

To handle certain types of disjunctions of tasks, we take
advantage of an ambiguity in the semantics of time with
respect to the preconditions, in-conditions, and effects of
tasks. Under normal circumstances, the minimum duration
of any task is some real value ε > 0. But, what does it mean
semantically when a task is of zero duration? Nothing in
the STNU requires tasks to be of greater than zero
duration. For our work, we say that a task (or temporal
constraint or interval) of zero duration is skipped. Thus, if
we have a series of possibly zero-duration tasks, all of
which are free, then, under certain criteria, we can skip

them all. The remainder of this paper describes: 1) under
which criteria tasks can be truncated or skipped, and 2)
how to tractably execute a plan with skipping.

Skipping Criteria

In general, we assume that we can skip tasks as long as, in
the end, the following conditions hold: 1) we introduce no
violations of the temporal constraints in the STNU, 2) all
newly executing tasks have their preconditions fulfilled,
and 3) all currently executing tasks have their in-
conditions fulfilled.

We need to identify threats to skipping. Knowing whether
or not a temporal constraint violation would occur during
execution is handled using the algorithms of [7]. If a task
is started with its preconditions fulfilled, it is assumed that
its in-conditions will hold during its execution, (otherwise
this is an execution-time error that would need to be
handled as an exception.) Thus, the remaining threat to
skipping is the possibility of a newly executing task not
having its preconditions fulfilled.

If a timepoint n3 comes after or is simultaneous to another
timepoint n1, then the assignment of exec(n3) to now
implies the assignment of exec(n1) to now, thus forcing the
execution of n1. If n1 has some outgoing edge e = (n1, n2) ∈
E where holds(precond(e)) is false, then executing n3
causes e to fail. Of course, we might be able to skip e, but
then we would have to check the out-degree of n2, etc.,
until we reached the end of our skipping opportunities.
Thus, a threat to the execution of n3 is caused by any edge
e = (n1, n2) ∈ E where the execution of n3 implies the
execution of n1, n2 cannot be executed due to temporal
constraints, and holds(precond(e)) is false. If no such edge
exists, then no threats exist, and n3 can be executed.

n1

n3

e
n2

Figure 6 -- Timepoint n1 threatens n3

Threat propagation

We can see from the previous discussion that the source of
threats is the frontier of the skippable tasks. The frontier of
skippable tasks are those constraints or tasks whose start-
times could be assigned to now, but whose end-times
cannot be due to temporal constraints. Any task that is
skippable is not the source of a threat per se—only tasks
that are not skippable and for which their preconditions do
not hold. It is also important to note that only tasks that are
candidates to begin execution are sources of threats. Figure

ICAPS 2005

50 Workshop on Plan Execution: A Reality Check

7 gives an example of the frontier. Task (n1, n2) is
executing; Tasks (n2, n3), (n2, n4), (n3, n5), (n4, n5), and (n4,
n6) are skippable (they could execute now), and tasks (n5,
n7) and (n6, n7) are at the frontier. (Note: remember that
unlabeled edges are ordering constraints.)

n1 n2

[1,10]

n3 n7

n6

n5

n4

currently
executing could execute now cannot execute now

Frontier

Figure 7 The execution frontier

Theorem 1: The only sources of threats are tasks at the
frontier of the collection of skippable tasks.

Proof is by contradiction. Assume the contrary— all tasks
at the frontier could execute but there exists a threat to
execution in the set of tasks that could execute now.
Therefore, there is a threat in the collection of skippable
tasks, but all tasks e for which (a) the start-time is
executable according to the STNU constraints and (b) the
end-time is not, (c) holds(precond(e)) is true. Then, there
must exist an e such that (d) its start-time is executable, (e)
its end-time is executable, (f) holds(precond(e)) is false.
We know d and e because this characterizes the rest of the
executable tasks excluded by a and b. We know f because
we presume a threat, and by c we know it is not at the
frontier. But, if the end-time of a task is executable, it can
be skipped, and the value of holds(precond(e)) is no source
of a threat, but by our assumption it cannot be skipped.
The only reason a task cannot be skipped is if it causes the
execution of a start-time of a task e for which
holds(precond(e)) is false. The entirety of the frontier can
be executed (by c), thus any chain of skippable tasks leads
to an executable task, leading us to a contradiction. �

Theorem 2: Threats propagate backward over a task e only
when holds(precond(e)) is false.

Proof: We exhaustively list the alternatives. Consider the
tasks e1 = (n1, n2) and e2 = (n2, n3). e2 is a threat, thus
holds(precond(e2)) is false, and n3 is not executable
according to the constraints of the STNU.

Case 1: holds(precond(e1)) is true and threats propagate
backward. This is false because if holds(precond(e1)) and
n1 is executable, then we can avoid the threat by executing
n1 and not executing n2. Thus, threats do not propagate
backward over tasks for which the preconditions hold.

Case 2: holds(precond(e1)) is false and threats propagate
backward. This is true because if we execute n1 we are in
error because holds(precond(e1)) is false, and if we skip e1

by executing n2 we are in error because holds(precond(e2))
is false. �

Figure 8 gives an example of the threat of (n6, n7)
propagating backward to threaten n4, but does not threaten
n2.

n1 n2

[1,10]

n3 n7

n6

n5

n4

currently
executing could execute now cannot execute now

x

Figure 8 Threats propagate backwards

Theorem 3: Threats propagate forward over all tasks.

Proof is by induction on the number of interceding tasks
between a threat and any subsequent executable tasks.
Clearly, as our previous example illustrates, the base case
of a task e1 = (n1, n2) that begins executing causes the task
ethreat = (n1, nthreat) to execute. Since ethreat is a threat
(holds(precond(e)) is false and nthreat cannot be executed),
but shares a start-time with e1, executing e1 would lead to
the execution of ethreat, thus e1 is also a threat. Inductively,
consider an additional em = (nm, nm+1). The base case
reveals itself at each previous ex to em, leading to each ex
being identified as a threat, until em-1 = (nm-1, nm) is
identified as a threat. The induction closes with em being
identified as a threat following the same argument as for
e1. It should be noted that since all interceding tasks are
skipped except for em, the preconditions of the interceding
tasks have no effect. The preconditions of em also are not
important, because even if holds(precond(em)) is true,
executing nm leads to the execution of n1. �

Figure 9 shows threats propagating forward over (n4, n5)
even though holds(precond((n4, n5)) is true. Note that
propagation would continue to n3 according to Theorem 2.

n1 n2

[1,10]

n3 n7

n6

n5

n4

currently
executing could execute now cannot execute now

Figure 9 Forward propagation of threats

Threat Propagation Algorithm

Let us call the set of timepoints that can be executed now
according to the constraints of the STNU Candidates ⊆ N.
For all currently executing tasks e = (n1, n2) such that e ∈
C and truncatable(e) is also true and nature could assign
T(n2) to now, we include n2 in Candidates. Let us call the

ICAPS 2005

Workshop on Plan Execution: A Reality Check 51

set of edges that lie on the frontier of the candidates
PossibleThreats. More formally, PossibleThreats ⊆ E such
that for each e = (n1, n2) ∈ PossibleThreats, n1 ∈
Candidates and n2 ∉ Candidates. Let Threats ⊆ E be the
set of edges that are known to be threats. We initialize
Threats with every e ∈ PossibleThreats such that
holds(precond(e)) is false (Theorem 1).

We now propagate threats backward across each edge e ∈
Candidates such that holds(precond(e)) is false (Theorem
2), adding each timepoint to Threats. We also propagate
threats forward across each edge e ∈ Candidates
regardless of its preconditions (Theorem 3). This can be
accomplished in time that is linear in the number of edges
in Candidates using a simple reachability algorithm on a
transformed graph. After propagation, we have the entire
set of threats. We execute all timepoints in Candidates that
are not start-times for edges in Threats.

n1 n2

[1,10]

n3 n7

n6

n5

n4

currently
executing could execute now cannot execute now

n2 n3

threat

n6

n5

n4

Figure 10 -- Reachability graph transformation

The reachability graph GR = (NR, ER) is a directed graph.
threat is a node not in N from which threats originate. It is
from this node that we will compute reachability.
NR=Candidates ∪ {threat}. For all e = (n1, n2) ∈ Threats
(as calculated above before propagation), add an edge x =
(n1, threat) to ER. For all e = (n1, n2) ∈ E such that n1 ∈
Candidates and n2 ∈ Candidates, add e to ER. If
holds(precond(e)) is false, add (n2, n1) to ER. Compute
reachability from threat, which results in a set of nodes X
that are reachable from the source node, threat. Threats is
equivalent to X. The time complexity of computing
reachability is O(|N|lg|N|+|E|), using Dijkstra’s algorithm
with a Fibonacci heap [1]. The space complexity is at most
O(|N|).

Examples
This system is deployed in a real-world plan execution
system. The problems solved by its design are very much a
function of the types of problems that needed solving
according the to requirements of domain modelers. Some
useful examples of meta-structures used by modelers

include series preconditional satisfaction and parallel
preconditional satisfaction.

Series preconditional satisfaction (SPS) is the idea that
several tasks in series are used to achieve a goal, but if a
precondition for any task later than the current executing
task becomes satisfied, it is appropriate to skip all
intervening tasks and execute the latest task that causes no
threat. A specific example of this strategy is the
“winnowing down” of a state requirement through a series
of related tasks. For example, we might want to point a
camera on a spacecraft towards a planet. This might
require, in general, a series of operations that refine the
pointing of the spacecraft. (See Figure 11.) But, if we are
already opportunistically pointing at the planet, we might
wish to skip steps to continue to our goal, (as in Figure
12).

n1 e1 n2 n3 n5n4e2 e4e3

precond(e3) = "pointing near Mars"
in-cond(e3) = "pointing near Mars"
effect(e3) = "accurately pointing at Mars"

precond(e4) =
 "accurately pointing at Mars"
in-cond(e4) =
 "accurately pointing at Mars"
effect(e4) =
 "picture taken of Mars"

precond(e2) = "not pointing at Sun"
in-cond(e2) = "not pointing at Sun"
effect(e2) = "pointing near Mars"

precond(e1) = "ok to point"
in-cond(e1) = "pointing"
effect(e1) = "not pointing at Sun"

Figure 11 SPS example

n1 e1 n2 n3 n5n4e2 e4e3

currently
executing could execute now cannot execute now

n1 e1 n2 n3 n5n4e2 e4e3

currently executing could execute now
cannot
execute

now
Figure 12 Execution of n2 and n3

Additionally, SPS can be augmented to include the idea
that at least one of the members of the series must be
executed by inserting a temporal constraint from the
beginning of the series to the end of the series of ∈
minimum duration, (as in Figure 13.)

n1 e1 n2 n3 n5n4e2 e4e3

e5
[∈, ∞]

ICAPS 2005

52 Workshop on Plan Execution: A Reality Check

Figure 13 At least one task must execute

Parallel preconditional satisfaction (PPS) is the idea that
several tasks in parallel are used to provide redundancy in
hopes of satisfying a precondition. Once the precondition
is met, the tasks might be truncated or skipped, depending
upon whether or not the preconditions of each are satisfied.
This allows one task that is ready to start to begin
attempting to achieve the goal precondition while other
tasks with the same general goal wait for their own
preconditions to start. For example, we might want to
ensure that the solar panels of a spacecraft are pointed to
the sun. We have a number of ways of doing this, and we
need only one way to succeed and thus will truncate any
other executing tasks and skip pending tasks to continue on
with charging the spacecraft. (See Figure 14 and Figure
15.)

n1 e1 n2

n3

n5n4

e2 e4

e3 e5

precond(e3) = "reaction wheels warm"
in-cond(e3) = "pointing"
effect(e3) = "pointing at Sun"

precond(e4) = "thrusters warm"
in-cond(e4) = "pointing"
effect(e4) = "pointing at Sun"

precond(e5) = "pointing at Sun"
in-cond(e5) = "charging"
effect(e5) = "battery charged"

precond(e1) = "reaction wheels ok"
in-cond(e1) = "warming reaction wheels"
effect(e1) = "reaction wheels warm"

precond(e2) = "thrusters ok"
in-cond(e2) = "warming thrusters"
effect(e2) = "thrusters warm"

Figure 14 PPS example

e1

e2 e4

e3

currently
executing could execute now cannot execute now

n1 n2

n3

n5n4 e5

e1

e2 e4

e3

currently executing
could

execute
now

cannot
execute

now

n1 n2

n3

n5n4 e5

Figure 15 Execution example

Previous Work
The seminal work on STNs is [2]. Previous work in STN
and STNU execution includes the work of [6] where
efficient algorithms for managing propagation were given
and the notion of network dispatchability was introduced.
[12] and [5] introduced the notions of various types of

controllability for STNUs and proved that determining
strong controllability for an STNU is in P while
determining weak controllability is co-NP complete.

[7] delivered the surprisingly tractable algorithm for
determining dynamic controllability and executing a
dynamically controllable STNU. [11] is extending this
work to planning with shareable resources by handling
some aspects of task sequencing at execution time (on-
line).

[9] provides a description of conditional simple temporal
networks (CSTNs). Even though we provide a weak form
of conditional execution, our plans are not conditional in
that all tasks are possible in a single context, meaning that
we would have only one context label in a CSTN. Also,
our work focuses on the execution of such plans as
opposed to the verifiable construction of such plans.

Conclusions
We have described a tractable technique for reasoning
about certain disjunctive conditions while executing a plan
in metric time. We have presented a plan representation
and an algorithm that, when combined with other existing
algorithms, provides safe execution. We have provided as
examples some useful STNU topologies from real-world
examples. Our framework is deployed as part of the
Mission Data System [3].

Acknowledgement
This research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

Reference herein to any specific commercial product,
process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government or the Jet
Propulsion Laboratory, California Institute of Technology.

References
[1] Corman, T., Leiserson, C., and Rivest, R. Introduction
to Algorithms. MIT Press, 1996, pg. 430

[2] Dechter, R., Meiri I., and Pearl J., “Temporal
Constraint Networks,” Artificial Intelligence, 49, 1991, pp
61-95.

[3] Knight, R., Chien, S., Starbird, T., Gostelow, K., and
Keller, R. “Integrating Model-based Artificial Intelligence
Planning with Procedureal Elaboration for Onboard
Spacecraft Autonomy.” SpaceOps 2000, Toulouse, France,
June 2000.

ICAPS 2005

Workshop on Plan Execution: A Reality Check 53

[4] Laborie, P., Ghallab, M., “Planning with Sharable
Resource Constraints,” Proceedings IJCAI-95, 1643-1649

[5] Morris, P., and Muscettola, N., “Managing temporal
uncertainty through waypoint controllability.” In T. Dean,
editor, Proceedings of the 16th International Joint
Conference on A.I. (IJCAI-99), pages 1253–1258,
Stockholm (Sweden), 1999. Morgan Kaufmann.

[6] Morris, P., Muscettola, N., and Tsamardinos, I.,
“Reformulating temporal plans for efficient execution.”
Proceedings of the International Conference on Principles
of Knowledge Representation and Reasoning (KR-98),
Trento (Italy), 1998.

[7] Morris, P., Muscettola, N., and Vidal, T., “Dynamic
control of plans with temporal uncertainty.” International
Joint Conference on A.I. (IJCAI-01), Seattle (WA, USA),
2001.

[8] Muscettola, N., Nayak, P., Pell, B., and Williams, B.,
“Remote Agent: To Boldly Go Where No AI System Has
Gone Before,” Artificial Intelligence 103(1-2):5-48,
August 1998.

[9] Tsamardinos, I., Pollack, M., and Horty F., “Merging
plans with quantitative temporal constraints, temporally
exetended actions, and conditional branches,” Artificial
Intelligence Planning Systems, 2000.

[10] Vidal, T., “Controllability characterization and
checking in contingent temporal constraint networks.” In
Proceedings of the 7th International Conference on
Principles of Knowledge Representation and Reasoning
(KR2000), Breckenridge (Co, USA), 2000. Morgan Kauf-
mann, San Francisco, CA.

[11] Vidal, T. and Bidot, J., “Dynamic Sequencing of
Tasks in Simple Temporal Networks with Uncertainty.” In
the Proceedings of the Seventh International Conference
on Principles and Practice of Constraint Programming
(CP2001), Paphos, Cyprus, 2001. Springer-Verlag.

[12] Vidal, T. and Fargier, H., “Handling contingency in
temporal constraint networks: from consistency to
controllabilities.” Journal of Experimental & Theoretical
Artificial Intelligence, 11:23–45, 1999.

ICAPS 2005

54 Workshop on Plan Execution: A Reality Check

Unified Planning and Execution for Autonomous Software Repair

Richard Levinson

Attention Control Systems, Inc.
650 Castro Street, Suite 120, PMB 197

Mountain View, CA 94041
rich@brainaid.com

Abstract
This paper addresses the need for more flexible
autonomous systems that detect and correct software
failures at runtime. We present new methods for integrated
planning and execution that enable runtime verification
and repair for software failures, and explore the related
issue of integrated procedural and declarative action
representations.
 We present a library for embedding declarative planning
methods within procedural C++ code. The library provides
an interface to supervisory processes, which monitor
software execution and provide last-resort error recovery
after pre-programmed error handlers fail. The library
provides an interface to search and temporal constraint
engines maintained by the meta-processes. The planner
and controller use the same procedural representation in
order to share context (computational state) between
planning and execution.

Motivation

 Limited Autonomy. Today’s autonomous systems
provide more coverage for hardware failures than software
failures. If they cannot represent and reason about
software failures, they are doomed to blind spots and will
have limited autonomy. There are several reasons why
software failure cannot be avoided including: limited time
and information at design time, limited time and resources
for running test cases, changing operating conditions and
changing mission requirements. Our goal is to include
more software within the scope of recovery and develop
autonomous systems that repair their own software.
 Limited Architectures. Currently, most system
software is outside the scope of plan-based recovery
because it is not written in the planner’s modeling
language. To increase model scope, the planner and
controller must share computational state information
about failure and repair contexts. This is challenging
because integrated planning and execution traditionally
involves translating between planners that use declarative
languages and controllers that use procedural languages.
Major problems caused by this language barrier include:

 Redundant & Low Fidelity Models. There is a need to
develop and maintain a declarative model of the execution
system using a planner’s modeling language. The
planner’s model is redundant with the execution “model”
(i.e. the software). The planner’s model of software is low

fidelity since much of the computational state is hidden in
a black box model of software. The redundant planning
model may not match the actual execution software, and it
is difficult to maintain the model and the code in parallel.
 Information loss is nearly guaranteed when translating
between the controller’s procedural language and
planner’s declarative language, which are typically
developed independently and optimized for different
purposes. This information loss reduces the planner’s
understanding about execution context, and vice versa.
 System complexity is increased because of the need to
translate between the two languages. There is an
increased need to develop ad hoc translators between the
two languages, and a lot of the integration effort is
devoted towards accommodating specific language
differences.

Architecture Overview
Our approach to increasing the scope of failure recovery
and removing the language barrier is called the Program
Planning and Execution Language (Propel). Propel
provides a library for integration between C++ and
supervisory processes that detect and correct software
failures. The library includes new methods for integrating
search and temporal constraints within C++ applications.
 We also present new methods for integrated planning
and execution with improved computational context
switching and sharing capabilities compared with existing
methods. These new methods allow us to increase the
scope of error handling to include the system’s software
infrastructure. Additionally, the planner and controller’s
action representations are unified so more context
information can be preserved during transitions between
execution and planning.
 Figure 1 shows the three different process levels within
Propel: The Application, Supervisor, and Executive levels.
The Application level contains all of the domain-specific
processes. The Executive and Supervisor levels are meta-
processes (they monitor and manipulate the application
processes) in order to detect and correct software failures.

 The Application level executes C++ code extended
with the Propel Library Interface to meta-level supervisory
processes. The code contains declarative statements that
interface to search and temporal constraint engines.

ICAPS 2005

Workshop on Plan Execution: A Reality Check 55

Choice points embedded in the code describe alternative
operations and resources, and define a space of program
variations. The Application level has information only
about its own execution environment, like any other C++
process. The application level sends status messages,
computational state information, and queries to the meta-
level supervisors, and are started and stopped by the
supervisors.

 The Supervisor level processes perform runtime
monitoring,, verification, and recovery of application level
processes. They manage search spaces of application level
processes. One planning supervisor and one execution
supervisor is created for each parallel process in the
application. The planner provides a last-resort failure
handler after all application-level fault protection has
failed. The term "planner" refers to a Planning Supervisor
and the term "controller" to refer to an Execution
Supervisor.
 The Planners and controllers start, monitor, and stop
the same compiled application-level code in the same
environment. The difference is that the planners run the
application level code with a _PLANNING_ flag true but
the controllers run the code with that flag false.
Application code accesses that flag to determine if it is
running in planning (simulation) or execution mode.
 Application code may execute different branches
depending on the status of this flag. Subroutines which
send out physical actuator commands may simulate the
commands when the planning flag is true instead of
sending out actual actuator commands. The only
procedures that require simulation are those that interact

directly with hardware actuators because we want to block
the actuator commands during simulation, however, any
procedure can be simulated in order to skip details. All of
this requires runtime simulation, which may involve
models of various levels of fidelity. The simulation
branches may also include choice points and probabilities
so that high probability variant outcomes may be
simulated. Application processes in planning and
execution mode communicate via rules, called Situated
Control Rules (SCRs) [Drummond 1989], that provide
choice point advice about what to do at the choice points
embedded in the code.

 The Executive level is a single process that manages
transitions between planning and execution and manages
databases that enable inter-process communication and
synchronization. This involves sending messages to the
supervisor processes. The executive also handles requests
for information from the application level.

 Three levels but not 3T: Although Propel has three
levels, it is significantly different than the 3T system
[Bonasso, et., al., 1997]. In 3T, each level encodes
domain-specific activities, but in Propel all of the domain-
specific activities are encoded only at the application level.
Hierarchy within the application level is accomplished
through standard C++ programming methodology.
Propel’s other two layers (Supervisor and Executive) are
meta-processes that monitor and manipulate the
application level.

Example
Figure 2 shows the application level source code for an
example that we will use throughout the paper. The
example includes two parallel processes: Camera and
Wheels. The wheels iteratively move to a target while the
Camera takes pictures until Camera detects that the
wheels have stopped moving, at which time it takes a
close-up picture. When the Wheels process arrives at the
target, it adds the fact “Not Moving” to the database,
which signals to the waiting Camera process that it can
proceed to take the close-up. Line 58 shows use of the
PLANNING flag to determine if a command should be
simulated. Only the wheels portion is described here due
to limited space. See the online version of this paper for
further explanation of how this failure is handled
(Levinson 2005).

Search Space

To recover from software failures, Propel searches through
a space of program variations defined choice embedded in
the code. The application-level interface to the search
engine includes choice points, fail statements, heuristics
and meta methods. The choices identify alternative
subroutine calls and assignment statements.

 Figure 3 shows the Process tree, where each node is a
Unix Process. The tree illustrates the three process levels

Figure 1: Propel's three levels of processes:
 Application, Supervisor, and Executive.

Application Processes:
 - Compiled C++ code for nominal ops, FDIR, infrastructure
 - Embedded library calls to search and constraint engine
 - Processes run in either planning or execution mode
 - Instrumentation for computational state

Planning Supervisors
- Search space of program choices
- Start & Stop application procs
 in planning mode

Execution Supervisors
- Monitoring & verification
- Start & Stop application procs
 in execution mode.

 Hardware Sensors & Actuators

Executive Process
- Coordinates planning and execution
- Global interprocess communication

ICAPS 2005

56 Workshop on Plan Execution: A Reality Check

 1 // Filename: rover.cpp
 2 #include "propel.h"

 3 void initializePropel ()
 4 {declare_Process(Wheels);
 5 declare_Process(Camera);
 6 declare_Goal(Move_1, "Move ?d");
 7 declare_Goal(Move_2, "Move ?d");
11 declare_Heuristic(preferFast);
13 declare_Heuristic(preferShort);
16 declare_TP("Not_Moving [1 30]");}

17 void Wheels ()
18 {start_Task([5 10] Wheels {1 80} [6 100]);
19 gotoLoc(getTarget());
20 add_Fact("Not Moving");
21 execute_TP ("Not_Moving", 1, 30);
22 if (!wait_Task ("[0 20] waitForCamera {0 10}
 constraint after Camera End [0 5]"))
23 fail ("Wheels Timeout");}

24 void gotoLoc(Location* loc)
25 {start_Task(gotoLoc {0 30});

26 int d, directions[] = {N, S, E, W};

27 int step = 0;
28 _Var(step);
29 while (!atLocation(loc))
30 {d = (int) choose_item(directions, 4,
 "preferShort(?loc)", _Var(loc))
31 choose_task("Move ? :preferFast()", _Var(d));
32 require(step++ < MAX_STEPS);}}

48 void Move_1 (void* direction)
49 {Direction dir = *(int*)direction;
50 if (dir == E) agent = NULL; //Fault Injection
51 int x = agent->x;
52 int y = agent->y;
53 switch(dir)
54 {case N: y++; break;
55 case S: y--; break;
56 case E: x++; break;
57 case W: x--; break;}
58 if (_PLANNING_) Simulate_Command("GoTo", x, y);
59 else Execute_Command("GoTo", x, y);}

Figure 2: Application-level source code for the Wheels process with
embedded library calls (in bold text) to search and constraint engines.
(The parallel Camera process is not shown due to space limitations)

shown in Figure 1. The root node in Figure 3 is the
Executive process, the Supervisor processes are the second
level, and Application level processes are everything
below the second level. Subtrees below the Supervisor
processes are search trees, where nodes correspond to
application level processes and arcs represent branches at
the embedded choice points. The application level
processes execute local heuristics to sort the choices using
information available at the application level. Global
heuristics are used by the SupervisorFailure method for
backtracking.

Choice points. Choice points identify alternative
operations and resources. Lines 30 and 31 show examples.
There are three types of choice points: choose_item is a
non-deterministic assignment statement, choose_task is a
non-deterministic subroutine call, and choose_fact is a
non-deterministic database query. They are non-

deterministic because executing them will have different
outcomes based on heuristics and planner results.

 When a choice point is executed by an application
level process, that process calls fork() to create a child
process that continues with the selected choice. The
parent process remains suspended until backtracking
occurs, and then the supervisor may wake up the parent
to generate a new choice (fork a new child). Heuristics
and other user-specified methods are used for search
control.

 Figure 3 shows the search space for our example. The
nodes at the application level represent computational
continuations resulting from forks at choice points Each
choice point defines a set of disjunctive branches in the
search tree. One branch is created for each choice that is
tried. Only choices that are actually tried cause new
processes to be created.

void* choose_item() - This statement will choose
an element from a list of integers or pointers and
functions as a non-deterministic assignment statement.
The choices are sorted by the specified heuristic function.
The <var> are passed into the heuristic. The return value
is type void* and points to the object pointer selected
from the list.

The example on line 30 says: choose a direction from
the array containing all directions (N,S,E,W are C
"enums" that map to integers). The heuristic
“preferShortest” is used to sort the choices in order of
minimum “manhattan distance”, and the heuristic takes a
target location as input. Heuristics are declared at
initialization (lines 10-13).

choose_task() - This statement will choose a
subroutine that matches the given goal pattern, and
functions as a non-deterministic subroutine call. It calls
one of several methods that all achieve the same goal

pattern. The example shown on line 30 will choose a
task that matches the pattern “move ?” where ? is a
variable bound to the move direction. This matches the
goal declarations from lines 6 and 7, which says that
either Move_1 or Move_2 could be called to achieve this
goal.
 The “?” is a place holder for the goal pattern variables
There must be one goal pattern variable provided for each
? in the pattern. This is similar to the way printf("%d
%d", i, n) requires a var for each %. The goal
pattern variables are passed by reference so execution of a
task that matches the pattern can change the value of the
vars. The heuristic is named on the right of the colon, so
the example in line 31 says use heuristic "preferFastest".

choose_fact()- This statement will choose one fact
from the database that matches the given fact pattern, and
functions as a non-deterministic database query. It queries

ICAPS 2005

Workshop on Plan Execution: A Reality Check 57

 Executive
 |
 |__Wheels Execution Supervisor
 | |__(WX0, root, open)
 | |__(WX1, choice: NORTH, open)
 | |__(WX2, choice: Move_1, open)
 | |__(WX3, choice: EAST, open)
 | |__(WX4, choice: Move_1, failed: Segmentation Fault)
 | |__(WX5=WP4, choice: Move_2, open)
 | |__(WX6=WP5, choice: EAST, open)
 | |__(WX7=WP7, choice: Move_2, open)
 | |__(WX8=WP8, choice: EAST, open)
 | |__(WX9=WP10, choice: Move_2, Success)

 |__Wheels Planning Supervisor
 |__(WP0, root, open)
 |__(WP1=WX1, choice: NORTH, open)
 |__(WP2=WX2, choice: Move_1, open)
 |__(WP3=WX3, choice: EAST, open)
 |__(WP4, choice: Move_2, open)
 |__(WP5, choice: EAST, open)
 |__(WP6, choice: Move_1, failed: Segmentation Fault)
 |__(WP7, choice: Move_2, open)
 |__(WP8, choice: EAST, open)
 |__(WP9, Move_1, failed: Segmentation Fault)
 |__(WP10, choice: Move_2, Success)

Figure 3: Process Tree and Search Space. The levels of the tree correspond to three levels shown in figure 1. Each node is a process with unique PID.
The top level process is the Executive, Level 2 contains supervisors that monitor and manipulate the application-level processes. All nodes below the
Supervisors are application-level processes running code defined in figure 2. Each subtree below a supervisor (starting with "root" nodes WX0 and WP0) is
a search space with branches that are disjunctive choices.

the database for facts that match query pattern and returns
one of the matching facts. The Executive maintains a
database that can be used for interprocess communication
between concurrent application processes (such as Wheels
and Camera). The choose_fact() statement chooses
bindings via unification with the DB.

 Fail and Require statements. Application level code
may contain fail and require statements which cause
search node failures and may trigger backtracking. These
statements provide runtime verification capabilities by
detecting when requirements are violated. Lines 23, and
32 show examples of fail and require statements.

 The fail() statement causes the current process to
inform its supervisor process that it failed, and then the
process is suspended. The supervisorFailure() and
executiveFailure() message handlers may be designed to
handle the failure by transitioning from execution to
planning or by backtracking within planning space. The
example in line 23 triggers failure if the wait statement in
line 22 timesout.

 The require() statement is similar to the C++ Assert
statement except that Assert requires user intervention.
require(condition) will test the condition, calls “fail” if
the condition is false. The condition represents a runtime
verification requirement. The example in line 32 triggers
failure when the variable step exceeds MAX_STEPS.

 Other failure types include exhausted choice points,
unhandled exceptions, and temporal constraint violations.
Any statement may trigger an implicit fail statement
because any subroutine call has the potential to cause a

segmentation fault or floating point exception. Any choose
statement can trigger a failure when all choices have been
exhausted (or no choices exist). Wait statements trigger a
failure if they time out. When any of these failures occurs,
the search node marked “failed”, the process is
suspended, and the supervisor is notified.

Failure Example: We’ve injected a software failure
into our example to show how it is handled. In our
example, an unhandled exception occurs because one of
the two move operation (Move_1) dereferences a null
pointer when it tries to move East. Line 50 sets the
variable “agent” to NULL when the direction is East.
This causes the injected failure when the pointer is
dereferenced on line 51. The segmentation fault is
trapped by propel, and treated as if a fail statement had
been executed by the failing process.

Search Control
Propel includes several methods to control search. The
first and most important is the sparse search space. The
search space is sparse because it only has branches at
choice point locations. Deterministic subroutine calls like
gotoLoc() (line 24) are not represented in the search
space. Most the application-level code can be
deterministic with search triggered only at explicit choice
point locations.

 Situated Control Rules [Drummond 1989; Drummond
et. al, 1993, Levinson 1995] are the second most
important search control method. The planner and
controllers communicate by exchanging condition-action
rules called Situated Control Rules (SCRs). SCRs provide

58 Workshop on Plan Execution: A Reality Check

choice point advice that describes preferences at choice
pointes. They describe the context and outcome of prior
choices made during planning and execution. These rules
are the key to context sharing between planning and
execution. Figure 4 shows the grammar and examples of
SCRs.
 One SCR is defined for each branch in the search tree
shown in Figure 3. The name of the SCR is the name of
the search node in that tree. The condition (left-hand side)
of the rule is the control stack when branch occurred, and
the action (right-hand side) is the choice associated with
that branch. An SCR says: “If the rule’s Condition part
matches the current process’ control stack, and the choice
outcome was not failure, then select choice (continue the
process associated with choice).
 In Figure 4, the control stack for Rule WX4 describes
the execution context at search Node WX4 (shown in
Figure 3). Rule WX4 says: The Wheels procedure was
entered at line 18 of file rover.cpp (Figure 2) and then it
called subroutine gotoLoc at line 24 of file rover.cpp, and
the program counter (PC) says it was at line 31 when the
branch occurred (at a choice point). The address and value
for gotoLoc()'s local variables step and d are also recorded
in the control stack. This rule will apply only when local
variable step = 3.
 This failure occurred because gotoLoc() called Move_1,
which caused a segmentation fault (lines 50-51). After
replanning, the executing process will look for planner
advice about which choice to take. Rule WP10 says that
the planner found a successful plan with choice “Move_2”
when the program control stack was in the given state.
The rule for node WX4 is used to tell the planner that the
controller failed inside the task gotoLoc(). The planner

uses this to avoid simulation of the “Move_1” choice until
it has explored other tasks that achieve the same goal.
 SCRs are collected when transitioning between
planning and execution and vice versa. Collecting SCRs is
similar to classical goal regression and form a partial
policy. When a search success or failure occurs, SCRs are
collected for the path from the given node to the root node.
For example, when the first Wheels excution failure
occurs at node WX4 in the tree above, SCRs are collected
that describe the control stack, choice, and outcome for
each node between WX4 and the root WX0.
 The rules are passed from the controller to the planner
so that the planner understands what choices the
controller took. When the planner finds a workaround,
similar rules will be collected from the planner's search
tree, and used to tell the controller which choices led to a
successful plan. When an application level process
executes a choice point, SCRs are combined with
heuristics to sort the choices.

 Heuristic functions: Users can define local heuristics
as preference functions that are called to sort choices
locally at choice points. The heuristcs can use “less-than”
predicates and the built-in function “SortChoices” to
reorder the choices at the choice point. For example the
following heuristic sorts choices into increasing values.
Users can also define global heuristics by modifying the
search function, BestNode(), which may control search
using global information not available at the application
level. BestNode() is called by the supervisors to determine
which application level node (process) should be explored
(continued) next. Computational state information about
application-level processes and the global database can
also be used to implement different search strategies.
 The default implementation of BestNode is similar to
Reaction-First Search (RFS) [Drummond et. al., 1993].
The search is biased to first explore the controller's default
behaviors (reflexes defined by heuristics) to see if the
controller’s “reactions” will work in the current situation.
When the default reaction is inappropriate, the planner
generates advice rules to override the default reactions.

Supervisor and Executive Interface
The application level interface to meta processes includes
the methods described below. We describe the default
behaviors for these methods but users can write their own
versions to customize the coordination of planning and
execution.
 The SupervisorFailure() method is called when a
Supervisor receives a SupervisorFailure message from the
application level. In planning mode it triggers
backtracking, otherwise it suspends execution and then
informs the Executive by sending an ExecutiveFailure
message. The SupervisorSuccess() method is called
when the Supervisor receives a SupervisorSuccess
message from the application level. It typically informs the
Executive by sending an ExecutiveSuccess message.

Situated Control Rule:
IF <condition> Then <action>

<condition> = (<StackFrame>+)
<StackFrame> = (Frame: <subroutineEntryPoint>,
 PC <programCounter> <var>*)
<subroutineEntryPoint> =
"subroutineName:lineNumber"
<programCounter> = "filename:lineNumber"
<var> = (Var: <varName> <varAddress> <varValue>)
<action> = (<choice> <mode> <status>)
<mode> = Planning | Execution
<status> = success| failure | open

RULE WX4
IF ((Frame: gotoLoc:rover.cpp:24, PC rover.cpp:31
 (Var: step 0xffbec9d0 0003)
 (Var: d 0xffbec9d4 0003))
 (Frame: Wheels:rover.cpp:18, PC rover.cpp:18))
THEN Move_1 Execution failure

RULE WP10
IF ((Frame: gotoLoc:rover.cpp:24, PC rover.cpp:31
 (Var: step 0xffbec9d0 0005)
 (Var: d 0xffbec9d4 0003))
 (Frame: Wheels:rover.cpp:18, PC rover.cpp:18))
THEN Move_2 Planning success

Figure 4: Situated Control Rule (SCR). Each branch in the search space is
described by an SCR. The <condition> is the control stack capturing the
computational state when the choice is made, and <action> is the choice.

Workshop on Plan Execution: A Reality Check 59

 The ExecutiveStartup() method is the Executive level
startup handler called at startup time to initialize
concurrent processes and propel structures, including the
initial temporal constraint network. This method may start
execution before planning or vice versa, or it may run
them concurrently, depending on application.
 This ExecutiveFailure() method is called by the
Executive when it receives an ExecutiveFailure message
from a Supervisor. The Executive knows whether it was a
planning failure or an execution failure. In planning
mode, this event indicates an exhausted search space.
 The ExecutiveSuccess() method is called when the
Executive receives an ExecutiveSuccess message from a
Supervisor. This happens when application level process
has an empty control stack during execution, or in
planning mode when the subroutine which called the
failed subroutine is popped off the stack.
 These meta-level handlers allow users to specify
different executive strategies including: a) predictive
detection which simulates a program prior to execution,
b) reactive detection where you only call the planner after
an execution failure occurs, c) anytime planning which
stops planning at anytime and collects SCRs for the partial
plan, d) batch planning which plans until complete
solution is found, and e) incremental replanning which
only fixes the current execution failure before returning to
execution. Another executive strategy could have the
planner generate SCRs for failure contingencies to
"robustify" the SCR policy.

Search Process Walkthrough
To illustrate how this works together we will walk through
the steps that produced the results shown in Figure 3. To
save space, only the Wheels process is described here.
 First, the initialization routine shown in Figure 2 is
executed. This causes the executive and supervisors to be
created along with application-level root nodes WX0,
WP0. The root nodes are suspended after creation and the
executiveStartup() method is executed, which in
our case tells the Supervisors to start executing the Wheels
process by activating root nodes WX0.
 The Wheels execution proceeds through the choice
points in the gotoLoc() routine. A branch in the tree is
created for each choice point executed. Wheels proceed
and generate the nodes WX1, WX2, WX3, and WX4.
The node WX4 represents a process that threw a
segmentation fault when it executed Move_1 in the East
direction. When WX4 calls fail(), the Wheels Execution
Supervisor is informed, and calls its
SupervisorFailure() method which may do
different things depending on whether it is a planning or
execution failure. In this case the Supervisor informs the
Executive of the failure and passes the SCR’s that describe
the failure context.
 The Executive’s executiveFailure() method is
called and the Executive informs the Wheels Planning
Supervisor to start executing the wheels procedure (in
planning mode), and it passes the execution SCRs to the

planning Supervisor where they are used to guide the
search process down the same path as execution. This
guidance can be seen in nodes WP1-WP3, where the
nodes are labeled with the name of the execution SCR that
was used by the planner. For example WP1=WX1 means
that the choice taken by the planner at node WP1 is based
on the SCR that defines the branch for execution process
WX1. This rule will only apply the first time line 31 is
executed because the step variable = 1.
 The planner follows the execution SCRs through node
WP3 (notice that WP1-WP3 have equals signs). WP4 does
not follow the execution choice because that is the choice
that led to failure in WX4. This rule, which identifies a
choice that led to failure, is a rule of avoidance, and
treated differently than other rules. SCRs that identify
failure choices will cause that choice to be preferred last. It
will be chosen only after all other choices failed. The
planner delays the execution choice (Move_1) to the end
of the search space since it is known to have failed. The
planner chooses the next option, which is Move_2 (node
WP4), which does not fail when moving east. The
remaining planner nodes (WP4-WP10) are not guided by
SCRs because execution never got that far. The planner
chooses the failing Move_1 two more times in simulation
(nodes WP6 and WP9) before reaching success (empty
control stack) in at WP10.
 The successful application process WP10 then informs
the Wheels Planning Supervisor about the node success
and the Supervisor informs the Executive, which executes
its ExecSuccess() method, and collects SCRs for the
path from node WP10 to node WP1. The Executive then
informs the Wheels Execution Supervisor to continue
execution using the planner’s SCRs as choice point
advice.

 The Wheels Execution Supervisor resumes execution by
expanding node WX3 as determined by BestNode().
Since WX4 failed, its parent WX3 is the chronological
backtracking choice, but it has been suspended since it
spawned child WX4. After being reactivated by the
Supervisor, Node WX3 generates a new child WX5 based
on the SCR from the planner’s WP4 node. This instructs
the application code to choose Move_2 instead of
Move_1. The remainder of the Execution processes
(nodes WX5 - WX9) are guided by the planner’s SCRs as
shown by the equals signs next to the node names.

Temporal Constraint Engine
Propel uses a Simple Temporal Network (STN) [Dechter
et al., 1991] to monitor and control C++ program
execution based on a declarative temporal model. As the
propel application executes, progress is shadowed by the
STN. The STN can be partially declared before the C++
applications are started but the network will also be
dynamically generated as the C++ code executes.

As execution proceeds, timepoint values are
constrained by actual execution times. When a subroutine
is called, the STN is checked to see if it is ahead or behind

60 Workshop on Plan Execution: A Reality Check

schedule. If it enters the subroutine early, then it waits. If
it is late, then fail() is called and the Supervisor is
notified. Static STN statements declare “background”
parts of the temporal network that are defined before any
tasks start execution, and dynamic statements extend the
network dynamically and conditionally during task
execution. The following declarative statements can be
embedded in C++ to modify the temporal constraint
network.
start_Task() - Lines 18 and 25 show examples of

the start_Task statement, which declares temporal
constraints on a C++ function. It creates two timepoints in
the temporal network. One timepoint represents the start
time of the function and another represents its end. The
Task_Start on line 18 declares that Wheels has the
following temporal constraints: Start Time in range[5 10],
End Time in range [6 100], duration range {1 80}.
wait_Task() – wait for a fact to be added to the

database, or for temporal constraints to be satisfied (w/
timeout). Lines 22 and 23 show how the wait_Task
statement and the fail statement can be combined. Line
22 says that the program should start waiting between
time 0 and 20 and wait for a maximum of 20 seconds and
wait for between 0 and 5 seconds after the Camera
program ends. If the maximum duration of 20 seconds is
reached before the camera program ends, then fail() is
called.
declare_TP() adds a new Timepoint to the temporal

network when it is executed within a C++ function. Other
processes may share constraints with TP. Line 16
illustrates the declare_TP statement. When this line is
executed, a time point is created with lower bound of 1
and an upper bound of 30, so the timepoint must be
executed sometime between time 1 and time 30. Other
processes can establish constraints to this node using by
referring to its label, which is “Not_Moving” in this
example. The new timepoint is not actually executed
(collapsed to a singleton) until either start_task() or
execute_TP() is executed which refers to the same
timepoint label.
execute_TP() is the same as declare_TP except it

also executes the timepoint. This means that the value of
the time point is collapsed to a singleton (the current time)
and that time is propagated through the temporal network.
Line 21 shows an example of execute_TP().

Related Work
 Propel 1 [Levinson, 1995; Levinson 1994]. This paper
presents Propel 2, which is very different from Propel 1
because it uses compiled C++ as its action representation.
In order to accommodate the fact that the application code
is compiled, the Propel 2 architecture shown Figure 1
differs significantly from Propel 1’s architecture.
 Propel 1 had only one planner and one controller,
which interpreted the same LISP action representation

using their own instruction fetch-execute cycles. In Propel
2, multiple planners and controllers start and stop
compiled application code and they don’t have instruction
fetch-execute cycles. Propel 2 extends Propel 1 by adding
temporal constraints. It also extends SCRs to represent the
state of compiled C++ code and to include rules of
avoidance. Since Propel 2 enables planning to be
embedded in C++, it is better suited for use in deployed
autonomy applications.

 ERE [Drummond, et. al, 1993]- Propel is a direct
extension of ERE (the Entropy Reduction Engine). Propel
incorporates several ERE features for integrated planning
and execution including Reaction First Search and SCRs.
Since ERE was never used to model software actions, a
key difference is that Propel uses a C++ action
representation compared to ERE's STRIPS-like action
representation.

 IDEA [Muscettola et. al, 2000] The IDEA system is a
unified planning and control system like Propel. However,
IDEA executes the planner’s language while Propel plans
with the controller’s language. IDEA’s controller executes
plans by interpreting the planner’s declarative language.
IDEA models software as black boxes and does not
distinguish between a hardware or software black box. It
can detect unexpected (software) inputs, outputs, and
timing, but has a minimal model of the logic and
computational state details relating the inputs to outputs.

 KIRK/RMPL – [Kim, et. Al, 2001] William’s
KIRK/RMPL system also provides a unified approach to
planning and execution. It differs from Propel because it
compiles procedural constructs into a declarative model
which is then interpreted by during execution. KIRK is
similar to IDEA this way, but differs from IDEA by using
an explicit (declarative) model of control behavior. RMPL
can represent control flow constructs such as loops and
conditionals, which are compiled into a declarative model
used for planning and then interpreted during execution.

Future Work
Propel 2 is currently in the working prototype stage. We
have identified many open research issues including:
 Backtracking issues such as using model-based
diagnosis to provide dependency directed backtracking.
We also must address issues such as deciding which
concurrent processes must be planned together, and
simulation with metric time (backtracking and warping
forward).
 Executive Strategies for managing transitions between
planning and execution. This includes proactive planning,
concurrent, and interleaved planning, anytime planning,
and planning after a failure occurs. This involves
definition of the planner termination test which decides
when the planner has “gotten around” the current failure
so that execution may continue.

Workshop on Plan Execution: A Reality Check 61

 Software Sensors and Actuators. We currently insert
macros to instrument the code by hand. Future work may
use a separate preprocessing phase to automatically
instrument the code, and also OS level instrumentation of
computational state. We'd like to use OS-level actuators
that may provide lightweight alternatives to fork(). We
also need a better way to capture the control stack
information used by SCRs.
 Runtime Simulators are needed so the application code
can run in _PLANNING_ mode (see Line 58). The
simulators are needed only for physical actions and may
provide different levels of abstraction and/or fidelity.
Users can plug in application-specific simulators or use
Propel's built-in database to keep track of simulated or
executed state properties. Planning and execution have
their own copies of the database.
 Performance - The search nodes are currently
implemented as computational continuations (created by
the UNIX fork() command). Future work will involve
using lower-overhead alternatives to fork(). Also could use
branch and bound to limit the number of processes that
remain open for backtracking.

Evaluation Plan

We will perform experiments to test our hypothesis that
unified planning and execution with a procedural
representation can significantly increase failure recovery
scope and decrease cost. We will inject software failures
into complex software and measure the coverage of
existing recovery systems compared to our approach. We
will measure the costs for human vs. autonomous
recovery, and performance costs of the new methods.

Conclusion
 Propel is an architecture and a language. The
architecture provides integrated planning and execution
modules that monitor and manipulate application-level
processes written in the Propel language. The language is
a library of methods for embedding search and temporal
constraint information into C++, creating a "superset" of
C++. This library provides an interface from the
application-level processes to supervisory meta-processes
(the planning and execution modules) which monitor the
application level processes in order to detect and correct
software failures.

 Propel provides unified planning and execution
modules that share a procedural action representation.
Motivation for using a procedural representation includes
the following goals:

• Include all software within the planner’s model in order

to increase the scope of failure recovery to include
infrastructure software failures.

• Represent complex procedures including loops,
conditionals, local variables, and multiprocessing.

• Reduce the need to develop and maintain different
models for the planner and execution system.

• Reduce risk of loss of information in translation
between execution and planning (and vice versa).

 Propel is designed to increase the scope of the planner’s
model to include software failure detection and recovery,
and to close the gap between the declarative action model
used by a planner and the procedural languages used to
develop real-world software. The representation is
intended to be expressive enough to embed search and
temporal constraints into system and infrastructure
software in order to recover from software failures and
increase system autonomy.

References
Bonasso, R, Firby R., Gat, E., Kortenkamp, D., Miller, D.,
and Slack, M. Experiences with an Architecture for
Intelligent, Reactive Agents, in Journal of Experimental
and Theoretical Artificial Intelligence , January, 1997.

Dechter, R, Meiri, I. and Pearl, J. 1991. Temporal
Constraint Networks. Artificial Intelligence, 49:61-95.

Drummond. M. Situated Control Rules. 1989.
Proceedings of Knowledge Representation 1999 (KR’89).

Drummond, M., Bresina, J., Swanson, K., Levinson, R.
1993. Reaction-First Search: Incremental Planning with
Guaranteed Performance Improvement. Proceedings. of
IJCAI-93. Chambrey, France.

Kim P., Williams B., Abramson M., 2001. Executing
Reactive, Model-based Programs through Graph-based
Temporal Planning. IJCAI '01. AAAI, Menlo Park, CA.

Levinson, R. 1995. A General Programming Language for
Unified Planning and Control. Artificial Intelligence, Vol.
76. See http://www.brainaid.com/papers/propel_aij95.pdf.

Levinson R. 2005. Unified Planning and Execution for
Autonomous Software Repair (10-pg version of this paper)
http://www.brainaid.com/papers/propel_ijcai05.pdf.

Muscettola, N., Dorais, G., Fry, C., Levinson, R., Plaunt,
C. 2000. A Unified Approach to Model-Based Planning
and Execution. Proc. of IAS ‘2000. Venice, Italy.

62 Workshop on Plan Execution: A Reality Check

Efficiently Solving Hybrid Logic/Optimization Problems

Through Generalized Conflict Learning
Hui Li and Brian Williams

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

{huili, williams}@mit.edu

Abstract

An increasing range of problems in Artificial Intelligence

and Computer Science, such as autonomous vehicle control

and planning with resources, are formulated through a

combination of logical, algebraic and cost constraints. Their

solution requires a hybrid mixture of logical decision

techniques and mathematical optimization. Using

Disjunctive Programming (DP) to formulate these problems,

we present a novel algorithm, called DP Conflict-Directed

Branch and Bound (B&B), that efficiently solves DP

problems through a powerful three-fold method. First,

during the search process, generalized conflict learning

learns qualitative descriptions (conflicts) for regions of the

state space that are infeasible or sub-optimal. Second,

forward conflict-directed search uses these qualitative

descriptions to heuristically guide the forward step of the

search, by moving away from regions of state space

corresponding to known conflicts. Finally, induced unit

clause relaxation automatically forms a strong relaxed

problem from a subset of the unit clauses that are implied by

the original problem. Our experiments on model-based

temporal plan execution for cooperative vehicles

demonstrate an order of magnitude speed-up over Mixed

Integer Programming B&B.

1 Introduction

An increasing range of problems in Artificial Intelligence

and Computer Science involve finding optimal solutions to

problems that involve a rich combination of logical and

algebraic constraints, and require a hybrid coupling of

logical decision techniques with mathematical optimization

to solve. Examples include planning with resources,

autonomous vehicle control and verification of timed and

hybrid systems. Focusing on the area of autonomous

vehicle control, deep space explorers must choose between

tasks and temporal orderings, while optimizing flight

trajectories for fuel usage. On Earth, search and rescue

units must construct and compare different vehicle

trajectories around dangerous areas, such as a fire, on the

approach to a trapped individual.

 Each of these tasks involves designing an optimal state

trajectory, based on a continuous dynamic model. At some

point, they must satisfy additional logical constraints, such

as mission tasks, task orderings and obstacle avoidance.

 These Hybrid Logic/Optimization Problems (HLOPs)

can be formulated in three ways: first, by introducing

integer variables and corresponding constraints to Linear

Programming (LP), known as Mixed Integer Programming

(MIP) as in [Schouwenaars et al, 2001, Vossen et al, 1999,

Kautz and Walser, 1999]; second, by augmenting LP with

propositional variables so that the propositional variables

can be used to “trigger” linear constraints, known as Mixed

Logic Linear Programming (MLLP)1 in [Hooker and

Osorio, 1999] and LCNF2 in [Wolfman and Weld, 1999];

third, by extending LP with disjunctions, without adding

any variables or constraints, called Disjunctive

Programming (DP) as in [Balas, 1979]. This paper builds

upon the last option, DP, which combines the expressive

power of propositional logic with that of LP, without the

overhead of additional variables or constraints.

 In this paper we introduce a novel algorithm for

efficiently solving Disjunctive Programs called Conflict-

Directed Branch & Bound (DP-CD-BB). It extends the

Branch & Bound (B&B) algorithm by using logical

inference to do relaxation, by abstracting the qualitative

descriptions of the source of discovered infeasibility and

sub-optimality as conflicts to guide the forward search, so

as to prune the state space. Our experiments, comparing

DP-CD-BB against Mixed Integer Programming B&B

(MIP-BB), demonstrate a significant performance gain on

model-based temporal plan execution for cooperative

vehicles.

 DP-CD-BB builds upon the Conflict-Directed Clausal

LP Branch & Bound method in [Krishnan, 2004], which

uses the same formulation as DP and learns infeasible

states as conflicts to guide the search. The concept of

conflict learning from sub-optimality draws from Activity

Analysis in [Williams and Cagan, 1994], which reasons

using qualitative abstractions of sub-optimal subspaces in

order to guide the numerical methods away from subspaces

with the same abstractions.

2 Problem Formulation

We use disjunctive programs to effectively capture both

the continuous dynamics and control decisions present in

1MLLP is a generalization from MIP, but its main feature is the

introduction of propositional variables.
2Optimization is not involved.

Workshop on Plan Execution: A Reality Check 63

hybrid logic/optimization problems. Figure 1 depicts a

simple example of an HLOP, introduced in [Schouwenaars

et al, 2001]. Eq. (1) describes its DP formulation. In

particular, this is an instance of a spatial reasoning

problem, in which a vehicle has to go from point A to C,

without hitting the obstacle B, while minimizing the fuel

use.

Figure 1. A simple example of an HLOP

Minimize f(x)

Subject to g(x) ! 0 (1)

 and xi ! xL V xi " xR V yi ! yB V yi " yT ,

 ! i = 1, …, n

In Eq. (1), V denotes logical or, x is a vector of decision

variables that includes, at each time step i (=1,…,n), the

position, velocity and acceleration of the vehicle; f(x) is a

linear cost function in terms of fuel use; g(x) ! 0 is a

conjunction of linear constraints on vehicle dynamics, and

the last constraint keeps the vehicle outside obstacle B at

each time step i. In general, DP takes the form shown in

Eq. (2):

 Minimize f(x)

Subject to "i=1,…,n (Vj=1,…,mi Cj(x) ! 0) (2)

where x is a vector of decision variables, f(x) is a linear

cost function, and the constraints are a conjunction of n

clauses, each of which (clause i) is a disjunction of mi

linear inequalities, Cj(x) ! 0. DP reduces to a standard LP

in the special case when mi=1, !i=1,…,n. In comparison

with MIP, DP adds no overhead variables or constraints to

represent logical decisions.

3 The DP-CD-BB Algorithm

The DP-CD-BB algorithm has four key features: First,

Generalized Conflict Learning, which learns qualitative

abstractions (conflicts) comprised of constraint sets that

produce either infeasibility or sub-optimality; Second,

Forward Conflict-Directed Search, which heuristically

guides the forward step of the search away from regions of

state space corresponding to known conflicts; Third,

Induced Unit Clause Relaxation, which forms a relaxed

problem from a subset of the unit clauses that are induced

from the original problem; Fourth, Search Order: Best-first

Search (BFS) versus Depth-first Search (DFS). In the

following subsections, we develop these key features in

detail, including examples and pseudo code.

 DP-CD-BB builds upon B&B, which is frequently used

by MIP, to solve problems involving both discrete and

continuous variables. Instead of exploring the entire

feasible set of a constrained problem, B&B uses bounds on

the optimal cost, in order to avoid exploring subsets of the

feasible set that it can prove are sub-optimal, that is,

subsets whose optimal solution is not better than the

incumbent, which is the best solution found so far. Pseudo

code for B&B is shown in Figure 2.

GenericBB (original problem F)

1 incumbent U = +#;

2 select a sub-problem Fi;

3 if (Fi is infeasible)

4 delete it;

5 else

6 compute the lower bound lb(Fi);

7 if (lb(Fi)" U)

8 delete Fi;

9 else if (the solution to Fi satisfies all the constraints of

F)

10 U # lb(Fi);

11 else

12 break Fi into sub-problems;

Figure 2. Pseudo code for generic Branch & Bound

The search tree of B&B for MIP branches by assigning

values to the integer variables. In our case, B&B for DP

branches by splitting clauses. At each node in the search

tree, a relaxed LP is solved. p’ is a relaxed LP of an

optimization problem p, if the feasible region of p ’

contains the feasible region of p, and they have the same

objective function. Therefore if p’ is infeasible, then p is

infeasible; if p’ is solved with an optimal value v, the

optimal value of p is guaranteed to be worse than v. B&B

uses relaxed problems to obtain lower bounds of the

original problem (assuming minimization).

3.1 Generalized Conflict Learning

Underlying the power of B&B is its ability to prune subsets

of the search tree that correspond to relaxed sub-problems

that B&B identifies as inconsistent or sub-optimal, as seen

in line 4 and 8 in Figure 2.

 In the related field of discrete constraint satisfaction,

conflict-directed methods, such as dependency-directed

backtracking [Stallman and Sussman, 1977], backjumping

[Gaschnig, 1978], conflict-directed backjumping [Prosser,

1993] and dynamic backtracking [Ginsberg, 1993],

dramatically improve the performance of backtrack (BT)

search, by learning the source of each inconsistency

discovered, and by using this generalization, called a

conflict, to prune additional sub-trees that the conflict

identifies as inconsistent.

 To apply conflict learning to B&B, we note that B&B

prunes subtrees corresponding to relaxed sub-problems that

are sub-optimal and infeasible. Hence two opportunities

exist for learning and generalized pruning. We exploit

these opportunities by introducing the concept of

generalized conflict learning, which extracts a qualitative

64 Workshop on Plan Execution: A Reality Check

description from each pruned (fathomed) sub-problem that

is infeasible or sub-optimal. This avoids exploring sub-

problems with the same description in the future.

Moreover, it is valuable to have the qualitative description

as compact as possible, because the smaller the conflict is

the larger the subspace to be pruned.

 Each conflict can be of two types: (1) an irreducible set

of constraints that is learned from infeasibility, or (2) an

irreducible set of constraints that is learned from sub-

optimality. A set of constraints is irreducible if removing

any one of the constraints from the set resolves the

infeasibility or sub-optimality. Note that there can be more

than one irreducible sets (possibly with different

cardinalities) involved in one infeasibility or sub-

optimality, and a type-1 or type-2 conflict is not guaranteed

to have the m i n i m a l cardinality. Hence the name

irreducible instead of minimal. An infeasibility conflict

(type 1) is an irreducible subset of the inconsistent

constraints of an infeasible sub-problem. An example is the

constraint set {a,c,d} in Figure 3(b). The sub-problem in

Figure 3(a) is infeasible, but its constraint set is not an

infeasibility conflict, as a proper subset of it, as in Figure

3(b), remains inconsistent. An active constraint of a

feasible problem S, is a constraint that takes equality at S’s

optimal solution x*. A sub-optimality conflict (type 2) is an

irreducible subset of the active constraints of a feasible

sub-problem whose optimal solution is not better than the

incumbent. An example is the constraint set {c} in Figure

4(b). All the constraints are active in Figure 4(a), but the

set {a,b,c,d} is not a sub-optimality conflict, as it can be

reduced to Figure 4(b) without affecting the optimal

solution x*.

Figure 3(a). An infeasible sub-

problem: constraint set {a,b,c,d}

is not consistent.

To perform generalized conflict learning efficiently, the

dual method of LP is used to extract a sub-problem’s

irreducible set. For infeasibility, this function is provided

by the commercial software CPLEX: getIIS(), and its

principle is explained in [Wolfman and Weld, 1999]. For

sub-optimality, we introduce a novel approach based on

the LP dual method. According to Complementary

Slackness [Bertsimas and Tsitsiklis, 1997] from linear

optimization theory or equivalently Kuhn-Tucker

conditions for the linear case [Williams and Cagan, 1994],

the non-zero terms of the optimal dual vector correspond to

the irreducible set of active constraints at the optimal

solution of the LP. Thus we use the dual optimal solution

that is provided by the CPLEX function, getDuals(), to

identify the sub-optimality conflict. The pseudo code is

shown in Figure 5. After they are extracted, the conflicts

are stored in a conflict database, confDB, with a timestamp

that marks when they are discovered.

ExtractSubConf(LP problem p)

1. solve p using CPLEX;

2. if (p solved with an optimal solution) {

3. dual # getDuals();

4. for (int i=0; i<dual.length; i++)

5. if (dual[i] !=0)

6. subConf.add(constraint[i]); //constraint[i] is the

corresponding constraint in p.

7. return subConf;

8. }else

9. return null;

Figure 5. The function to extract sub-optimality conflicts

3.2 Forward Conflict-directed Search

The forward conflict-directed search heuristically guides

the forward step of the search away from regions of the

feasible space that are ruled out by known conflicts.

Traditionally, conflicts are used in the backward step, such

as dependency-directed backtracking [Stallman and

Sussman, 1977], backjumping [Gaschnig, 1978], conflict-

directed backjumping [Prosser, 1993], dynamic

backtracking [Ginsberg, 1993] and LPSAT [Wolfman and

Weld, 1999]. These backtrack search methods use conflicts

to select backtrack points. In contrast, we use conflicts in

forward search, to move away from known “bad” states.

We generalize this idea to guiding B&B away from regions

of state space that the known conflicts indicate are

infeasible or sub-optimal. Our experiment results show that

forward conflict-directed search significantly outperforms

backtrack search on a range of cooperative vehicle plan

execution problems.

 The implementation , as seen in the pseudo code in

Figure 6, includes three steps. 1. Conflict retrieval from

confDB : only conflicts that are discovered after the

creation time of the node to be expanded,

Figure 4(a).The optimal solution

is X*. Constraints a, b, c and d

are all active.

(b) After removing constraint

b, it is still infeasible.

(b). After removing constraints

a, b and d, X* stays the same.

Workshop on Plan Execution: A Reality Check 65

nodeToExp.timestamp, are retrieved, because conflicts

discovered before are resolved by the creation of this node

or its parents. Note that a node in the search tree represents

a DP problem, which is a partially assigned problem from

the original DP problem. 2. Negation: the types of the

linear constraints in each conflict are reversed (e.g. !

becomes ") and the relation between the constraints in each

conflict becomes logical or, so that a conflict is turned into

a clause, called a conflict clause. Recall that a conflict

represents the region where no feasible solution or only

sub-optimal solutions exist. Therefore a conflict clause

denotes the regions where an optimal solution can lie. 3.

Clause addition: conflict clauses, confClauses, are added to

the clause set of the node to be expanded,

nodeToExp.clauseSet. In this way, nodeToExp is updated.

ForwardCDSearch(confDB, nodeToExp)

1. if (confDB(nodeToExp.timestamp) != null) {

2. currConfs # confDB(nodeToExp.timestamp);

3. for (int i=0; i<currConfs.length; i++)

4. for (int j=0; j<currConfs[i].length; j++)

5. confClauses[i].add(¬ currConfs[i][j]);

6. nodeToExp.clauseSet.add(conClauses);

7. }

8. GenericBB(nodeToExp);

Figure 6. Pseudo code for forward conflict-directed search

3.3 Induced Unit Clause Relaxation

Relaxation is an essential tool for quickly characterizing a

problem when the original problem is hard to solve

directly; it provides bounds on feasibility and the optimal

value of a problem, which are commonly used to prune the

search space. Previous research [Hooker, 2002] typically

solves Disjunctive Programs by reformulating them as

Mixed Integer Programs, in which binary integer variables

are used to encode the disjunctive constraints. A relaxed

problem for a MIP consists of the continuous relaxation of

the integer constraints.

 An alternative way of creating a relaxed LP is to operate

on the DP encoding directly, by removing all non-unit

clauses from the DP (a unit clause is one that contains a

single constraint). Prior work argues for the reformulation

of DP as MIP relaxation, with the rationale that it allows

the solver to use continuous relaxation on the (binary)

integer variables, in contrast to ignoring the non-unit

clauses. However, this benefit is at the cost of adding

integer variables and constraints, which can significantly

increase the dimensionality of the search problem. This

cost is not incurred by the DP relaxation.

 Our approach starts with the direct DP relaxation, hence

drawing from its strength in terms of a smaller state space.

We overcome the weakness of standard DP relaxation (loss

of non-unit clauses) by adding to the relaxation additional

unit clauses that are logically entailed by the original DP.

In the experiment section we compare our induced unit

clause relaxation with the MIP relaxation and show a

profound improvement on a range of cooperative vehicle

plan execution problems.

 The strongest relaxed problem is constructed when all

entailed unit clauses are added to the relaxed problem;

however, finding all of them is NP hard. A relaxation is

valuable only to the extent that it saves computation time.

Hence we choose the middle ground of finding all unit

clauses that can be quickly induced. From propositional

theories, unit clauses can be induced quickly through unit

propagation; we generalize this approach to DP.

 To implement induced unit clause relaxation, as seen in

pseudo code in Figure 7 and the example in Figure 8, three

steps are included. 1. Each unique constraint in the clause

set of the DP problem p is assigned a unique propositional

symbol. 2. (Incremental) Unit Propagation, as presented in

ITMS [Nayak and Williams, 1997], is used to induce unit

clauses. 3. The relaxed LP problem is formed with all the

unit clauses induced from p and the objective function of p.

UnitClauseRelax(DP problem p)

1. symbClauseSet # p.clauseSet; //assigning a unique

propositional symbol to each unique linear inequality.

2. unitClauseSet # UnitPropagation(symbClauseSet);

3. relaxLP.constraintSet # unitClauseSet.convert();

//converting symbols to linear inequalities to form the

relaxed LP

4. relaxLP.objective # p.objective;

5. return relaxLP;

Figure 7. Pseudo code for induced unit clause relaxation

Figure 8. An example of induced unit clause relaxation

3.4. Search Order: Best-first versus Depth-first

For B&B it is known empirically that, in the average case,

Best-first Search (BFS) performs better than Depth-first

Search (DFS) in time efficiency. This is because BFS

expands the search tree in the order of always exploring the

most promising node, thus allows larger portions of the

search tree to be pruned. However, BFS can take

dramatically more memory space than DFS. Nevertheless,

with conflict learning and forward conflict-directed search

66 Workshop on Plan Execution: A Reality Check

the queue of the BFS search tree is significantly reduced.

Our experimental results show that BFS can take memory

space similar to DFS.

 An additional issue for DP-CL-BB is that the concept of

sub-optimality is rooted in maintaining an incumbent.

Hence it can be applied to DFS but not to BFS (which does

not have an incumbent). To evaluate these tradeoffs, our

experiments in the next section compare the use of BFS

and conflict learning from infeasibility only, with DFS and

conflict learning from both infeasibility and from sub-

optimality.

4 Experimental Performance Analysis

This section provides experimental results of the DP-CD-

BB solver, compared with the benchmark MIP-BB, on a

range of problems. We also compare the effect of several

parameters, in particular, BFS versus DFS, infeasibility

conflict learning versus sub-optimality conflict learning

and forward search versus backtrack search. While each

algorithmic variant terminates with the same optimal

solution, a major result is that DP-CD-BB achieves an

order of magnitude speed-up over MIP-BB. In addition, the

difference in performance increases as the problem

enlarges.

 As the bulk of the computational effort expended by

these algorithms is devoted to solving relaxed LP

problems, the total number and average size of these LPs

are representative of the total computational effort

involved in solving the HLOPs. Note that extracting

infeasibility conflicts and sub-optimality conflicts can be

achieved as by-products of solving the LPs, and therefore

does not incur any additional LP to be solved. We use the

total number of relaxed LPs solved and the average LP size

as our LP solver and hardware independent measures of

computation time.

 As explained in the first section and verified by our

experiments, the MIP encoding enlarges the HLOP by

adding overhead integer variables and constraints.

Therefore, the average size of its LPs is larger than that of

the LPs solved for the DP encoding. Experiments also

show that the average sizes of relaxed LPs, solved by all

the methods that use the DP encoding, are similar to each

other. The data table is not listed due to space limit of the

paper. To measure memory space use, maximum queue

size is used.

 We programmed MIP-BB, DP-CD-BB and its variations

in Java. All used the commercial software CPLEX as the

LP solver. Test problems were generated using a model-

based temporal planner, performing multi-vehicle search

and rescue missions. This planner takes as input a

temporally flexible state plan, which specifies the goals of

a mission, and a continuous model of vehicle dynamics,

and encodes them in DP. The DP-CD-BB solver generates

an optimal vehicle control sequence that achieves the

constraints in the temporal plan. For each Clause/Variable

set, 15 problems were generated and the average was

recorded in the tables. These planning problems are tightly

constrained and hence often “hard” problems, as studied in

[Mitchell et al, 1992].

 In Table 1, the number of relaxed LPs solved for each

approach is recorded. The second row shows that MIP-BB

solves more LPs than any other approach. The difference

increases dramatically as the problem grows larger. The

next three rows are dedicated to DP with BFS. The

addition of infeasibility conflict learning (Inf) significantly

outperforms without conflict learning (w.o. CL). The

method using conflict-directed backtrack search (BT),

which uses infeasibility conflicts to check consistency of a

relaxed LP before solving it, performs dramatically worse

than the method using forward conflict-directed search

(Inf). The last five rows represent the variations of DP with

DFS. Within these five rows, the method that solves the

least relaxed LPs is the method with both infeasibility and

sub-optimality conflict learning (Sub+Inf). The worst case

is w.o. CL.

 Consider BFS versus DFS, using only infeasibility

conflict learning, BFS performs better than DFS, but the

performance of DFS with Sub+Inf is close to BFS with Inf.

For very large problems, DFS with Sub+Inf performs

better. Under the same situation, either w.o. CL or with Inf

or with BT, BFS solves less relaxed LPs than DFS, as

explained before in section 3.4. As the only difference

between DP with DFS without conflict learning and MIP-

BB is in the formulation and relaxation methods, the

significant improvement of the former over the latter

verifies the statement in section 3.3.

 For all tests, our DP-CD-BB algorithm, using either DP

with BFS and infeasibility conflict learning, or DP with

DFS and infeasibility plus sub-optimality conflict learning,

performs the best and has a profound improvement over

MIP-BB on large problems.

Clause /

Variable

80 /

36

700/

144

1492/

300

2336/

480

MIP-BB 31.5 2009 4890 8133

w.o.

CL
24.3 735.6 1569 2651

Inf 19.2 67.3 96.3 130.2
DP

BFS
BT 23.1 396.7 887.8 1406

w.o.

CL
28.0 2014 3023 4662

Inf 22.5 106.0 225.4 370.5

BT 25.9 596.9 1260 1994

Sub

+Inf
22.1 76.4 84.4 102.9

DP

DFS

Sub 25.8 127.6 363.7 715.0

Table 1. Comparison on the number of relaxed LPs solved

Workshop on Plan Execution: A Reality Check 67

In Table 2, all approaches have similar maximum queue

sizes, except BFS w.o. CL and BFS with BT. As discussed

in section 3.4, BFS generally takes more memory space

than DFS, but when forward conflict-directed search is

used, the search space is reduced and the corresponding

queue is shortened. Note that although the methods using

BT are conflict-directed, the queue size of the one with

BFS is not largely reduced.

Clause /

Variable

80 /

36

700/

144

1492/

300

2336/

480

MIP-BB 8.4 30.8 46.2 58.7

w.o.

CL
19.1 161.1 296.8 419.0

Inf 6.4 18.3 38.4 52.5
DP

BFS
BT 15.6 101.7 205.1 327.8

w.o.

CL
6.1 18.7 25.1 30.3

Inf 6.5 21.4 45.0 57.3

BT 6.1 18.4 23.5 28.1

Sub

+Inf
6.5 21.4 33.0 40.9

DP

DFS

Sub 6.5 21.6 38.7 47.0

Table 2. Comparison on the maximum queue size

5. Conclusion

Hybrid Logic/Optimization Problems can be encoded
effectively using Disjunctive Programming (DP). This
paper presented a novel algorithm, DP Conflict-Directed
Branch and Bound, that efficiently solves DP problems
through a powerful three-fold method, featuring
generalized conflict learning, forward conflict-directed

search and induced unit clause relaxation. The key feature
of the approach is that infeasible or sub-optimal subsets of
state space are reasoned using qualitative descriptions
(conflicts), in order to heuristically guide the forward step
of the search, by moving away from regions of state space
corresponding to known conflicts. Our experiments on
model-based temporal plan execution for cooperative
vehicles demonstrated an order of magnitude speed-up
over Mixed Integer Programming Branch and Bound.

References

[Balas, 1979] E. Balas. Disjunctive programming, Annals

of Discrete Mathematics 5 3-51.

[Bertsimas and Tsitsiklis, 1997] D.Bertsimas and

J.N.Tsitsiklis. Introduction to Linear Optimization.

[Bitner and Reingold, 1975] J. Bitner and E. Reingold.

Backtrack Programming Techniques, Communications of

the Association for Computing Machinery 18(11).

[Gaschnig, 1978] J. Gaschnig Experimental Case Studies

of Backtrack vs. Waltz-type vs. New Algorithms for

Satisficing Assignment Problems. The 2nd Canadian

Conference on AI 268-277.

[Ginsberg, 1993] M. Ginsberg, Dynamic backtracking,

Journal of Artificial Intelligence Research 1 25–46.

[Hooker and Osorio, 1999] J.N.Hooker and M.A.Osorio.

Mixed Logical/Linear Programming. Discrete Applied

Mathematics 96-97 395-442.

[Hooker, 2002] J.N.Hooker, Logic, optimization and

constraint programming, INFORMS J. on Computing 14

295-321.

[Krishnan, 2004] R. Krishnan. Solving Hybrid Decision-

Control Problems Through Conflict-Directed Branch &

Bound. M.Eng. Thesis. MIT.

[Mitchell et al, 1992] D. Mitchell, B. Selman, H. Levesque.

Hard and easy distributions of SAT problems. AAAI.

[Nayak and Williams, 1997] P. Nayak, B. Williams. Fast

Context Switching in Real-time Propositional Reasoning,

AAAI.

[Prosser, 1993] P. Prosser. Hybrid algorithms for the

constraint satisfaction problem, Computational Intelligence

3, 268–299.

[Ragno, 2002] R. Ragno. Solving Optimal Satisfiability

Problems Through Clause-Directed A*. M.Eng. Thesis.

MIT.

[Schouwenaars et al, 2001] T. Schouwenaars, B. De Moor,

E. Feron, J. How.,T Mixed integer programming for multi-

vehicle path planning. European Control Conference.

[Stallman and Sussman, 1977] R. Stallman and G. J.

Sussman. Forward reasoning and dependency-directed

backtracking in a system for computer-aided circuit

analysis, Artificial Intelligence 9 135–196.

[Vossen et al, 1999] T. Vossen, M. Ball, A. Lotem, D.

Nau. On the use of integer programming models in AI

planning. IJCAI.

[Williams and Cagan, 1994] B. Williams and J. Cagan.

Activity Analysis: The Qualitative Analysis of Stationary

Points for Optimal Reasoning. AAAI.

[Wolfman and Weld, 1999] S. Wolfman and D. Weld. The

LPSAT engine & its application to resource planning.

IJCAI.

68 Workshop on Plan Execution: A Reality Check

1

A Fast Incremental Dynamic Controllability Algorithm

John L. Stedl
Massachusetts Institute of Technology

32 Vassar Street
Cambridge, MA 02139

stedl@mit.edu

Brian C. Williams
Massachusetts Institute of Technology

32 Vassar Street
Cambridge, MA 02139

williams@mit.edu

Abstract
In most real-world planning and scheduling problems, the
plan will contain activities of uncertain duration whose
precise duration is observed rather than controlled by the
agent. In many cases, in order to satisfy the temporal
constraints imposed of the plan, the agent must dynamically
adapt the schedule of the plan in response to these uncertain
observations. Previous work has introduced a polynomial-
time dynamic controllability (DC) algorithm, which
reformulates the temporal constraints of the plan into a form
amenable for dynamic execution.
 In this paper we introduce a novel, fast incremental DC
algorithm that (1) is significantly faster than previous
approaches in reformulating partially controllable plans for
dynamic execution and (2) efficiently maintains the
dispatchability of the plan when the subset of the constraints
change. This new Fast DC algorithm has been
experimentally shown to run in O(N3) time when
reformulating unprocessed plans and in O(N) time when
incrementally maintaining the dispatchability of the plan.

Introduction
In most real-world planning and scheduling problems, the
timing of some of the events will be controlled by the
agent; while others will be controlled by nature. For
example, a Mars rover is capable of controlling when it
starts driving to a rock; however, its precise arrival time is
determined by environmental factors.
 For plans that contain activities of uncertain duration, it
is insufficient to merely guarantee that there exists a
feasible schedule. Instead, the agent must ensure there is a
strategy to consistently schedule the controllable events for
all possible outcomes of the uncertain durations. The
problem of determining if a viable execution strategy exists
was first formally addressed by [Vidal 1996, Vidal and
Fargier 1999]. This work has identified three primary
levels of controllability: Strong, Dynamic and Weak.
Controllability refers to the ability to “control” the
consistency of the schedule, despite the uncertainty in the
plan. In this paper we are concerned with dynamic
controllability, in which the uncertain durations are
observed at execution time. Informally, a plan is
dynamically controllable if there is a successful execution
strategy that assigns execution times to the controllable
events, which only depends on past outcomes and satisfies
the timing constraints in the plan for all possible execution
times of uncontrollable events.

 Beyond merely checking if the plan is dynamically
controllable, we are interested in process of reformulating
the plan into a dispatchable form, such that it can be
efficiently scheduled at execution time. In addition, we are
interested in addressing the problem of quickly
reformulating the dispatchable plan in response to either
changing timing requirements. This ability becomes
particularly important when dealing with plans for highly
agile systems, such as unmanned aerial vehicles, where
there may not be enough time to completely re-plan if some
of the constraints change.
 [Morris 2001] introduced a polynomial time dynamic
controllability (DC) algorithm to reformulate a partially
controllable plan into a dispatchable plan. In this paper we
improve upon this DC algorithm in two key ways. First we
introduce a fast incremental dynamic controllability
algorithm (Fast-DC) that enables the agents to quickly
maintain the dispatchability of the plan when only some of
the constraints change. Second, we show how to efficiently
apply this incremental DC algorithm in the startup case in
order to reformulate unprocessed plans into a dispatchable
form. In the startup case our algorithm is faster than
previous approaches.
 [Morris 2001] showed that the issue of converting a
partially controllable plan into a dispatchable form is
reduced to repeatedly applying a set of constraint
propagations. In this paper we show how to efficiently
apply these constraint propagations.
 In order to develop our incremental DC algorithm we
introduce and exploit a property called pseudo-
dispatchability, which enables an efficient, recursive
constraint propagation scheme, called dispatchability-back-
propagation (DBP). The sub-term “back-propagation”
refers to that property that the constraints only need to be
propagated toward the start of the plan. When
reformulating unprocessed plans, this purely recursive
approach removes the need to perform repeated calls to an
O(N3) All-Pairs Shortest-Path (APSP) algorithm, as
required by the DC algorithm introduced by [Morris 2001].
 In the startup case we introduce two other innovations.
First our new dynamic controllability algorithm removes
redundant constraints before performing constraint
propagation, which significantly reduces the number of
propagations required. Second, we intelligently initiate the
DBPs such that the algorithm continuously reduces the size
of the problem.
 First we review background on Simple Temporal
Networks with Uncertainty (STNU) and present a simple

Workshop on Plan Execution: A Reality Check 69

 2

example. Then we describe how to perform DBP on STNs.
Next we extend this DBP framework to STNUs. Next we
introduce the Incremental DC algorithm to handle the case
when only one constraint changes. Next we show how to
efficiently apply this incremental DC algorithm for both
unprocessed plans and when multiple constraints change.
Finally, we present some experimental results of our
Incremental DC algorithm.

Background
A Simple Temporal Network with Uncertainty [Vidal

and Fargier 1999] is an extension of a STN [Decher 1991]
that distinguishes between controllable and uncontrollable
events. A STNU is a directed graph, consisting of a set of
nodes, representing timepoints, and a set of edges, called
links, constraining the duration between the timepoints.
The links fall into two categories: contingent links and
requirement links. A contingent link models an
uncontrollable process whose uncertain duration, ω, may
last any duration between the specified lower and upper
bounds. A requirement link simply specifies a constraint on
the duration between two timepoints. All contingent links
terminate on a contingent timepoint whose timing is
controlled by nature. All other timepoints are called
requirement timepoints and are controlled by the agent.

Definition (STNU [Vidal 1999]): A STNU is a 5-tuple <
N, E, l, u, C >, where N is a set of timepoints, E is a set of
edges and l : E à ℜ ∪ {-∞} and u : E à ℜ ∪ {+∞} are
functions mapping the edges to lower and upper bound
temporal constraints. The STNU also contains C, which is
a subset of the edges that specify the contingent links, the
others being requirement links. We assume 0 < l(e) < u(e)
for each contingent link.

 To support efficient inference, a STNU is mapped to an
equivalent distance graph [Dechter 1991], called a Distance
Graph with Uncertainty (DGU), where each link of the
STNU, containing both lower and upper bounds, is
converted into a pair DGU edges, containing only an upper
bound constraint. In the DGU, the distinction between a
contingent and a requirement edge is maintained. For
example consider the triangular STNU and associated
DGU shown in Figure 1.
 A STNU is consistent only if its associated DGU
contains no negative cycles [Dechter 1991]. This can be
efficiently checked by applying the Bellman-Ford SSSP
algorithm [CLR 1990] on the DGU. However consistency
does not imply dynamic controllability.
 In order for the STNU to be dynamically controllable,
each uncontrollable duration, ωi, must be free to finish any
time between [li,ui], as specified by the contingent link, Ci.
The set of all implicit constraints contained in the STNU
can be made explicit by computing the All-Pairs Shortest-
Path (APSP) graph of the DGU via the Floyd-Warshall
algorithm [CLR 1990].

If temporal constraints (requirement and contingent) of
the plan imply strictly tighter bounds on an uncontrollable
duration, then that uncontrollable duration is considered

squeezed [Morris 2001] and the plan is not dynamically
controllable. In this case there exists a situation [Vidal
1999] where the outcome of the uncontrollable duration
may result in an inconsistency. A STNU is pseudo-
controllable [Morris 2001] if it is both temporally
consistent and none of its uncontrollable durations are
squeezed.
 In this paper we are interested preparing the STNU for
dynamic execution in which a dispatcher [Morris 2001]
uses the associated DGU to schedule timepoints at
execution time. In this case, even if a STNU is pseudo-
controllable, the uncontrollable durations may be squeezed
at execution time [Morris 2001].
 The dynamic controllability (DC) reformulation
algorithm introduced by [Morris 2001] adds additional
constraints to the plan, in order to enable the dispatcher to
consistently schedule the plan at execution time without
squeezing the uncontrollable durations. In our Fast-DC
algorithm we apply these tightenings efficiently.

Incremental STN Dispatchability Maintenance
 The speed of our Incremental Fast-DC algorithm
depends on a technique called dispatchability-back-
propagation (DBP). In this section we introduce the DBP
rules for STNs. In the next section we extend these rules
for STNUs.
 In order to address real time scheduling issues,
[Muscettola 1998b] showed that any consistent STN can be
converted into an equivalent dispatchable distance graph,
which can be dynamically scheduled using a locally
propagating dispatching algorithm [Muscettola 1998a].
 The dispatching algorithm schedules and executes the
timepoints at the same time. The dispatcher works by
maintaining a feasible execution widow, Wx ∈ [lbx,ubx], for
each timepoint X. When the dispatcher executes a
timepoint A, upper-bound updates are propagated via all
outgoing, non-negative edges AB and lower-bound updates
are propagated along via all incoming negative edges, CA.
The dispatching algorithm is free to schedule timepoint X
anytime within that timepoints execution window, as long
as the timepoint is enabled. A timepoint is enabled if all
timepoints that must precede have been executed.
 For a dispatchable graph, the dispatcher is able to
guarantee that it can make a consistent assignment to all
future timepoints, as long as each scheduling decision is
consistent with the past. Therefore, in order to maintain the
dispatchability of the graph when a constraint is modified,
we only need to make sure that the change is consistent
with the past; the dispatcher will ensure that this constraint
change is consistent with the future at execution time.

Figure 1 (a) Triangular STNU and (b) DGU

70 Workshop on Plan Execution: A Reality Check

 3

 We call the process of ensuring that a change is
consistent with the past, Dispatchability Back-Propagation
(DBP).

Lemma (STN-DBP) Given a dispatchable STN with
associated distance graph G,
(i) Any tightening (or addition) of an edge AB with d(AB)
= y, where y>0 and A?B, for all edges BC with d(BC)= u,
where u <= 0, we can deduce a new constraint AC with
d(AC) = y + u.
(ii) Any tightening (or addition) of an edge AB with
d(AB)= x, where x <= 0 and A?B, for all edges CB with
d(CB)= v, where v >= 0, we can deduce a new constraint
CA with d(CA) = x+v.

Proof: (i) During execution, a negative edge AB
propagates an upper bound to B of ubB = T(A) + d(AB). A
non-negative edge CB propagates a lower bound to B of
lbB = T(C) - d(BC). At execution time, changing AB will
be consistent if ubB >= lbB for any C, or T(A) + d(AB) >=
T(C) - d(BC), which implies T(A) - T(C) < d(AB) + d(BC).
Adding an edge CA of d(AB) + d(BC) to G encodes this
constraint. Similar reasoning applies for case (ii) when a
negative edge changes.ÿ

 Recursively applying rules i and ii, when an edge
changes in a dispatchable distance graph, will either expose
a direct inconsistency or result in a dispatchable graph.
This back-propagation technique only requires a subset of
the edges to be resolved with the change, instead of all the
edges which would happen if we were to re-compute the
APSP every time an edge changed.
 For example consider the series of STN back
propagations required when the edge DC, shown in Figure
2a, is changed in the originally dispatchable graph. This
change is back-propagated through the possible threats CB,
and BD. The modified edges, BC and CC, resulting from
this back-propagation is shown in Figure 2-b. The self loop
CC in consistent and has no threats; however, the edge BC
must be back-propagated through its threats, CB and CA.
The results of this back-propagation modifies edges BB
and BA, as shown in Figure 2-c. BA is threatened by AB.
Back-propagating, resulting in the new dispatchable graph
shown in Figure 2-d. In this example, only 5 propagation
were required. Applying the Floyd-Warshall APSP
algorithm would have required 125 propagations.

In order to apply DBP to distance graphs with
uncertainty (DGUs), we introduce the idea of pseudo-
dispatchability. If we ignore the distinction between
contingent and requirement edges in the DGU, then the
DGU is effectively converted into distance graph (DG). If
this associated DG is dispatchable, then we say the DGU
pseudo-dispatchable. If a DGU is both pseudo-

dispatchable and pseudo-controllable, then its
dispatchability is only threatened possible tightens to the
uncontrollable durations at execution time. Furthermore,
the pseudo-dispatchability of the DGU is maintained by
recursively appling the STN-DBP rules.

We also introduce the term pseudo-minimal
dispatchable graph (PMDG), which is DGU that is both
pseudo-dispatchable and contains the fewest number of
edges. The PMDG can be computed by applying either the
“slow” STN reformulation algorithm introduced by
[Muscettola 1998] or the “fast” STN reformulation
algorithm introduced by [Tsarmrdinos 1998], to the DGU.

DBP Rules for STNUs
 In this section we unify reduction and regression rules
introduced by [Morris 2001] with the STN dispatchability
back propagations (DBP) rules described in the previous
section to form the DBP rules for STNUs. These rules form
the core of our Incremental DC algorithm.
 In this section we describe when the reduction and
regression rules introduced by [Morris 2001] need to be
applied. Consider the triangular STNU and associated
DGU shown in Figure 1. Assume that the STNU is both
pseudo-controllable and in an All-Pairs form.
Precede Case: u > 0:
 The precede reduction prevents the propagations from
either CB or BC, from squeezing the contingent link AB.

Definition (Precede Reduction [Morris 2001]) If u > 0,
tighten AC to x-u, and edge CA to v-y.

Unordered Case: v ≥ 0 and u ≤ 0:
 The unordered reduction prevents propagations through
edge CB from squeezing the contingent link AB, when C
executes first, yet allows B to propagate an upper bound
through BC, when B executes first.

Figure 2 STN Back-Propagation Example

Workshop on Plan Execution: A Reality Check 71

 4

A conditional edge1, introduced by [Morris 2001], must
be added to the DGU in this case. We call a DGU
containing a set of conditional constraints, a Conditional
Distance Graph with Uncertainty (CDGU). A conditional
edge CA of <B,-t> specifies that A must wait at least t time
units after A executes or until B executes, which ever is
sooner. Note that the conditional edge is similar to a
negative requirement edge.

Definition (Unordered Reduction [Morris 2001]) If v ≥ 0
and u = 0, apply a conditional constraint CA of <B, v-y>.

 In some cases the conditional edge is unconditional. The
unconditional unordered reduction describes when to
convert the conditional edge into a requirement edge.

Definition (Unconditional Unordered Reduction
[Morris 2001]) Given a STNU with contingent link AB ∈ [x,y] and
the associated CDGU with a conditional constraint CA of <B,-t>, if x >
t, then convert the conditional constraint CA into a requirement CA with
distance –x.

 In order to prevent a conditional constraint from being
violated at execution time, it must be regressed through the
CDGU.

Lemma (Regression [Morris 2001]): Given a conditional
constraint CA of <B,t>, where -t is less than or equal to the upper bound
of contingent link AB. Then (in a schedule resulting from a dynamic
strategy):
 i.) If there is a requirement edge DC with distance w, where w ≥ 0
and D ≠ B, we can deduce a conditional constraint DA of <w+t, B>.
ii.) If t < 0 and if there is a contingent link DC with bounds [x,y] and B ≠
C, then we can deduce a conditional constraint DA of <x+t, B>.

 In order to maintain the dispatchability of the CDGU
when a constraint changes, we only need iteratively apply
all rules (STN-DBP, regression, and reductions) that
pertain to that constraint. Table 1 summarizes the DBP
rules used in our Incremental Fast-DC algorithm. This
unified set of rules enables each type of propagation to be
interleaved. We call the edges the change must be
propagated through, threats. In the next section we describe
the process of iteratively applying the DBP for STNUs to
resolve all possible threats to the dispatchability.

1 [Morris 2001] used the term wait constraint.

Incremental Dynamic Controllability
In this section we use the DBP rules in order to define an
incremental algorithm for maintaining the dispatchability of
a plan when one constraint changes. In the next section we
extend this algorithm to reformulate unprocessed plans into
a dispatchable form.
 The function BACK-PROPAGATE, shown in Figure 3,
maintains the dispatchability of a CDGU, G, when an edge
(u,v) changes. The function BACK-PROPAGATE
recursively applies the DBP rules shown in Table 1, until
either it detects a direct inconsistency or until no more
propagations are required.

The algorithm first checks if the edge (u,v) is a loop, (i.e.
starts and ends on the same timepoint). If it is a positive
loop, no more propagations are required and the algorithm
returns true. If the edge is a negative loop, then an
inconsistency is detected and the algorithm returns false.
 Next the algorithm resolves all possible threats to (u,v)
by applying the DBP rules in order to generate a candidate
update edge (p,q). Two special conditions are considered if
the candidate is a conditional edge. First, if the conditional
edge is dominated by an existing requirement constraint,

If This Changes: Must Back-Propagated Through (Threats) Updates Rule:

 [-] Req. edge BA 1. any [+] Req. edge CB
2. any Ctg Link CB

[+/-] Req. edge CA
[+/-] Req. edge CA

STN(ii)
PR

 [+] Req. edge AB 1. any [-] Req. edge BC
2. any Ctg. Link CB *
3. any [-] Cond. edge BC of <-t,D>, where D ≠ A

[+/-] Req. edge AC
[+/-] Cond. edge AC**
[+/-] Cond. edge AC**

STN(i)
PR/UR
REG(i)

 [-] Cond. edge BA of <-t,D> 1. any [+] Req. edge CB, where C ≠ D
2. any Ctg. Link CB , where B ≠ D

[+/-] Cond. edge CA**
[+/-] Cond. edge CA**

REG(i)
 REG(ii)

Table 1 STNU-DBP Rules

* same for both precede or unordered cases , ** convert any conditional edges into requirement edges as required by the UUR.
STN: STN-DBP, UR: Unordered Reduction, UUR: Unconditional Unordered Reduction, Ctg: contingent, Req.: requirement
PR: Precede Reduction, REG: regression

function BACK-PROPAGATE(G,u,v)
1 if IS-POS-LOOP(u, v) return TRUE
2 if IS-NEG-LOOP(u, v) return FALSE
3 for each threat (x,y) to edge (u,v)
4 apply DBP rules to derive a new candidate edge (p,q)
5 if (p,q) is conditional
6 if dominated by a Req. edge (p,q) return TRUE
7 convert (p,q) to Req. edge as required by UUR
8 end if
9 resolve the edge (p,q) with G
10 if G is modified
11 if G is squeezed return FALSE
11 if ¬BACK-PROPAGATE(G,p,q) return FALSE
12 end
13 end for
14 return TRUE

Figure 3 Pseudo-Code for Back-Propagate

72 Workshop on Plan Execution: A Reality Check

 5

then the algorithm returns true. Second, the algorithm
converts the conditional edge into a requirement edge as
required by the unconditional unordered reduction.
 Next the algorithm resolves the candidate edge (p,q)
with G by tightening or adding the corresponding edge as
necessary. If this resolution modifies a constraint in G (i.e.
is not dominated by an existing edge (p,q)), the algorithm
checks if this tightening squeezes an uncontrollable
duration, then recursively calls BACK-PROPAGATE to
resolve the change.
 After recursively resolving all threats, the algorithm
returns true.
 The function BACK-PROPAGATE is an Incremental
DC maintenance algorithm. In the next section we present
the Incremental DC Reformulation algorithm.

Fast-Dynamic-Controllability
 In this section we describe our Incremental-DC
Reformulation algorithm (Fast-DC) which builds upon the
Incremental Maintenance DC algorithm presented in the
last section. We will use the example presented in Figure
4A to describe this algorithm.
 The pseudo-code for the Fast-DC algorithm is shown
Figure 5. If the STNU is dynamically controllable, then the
Fast-DC returns a minimal dispatchable CDGU, otherwise
it returns NIL.
 First the Fast-DC algorithm converts the STNU into a
CDGU, then computes the pseudo minimal dispatchable
graph (PMDG) using the “slow” STN Reformulation
Algorithm introduced by [Muscettola 1998]. If an
inconsistency was detected the algorithm return NIL. The
minimal pseudo-dispatchable graph for our example is
shown in Figure 7-B. This PMDG is both pseudo-
dispatchable and contains the fewest number of edges.
 The CDGU is only dynamically controllable if it pseudo-
controllable [Morris 2001]. Lines 3 checks if the contingent
edges were squeezed during the process of converting the
CDGU into a minimal pseudo-dispatchable graph. In our
example, all contingent edges remain unchanged; therefore,
the CDGU is pseudo-controllable.
 Recall that our goal is to reformulate the graph to ensure
that the plan can be dynamically executed. This
reformulation is done by multiple calls the function BACK-
PROPAGATE. The BACK-PROPAGATE function needs
to be applied to any edge that may squeeze a uncontrollable
duration. Each initial call of BACK-PROPAGATE causes
a series of other edge updates. However, they will only
update edges closer to the start of the plan. In order to
reduce the amount of redundant work, we first initiate the
back-propagations near the end of the plan and work the
start of the plan. This way we slowly build up a solution
where constraints near the end of the plan no longer need to
be changed. In order to organize the back-propagations, we
need to create a list of contingent timepoints ordered from
timepoint that are executed near the end of the plan to the
timepoints that are executed near the beginning of the plan.
The contingent timepoints are ordered based on their
Single-Destination Shortest-Path (SDSP) distance, sdsp(x).
Specifically, the contingent timepoints are ordered from

lowest to highest SDSP distances. The SDSP distances are
computed in Line 4, and the contingent timepoints are
ordered in Q in Line 5. In our example, the two contingent
timepoints C and H have SDSP distances of -3 and -12

function FAST-DC(Γ)
1 G ← STNU_TO_CDGU(Γ)
2 if ¬COMPUTE_PMDG(G) return NIL
3 if ¬ IS_PSEUDO_CONTROLLABLE (G) return NIL
4 Compute Bellman_Ford_SDSP(start(G), G)
5 Q ← ordered list of Ctg. T.P. according to the SDSP distances
6 while(¬Q.IS-EMPTY())
7 n ß Q.POP_FRONT()
8 if ¬ BACK_PROPAGATE_INIT(G, n) , return NIL
9 end while
10 (optional) COMPUTE_MPDG(G)
11 return G

Figure 5 Pseudo-code for FAST-DC

function BACK-PROPAGATE-INIT(G,v)
1 for all pos. edges (u,v) into the Ctg. timepoint v
2 if ¬BACK_PROPAGATE(G,u,v) return FALSE
3 end for
4 for all outgoing negative edges (v,u) from the ctg timepoint v
5 if ¬BACK_PROPAGATE(G,v,u) return FALSE
6 end for
7 return TRUE

Figure 6 Pseudo-code for BACK-PROPAGATE-INIT

Figure 4 Fast-DC Example.

Workshop on Plan Execution: A Reality Check 73

 6

respectively. Therefore, H comes before timepoint C in the
ordered list.
 Next the Fast-DC algorithm initiates a series of back-
propagation by calling the function BACK-PROPAGATE-
INIT. This function initiates the back-propagation by
applying all back-propagation rules to ensure that the
uncontrollable duration associated with the contingent
timepoint v is never squeezed during execution. Recall the
contingent duration can only be squeezed by incoming
positive edges or outgoing negative edges to the contingent
timepoint. Lines 1-3 of this initiation function call BACK-
PROPAGATE for all incoming positive edges into the
contingent timepoint v and Lines 4-7 calls BACK-
PROPAGATE for all outgoing negative edges from v.
 Consider the series of back-propagations the Fast-DC
algorithm uses to reformulate the CDGU between 7-B, 7-C.
The CDGU does not contain threats that may violate
contingent timepoint H, so no back-propagations are
required. The contingent timepoint C, is threatened by the
incoming positive edge EC. The edge EC is back-
propagated through BC, resulting in a new conditional edge
EB of <C,-6>. This contingent edge is then back-
propagated through DE which modifies the requirement
edge DB to -1. This negative requirement edge is then
back-propagated through edge BD resulting in the edge BB
of distance 4. This thread of back-propagation terminates
here because of a positive self-loop.
 The contingent timepoint C is also threatened by the
outgoing negative edge CD of length -2. This negative
requirement edge CD is back-propagated through BC
which sets BD = 1. This positive requirement edges is then
back-propagated through the negative edge DB, resulting
modifying the self looping edge BB to 0. This thread of
back-propagation is then terminated. The resulting
dispatchable CDGU is shown Figure 4C. The back-
propagation did not introduce an inconsistency; therefore,
the original STNU is dynamically controllable.
 The (optional) last step of the Fast-DC algorithm trims
the dominated (redundant) edges from the CDGU. This is
done by calling the basic STN reformulation algorithm.
The resulting graph is a minimal dispatchable CDGU
which can be executed by the dispatching algorithm
introduced by [Morris 2001]. For example, the minimal
dispatchable CDGU for the sample group plan is shown
Figure 4D.
 The algorithm described in this section is the incremental
DC reformulation algorithm that we set out to describe.

Run Time Complexity of the FAST-DC Algorithm
In this section describes some preliminary experimental
results for our Fast-DC algorithm.
 The FAST-DC algorithm was run on a set of randomly
generated STNUs that contained between 10 to 70
activities (20-140 timepoints) interconnected by a set of
random (yet locally consistent) requirement edges. In our
trials, 50% of the activities were marked uncontrollable.
 Figure 8 shows the experimental run time of the Fast-DC
algorithm for successful reformulations, plotted against the
number of activities in the STNU. The tests were run on a
500 MHz IBM laptop with a Pentium III processor. The

data labeled “total” is the total run time of the Fast-DC
algorithm and the data labeled “back-propagation”
represents the time the algorithm spent in the BACK-
PROPAGATION function. The graph also shows a cubic
regression curve fit to the total run-time.
 The most interesting result is speed at which the
algorithm performed the back-propagations.
 Our test also shows that our Fast-DC algorithm
experimentally runs in O(N3). This is not surprising if you
consider the overall structure of the Fast-DC algorithm as
follows. Our alogorithm is dominated by the “slow” STN
reformulation algorithm done in step 1 and optionally in
step 5.

1. Compute PMDG Θ(N3)
2. Check for Pseudo-Controllability O(E)
3. Run SSSP O(NE)
4. Back-Propagation polynomial
5. (optional) Re-compute PMDG Θ(N3)

 Note that the runtime of the FAST-DC algorithm can be
directly improved by using the “fast” STN reformulation
algorithm introduced by [Tsarmardinos 1998], which runs
in O(NE + N2 lg N) time.
 In this paper we presented an Incremental DC
Maintainance algorithm (BACK-PROPAGATE) and an
Incremental DC Reformulation algorithm (FAST-DC).

Acknowledgements
This work has been funded by the DARPA NEST program
under contract F33615-01-C-1896.

References
[CLR 1990] T.H. Cormen, C.E. Leiserson and R.L.
Rivest. Introduction to Algorithms. MIT Press,
Cambridge, MA, 1990.
[Dechter 1991] R. Dechter, I. Meiri, and J. Pearl.
Temporal constraint networks. Artificial Intelligence,
49:61-95, May 1991.
[Morris 2001] P. Morris, N. Muscettola, and T, Vidal.
Dynamic Control of plans with temporal uncertainty. In:

Run Time of FAST-DC Algorithm vs Number of Activities
(50% controllable)

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80
Number of activities

T
im

e
[s

ec
o

n
d

s]

total
back-propagation
Poly. (total)

Figure 8 Experimental Run Time of Fast-
DC algorithm

74 Workshop on Plan Execution: A Reality Check

 7

Proceedings of the 17th International Joint Conference on
A.I. (IJCAI-01). Seattle (WA, USA).
[Muscettola 1998] N. Muscettola, P. Morris, and I.
Tsamardinos. Reformulating temporal plans for efficient
execution. In Proc. Of Sixth Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR ’98), 1998.
[Tsarmrdinos 1998] I. Tsarmardinos, N. Muscettola, and
P.Morris. Fast transformation of temporal plans for
efficient execution. American Association for Artificial
Intelligence (AAAI-98), 1998.
[Vidal 1996] T. Vidal and M. Ghallab. Dealing with
uncertain durations in temporal constraint networks
dedicated to planning. In Proc. Of 12th European
Conference on Artificial Intelligence (ECAI-96), pages 48-
52, 1996.
[Vidal 1999] T. Vidal and H. Fargier. Handling
contingency in temporal constraint networks: from
consistencies to controllabilities. Journal of Experimental
& Theoretical Artificial Intelligence, 11:23-45, 1999

Workshop on Plan Execution: A Reality Check 75

A Proposed Plan Execution Architecture for Advanced Life Support

System Control

G. Biswas1, P. Bonasso2, S. Abdelwahed1, E.J. Manders1, D. Kortenkamp2, J. Wu1, and S. Bell2

1Dept. of EECS & ISIS, Vanderbilt University, Nashville, TN;

2NASA Johnson Space Center/ER2, Houston TX.

Advanced life support (ALS) systems require complex
control strategies that can maintain stable system
performance and balanced resources with small margins
and minimal buffers. In closed-loop life support systems
there are complex interactions between sub-systems such
as air, water, food production, solids processing, and the
crew. Recent research at NASA Johnson Space Center has
led to significant insights into autonomous control of ALS
systems [Leon et al 1997; Kortenkamp et al 2001;
Schreckenghost et al 2002]. Routine control of an ALS
system is well within the reach of current techniques. For
example, the autonomous control system described in
[Schreckenghost et al 1998] operated around the clock for
73 straight days during a 90 day crewed test with minimal
human intervention and the autonomous control system for
a recent test of an advanced water recovery system
operated with minimal human intervention for over
eighteen months[Bonasso et al 2002]. However, these
control systems are not able to deal convincingly with the
concurrent and interacting control of several subsystems, to
coordinate the effective and efficient long term
management of resources with the planning of mission
activities, and to demonstrate effective recovery from
significant anomalies. A solution to these issues is needed
in order to demonstrate life support systems amenable to
efficient long-duration missions such as the human
exploration of Mars.

In this paper, we present a proposed multi-level
computational architecture that integrates planning and
hierarchical control schemes to develop a dynamic
planning and control system that is reactive and fault-
adaptive, but at the same time, is designed to manage
resources for the duration of a long mission. The
computational architecture adopts a novel approach to
integrating components of the 3T control architecture
developed at NASA JSC and Metrica [Bonasso et al 1997]
with the hierarchical model-based multi-level control
systems that have been developed at Vanderbilt University
[Abdelwahed et al 2005]. Neither 3T nor the multi-level

model-based control architecture alone present the
complete solution for long-duration autonomous
operations. The former lacks the dynamic models
necessary to make efficient coordinated use of scarce
resources and to maintain smooth transitions among
controller states at finer granularity time scales, while the
latter lacks domain procedural knowledge to understand
the relations between mission goals and planned activities,
and to allow the execution of specialized activities, such as
maintenance and fault-recovery. Further, it is much harder
to provide meaningful interfaces to the user through the
control systems.

This integrated computational architecture combines the
best of these two approaches. Our general design uses the
dynamic models of model-based control architecture to
inform the state-based procedural schemas during plan
development and execution, as well as to carry out the
dynamic control of the habitat subsystems. The 3T planner
will provide overarching mission plans, while the 3T
sequencer can instantiate procedures that would
significantly increase the computational complexity
associated with system analysis and decision making with
the model-based control architecture.

The 3T planning module drives the supervisory control
scheme. Given a top-level goal, such as “conduct habitat
operations while supporting extravehicular activities
(EVA)”, the planner automatically generates a habitat plan
for a given duration. The planner reasons in depth about
goals, resources and sequencing constraints. It integrates
mission goals with a priori knowledge, such as the crew
schedule, EVA schedule, crop plantings and harvesting,
and resource constraints. This knowledge is stored in the
world model. During plan generation, the 3T planner draws
from the task-resource consumption model of the Resource
Manager (middle level), to take into account the dynamic
effects of planning decisions. The resulting plan steps and
ordering will be tailored to make the best use of scarce
resources. Using the user interface capabilities of the

76 Workshop on Plan Execution: A Reality Check

planner, the plan can be reviewed by mission control
operators and the habitat crew before going into effect.

The middle level of our combined architecture consists of
the 3T sequencer working in concert with the model-based
supervisory controller. To execute the plan, the planner
passes the next step in the plan for each area of the habitat
to the 3T sequencer, which decomposes the plan step into
RAPs that are further decomposed until the final sequences
are at the level of the system controllers in the third level
of the architecture, e.g., the Water Recovery System
(WRS) or the crop chambers. An example sequence for the
Air Revitalization System (ARS) was given in the previous
section. A sequence to sustain crop growth might be 1)
harvest a wheat crop, 2) harvest a soybean crop, 3) plant a
soybean crop, 4) and harvest a salad crop. The selection of
RAPs from the RAP library will be guided by dynamic
constraints provided by the models in the model based
supervisor also in the middle layer. The resulting
sequences are then passed to the supervisory controller
through the model information interface, which uses them
as ordering constraints; e.g., the supervisor may force the
ordering of a set of parallel tasks to ensure that required
resources will be produced while not violating energy
constraints, or it may adjust the duration of one of the steps
as in the previous scenario. Using resource constraints, the
supervisory controller transforms the sequence into a
schedule of control specifications for the system level
controllers, which then carry out the execution sequence
for their respective systems (e.g., Air Revitalization (ARS)
and Water Recovery (WRS)). Mission controllers and the
crew have access to the state of the executing procedures
via the system state information access module. This is
especially needed when the crew carries out maintenance
and ad hoc procedures that do not follow nominal
operating schemes.

The system level controllers see each system as an input-
output module, where material and energy are input to the
system with the goal of producing desired states within the
system and output that can be expressed in terms of
material, energy, and performance quality parameters. The
input-output mappings created by these controllers define
utility-based multi-criterion objective functions that the
lowest-level subsystem controllers employ to optimize
dynamic behavior of subsystems in a way that they
minimize the use of resources, while producing the
necessary output. For example, given the levels of gases
and the amount of energy available to the ARS during the
above example sequence period, the system controller for
the ARS will regulate the CO2 and O2 stores to maximize
the CO2 consumption to support the incineration
operations.

Results of the execution from the system controllers are
aggregated from the subsystem controllers in the bottom

later and provided to the supervisor. In our current
architecture, the subsystem controllers are designed to
maintain set point control, i.e., maintain the operating
region of their respective subsystems at levels and
operating modes specified by the system controllers. The
supervisor will update its dynamic models as well as pass
the execution results to the sequencer as a set of execution
states. The RAPS interpreter has the capability to
determine new task sequences when faults occur in the
system or in the face of unsuccessful execution of task
steps. As RAPs sequences complete, the interpreter
informs the planner which will update the plan and pass
down the next plan step to be executed. Such an update
may simply change start and stop times of steps while
maintaining the original ordering. If the RAPs interpreter
reports a failure of a plan step, as in the case of the faulty
CDRA above, the planner may replan the mission steps,
adding or omitting steps depending on the effect of the
failed step on the overall mission objectives. As in plan
generation, the task resource models of the supervisory
controller will inform the replanning. As well, users will
be able to modify the plan at their discretion as the crew
did in the above scenario by requiring that the EVA take
place as originally scheduled.

The principle of “cognizant failure” is still embodied in
each level of the architecture. The system controllers
provide robust regulation of the habitat subsystems,
notifying the middle layer of any failing processes. The
supervisory controller dynamically adjusts control
schedules as the situation changes, informing the sequencer
as to the state of tasks. The sequencer in turn serves as the
mechanism to invoke alternate procedures as well as fault
recovery procedures. Equally important, in light of severe
failure, the sequencer will invoke “safing” procedures for
the habitat subsystems, informing the planner which in turn
will carry out replanning.

Additionally, the user has access to the levels of control
where the aggregate of information and control stratagems
is meaningful, and yet the complex details of such things
as multi-criterion objectives functions remain hidden.

Scenario

We illustrate our proposed architecture through an example
scenario. We begin with the assumption of a ninety-day
mission plan that is scheduled in 28-day segments. Within
the first 28-day period, the mission goal for the habitat
might be “to conduct habitat operations while supporting
an extravehicular activity (EVA) on day eighteen”. An
automated planning capability produces a plan of operation
that includes tasks to maintain and operate the habitat,
operate the water recovery system (WRS), air revitalization
system (ARS) and crew quarters climate control, support

Workshop on Plan Execution: A Reality Check 77

the required EVA, sustain crop growth, and ensure safe
disposal of solid waste. Using resource models of the
dynamics of the habitat subsystems the plan will make
efficient use of power, air and water stores and habitat
inventories.

Next, a reactive planning capability selects routine
procedures for carrying out the first step of each part of the
plan for each subsystem. For example, for the ARS:
1) Seven days of nominal operations.
2) Four days in high CO2 consumption state to clear CO2

reservoirs in preparation for incineration operations,
3) Four days in an extreme high CO2 state to scrub the

CO2 resulting from incineration,
4) One day providing O2 to tanks to be used for the

upcoming 24 hour EVA on day eighteen, and
5) Resume nominal operations on day ten.
This sequence is then passed to a dynamic control
execution capability that examines the existing resources
for the ARS and suggests an extra day to ensure the O2
tank level increases above a pre-determined value (say 10
kg). Since the extra day will still support the EVA on day
eleven, the reactive planner makes no further changes to
the ARS execution plan. The dynamic control executive
issues time-ordered control specifications for all the habitat
systems (WRS, ARS, Power generation, Biomass, etc.) and
their corresponding subsystems commensurate with the
procedures (i.e., partial plan sequences) from the reactive
planner. The subsystem controllers execute the directives
“optimally” taking into account the continuous dynamics
of the respective subsystem for the first nine days. For
example, a change detection algorithm might notice an
increase in power usage in the CO2 removal system
(CDRA), but its subsystem controller is able to compensate
the increase by decreasing the heater temperature a little,
and also adjusting blower and pump speeds.

On day ten, however, the dynamic control executive
determines that the CDRA behavior has continued to drift
away from the nominal, and the system is operating sub-
optimally. By now, the fault detection module has reliably
established that there is a restriction in the CO2 output line
and also a leak is detected in the desiccant bed. The
system controller has adjusted for this by reducing Oxygen
Generation Assembly (OGA) and CO2 Reduction System
(CRS) (Sabatier) operating times, but if this trend
continues, air quality in the crew chamber will start
dropping below acceptable levels, or lot more energy will
have to be directed toward the CDRA. With the night
period approaching, this is not considered a good option
(by the supervisory control predictor). This situation is
reported by the supervisory controller to the RAPS
(reactive planner) unit. This unit (the Sequencer) is told
that it will now take five days to clear the CO2 reservoirs.

The reactive planner can make no adjustment that will
compensate for the extra day and informs the planner. The
planner sees the situation and determines there are options
at this time such as (i) perform a CDRA repair and, (ii)
drop the scheduled EVA activity.

The habitat planner considers the situation, and through its
own analysis using its world model determines that a new
plan that includes a two-day crew task for repair of the
CDRA, which will create an O2-restricted situation for a
few days. As a result, the EVA activity is pushed back to
day twenty, since one of the crew repairing the CDRA is
also needed for the EVA. Furthermore, the astronauts are
required to be cautious while exercising, e.g., none of the
crew should exercise at the same time.

At this stage, using an interface to the planner, the habitat
commander informs the planner that the EVA task cannot
be slipped because it involves a communications
experiment that depends on the relative orbits of the moon
and the earth about the sun, a constraint unknown to the
habitat planner. The planner, in further conference with
the model-based resource manager, determines that if the
crew completely omits their exercise period until after the
EVA, the ARS can meet the incinerator and EVA
requirements. The resulting habitat plan omits crew
exercise from the crew plan and schedules the CDRA
repair after the EVA.

When the CDRA repair takes place, the reactive planner
will select an appropriate repair procedure for the crew and
a set of modes for ARS and other affected subsystems, and
the dynamic controller will execute these changes
efficiently. For example, oxygen generation may be
suspended, thus reducing the water requirement from the
WRS during the repair period. As well, during the repair,
the reactive planner will serve as the subsystem level
interface to the dynamic controller.

When the repair is complete, the dynamic controller will
verify the normal operation of the CDRA and inform the
reactive planner, which in turn informs the habitat planner.
The habitat planner will adjust the inventory of materials
used in the repair and replan if necessary.

A key observation from this scenario is that once
anomalous situations are detected, mechanisms kick in at
different levels to attempt to contain and compensate for
the fault, without having to sacrifice mission goals. For
less critical faults of small magnitude, the subsystem
controllers can compensate for the change in behavior. At
the next level, the system controller may redistribute
resources or, if possible reassign some tasks, to keep the
system performance and output at different levels. Then
the supervisory controller jumps in to determine if it can
impose non-critical restrictions to avoid over draining of

78 Workshop on Plan Execution: A Reality Check

resources or reduction in effort without significant loss of
capabilities. If the problems persist, the reactive planner or
the replanner may be invoked to determine new plans.
Last, mission control or the crew may want to change some
of the mission goals to avoid potential problems. In all of
these situations, decisions made at the top take precedence,
which imply that the lower level units, especially the
lower-level controllers have to change their strategy to
satisfy the new requirements.

References

Abdelwahed, S., J. Wu, G. Biswas, J. Ramirez and E. J. Manders,
“Online Fault Adaptive Control for Efficient Resource
Management in Advanced Life Support Systems,” Habitation:
International Journal for Human Support Research, Vol. 10, No.
2, pp. 105-116, 2005.

Bonasso, R.P., R. J. Firby, E. Gat, D. Kortenkamp, D. Miller and
M. Slack, “Experiences with an Architecture for Intelligent,
Reactive Agents,” Journal of Experimental and Theoretical
Artificial Intelligence, Vol. 9, No. 1, 1997.

Bonasso, R. P., David Kortenkamp and Carroll Thronesbery,
Intelligent Control of a Water Recovery System. In AI Magazine,
Vol. 24, No. 1, Spring 2003.

Kortenkamp, D., R. Peter Bonasso and Devika Subramanian,
“Distributed, Autonomous Control of Space Habitats,” IEEE
Aerospace Conference, 2001.

Leon, J., David Kortenkamp and Debra Schreckenghost, “A
Planning, Scheduling and Control Architecture for Advanced Life
Support Systems,” Proceedings of the NASA Workshop on
Planning and Scheduling in Space, 1997.

Schreckenghost, Debra, Mary Beth Edeen, R. Peter Bonasso, and
Jon Erickson, “Intelligent Control of the Product Gas Transfer for
Air Revitalization,” Proceedings of the 28th Conference on
Environmental Systems, 1998.

Schreckenghost, Debra, Carroll Thronesbery, R. Peter Bonasso,
David Kortenkamp and Cheryl Martin, “Intelligent Control of
Life Support for Space Missions,” in IEEE Intelligent Systems
Magazine, Vol. 17, No. 5, September/October 2002.

Workshop on Plan Execution: A Reality Check 79

Robust Goal-oriented Behavior in Surprising Environments
An ICAPS 2005 Position Paper

Marshall Brinn, Mark Burstein, Robert Bobrow
BBN Technologies

{mbrinn, mburstein, rusty}@bbn.com

Abstract
Software systems are often vulnerable to failure when confronting unforeseen circumstances. Considering that real
world ‘open’ environments are endlessly varied and dynamic, making systems robust in such environments is
particularly challenging: the set of conditions cannot be enumerated and handled at design time. Our analysis of
different classes of surprise suggests an architecture for achieving robust goal-oriented behavior in open environments.
In particular, we content that by adding a reflective layer to standard OODA-loop control processing, recovery from a
variety of unanticipated events can be achieved. We present here the elements of that architecture and some results from
applying this approach to an example domain.

1. Overview

The nature of software design is that systems are built and operate with particular expectations of the environment in
which they will run. Within the constraints of these expectations, the system may perform as desired. However,
software systems are notoriously brittle in facing the unanticipated. The behavior may range from the inefficient to the
unreasonable to outright failure. This vulnerability stems naturally from the inability on the part of the designer to
anticipate every eventuality of an open environment. Despite this, what is desired, at the very least, is a system that
behaves reasonably in that it can:
• Not fail the first time it encounters something unanticipated
• Not be surprised in similar circumstances thereafter
• Improve response in each subsequent encounter

Surprise results from encountering observations significantly counter to expectations. A prerequisite, then, for coping
with surprise is the ability to be surprised, and thus to have expectations. Such a difference between expectation and
observation may be categorized in terms of:
• Quantitative: The observation represents a low-probability contingency not explicitly planned for.
• Qualitative: The observation represents a zero-probability event, contradicting the current world model.

In either case, some inadequacy in the current model may be the source of the surprise. In the quantitative case, the
environment may have changed in some way not yet reflected in models. In the qualitative case, the model may be
limited in its scope by certain assumptions, precluding the representation of some events.

In seeking behaviors that are reasonable by the above criteria, we contend that systems must have some flexibility in
order to adapt. They must support multiple goals to allow trade-offs of different courses of actions. They must, further,
be able to reliably predict the state of the world (as a result of and independent of its actions) in order to plan and act
successfully. In the face of surprise, they must be able to monitor and correct their own performance and predictions.
Moreover, they must make their model assumptions explicit, to allow for identifying and recovering from the sources of
surprising events by questioning these assumptions.

The architectural approach described below seeks to provide software with these attributes in order to enable them to
deal reasonably in open environments.

2. Architectural Approaches

The standard cognitive control loop seeks to take actions expected achieve its goals. That is, it relies on some predictive
capability to project expected outcomes of potential actions and evaluate the utility of these projections. Underlying this

80 Workshop on Plan Execution: A Reality Check

control loop is another process of achieving reliable prediction. A two-tier control mechanism is suggested as illustrated
in Figure 1:
• Environmental Controller (EC): Work to achieve goals by acting in world based on predictions
• Cognitive Controller (CC): Work on world model to improve predictions.

The EC represents a standard OODA loop, developing an
We have developed a generic EC that contains a genetic
evaluated to have the best predicted utility.

The CC represents a reflective layer on top of the EC
improve the EC’s predictor accordingly. The CC structur
and actions. Whereas the EC observes, plans and acts
improve the EC’s predictive models.

It also may take control actions on the processing param
allow the EC to operate more effectively in the curren
however, it searches the space of qualitative and quantita
and long-term observations. The CC is provided with so
seeks to fill in the quantitative details of these models b
expand these qualitative models by questioning their assu
anomalous observations, be they significant deviations be
qualitative model. We call the parameters by which
metaphysics, containing a broad set of possible contingen
to try to fit the existing data into simple explanations
permanently) by a particular parameter provides a better
actuators and sensors are operating effectively. However,
they may be broken or biased in some way to be consider

In order for the CC to do its job, it needs adequate data flo
that end, the CC will want to not only provide updates to
help the CC to improve its predictor. The relationship of
and thus it passes ‘auxiliary goals’ to the EC to include in

Cognitive Controller:
Self-Awareness

Act on world model to improve
predictions

Predictions, Observations

PLANPLAN

ACTACTPERCEIVEPERCEIVE

EVALUATEEVALUATE

Hybrid Memory Model of
Environmental Controller

Processing Bound
Knowledge Goals
Model Corrections

Figure 1: The Cognitive Controller (CC) provi
Controller (EC), updating its predictive mode

goals to allow the EC to

Workshop on Plan Execution: A Reality Check

Environmental Controller:
Situation-Awareness

Act on world to achieve goals

PLANPLAN

ACTACTPERCEIVEPERCEIVE

EVALUATEEVALUATE

Hybrid Memory
Model of World

s,
,

Observations

Actions

des a reflective layer on top of the Environmental
ls and providing auxiliary ‘knowledge discovery’
better operate in the world.
d acting on plans evaluated from a set of goals and a predictor.
algorithm searching the space of plans (sets of future actions)

, monitoring its predictions and observations and seeking to
e is parallel to that of the EC, but with different goals, sensors
in the world, the CC observes the EC and plans and acts to

eters of the EC, manipulating resource and time constraints to
t environment. The CC is also built on a genetic algorithm;
tive changes to the current predictor to better match the recent
me rough default qualitative models of the world. Initially, it
y fitting to observation data. In addition, however, it seeks to
mptions systematically to determine possible explanations for
tween observation and expectation or violations of the current
 these qualitative models may be expanded a qualitative
cies that are initially precluded. Occam’s razor encourages us

; however, the model should be expanded (temporarily or
 fit to the observation. For example, by default we assume all
 we allow the CC to search models in which the possibility that
ed.

wing from the CC on actions and their observed outcomes. To
 the predictor, but to encourage the EC to take actions that will
 the EC and the CC is one of influence rather than command,
to its overall evaluation of prospective plans. For example, the

81

CC should not direct the EC to turn on a given actuator; rather it may ask the EC to view more favorably plans that
exercise a given actuator, but only if it falls into the broader set of EC goals.

We have developed a generic test framework in which to develop and test robust behavior in open environments. The
test framework contains a world simulator that allows for scripted changes to the world and measurements of the world
as available to the EC.

3. Example Domain: Temperature Control

To illustrate our approach, we have implemented a system controlling the temperature of a room to desired levels. The
components of the domain include:
• Goals: Comfort: Maintain the room temperature to as close to 60 degrees as possible, Economy: Minimize time of

having AC/Heat running, Simplicity: Minimize the number of times we switch AC/Heat on/off
• Sensors: Measurements are available of temperature inside the room and outside the building
• Controls: Two heaters are available (one stronger than the other) and one AC

Initially, the sensors are presumed to work, but the qualitative metaphysics understand they may be noisy, biased, or
broken. The actuators are presumed to work with qualitative effect that being on raises/lowers room temperature (by
how much, how fast are quantitative parameters to be learned and adjusted over time).

At system startup, the CC does not have enough information about the behaviors of the actuators to make a reliable
predictor and encourages the EC to sample the space of actuators. The EC obliges since it can’t find any plan that has a
good predicted outcome. Once some measurements are available for the actuators, a reasonable predictor is available,
and the EC is able to establish classic ‘saw tooth’ control. Soon, the CC realizes that by including the outside
temperature (originally ignored for simplicity) in its predictive model, it provides a much better correlation to observed
data. The world simulator is subsequently scripted to include different surprising events, including very noisy
temperature measurements (which the CC handles by increasing sampling and smoothing) and a broken heater (which
the CC learns to predict will have no effect, and the EC will cease to select it in its plans).

Figure 2 illustrates a particular scenario in the life of this temperature control domain, including responses to these and
other scenarios.

E C has no experience
on w hich to predict
results of actions;
passive observation of
plant

E C has no experience
on w hich to predict
results of actions;
passive observation of
plant

C C needs to know th e
effect of potential

actions; E C sam ples
space of actions

C C needs to know th e
effect of potential

actions; E C sam ples
space of actions

T em perature sensors
suddenly becom e
extrem ely noisy

T em perature sensors
suddenly becom e
extrem ely noisy

First heater (“H E A T -”)
breaks, but E C

continu es to expect it
w ill heat the room

First heater (“H E A T -”)
breaks, but E C

continu es to expect it
w ill heat the room

C C provides E C w ith sim ple
qualitative m odel (H eat
m akes tem p go up, A C

m akes tem p go dow n) and
achieves som e control

C C provides E C w ith sim ple
qualitative m odel (H eat
m akes tem p go up, A C

m akes tem p go dow n) and
achieves som e control

C C refines predictor,
accounting for outside

tem perature and control
becom es m ore precise

C C refines predictor,
accounting for outside

tem perature and control
becom es m ore precise

C C provides E C w ith a
sensor m odel requiring
averaging over m ultiple

sam ples

C C provides E C w ith a
sensor m odel requiring
averaging over m ultiple

sam ples

C C refines E C m odel to
indicate the H EA T -1

actions have no effect,
and control is restored

C C refines E C m odel to
indicate the H EA T -1

actions have no effect,
and control is restored

Figure 2: Results from the temperature control simulation, showing the CC providing updated predictors to allow the

EC to continue to control temperature in the face of surprising events (e.g. noisy sensors and broken actuators).

82 Workshop on Plan Execution: A Reality Check

4. Conclusion

Although we are still in the early stages of exploring this paradigm, we anticipate that hybrid memory and reasoning
models will provide additional degrees of robustness to different kinds of surprising, dynamic conditions. In particular,
by appropriate layering of case-based, statistical and rule-based/logical models, we contend that the vulnerabilities of
one approach may be covered by the strength of another. Further, we are actively investigating incorporating models of
uncertainty and lack of knowledge into these predictive models. Specifically, we are seeking to formalize the notion of
‘knowledge actions’ as another potential action for the EC to take that will provide more information, allowing it and
the CC to make better predictions. Additionally, we are investigating how the CC can work to manage the allocation of
resources (particularly time) to the EC, in terms of optimal times for planning relative to unfolding execution.

These future efforts not withstanding, several aspects of our approach are suggestive towards a general approach to
robust handling of surprise:
• While prediction provides a key to good control, there is a notion of ‘good enough prediction’ within which

reasonable control and response can be achieved (if subject to subsequent fine-tuning).
• Environmental controllers should ascribe benefits to their actions not only by the utility of their predicted outcome,

but the information they will provide a reflective layer to allow them to make better predictions in the future.
• The distinction between qualitative and quantitative provides a strong foundation for handling different kinds of

surprises.

5. Acknowledgements

This work was performed under DARPA/IPTO contract HR0011-04-C-0078.

Workshop on Plan Execution: A Reality Check 83

An Extension to PDDL: Actions with Embedded Code Calls

Okhtay Ilghami
University of Maryland at College Park

okhtay@cs.umd.edu

J. William Murdock
IBM Watson Research Center
murdockj@watson.ibm.com

Abstract
In most existing planning systems, plan generation and
plan execution are two entirely separate phases. This
fact has had a huge effect on the way PDDL has been
developed so far: It is assumed that the two aforemen-
tioned phases are separable. In this paper, we inves-
tigate the characteristics of the domains in which this
separation is impossible. We also propose extensions to
PDDL, both syntactically and semantically, which will
make PDDL capable of describing such domains.

Introduction
In traditional planning systems, plan generation and plan ex-
ecution are separated. This simplifying separation is based
on the usually unrealistic assumption of perfect knowledge.
In reality, however, there can be two reasons for the lack of
such knowledge: The state of the world may not be fully
known, or actions may have unpredictable effects. In either
case, the planner may need to execute some of the steps of
the generated plan to observe more about the state of the
world and/or the preconditions and effects of the actions in
those steps. The consequence of executing actions while
generating plans is that the state of the world is changing
and these changes are irreversible. For example, consider a
robot trying to get out of a maze of unknown configuration.
The robot may initially move around to determine where the
walls are, and then start planning using that information.

PDDL (Fox & Long 2001b), a purely descriptive and
platform-independent language, has recently become the de
facto standard for defining planning problems and evaluating
plans. Perfect knowledge is assumed in the existing PDDL
specification. In this paper, we propose a way to extend
PDDL so that it can be used to describe domains where the
planner does not necessarily have perfect knowledge, and
it may execute code calls within the actions to gain knowl-
edge that may be useful in generating later steps of the plan.
In the next section, we discuss the syntactic and semantic
aspects of such an extension, and how it affects the notion
of a valid plan. We then conclude the paper by sections on
related work and future directions.

Adding Actions with Code Calls to PDDL
In this section, we explain how our extension to PDDL is
formulated, and how it affects the semantics of a domain and

a plan. We propose three extensions to the PDDL syntax:
i) Two new possible requirements for a PDDL

domain: :code-call-actions to declare that
a domain contains actions with code calls, and
:code-call-durative-actions to declare that
a domain contains durative actions with code calls.

ii) A new kind of instantaneous action, denoted by the
keyword :code-call-action: These actions look ex-
actly like ordinary PDDL actions, except for one extra con-
struct, denoted by :code in their definition. This construct
consists of a predicate analogous to a function call, and a list
of typed returned values. The names of these variables must
start with #. These variables can be used in the effects of
the action, as any other variable.

iii) A new kind of durative action, denoted by the key-
word :code-call-durative-action: These actions
look exactly like PDDL durative actions, except for one ex-
tra construct, denoted by :code in their definition. This
construct can be temporally annotated, and it consists of a
predicate analogous to a function call, and a list of typed re-
turned values. The names of these variables must start with
#, and they can be used in the effects of the action.

In this paper we discuss only instantaneous actions with
embedded code calls. It is straightforward to generalize our
discussions both syntactically and semantically to include
durative actions with embedded code calls. From now on we
use the term action to refer only to instantaneous actions.

Consider the k-armed bandit problem (Berry & Fristodt
1985; Kaelbling, Littman, & Moore 1996). In this problem,
there are k gambling machines and a robot. When the robot
pulls the arm of the ith machine, the machine pays off ei-
ther a dollar with the constant probability pi or nothing with
the probability 1–pi. The robot is allowed to have a fixed
number of pulls, h, and pis are not known to the robot in
advance. The goal is to maximize the total pay off. Since
the robot does not know the pis, it cannot simply plan and
execute separately. The robot can gain information (i.e., get
a better approximation of pi) by pulling the arm of the ith
machine. This is an irreversible action, since it decreases
the number of allowed pulls by one. In Figure 1, we show
how this problem can be defined in our proposed extension
of PDDL. Action pull uses a code call do-pull to pull a
lever and see what happens. This code call is defined in the
line tagged :code. The code call returns a single numeric

84 Workshop on Plan Execution: A Reality Check

(define (domain K-armed-bandit)
(:requirements :fluents :adl
:code-call-actions)
(:types lever number)
(:functions (pulls) (cash))
(:code-call-action pull
:parameters (?l - lever)
:precondition (> (pulls) 0)
:code ((do-pull ?l) (#pay - number))
:effect (and (decrease (pulls) 1)

(increase (cash) #pay))))

Figure 1: Encoding the K-armed bandit problem

value. This value is used to instantiate variable #pay. Al-
though this code call returns only one numeric value, code
calls can return several return values with arbitrary types.

In Figure 2 we show how to define the problem of a robot
trying to get out of a maze. In this problem, the robot has
an initial position and wants to get to a final position. It has
four possible actions to move north, south, east or west. The
robot cannot plan in advance and execute later since it does
not know where the walls are located. The only way the
robot has to figure out if there is a wall to its north is to try
to move north. The return value #ret indicates whether the
robot has moved north or has been stopped by a wall.

Actions with embedded code-calls are useful to describe
actions with these three characteristics: First, the outcome
of an action is not known in advance. This can happen for
several different reasons, for example imperfect knowledge
about the current state of the world. Since the effects of
the action are not known fully in advance, it cannot be de-
fined as a classical planning action. Second, although the
outcome of the action is not known in advance, the planner
may speculate that executing it may help to reach the goal
(either directly or indirectly via the information gained by
executing the action and then observing the results). Third,
executing the action changes the state of the world.

Embedded code calls are particularly useful for sensing
actions (i.e., actions that give the planner some information
about the outside world). In real world, sensing actions can
be performed by some external agent. For example, the plan-
ner may control a robot that can measure the temperature,
navigate the outside world, etc. We define an oracle to be
an abstraction of this external agent in our framework. Any-
time the planner may wish to actually execute something,
it does so by sending a message to the oracle. We assume
that the oracle executes the action and returns the results of
doing so back to the planner. In our proposed extension,
each planning domain is coupled with an oracle O, which is
responsible for processing code calls.

PDDL is a purely descriptive and implementation-
independent language. Our code call syntax preserves these
traits; our syntax is a general format for planners to commu-
nicate with oracles (i.e., the external agents). A code call is
a general form of a function call. It is a predicate with two
elements. The first element is analogous to a function call
(function name followed by its arguments). The second ele-
ment is a list analogous to the return values of the function

(define (domain robot-and-maze)
(:requirements :fluents :adl
:code-call-actions)
(:types number)
(:functions (x) (y))
(:code-call-action north
:parameters () :precondition ()
:code ((move (x) (+ (y) 1))

(#ret - number))
:effect (when (= #ret 1)

(increase (y) 1)))
(:code-call-action south
:parameters () :precondition ()
:code ((move (x) (- (y) 1))

(#ret - number))
:effect (when (= #ret 1)

(decrease (y) 1)))
(:code-call-action east
:parameters () :precondition ()
:code ((move (+ (x) 1) (y))

(#ret - number))
:effect (when (= #ret 1)

(increase (x) 1)))
(:code-call-action west
:parameters () :precondition ()
:code ((move (- (x) 1) (y))

(#ret - number))
:effect (when (= #ret 1)

(decrease (x) 1))))

Figure 2: Encoding the robot and maze problem

call. We assume whenever a planner decides to put an action
with an embedded code call in a plan, the appropriate code
call is executed, and the oracle instantiates the variables in
the return value list. This instantiation is an abstraction of
what happens in the real world: The planning system asks
an outside agent for some information, and then continues
planning using the information provided by that agent. The
effects of asking the external agent to do so can be men-
tioned in the effects part of the action.

The details of how the actual oracle is implemented is out-
side the scope of PDDL. A Java implementation of the oracle
may translate the code call to a member function of an ob-
ject, while a Lisp implementation may translate the code call
to a Lisp expression. From the point of view of someone us-
ing PDDL to define a domain, the underlying structure and
implementation of the attached oracle must be transparent.

In our proposed extension, whenever an action with an
embedded code call is used in a plan, the return values of
the code call must be listed in the generated plan, in the same
order they are mentioned in the domain definition, after the
action. For example, if the robot uses the action north in
the problem defined in Figure 2 in order to try to go north
and it fails, the corresponding action listed in the plan will
look like (north)[0], and if the move is successful it will
look like (north)[1] rather than simply (north).

Whenever there are actions with embedded code calls
listed in a planning domain, satisfaction of the precondi-

Workshop on Plan Execution: A Reality Check 85

tions and achieving all the goals are not the only measures
of validity of a plan. Since the planner cannot backtrack on
certain actions, once it decides to invoke them using the cor-
responding code calls to the oracle it must include them in
the generated plan. Therefore, the validity of a plan is de-
fined with respect to the oracle O in the planning domain: A
valid plan must include all the actions with embedded code
calls corresponding to the code calls it made to the oracle
and the return values it got, in the same order, in addition to
the traditional conditions for validity.

Related Work

One approach to operating in domains where the starting
state is not completely known or there is uncertainty in the
effects of some actions is to interleave reasoning about what
actions to execute with the actual execution. For example,
reinforcement learning techniques (Watkins & Dayan 1992;
Kaelbling, Littman, & Moore 1996) select actions using a
simple numerical policy and incrementally learn improved
policies based on the rewards obtained from performing
actions. Agent centered search techniques (Korf 1990;
Koenig 2001) also interleave execution and learning; unlike
reinforcement learning, these techniques also perform some
planning/search. Reflection using functional process models
(Stroulia & Goel 1995; Murdock & Goel 2003) also inter-
leaves reasoning and action, using a variety of planning and
learning algorithms. We feel that our proposed mechanism
for code calls is potentially useful for all of these methods.

There are also a variety of approaches that deal with in-
complete knowledge and uncertain actions without inter-
leaving reasoning and execution. For example, SGP (Weld,
Anderson, & Smith 1998) performs contingency planning
(i.e., it produces plans that include sensing actions and re-
strictions on which actions are performed depending on the
results of those sensing actions). Similarly, CGP (Smith
& Weld 1998) performs conformant planning (i.e., it pro-
duces plans that accomplish the goal regardless of the out-
come of any actions). In general, approaches that handle
incomplete knowledge and uncertain effects without inter-
leaving reasoning and acting have significant disadvantages.
For example, contingency plans can be very large and time-
consuming to construct, and conformant plans frequently do
not exist or have low quality. However, in some domains
these disadvantages are outweighed by the benefits of not
having to execute any actions until all planning is complete.

Code calls are not essential for planning systems that do
not interleave planning and acting. However, even for those
planning systems, it may be useful to integrate information
needed for planning with information needed for execution.
Such an integration can be useful for executing plans after
planning is complete. The ability to execute plans is not im-
portant for traditional planners, but is important for many
real-world applications of planning (e.g., web services, ro-
botics, interactive agents). To the extent that PDDL can be
valuable for serving as a common domain language for these
sorts of systems, the addition of a mechanism for code calls
seems productive.

Future Directions
This paper is meant to be a first step toward extending PDDL
to handle situations in which plan generation and plan exe-
cution cannot be separated. There are still many unanswered
questions and interesting topics for future research:

Although oracles are well-defined abstract entities in the-
ory, there are issues to be addressed while implementing
them in practice. Some of the questions that should be an-
swered are: What are the effects of different programming
paradigms, such as structured programming, object-oriented
programming, and functional programming on the process
of implementing an oracle? Do these different paradigms,
in practice, affect the planning process too? What are the
conceptual and practical side-effects of the assumption that
there is an oracle attached to each planning domain?

Another interesting topic is the characteristics that an
actual planning system needs in order to be able to han-
dle actions with embedded code calls. Does our proposed
PDDL extension have any unexpected consequences when
employed in such a system? If so, are there revisions that
can address these consequences?

Another question to be answered is how to enhance the
framework we provided here to support other extensions
proposed for PDDL. For example, are there any conceptual
or practical problems in adding actions with embedded code
calls to, for example, PDDL+ (Fox & Long 2001a)?

References
Berry, D. A., and Fristodt, B. 1985. Bandit Problems:
Sequential Allocation of Experiments. Chapman and Hall.
Fox, M., and Long, D. 2001a. PDDL+ level 5: An ex-
tension to PDDL2.1 for modelling planning domains with
continuous time-dependent effects. Technical report, Uni-
versity of Durham, UK.
Fox, M., and Long, D. 2001b. PDDL2.1: An extension to
PDDL for modelling time and metric resources. Technical
report, University of Durham, UK.
Kaelbling, L. P.; Littman, M. L.; and Moore, A. P. 1996.
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research 4:237–285.
Koenig, S. 2001. Agent-centered search. Artificial Intelli-
gence Magazine 22(4):109–131.
Korf, R. E. 1990. Real-time heuristic search. Artificial
Intelligence 42(2–3):189–211.
Murdock, J. W., and Goel, A. K. 2003. Localizing planning
with functional process models. In Proceedings of the 13th
Int’l Conference on Automated Planning and Scheduling.
Smith, D. E., and Weld, D. S. 1998. Conformant graph-
plan. In Proceedings of the Fifteenth National Conference
on Artificial Intelligence, 889–896. AAAI Press.
Stroulia, E., and Goel, A. K. 1995. Functional representa-
tion and reasoning in reflective systems. Journal of Applied
Intelligence 9(1):101–124.
Watkins, C. J. C. H., and Dayan, P. 1992. Technical note:
Q-learning. Machine Learning 8(3).
Weld, D. S.; Anderson, C. R.; and Smith, D. E. 1998.
Extending graphplan to handle uncertainty and sensing ac-
tions. In Proceedings of the Fifteenth National Conference
on Artificial Intelligence, 897–904. AAAI Press.

86 Workshop on Plan Execution: A Reality Check

Optimized Execution of Action Chains through Subgoal Refinement∗

Freek Stulp and Michael Beetz
Intelligent Autonomous Systems Group, Technische Univerität München

Boltzmannstrasse 3, D-85747 Munich, Germany
{stulp,beetz }@in.tum.de

Abstract

In this paper we propose a novel computation model for
the execution of abstract action chains. In this computation
model a robot first learns situation-specific performance mod-
els of abstract actions. It then uses these models to auto-
matically specialize the abstract actions for their execution
in a given action chain. This specialization results in re-
fined chains that are optimized for performance. As a side
effect this behavior optimization also appears to produce ac-
tion chains with seamless transitions between actions.

Introduction
Many plan-based autonomous robot controllers generate
chains of abstract actions in order to achieve complex, dy-
namically changing, and possibly interacting goals. To al-
low for plan-based control, the plan generation mechanisms
are equipped with libraries of actions and causal models
of these actions, specifying what it can achieve, and under
which circumstances. By specifying these actions abstractly,
they apply to a broad range of situations, reducing the search
space for planning.

The advantages of this abstraction, however, come at a
cost. Because planning systems consider actions as black
boxes with performance independent of the prior and subse-
quent steps, the system cannot tailor the actions to the con-
texts of their execution. This often yields suboptimal be-
havior with abrupt transitions between actions, causing sub-
optimal performance. The resulting motion patterns are so
characteristic for robots that people trying to imitate robotic
behavior will do so by making abrupt movements between
actions.

Let us illustrate these points using the autonomous robot
soccer scenario depicted in Figure 1. To solve this task, the
planner issues a three step plan, also shown in the figure. If
the robot naively executes the first action (sub-figure 1b), it
might arrive at the ball with the goal at its back, an unfortu-
nate position from which to start dribbling towards the goal.
The problem is that in the abstract view of the planner, be-
ing at the ball is considered sufficient for dribbling the ball
and the dynamical state of the robot arriving at the ball is
considered to be irrelevant for the dribbling action. What
we would like the robot to do instead is to go to the ballin
order to dribble it towards the goal afterwards. The robot

∗The work described in this paper was partially funded by the
Deutsche Forschungsgemeinschaft in the SPP-1125.

should, as depicted in the sub-figure 1c, perform the first ac-
tion sub-optimally in order to achieve a much better position
for executing the second plan step.

Goal: Score! Plan:
− go to ball
− dribble ball

in order to
Plan:
− go to ball
− dribble ball
− shoot − shoot

a) b) c)

Figure 1: Alternative executions of the same plan

In this paper we propose a novel computational model for
plan execution that enables the planner to keep its abstract
action models and that optimizes action chains at execution
time, shown in Figure 2. The basic idea of our approach
is to learn performance models of abstract actions off-line
from observed experience. Then at execution time, our sys-
tem determines the set of parameters that are not set by the
plan and therefore define the possible action executions. It
then computes for each abstract action the parameterization
such that the predicted performance of the action chain is
optimal. This is done by refining the intermediate state be-
tween subsequent actions.

Generate Action Chain

Subgoal refinement

Refined (optimal) subgoal

Learn Performance Model

Interm.
state Act.i+1

Initial
state

Goal
stateAct.i

Action

O
ff

−l
in

e
E

xe
cu

tio
n

tim
e

Perf.Model

Action Chain

Execute Action Chain

Action Library

Figure 2: System Overview

Learning performance models
To optimize action chains, we need performance models
of each abstract action that predict the performance, e.g.
time, given specific situations. The execution time of the
goToPose action, which is based on computing a Bezier

Workshop on Plan Execution: A Reality Check 87

curve and trying to follow it as closely as possible, depends
on the distance (dist) and angle (angle2dest) to the destina-
tion, as well as the angle between the current orientation and
the desired orientation at the destination (angle@dest).

The performance function for this action
(goToPose.perform (dist,angle2dest,angle@dest)→t) is
learned by model trees from observed experience acquired
in a simulator, similar to (Belkeret al. 2002). Model trees
are a generalization of decision trees. They are functions
that map continuous or nominal features to a continuous
value. The function is learned from examples, by a piece-
wise partitioning of the feature space. A linear function is
fitted to the data in each partition.

In Figure 3, we depict an example situation in whichdist
andangle2destare 2.0m and 0◦. The plots depict the pre-
dicted execution time for different angles of approach (an-
gle@dest). The model tree’s piecewise linear approximation
is obvious in the Cartesian plot. The polar plot more clearly
shows the dependency of predicted execution time on the
angle of approach for the example situation. Note that the
model has learned to predict performance for all situations
the action can perform, and not just this specific situation.

0 59.2−180 180
0

1

2

3

4

5

6

7

Angle at goal (degree)

Ti
m

e
(s

)

 2

 4

 6

 8

30

210

60

240

90

270

120

300

150

330

180 0

2mdist = 2.0
angle_to_dest = 0.0
angle_at_dest = [−180,180]

situation:

angle_at_dest (degree)

p
r
e
d
i
c
t
e
d

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
)

Figure 3: Temporal prediction with performance models

Automatic subgoal refinement
The set of possible intermediate states between two ac-
tions is limited by the post-conditions of the first, and pre-
conditions of the second action. The actual intermediate
state simply arises after having executed the first action, as
can be seen in Figure 1b. As it turns out, this state leads to
suboptimal overall performance. From all possible interme-
diate states, our subgoal refinement system chooses the state
that optimizes the predicted performance of the action chain.

In our example, the only variable free for optimizing is the
angle of approach of the intermediate position. Our system
automatically determines this by reasoning about the perfor-
mance model (which variables influence performance), the
pre- or post-conditions of the subsequent action (which vari-
ables are bound), and the current state of the world (which
variables are fixed in the current state).

In Figure 4 the first two polar plots represent the perfor-
mance of the two individual actions for different values of
angle of approach. The overall performance is computed
by adding those two, and is depicted in the third polar plot.
The fastest time in the first polar plot is 2.1s, for angle of
approach of 0.0◦. However, the overall time is 7.5s. These
values can be read directly from the polar plots. This value

is not the optimum overall performance, which is actually
6.1s, as can be read from the third polar plot. Below the po-
lar plots, the situation of Figure 1 is repeated, this time with
the predicted performance for each action.

 3
 6
 9
 12

30

210

60

240

90

270

120

300

150

330

180 0

Time action 1 (s)

 3
 6
 9
 12

30

210

60

240

90

270

120

300

150

330

180 0

Time action 2 (s)

 3
 6
 9
 12

30

210

60

240

90

270

120

300

150

330

180 0

Total time (s)

2.1s

5.4s

+ =

goToPose (s) dribbleBall (s) dribbleBall (s)
goToPose +

2.3s

3.8s
total = 7.5s total = 6.1s

Figure 4: Computing the optimal intermediate goal.

Results
To determine the influence of subgoal refinement on the
overall performance of the action chain, we generated 1000
situations with random robot, ball and final goal positions.
The robot executed each navigation task twice, once with
subgoal refinement, and once without. The overall mean
improvement is 12%. We have split these cases into those
in which the subgoal refinement yielded a higher, equal or
lower performance in comparison to not using refinement.
This shows that the performance improved in 505 cases, and
in these cases causes a 23% improvement. In 485 cases,
there was no improvement. This is to be expected, as there
are many situations in which the three positions are already
optimally aligned (e.g. in a straight line), and subgoal refine-
ment will have no effect. A small decrease in performance
(6%) occurred in 10 cases.

Conclusion and Future Work
On-line optimization of action chains allows the use of plan-
ning with abstract actions, without losing performance. Op-
timizing the action chain is done by refining under-specified
intermediate goals, which requires no change in the plan-
ner or plan execution mechanisms. To predict the optimal
overall performance, performance models of each individ-
ual abstract action are learned off-line and from experience,
using model trees. It is interesting to see that requiring op-
timal performance can implicitly yield smooth transitions in
robotic and natural domains, even though smoothness in it-
self is not an explicit goal. Applying subgoal refinement
to the presented scenario yields good results. However, the
computational models underlying the optimization are not
specific to this scenario, or to robot navigation.

References
T. Belker, M. Beetz, and A.B. Cremers. Learning action models
for the improved execution of navigation plans.Robotics and
Autonomous Systems, 38(3-4):137–148, 2002.
F. Stulp, M. Beetz. Optimized execution of action chains using
learned performance models of abstract actions.IJCAI, 2005.

88 Workshop on Plan Execution: A Reality Check

Plan Execution and Coordination

Pedro Szekely
Robert Neches

University of Southern California

Marcel Becker
Stephen Fitzpatrick

Kestrel Institute

Chris van Buskirk
Doug Fisher

Gabor Karsai
Vanderbilt University

Abstract

We investigate the problem of keeping the plans of mul-
tiple agents synchronized during execution. We assume
that agents only have a partial view of the overall plan.
They know the tasks they must perform, and know the
tasks of other agents with whom they have direct depen-
dencies. Initially, agents are given a schedule of tasks to
perform together with a collection of contingency plans
that they can engage during execution in case execu-
tion deviates from the plan. During execution, agents
monitor the status of their tasks, adjusting their local
schedules as necessary and informing dependent agents
about the changes. When agents determine that their
schedule is broken or that a contingency schedule may
be better, they engage in coordinating plan changes with
other agents. We present a ”dynamic partial central-
ization” approach to coordination. When a unit detects
a problem (task delay, inability to perform a task), it
will dynamically form a cluster of the critically affected
agents (a subset of all potentially affected agents). The
cluster will elect a leader, who will retrieve all task and
contingency plan information from the cluster members
and compute a solution depending on the situation.

Introduction
Plan execution often involves a collection of agents, such
that each agent gets a copy of its own plan, but does not
know the overall plan, for all the agents. This is a very com-
mon situation in the military, where fielded human units do
not have access to the full plan. Equally often, plan execu-
tion fails and there is a need for repairing the plans of the
individual agents such that the overall goals of the agent en-
semble are achieved. In the case of human agents this repair
is facilitated by a coordination process that includes rapid
communication and ad-hoc adaptation of plans by humans.
In our work, we are looking at computational approaches
that tie monitored plan execution to rapid plan repair and
coordination among autonomous executor/planning agents.

We assume that an active component: a coordinator agent,
is monitoring the execution of its plan. It receives notifica-
tions from its external world about events that could indicate
the success or failure of plan execution. When the execution

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

of its plan fails at a specific point in time, it goes into a co-
ordination mode, where it computes changes to its plan such
that the overall goals of the plan are achieved. The problem
is that the plans of the individual coordinators were created
dependencies among them, and failure in one plan step may
impact the agent but also other, dependent agent’s plans as
well. Our interest is to develop distributed algorithms that
facilitate rapid coordination: plan repair across a multitude
of related and dependent coordinator agents.

Our approach to coordination is ”dynamic partial central-
ization”. When a unit detects a problem (task delay, inability
to perform a task), it will initiate a process that will dynam-
ically form a cluster of the critically affected units (a subset
of all potentially affected units). We believe this cluster for-
mation is crucial for improved performance. The problem
of coordination can be solved in a fully centralized or in a
fully distributed way. In the first case, a central server is
needed (organizationally unacceptable for our domain), in
the second case a distributed constraint solving process can
be used (which has performance problems). The cluster so-
lution combines the advantages of the centralized approach
(better performance) without the problems of the fully dis-
tributed solution (using too much communication).

Modeling
Our work utilizes the TAEMS modeling framework (Decker
and Lesser 1993). TAEMS models plans hierarchically: the
leaves of the tree are called methods, and represent activi-
ties that agents can perform directly. The internal nodes are
called tasks, and represent procedures to combine multiple
activities (tasks or methods) to achieve higher level goals.

The TAEMS formalism offers several features appropri-
ate for modeling the dynamics of a real world execution
environments. We present the main concepts here (formal
specifications are described in (Decker and Lesser 1993),
details of the TAEMS framework are described in (Lesser
et al. 2004)).

1. Quality: methods define a probability distribution for the
quality that results when a method is executed.

2. Duration: methods define a probability distribution for
the amount of time it takes to perform a method.

3. Cost: methods define a probability distribution of the cost
that will be incurred when executing a method.

Workshop on Plan Execution: A Reality Check 89

Each task defines a quality accumulation function (qaf)
that specifies how the quality of the task is computed based
on the quality of the children. TAEMS offers a collection of
about 20 qafs. The most relevant to our work are:
• Min: the quality of a task is the minimum of the quality of

the children. Min corresponds to the traditional And logi-
cal operator given that unattempted or failed tasks receive
quality zero.

• Max: the quality of a task is the maximum of the quality of
the children. Max corresponds to the traditional Or logical
operator given that the quality of the task will correspond
to the best quality of any attempted subtask.

• Sum, Xor, Sequence, etc. enable modeling of other situa-
tions that arise in real world applications.
TAEMS also provides a capability to define inter-

relationships among tasks:
• Enables, Disables: these are hard constraints among tasks

or methods. If A enables B, then attempting to perform B
before A completes will result in B failing and accumu-
lating zero quality. Disables is defined similarly.

• Facilitates, Hinders: these are soft constraints. If A fa-
cilitates B, then when B is executed, its quality will be
multiplied by a facilitation factor that depends both on a
power factor defined in the Facilitates relation and the per-
centage of maximum quality that A obtained. Hinders is
defined similarly.
The TAEMS model of agents is very simple. Methods

and Tasks can be associated with a collection of agents
that can perform it. During execution, methods can only
be performed by a single agent, so part of the plan-
ning/coordination process involves selecting a single agent
from the collection of possible agents.

TAEMS distinguishes between subjective and objective
views of the world. The subjective view of the world is a
TAEMS structure that defines the portion of plans that an
agent knows about. Initially, agents are given a TAEMS
structure containing the tasks and methods where the agent
is listed, as well as all tasks an methods of other agents
directly linked to the agent’s tasks and methods (via En-
ables, Disables, Facilitates, Hinders and Parent relation-
ships). During execution agents may communicate their
subjective structures to other agents. The objective view is
a conceptual entity containing all TAEMS structures of all
agents. It may not be known to any agent, but for experi-
mentation, the objective view is known to a simulator.

Plan Execution
The main objective of our work is to build agents that rea-
son in real-time about the outcomes of method execution
(quality, duration and cost) and adjust their plans in order to
optimize the quality of the root level goal of the plan while
staying within cost deadline and cost constraints.

Our work does not assume that execution follows the fol-
lows the subjective models faithfully. Our system is reactive
and will always attempt to optimize the final outcome with
respect to the current state, irrespective of how the current
state came to be.

Figure 1: Architecture

Assumptions
The main assumption of our work is that the agents model
human activities, whose duration is typically measured in
minutes. This is in contrast to sensor network domains
where time frames are in the order of seconds or less (e.g.,
react to an incoming missile).

The human activity assumption means that response times
for adjusting plans can often be in the order of tens of sec-
onds. For example, if I miss my flight at the airport, it is OK
to wait 10 or 30 seconds for a new plan that directs me to
take an alternative flight, redirects me to a new city, etc.

Architecture
Figure 1 shows the main components of an individual agent.
The architecture builds upon an Interface that links the agent
to the external world. The agent receives events in the Event
Manager and sends and receives messages via the Message
Manager. Events inform the agent about the success or fail-
ure of the execution of plan steps, while messages are used
to communicate (and coordinate) with other agents. These
managers convert events and messages into the internal rep-
resentations of our system and give control to the Controller
for further processing.

Events trigger Event Analysis to determine if there is a
potential impact of the event on the plan of the agent. For
example, the event may indicate that a method that a task
depends on has not finished on time as expected. In such
cases Event Analysis produces a task impact report and gives
control back to the Controller.

Task impact reports are processed in the Task Analysis
component. This component uses a low cost distributed con-
straint propagation algorithm to repair the schedule when
execution deviates from the plan scheduled. When a task
or method slips, this algorithm will tighten the start window
for dependent tasks and methods. When the window of a
task or method owned by a different agent is tightened, then
a message is sent to the other agent to force it to tighten
its representation of the time window. The effects on time
windows are propagated as necessary. If the schedule has

90 Workshop on Plan Execution: A Reality Check

enough slack to absorb the delay, then the propagation will
die out. If a start window becomes empty (i.e., a task or
method should finish before it starts), then the impact of the
triggering event cannot be absorbed by simply adjusting the
start time of the methods in the current schedule. At this
point the impacted agent must engage a more sophisticated
search algorithm that will change the methods for achieving
the current goals. This search is started by the producing a
clustering report and returning control to the Controller.

The clustering reports are first processed in the Cluster
Manager, which initiates the cluster formation processes, by
defining a new cluster that initially contains just the task
whose start window is empty. A search report is produced
and control returns to the Controller.

The Search Strategy initiates the cluster-based search al-
gorithm by first expanding the cluster to contain the neigh-
bors of the seed element of the cluster, and then selects a
COA Search (Course of Action Search) algorithm to try to
find a feasible schedule within the elements of the cluster,
but without changing the time windows or dependencies for
any of the tasks or methods in the boundary of the cluster.
If such a solution exists it a search report is produced con-
taining the new solution. If no solution is found or a given
time threshold is exceeded, then a failure search report is
produced requesting cluster expansion.

The Cluster Manager expands clusters following depen-
dency links on the tasks and methods already in the clus-
ter and sending messages to their agents to query the corre-
sponding TAEMS structures. The Cluster Manager ensures
that no task or method belongs to more than one cluster.

When the request to grow a cluster fails (clusters collide)
the Search Strategy decides whether to merge clusters, nom-
inating one of the leaders as the leaders of the new merged
cluster, or whether to stop centralization and engage in dis-
tributed constraint satisfaction between the leaders of the
colliding clusters. These interactions are governed by the
Negotiation Manager that implements a negotiation protocol
among cluster leaders.

When the COA Search algorithms stop, producing a new
schedule (even if it is only a partial schedule), the leader
will distribute the new COA to all the cluster members, who
will incorporate it into their subjective view. The receiv-
ing agents will apply all events that have arrived since the
cluster-based search process started.

Given the human activity assumption, it is expected that
in the majority of cases cluster sizes can be kept small en-
abling the use of fast, centralized solutions techniques that
enable leaders to quickly compute high quality solutions be-
fore the world changes in a significant way. As a last resort,
if merging of clusters would result in large clusters, lead-
ers will negotiate using slower, less optimal distributed con-
straint satisfaction techniques.

Depending on circumstances, human users may need to
approve these plans. For this reason, plan choices are pre-
sented in a ranked order of utilities to a human, who can then
approve the chosen plan.

Conclusions and Status
The approach presented here represents an interesting com-
promise between approaches based on traditional planning
representations (e.g., PDDL 2.2) and an approaches based
on a task-oriented representation such as TAEMS. TAEMS
is not a planning language: preconditions and effects of
methods are not defined explicitly . The effects are encoded
implicitly in the inter-relationships among tasks and meth-
ods. TAEMS is expressive enough to encode contingency
plans, i.e., alternative ways to accomplish goals. Each of
the contingency plans is a fragment of a larger plan and they
must be combined into a consistent plan. However, TAEMS
provides a good model of task and method execution.

The partial centralization approach for distributed coordi-
nation has been explored before (Scerri et al. 2004). Our
approach is more closely related to Mailler’s work on co-
operative mediation of distributed constraint optimization
(Mailler and Lesser 2004).

This paper presents the approach for a new system. We
have designed the system architecture, have high level ideas
for the search algorithms involving centralized search over
TAEMS structures. We plan to demonstrate the system cre-
ated on small scale, abstract examples by the end of the cur-
rent year (Nov 2005).

Acknowledgments
The work presented here is funded by the DARPA COOR-
DINATORS Program under contract FA8750-05-C-0032.
The U.S.Government is authorized to reproduce and distrib-
ute reports for Governmental purposes notwithstanding any
copyright annotation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of any of the
above organizations or any person connected with them.

References
Keith S. Decker and Victor R. Lesser. Quantitative mod-
eling of complex environments. International Journal of
Intelligent Systems in Accounting, Finance, and Manage-
ment, 2(4):215–234, 1993.
V. Lesser, K. Decker, T. Wagner, N. Carver, A. Gar-
vey, B. Horling, D. Neiman, R. Podorozhny, M. Nagen-
draPrasad, A. Raja, R. Vincent, P. Xuan, and X.Q. Zhang.
Evolution of the GPGP/TAEMS Domain-Independent Co-
ordination Framework. Autonomous Agents and Multi-
Agent Systems, 9(1):87–143, July 2004.
Roger Mailler and Victor Lesser. Solving Distributed Con-
straint Optimization Problems Using Cooperative Media-
tion. In Proceedings of Third International Joint Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2004), pages 438–445. IEEE Computer Society,
2004.
Paul Scerri, Regis Vincent, and Roger Mailler. Comparing
Three Approaches to Large Scale Coordination. Proceed-
ings of the First Workshop on the Challenges in the Coor-
dination of Large Scale Multi-agent Systems, July 2004.

Workshop on Plan Execution: A Reality Check 91

Survey of Command Execution Systems
for NASA Spacecraft and Robots

Vandi Verma, Ari Jónsson, Reid Simmons, Tara Estlin, Rich Levinson

QSS / NASA Ames Research Center
 USRA-RIACS / NASA Ames Research Center

 Carnegie Mellon University
 Jet Propulsion Lab

 Attention Control Systems Inc.

MS 269-1 NASA Ames, Moffett Field CA 94035
 MS 269-2 NASA Ames, Moffett Field CA 94035

 3205 Newell-Simon Hall, Carnegie Mellon University, Pittsburgh, PA 15213
 M/S 126-347, JPL, Pasadena CA 91109-8099

 650 Castro St., Ste 120 PMB 197, Mountain View CA 94041

vandi@email.arc.nasa.gov, ajonsson@arc.nasa.gov, reids@cs.cmu.edu, tara.estlin@jpl.nasa.gov, rich@brainaid.com

Abstract
NASA spacecraft and robots operate at long distances from
Earth. Command sequences generated manually, or by
automated planners on Earth, must eventually be executed
autonomously on-board the spacecraft or robot. Software
systems that execute commands on-board are known
variously as execution systems, virtual machines, or
sequence engines. Every robotic system requires some sort
of execution system, but the level of autonomy and type of
control they are designed for varies greatly. This paper
presents a survey of execution systems with a focus on
systems relevant to NASA missions.

Introduction
As NASA’s missions become more complex, autonomy
becomes increasingly important to the success of those
missions. At the heart of such autonomous systems are
sub-systems, known variously as execution systems, virtual
machines, or sequence engines, that execute commands
and monitor the environment. Such execution systems
vary in sophistication, from those that execute linear
sequences of commands at fixed times, to those that can
plan and schedule in reaction to unexpected changes in the
environment.

For NASA missions, sophisticated execution systems are
highly desirable for several reasons. One is that NASA
spacecraft and robots typically operate far from Earth, and
so must take on significant responsibility for their own
health and safety. Second, models of robot sensors and
effectors are often uncertain and the environment is

generally only partially known and may even be dynamic.
To account for uncertainty even a simple deterministic
sequence of commands needs to use worst-case estimates
of action duration and resource use. In some cases even
this suboptimal sequence may not be robust to the
uncertainty.

This paper presents a survey of execution systems that
have been developed for various applications. We focus on
those systems that are relevant to NASA-type applications.
Before presenting the individual systems, we define some
terms that are critical to understanding execution systems.

An executive is a software component that realizes pre-
planned actions. Executives are particularly useful in the
presence of uncertainty. Classical executive functions
include selecting an action from a set of possibilities based
on the current state of the robot and environment and
outcome of previous actions, hierarchical task
decomposition, coordinating simultaneous actions,
resource management, monitoring of states, resources
command status, and fault diagnosis and recovery. One
way to view an executive is as an onboard system that
takes a plan that assumes a certain level of certainty and
expected outcomes and executes it in an unknown and
possibly dynamic environment.

A plan is a series of actions designed to accomplish a set of
goals but not violate any resource limitations, temporal or
state constraints, or other spacecraft or rover operation
rules. Desirable characteristics of a plan are that it be valid,
complete and optimal (or of high quality). Algorithms that
can reason about achieving goals over a future time period
and in the face of various constraints are called planners.

92 Workshop on Plan Execution: A Reality Check

2

However, a plan, as generated by most any current planner,
still requires the help of an execution system to be useful
for real-world execution. Making these plans executable
may not involve complex AI algorithms, but is essential for
achieving the plan. In order to perform plan execution,
control structures such as conditional statements that catch
violated assumptions, looping constructs that can retry an
action until it succeeds, and more detailed descriptions of
preconditions that must be checked before an action is
executed must be added. Execution languages provide
constructs to represent essential plan execution information
in addition to the plan.

An execution language is a representation of actions and
plans that takes into account the state of robot and
environment at the time the action is executed, and the
interdependence between actions, in terms of temporal,
precedence, or other constraints.

Model-based systems are represented by a knowledge-base
(model) of its structure and behavior and are typically
specified using a declarative representation. In other
words, these models do not specify the sequence of actions
required to fulfill specific high-level goals of the system,
but instead they specify the expected effect each action or
external event may have on the modeled state. Models are
often specified in a modular manner, where only the local
effect of an event is described. Planners may use these
models to find sequences of actions directed toward the
goal or a fault diagnosis system may use them to detect and
identify faults.

Some execution systems use no automated planners; we
call these execution-only systems. Other execution systems
have explicit interfaces to planners, (through an execution
language or a standard format like XML), we call these
execution systems coupled with an external planner. Yet
another class of execution systems integrate planning and
execution more tightly by using a planner internally within
the execution system to select control actions. We call
these execution systems with internal planner. Note this is
not a mutually exclusive classification. Some execution
system may be used as an execution only system with
manually encoded plan execution, but may also have well
defined interfaces to one or more automated external
planners that may be used in other applications. An
execution system may also provide an external interface to
a planner in addition to having an internal planner. Finally,
note that the coupling of execution systems with external
planners can differ in tightness, ranging from infrequent
requests for assistance to continuous information sharing.
In cases where the coupling is tight, the combined
functionality is similar to integrated execution-planning
systems.

Traditional Command Execution

At this time, most spacecraft and rovers are operated via
sequences of commands. The command sequences are
fairly simple in structure and the interpretation on board
the spacecraft is straightforward. Dynamic outcomes and
environmental uncertainties are handled partially by
making sequences conformant to possible outcomes, and
partially by relying on on-board fault detection and system
health software.
In this context of traditional spacecraft operations, the
executive is the flight software system on board the
spacecraft; more specifically, the sequence execution
system and the health monitoring and fault detection
system. The execution language is simple; an execution
plan is a fairly small set of branching command sequences
and sub-sequences, where each command is either
executed at a specific time, or immediately following the
completion of another command. Typically, there are no
conditionals, no loops, no constraints, etc.
The most notable properties of this approach are:

• Plans become inherently conservative, so as to be
conformant to expected outcomes. For example,
activities are assumed to take the longest they can
possibly take.

• The on-board health monitoring system is limited to
general responses to failures, which often leads to
unnecessary execution aborts and spacecraft
operations halts. For example, a certain failure might
lead to abandoning the whole plan, whereas portions
of the plan could still be safely continued.

Virtual Machine Language (VML) [14] is a sequencing
language that has flown on numerous NASA spacecraft.
VML is currently in use on the Spitzer space telescope,
Mars Odyssey, Mars Reconnaissance Orbiter, Dawn,
Genesis, and Stardust. It is slated for future New Frontier
and Discovery class missions, including the Mars Telecom
Orbiter and possibly the Mars Science Lander.

VML is an execution language that was developed to take
into account the needs of spacecraft operations. It provides
a "safe-sandbox", with the aim of shielding operations
personnel from most of the mistakes possible in
contemporary programming languages like C. Sequences
are procedural, and have symbolic names. At any time only
one instruction is active in a sequence engine (also known
as a virtual machine). The language accommodates a
variety of spacecraft commanding architectures. It features
absolute and relative constraints, event-driven sequencing,
programmable delays, arithmetic and bit-level operations,
parameters with polymorphism, and a number of numeric
and string data types. VML dynamically builds spacecraft
commands with values derived from variables, and has
reusable blocks that can be called or spawned from
sequences. The on-board sequencing component can also

Workshop on Plan Execution: A Reality Check 93

3

be configured to access telemetry values for use within
sequences.

The VML language is compiled to an uplinkable file form
in a Unix-based ground system by the VML Compiler.
This process translates human-readable text into a binary
file for interpretation onboard by the VML Flight
Component. The flight component is implemented in C for
compatibility with the widest possible range of missions. In
addition, a Unix tool known as Offline VM (OLVM) is
available for ground-based execution and debugging of
developed blocks and sequences. OLVM encapsulates the
actual flight code for high fidelity testing with very fast
turnaround when developing using VML.

Execution Systems
This section presents several NASA-relevant execution
systems, in alphabetical order.

Apex
Apex [10] is an execution system and has been used in
numerous large-scale applications including control of real
autonomous helicopters, control of simulated aircraft for
wildfire detection, and in simulating humans for Human
Computer Interface (HCI) analysis.

Apex is a reactive execution system that selects for
execution one or more procedures (partial plans) from its
library of procedures at each execution step. In most
applications Apex has been used as an execution-only
system. Apex is designed to unify plan-running and
mission-management functionality. Planners may be
called on to produce or extend a mission plan, to solve a
local planning problem within a mission plan or both. Apex
may therefore potentially be used as an execution system
coupled with an external planner.

The execution language used by Apex is the Procedure
Description Language (PDL). PDL can represent a
hierarchical decomposition of a high-level task into basic
primitives, event driven floating contingencies, and also
calls to Lisp (the underlying programming language). A
PDL procedure consists of a unique identifier, a description
of a class of goals the procedure applies to, and one or
more step clauses. The step clauses are concurrently
executable and may call other procedures (sub-tasks).

The input to Apex is a set of human-fabricated procedures
represented in PDL. Apex is a reactive system that chooses
an action at every execution step. Key capabilities of the
executive (and of PDL) are:

• Monitoring/querying for complex temporal events
patterns

• Opportunistic (reactive) task refinement and resource
allocation

• Management of concurrent and periodic tasks

Continuous reaction allows Apex to use the most recent
measurements to guide the selection of the next action. In
addition it allows dynamic update of high level goals. Apex
also provides a number of tools for debugging,
demonstration, and monitoring.

CRL and C-CRL Executive
The Contingent Rover Language (CRL) [4] is a declarative
plan execution language that was designed to represent
contingent plans. It uses a hierarchical representation and
can represent simple and floating branches, nesting,
flexible time, and state and resource conditions. The CRL
executive has been used on NASA’s Marsokhod, ATRV,
and K9 rovers as a high-level plan interpreter. It has also
been used with the Mission Simulation Facility (MSF)
rover simulator. C-CRL is an extension of CRL that is
capable of concurrent execution and has been used for the
single-cycle instrument placement demonstration on the K9
rover [21].

The CRL executive may be used as an execution-only
system with manually written CRL constructs. The external
planner that generates CRL plans is the PICO contingent
planner [5]. CRL does not support loops and periodic tasks,
or have a mechanism for providing feedback to planners.

IDEA
Intelligent Distributed Execution Architecture (IDEA) [20]
is a model-based planning and execution system. One of
the two glitches experienced by Remote Agent was due to
undocumented and subtle differences in semantics between
models in the planning, execution and diagnosis layers.
IDEA was developed to address this problem by building
an architecture that supports controllers/planners at
multiple levels of abstraction. Controllers (agents) at every
level of abstraction share the same model. The semantics of
the structure of a task, the structure of an execution cycle
responsible to activate a task in response to an
asynchronous or synchronous event, the structure of events
communicated between controllers, how the
communication of tasks maps into the transport layers
responsible of delivering them across agents, are thus
uniform. Each controller (control agent) at every level of
abstraction is assumed to perform planning as the sole
computational process to decide how to respond to events.

IDEA uses the classic sense-plan-act cycle. One of the
novel features in IDEA is the use of an on-board planner
from first principles (i.e., the sub-goaling model) to plan
for a limited horizon into the future and execute the current
task at hand simultaneously. The advantage is that this
allows it to dynamically update the plan based on the

94 Workshop on Plan Execution: A Reality Check

4

current state of the world and previous actions, which can
yield a wider range of robust behaviors than possible with
traditional execution scripts. The disadvantage of using
planning from first principle at every execution cycle is
that patterns of constraints (temporal and parametric) are
always assembled from scratch, causing higher latency
than possible when using pre-compiled execution scripts.
Consequently, execution may halt if the planner can’t
deliver a response in time. IDEA agents can also use an
arbitrary number of deliberative planners to optimize agent
behavior over a long, future horizon. IDEA is thus an
execution system with internal planner (reactive planners)
and may also be used as an execution system coupled with
an external planner (deliberative planners) at the same
time.

XIDDL is the execution language used in IDEA. It is a
modeling language amenable to temporal/hybrid planning
through subgoaling, used to describe the model of the
world, the internal logic and the input/output behavior of
each IDEA controller. This uniformity aims to facilitate
system-level validation for an autonomy system without
the need for understanding the details of each specific
controller, since it is expensive and error prone to assume
that mission personnel will examine software written in
different computer languages in order to ascertain its
ability to satisfy mission requirements. IDEA has been
used for autonomously controlling a telescope, PSA
(personal satellite assistant), and a number of mobile
robots.

While IDEA is designed to use any planner that uses a
representation that is compatible with the XIDDL
modeling language, all of the IDEA systems developed so
far use the Europa planning technology [9] both for
reactive and deliberative planning.

MPE
Mission Planning and Execution (MPE) [1] is the
execution subsystem of the Mission Data System (MDS)
[24]. MDS uses an explicit state-based representation.
Knowledge about the spacecraft and the environment is
provided by state estimates. Knowledge about the behavior
of the system is stored in state models. Information is
reported via a history of states, measurements, and control
commands. The input to MPE is operator “intent”
(expressed as temporal constraints, and constraints on
states), flight rules, and hard constraints on variables. MPE
is an execution system with internal planner that can
locally adapt the original plan to recover from faults and
handle uncertainty.

PROPEL
Program Planning and Execution Language (PROPEL)
[17] [18], is a unified planning and execution system that

uses a procedural representation. This is different from
IDEA, which exclusively uses a declarative action
representation.

The motivation was that since most software is not written
as a declarative model it tends to be outside the scope of a
planner’s reasoning. PROPEL was designed to increase
the scope of the planner’s model to include software in
order to address the problem of software failure detection
and recovery.

Propel was designed to close the gap between the
declarative action model used by a planner and the
procedural languages used to develop real-world software.
The representation is intended to be expressive enough to
be used in system software including the planner and
executive software. Motivation for using a procedural
representation includes:

• Desire to include all software within the planner’s
model in order to increase the scope of failure
recovery to include infrastructure software failures.

• Desire to represent complex procedures including
loops, conditionals, local variables, and
multiprocessing.

• Desire to reduce the need to develop and maintain
different models for the planner and execution
system.

• Reduce risk of loss of information in translation
between execution and planning (and vice versa).

Propel is both an architecture and a language. The
architecture provides integrated planning and execution
modules that monitor and manipulate application-level
processes written in the Propel language. The language is
a library of methods for embedding search and temporal
constraint information into C++, thus creating a "superset"
of C++ like TDL. This library provides an interface from
the Propel application code to the supervisory meta-
processes (the planning and execution modules), which
monitor the application to provide failure detection and
recovery.

The language provides an action representation that
captures control constructs and can also be projected by a
search-based planner. The planner can provide a useful
partial plan even when it is interrupted after an arbitrary
amount of computation. The planner and the controller
share identical data structures and algorithms for
interpreting a shared representation of control actions.
PROPEL is an execution system with internal planner.

PRS
The Procedural Reasoning System (PRS) [12] was
developed to address the problem encountered in
developing autonomous systems that were required to be
continuously active and have real-time response.

Workshop on Plan Execution: A Reality Check 95

5

Traditional programming languages imposed an order on
task execution through the language’s control structure that
makes it difficult to respond quickly to a large set of
possible events.

PRS is a reactive goal-driven system that selects
procedures (partial plans) from its library of procedures at
each execution step. PRS is an execution-only system.

PRS has a knowledge-base of procedures. Each procedure
requires the specification of an event, the state of the world
that will trigger that event, the steps that are executed by
the procedure, and the sub-goals that it achieves.

PRS has been used on a number of mobile robots and also
in a simulation of the space shuttle. PRS was originally
written in Lisp and is now known as PRS-CL. The C
version of it is called C-PRS or Propice [15].

RAP System
Reactive Action Package System (RAPs) [8] was designed
to support reactive planning and execution. It is a
representation language for general-purpose execution. It
uses a Lisp-based interpreter to manage a task network and
to interface to a behavioral layer. RAPs may thus be used
as an execution-only system or execution system coupled
with an external planner.

The main idea behind RAPs is that all capabilities of goal-
achieving behaviors – task decomposition, different tactics
for achieving a goal, monitoring, error recovery, checking
of pre- and post-conditions – should be represented in a
single “package.” Each RAPs is thus a self-contained
module that knows how to achieve a particular goal in the
face of uncertainty.

The RAPs execution system uses a library of goal-
achieving behaviors and a symbolic world database to
choose which RAPs to execute, how to decompose them,
and when they succeed or fail. The execution system
schedules RAPs according to their priority and temporal
constraints, interrupting execution of one RAP if higher
priority RAPs become active.

Remote Agent (RA) Executive
Remote Agent [22] is an AI system that flew on-board the
Deep Space One (DS-1) spacecraft in 1999. The main
characteristics of the Remote Agent are that it is model-
based with on-board planning, fault detection,
identification, and recovery.

The executive in the Remote agent [23] is the central
controller. The input to the Remote Agent executive is a
high-level state and duration for which the state must be
maintained. The executive autonomously calls the planner
to generate a plan to satisfy a high-level goal. It uses a

domain model to monitor plan execution and commands
the planner to generate an updated plan if any of the
constraints are violated during execution.

The Remote Agent executive was based on the Execution
Support Language (ESL) [11]. ESL is a declarative
execution language that is an extension of Lisp. It is
implemented as a set of macros that expand into Common
Lisp and invoke Lisp’s multi-tasking library. ESL provides
task-level control constructs, resource management, and a
database built on Prolog

The novel features demonstrated by the RA executive in
the DS-I experiment were integrated planning and
execution with low-latency response time to contingencies
and deficiencies in the plan and the lack of intervention
required by the human operator after issuing high level
mission goals. The RA executive is an execution system
with internal planner and also an execution system coupled
with an external planner at the same time.

One of the main challenges with this approach is building
and maintaining models. The emergent behavior that
results from subtle interactions between qualitative models
of weakly interacting subsystems is hard to predict since
the range of input conditions and responses are extremely
large. “Incorrect knowledge in the domain model could
endanger or even lose the mission” [2].

RMPL, Titan, Kirk, Moriarty
Titan [29] is a model-based execution system that supports
both execution control and model-based goal achievement
specifications. The execution control component generates
goal states, which are then given to the model-based goal
achievement component. The goal achievement
component uses automated diagnosis methods to estimate
the current state from observable data (m o d e
identification), and then uses automated planning (mode
reconfiguration) to generate command sequences to
achieve the given goals from the current state.

The execution language used in Titan is the Reactive
Model-based Programming Language (RMPL) [28]. It is
used to specify both the control information used by the
control component and the model-based state estimation
and planning component. The control information supports
control constructs such as loops, conditions, iterations and
contingencies, over model-based specifications of
concurrent and sequenced goals. The control elements of
RMPL are compiled into hybrid control automata (HCA),
while the mode identification and reconfiguration is
specified in terms of concurrent control automata (CCA).

Titan differs from Propel because it compiles procedural
constructs into a declarative model, which is then
interpreted by during execution. Titan is similar to IDEA

96 Workshop on Plan Execution: A Reality Check

6

this way, but differs from IDEA by using an explicit
description of control behavior.

The core Titan system and the RMPL language have been
extended to handle hybrid (continuous/discrete) state
information, resulting in a system called Moriarty. A
different extension, implemented in the Kirk execution
system [30], supports distributed cooperative execution.
Titan, Moriarty and Kirk may be described as execution
systems with internal planner.

RPL
Reactive Plan Language (RPL) [19] was inspired by RAP
and PRS. It is a Lisp-like language and includes rich set of
control constructs, such as conditionals, looping, and the
ability to specify “policies” that hold during the execution
of particular sub-tasks.

RPL was designed to support replanning and debugging of
task definitions [2]. Based on experience obtained during
execution and Monte-Carlo simulations of task execution,
situations can be identified where tasks are likely to fail.
Heuristic “critics” are then used modify the task (e.g.,
adding new constraints, adding new policies) in order to fix
the bugs found. RPL is an execution system with internal
planner.

TDL

The Task Description Language (TDL) [25] uses a
procedural representation to support plan execution. It is an
extension of C++, adding syntax for specifying high-level
control. A Java-based compiler translates TDL into pure
C++, together with calls to a domain-independent task
management library. The resulting code can then be
compiled with any existing compiler and linked with
existing C++ code. There are options in the language to
specify that the resulting code should be threaded and/or
distributed (the latter used for coordinating multiple robots.

TDL provides the ability to represent high-level control
constructs including task decomposition, task coordination
and synchronization, execution monitoring and exception
handling, as well as distributed coordination between
multiple agents. Being an extension of C++ makes it very
easy to integrate TDL into projects – developers can use as
much, or as little, of the TDL functionality as they need to
augment the standard C++ functionality.

High level control constructs are represented in TDL as
task-trees. Task trees represent the execution trace of
hierarchical plans and are created dynamically at run time.
The task-tree decomposition can be created from
conditional and recursive task representations. The
temporal constraints in the task-tree decomposition
(partially) order task execution. Planning and sensing are
treated as schedulable activities. In other words, the

executive runs the main loop and calls the planner when
required. TDL is an execution system coupled with an
external planner. In several projects, a symbolic Plan
Representation Language (PRL) was used to transfer data
between a planner and a TDL-based executive [13] To
date, TDL has been used in about a dozen mobile robot and
autonomous system projects at various universities and
institutions, including several NASA rovers [7].

Universal-Executive
The Universal-Executive is currently under development in
a collaborative effort of researchers at NASA Ames
Research Center, NASA’s Jet Propulsion Laboratory and
Carnegie-Mellon University. It is being designed to
facilitate reuse and inter-operability of execution and
planning frameworks. Plan execution systems often have a
close relation to the planners that they are associated with,
which makes information sharing between different
execution and decision-making systems difficult.

The Universal-Executive builds on the Coupled Layer
Architecture for Robotic Autonomy (CLARAty) [27],
which is a two layer software architecture that was
developed to enable both a plug-and-play capability and a
tighter coupling of high level decision making planners and
the interface to hardware. The CLARAty architecture has
successfully enabled interoperability at the Functional
Layer, which is the interface to the hardware. Current
work, including the development of the Universal
Executive, is addressing this same goal at the Decision
Layer.

The execution language to be used in the Universal-
Executive is called Plan Execution Interchange Language
(PLEXIL) . PLEXIL extends many execution control
capabilities of other systems. The key characteristics of
PLEXIL are that it is compact, semantically clear, and
deterministic given the same sequence of events. At the
same time, the language is quite expressive and can
represent simple branches, floating branches, loops, time
and event driven activities, concurrent activities,
sequences, and temporal constraints.

The input to the Universal-Executive will be a PLEXIL
representation of an execution control instance and a
description of relevant domain information. Execution
nodes describe both initiation of real-world actions, and the
control of execution. The nodes are arranged into
hierarchical trees where leaf nodes are action nodes and
internal nodes are control nodes. This is different from
TDL, where task trees are a type rather than an instance.

The execution of each node is governed by a set of
conditions, such as when the node gets activated and when
it is done. The Universal-Executive will be capable of
executing multiple nodes concurrently. When action nodes

Workshop on Plan Execution: A Reality Check 97

7

are executed, commands are sent to the rover, whereas
when internal nodes are executed, they are expanded to the
next level of nodes in the tree.

The expressiveness of the language enables the Universal
Executive to handle dynamic outcomes and environmental
uncertainty. The executive can also provide execution
information and outcomes back to higher-level systems.
Consequently, it can be used both as a stand-alone
execution-only system, and as an execution system coupled
with an external planner.

Conclusions
The demands of future NASA spacecraft and robotic
missions dictate an execution system that has great
flexibility, expressiveness, and ease of use. This paper has
presented a number of execution systems and execution
languages that are relevant to NASA-type missions.

Acknowledgements: We thank Emmanuel Benazera,
Howard Cannon, Mike Freed, Nicola Muscettola, Corina
Pasareanu, and Rich Volpe for many useful discussions
and all the attendees of the “Workshop on Existing
Planning and Execution Systems”, Nov 16, 2004 at NASA
Ames Research Center, which motivated this paper. In
addition, Mike Freed, Chris Grasso, and Nicola Muscettola
provided invaluable comments on this paper.

References

1. Barrett A., Knight R., Morris R., Rasmussen R., Mission
Planning and Execution Within the Mission Data System,
International Workshop on Planning and Scheduling for
Space (IWPSS 2004). Darmstadt, Germany, June 2004.

2. Beetz M. and McDermott D., Declarative goals in
reactive plans, In James Hendler (ed.), Proc. First Int.
Conf. on AI Planning Systems, San Mateo: Morgan
Kaufmann, pp.~3--12

3. Bernard D. et al. Final Report on the Remote Agent
Experiment , NMP DS-1 Technology Validation
Symposium Feb 8th and 9th 2000, Pasadena, CA

4. Bresina J.L. and Washington, R., Robustness via Run-
time Adaptation of Contingent Plans, In Proceedings of
the AAAI-2001 Spring Syposium: Robust Autonomy.
Stanford, CA

5. Dearden R., Meuleau N., Ramakrishnan S., Smith D.,
and Washington R., Incremental Contingency Planning,
ICAPS-03 Workshop on Planning under Uncertainty,
Trento, Italy, June 2003.

6. Drummond M., Bresina J., Kedar S., The Entropy
Reduction Engine: Integrating Planning, Scheduling, and
Control, in SIGART Bulletin 2, 1991, 48-52

7. Estlin T., Gaines D., Chouinard C., Fisher F., Castano
R., Judd M., Anderson R., and Nesnas I.. "Enabling
Autonomous Rover Science Through Dynamic Planning
and Scheduling," Proceedings of 2005 IEEE Aerospace
Conference, Big Sky, Montana, March, 2005.

8. Firby J, Adaptive Execution in Complex Dynamic
Domains , Ph.D. Thesis, Yale University Technical
Report YALEU/CSD/RR #672 January 1989

9. Frank J., and Jonsson A. K., Constraint-based Attribute
and Interval Planning, in Constraints, 8(4), p 339-364,
2003.

10. Freed M., Managing Multiple Tasks in Complex,
Dynamic Environments. In Proceedings of the 1998
National Conference on Artificial Intelligence. Madison,
WI. 1998

11. Gat E.. ESL: A Language for Supporting Robust Plan
Execution in Embedded Autonomous Agents, Proc. AAAI
Fall Symposium on Plan Execution, Boston MA, October
1996.

12. Georgeff M. and Lansky A., Procedural Knowledge,
in Proceedings of the IEEE Special Issue on Knowledge
Representation, Volume 74, pages 1383-1398, 1986.

13. Goldberg D., Cicirello V., Dias M. B., Simmons R.,
Smith S., and Stentz A., Market-Based Multi-Robot
Planning in a Distributed Layered Architecture, In
Proceedings of the Multi-Robot Systems Workshop,
Washington, D.C., March 17-19, 2003

14. Grasso C., The Fully Programmable Spacecraft:
Procedural Sequencing for JPL Deep Space Missions
Using VML (Virtual Machine Language), IEEE
Aerospace Applications Conference Proceedings, march
2002

15. Ingrand F., R. Chatila, R. Alami and F. Robert, PRS:
A High Level Supervision and Control Language for
Autonomous Mobile Robots, IEEE ICRA 96,
Minneapolis, USA.

16. Kim P., Williams B., Abramson M., 2001. Executing
Reactive, Model-based Programs through Graph-based
Temporal Planning. IJCAI '01. AAAI, Menlo Park, CA.

17. Levinson R., A General Programming Language for
Unified Planning and Control. Artificial Intelligence,
special issue on Planning and Scheduling, Vol. 76.
Elsevier Press. July 1995.

18. Levinson R., Unified Planning and Execution for
Autonomous Software Repair. ICAPS 2005. Workshop
on Plan Execution: A Reality Check. 2005.

19. McDermott D., A Reactive Plan Language, Research
Report YALEU/DCS/RR864 Yale University 1991

20. Muscettola N., Dorais G., Fry C., Levinson R., and
Plaunt C., "IDEA: Planning at the Core of Autonomous
Agents," (AAAI 2001)

21. Pedersen L., Smith D., Deans M., Sargent R., Kunz
C., Lees D. and Rajagopalan S., Mission planning and
target tracking for autonomous instrument placement,
2005 IEEE Aerospace Conference.

22. Pell B., Bernard D.E., Chien S. A., Gat E., Muscettola N.,
Nayak P. P., Wagner M. D., and Williams B. C.. A Remote
Agent Prototype for Spacecraft Autonomy. In Proceedings of

98 Workshop on Plan Execution: A Reality Check

8

the SPIE Conference on Optical Science, Engineering, and
Instrumentation, 1996.

23. Pell B., Gamble E., Gat E., Keesing R., Kurien J.,
Millar B., Nayak P. P., Plaunt C., and Williams B., A
Hybrid Procedural/Deductive Executive For Autonomous
Spacecraft. In Proceedings of the Second International
Conference on Autonomous Agents, Minneapolis, MI
1998

24. Rasmussen R., Goal-Based Tolerance for Space
Systems Using the Mission Data System, In Proceedings
of the 2001 IEEE Aerospace Conference.

25. Simmons R. and Apfelbaum D.. A Task Description
Language for Robot Control, Proceedings of Conference
on Intelligent Robotics and Systems, Vancouver Canada,
October 1998.

26. Simon D., Espiau B., Kapellos K., Pissard-Gibollet R.
, Orccad: Software Engineering for Real-time Robotics,
A Technical Insight, Robotica, Special issues on
Languages and Software in Robotics, vol 15, no 1, pp
111-116

27. Volpe R., Nesnas I. A. D., Estlin T., Mutz D., Petras
R., Das H., The CLARAty Architecture for Robotic
Autonomy. Proceedings of the 2001 IEEE Aerospace
Conference, Big Sky Montana, March 10-17 2001.

28. Williams B. C., Ingham M., Chung S. H., and Elliott
P. H., January 2003. Model-based Programming of
Intelligent Embedded Systems and Robotic Space
Explorers, invited paper in Proceedings of the IEEE:
Special Issue on Modeling and Design of Embedded
Software, vol. 9, no. 1, pp. 212-237.

29. Williams B. C., Ingham M., Chung S., Elliott P., and
Hofbaur M., Model-based Programming of Fault-Aware
Systems, AI Magazine, vol. 24, no. 4, Winter 2004, pp.
61-75.

30. Kim P., Williams B. C. and Abramson M, 2001,
Executing Reactive, Model-based Programs through
Graph-based Temporal Planning, Proceedings of the
International Joint Conference on Artificial Intelligence,
Seattle, Wa.

Workshop on Plan Execution: A Reality Check 99

	allpapers.pdf
	ICAPS-2005-BBN.pdf
	An ICAPS 2005 Position Paper
	Abstract
	1. Overview
	2. Architectural Approaches
	3. Example Domain: Temperature Control
	4. Conclusion
	5. Acknowledgements

